Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 4
Temps de recherche: 0.0306s

transhumanisme

Internet, la physique quantique, la biotechnologie, la robotisation du travail, l'intelligence artificielle, l'ingénierie génétique, les nouvelles techniques de reproduction assistée, et le voyage extraterrestre précipitent également des changements sans précédent vers l'invention d'autres modalités d'existence entre l'organisme et la machine, le vivant et le non-vivant, l'humain et le non-humain, tandis que de nouvelles hiérarchies dans le domaine politique apparaissent et disparaissent.

Auteur: Preciado Paul B.

Info: Je suis un monstre qui vous parle

[ instabilité ] [ nouvelles configurations ] [ possibilités ] [ science ] [ déconstruction ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

extension

La conscience humaine pourrait être un effet de l’entropie 

Une nouvelle étude suggère que la conscience pourrait être une caractéristique émergente découlant de l’effet d’entropie, soit le mécanisme physique faisant que le désordre au sein de tout système ne peut faire qu’augmenter, et par le biais duquel le cerveau maximiserait les échanges d’informations. Cette conclusion a été déduite de l’analyse de l’activité cérébrale de patients épileptiques ou non, indiquant que les états d’éveil normaux (ou conscients) sont associés à des valeurs entropiques maximales.

En thermodynamique, l’entropie se traduit par le passage inéluctable d’un système d’un agencement ordonné à désordonné. La valeur entropique est le niveau de désorganisation de ce système. Les physiciens suggèrent qu’après le Big Bang, l’Univers est progressivement passé d’un état entropique faible à élevé et qu’à l’instar du temps, l’entropie ne peut qu’augmenter au sein d’un système. De leur côté, les neurobiologistes estiment que le principe est transposable à l’organisation de nos connexions neuronales.

La question est de savoir quel type d’organisation neuronale sous-tend les valeurs de synchronisation observées dans les états d’alerte normaux ou non. C’est ce que des chercheurs de l’Université de Toronto et de l’Université de Paris Descartes ont exploré. " Nous avons cherché à identifier les caractéristiques globales de l’organisation du cerveau qui sont optimales pour le traitement sensoriel et qui peuvent guider l’émergence de la conscience ", expliquent-ils dans leur étude, publiée dans la revue Physical Review E.

Les observations de l’activité cérébrale chez l’Homme ont montré qu’elle est sujette à une importante fluctuation au niveau des interactions cellulaires. Cette variabilité serait à la base d’un large éventail d’états, incluant la conscience. D’un autre côté, des travaux antérieurs traitant du fonctionnement cérébral ont suggéré que l’état conscient n’est pas nécessairement associé à des degrés élevés de synchronisation entre les neurones, mais davantage à des niveaux moyens. Les chercheurs de la nouvelle étude ont alors supposé que ce qui est maximisé au cours de cet état n’est pas la connectivité neuronale, mais le nombre de configurations par lesquelles un certain degré de connectivité peut être atteint.

État de conscience = entropie élevée ?

Dans le cadre de leur analyse, les scientifiques ont utilisé la mécanique statistique pour l’appliquer à la modélisation de réseaux neuronaux. Ainsi, cette méthode permet de calculer des caractéristiques thermodynamiques complexes. Parmi ces propriétés figure la manière dont l’activité électrique d’un ensemble de neurones oscille de façon synchronisée avec celle d’un autre ensemble. Cette évaluation permet de déterminer précisément de quelle façon les cellules cérébrales sont liées entre elles.

Selon les chercheurs, il existerait une multitude de façons d’organiser les connexions synaptiques en fonction de la taille de l’ensemble de neurones. Afin de tester leur hypothèse, des données d’émission de champs électriques et magnétiques provenant de 9 personnes distinctes ont été collectées. Parmi les participants, 7 souffraient d’épilepsie. Dans un premier temps, les modèles de connectivité ont été évalués et comparés lorsqu’une partie des volontaires était endormie ou éveillée. Dans un deuxième temps, la connectivité de 5 des patients épileptiques a été analysée, lorsqu’ils avaient des crises de convulsions ainsi que lorsqu’ils étaient en état d’alerte normal. Ces paramètres ont ensuite été rassemblés afin de calculer leurs niveaux d’entropie cérébrale. Le résultat est le même dans l’ensemble des cas : le cerveau affiche une entropie plus élevée lorsqu’il est dans un état de conscience.

Les chercheurs estiment qu’en maximisant l’entropie, le cerveau optimise l’échange d’informations entre les neurones. Cela nous permettrait de percevoir et d’interagir de manière optimale avec notre environnement. Quant à la conscience, ils en ont déduit qu’elle pourrait tout simplement être une caractéristique émergente découlant de cette entropie. Toutefois, ces conclusions sont encore hautement spéculatives en raison des limites que comporte l’étude, telles que le nombre restreint de participants à l’étude. Le terme " entropie " devrait même être considéré avec parcimonie dans ce cadre, selon l’auteur principal de l’étude, Ramon Guevarra Erra de l’Université de Paris Descartes.

De nouvelles expériences sur un échantillon plus large sont nécessaires afin de véritablement corroborer ces résultats. On pourrait aussi évaluer d’autres caractéristiques thermodynamiques par le biais de l’imagerie par résonance magnétique, qui peut être utilisée pour mesurer l’oxygénation — une propriété directement liée au métabolisme et donc à la génération de chaleur (et de ce fait d’augmentation de l’entropie). Des investigations menées en dehors de conditions d’hôpital seraient également intéressantes afin d’évaluer des états de conscience associés à des comportements cognitifs plus subtils. On pourrait par exemple analyser l’activité cérébrale de personnes exécutant une tâche spécifique, comme écouter ou jouer de la musique.

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano - 19 octobre 2023

[ complexification ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

théorie du tout

Une nouvelle "loi de la nature" qui englobe le vivant, les planètes et les étoiles

(Photo) Ammonite irisée trouvée près de Calgary, Canada. La diversité biologique (biodiversité) entraîne la diversité minérale, et vice versa.


Selon une équipe composée de scientifiques et de philosophes, la théorie de l'évolution formulée par Charles Darwin au 19e siècle n'est qu'un "cas particulier" d'une loi de la nature qui engloberait le vivant mais aussi les minéraux, les planètes et les étoiles. Attention, débats en perspective !

Et si l'évolution ne se limitait pas à la vie sur Terre ? C'est ce que suggère une équipe de neuf scientifiques et philosophes américains dirigés par la Carnegie Institution for Science, à travers un nouvel article publié dans la revue Proceedings of the National Academy of Sciences.

La publication énonce la "loi de l'augmentation de l'information fonctionnelle", selon laquelle tous les "systèmes naturels complexes" – qu'il s'agisse de la vie sur Terre ou des atomes, des minéraux, des planètes et des étoiles – évoluent vers des états "plus structurés, plus diversifiés et plus complexes".

Vivant, atomes, étoiles…

Concrètement, qu'est-ce que cela signifie ? Juste avant d'en venir aux exemples, il faut définir en quelques mots ce que les auteurs entendent par "évolution". Un terme qu'il faut ici comprendre comme "sélection pour la fonction". Restez concentré, c'est tout simple !

Si le naturaliste du 19e siècle Charles Darwin avait globalement assimilé la "fonction" à la survie des êtres, c'est-à-dire à la capacité de vivre assez longtemps pour produire une progéniture fertile, les auteurs vont plus loin en reconnaissant également comme fonctions la "stabilité" (capacité à perdurer) et la "nouveauté" (nouvelles configurations).

Pour illustrer la sélection de la "nouveauté", l'article évoque à la fois des cas qui concernent le vivant, à l'instar de la photosynthèse, de la vie multicellulaire (quand les cellules ont "appris" à coopérer jusqu'à ne former plus qu'un organisme) et des comportements animaux. Mais aussi des exemples au sein du règne minéral !

Ainsi, les minéraux de la Terre, qui étaient au nombre d'une vingtaine à l'aube de notre système solaire, sont aujourd'hui près de 6 000. Et c'est à partir de seulement deux éléments majeurs – l'hydrogène et l'hélium – que se sont constituées, peu après le big bang, les premières étoiles, au sein desquelles se sont ensuite formés une vingtaine d'éléments chimiques plus lourds, avant que la génération suivante d'étoiles ne s'appuie sur cette diversité initiale pour produire près d'une centaine d'autres éléments.

"L'évolution est partout"

"Charles Darwin a décrit avec éloquence la façon dont les plantes et les animaux évoluent par sélection naturelle, avec de nombreuses variations et caractéristiques des individus et de nombreuses configurations différentes. Nous soutenons que la théorie darwinienne n'est qu'un cas très particulier et très important au sein d'un phénomène naturel beaucoup plus vaste", résume dans un communiqué le Pr Robert M. Hazen, de Carnegie, qui a supervisé les travaux.

Et son collègue Michael L. Wong, astrobiologiste à Carnegie et premier auteur de l'étude, de compléter : "l'univers génère de nouvelles combinaisons d'atomes, de molécules, de cellules, etc. Les combinaisons qui sont stables et qui peuvent engendrer encore plus de nouveauté continueront à évoluer."

"C'est ce qui fait de la vie l'exemple le plus frappant de l'évolution, mais l'évolution est partout."

Cette nouvelle "loi de la nature" qui décrit une complexité croissante n'est pas sans en rappeler une autre : le deuxième principe de la thermodynamique. Celui-ci stipule en effet que "l'entropie" (autrement dit, le désordre) d'un système isolé augmente avec le temps – raison pour laquelle la chaleur circule toujours des objets les plus chauds vers les objets les plus froids.

Discussion ouverte

Forces et mouvement, gravité, électromagnétisme, énergie… La plupart des "lois de la nature", décrivant et expliquant les phénomènes observés en permanence dans le monde naturel, ont été énoncées il y a plus de 150 ans.

Nul doute que la nouvelle "loi de la nature" énoncée par l'équipe américaine – formée de trois philosophes des sciences, de deux astrobiologistes, d'un spécialiste des données, d'un minéralogiste et d'un physicien théorique – suscitera moult réactions au sein de la communauté scientifique.

"À ce stade du développement de ces idées, un peu comme les premiers concepts au milieu du 19e siècle pour comprendre "l'énergie" et "l'entropie", une discussion ouverte et large est maintenant essentielle", a d'ailleurs commenté dans le communiqué Stuart Kauffman, chercheur à l'Institut de biologie des systèmes (Seattle).

Pour rappel, une théorie n'est "scientifique" que si les principes qui la constituent conduisent à au moins une prédiction suffisamment précise pour pouvoir être testée par une expérience (ou une mesure) susceptible de la réfuter…

Auteur: Internet

Info: https://www.geo.fr, Nastasia Michaels, 16/10/2023

[ panthéisme ] [ panpsychisme ] [ complexification ]

 

Commentaires: 0

Ajouté à la BD par miguel

legos protéiques

De nouveaux outils d’IA prédisent comment les blocs de construction de la vie s’assemblent

AlphaFold3 de Google DeepMind et d'autres algorithmes d'apprentissage profond peuvent désormais prédire la forme des complexes en interaction de protéines, d'ADN, d'ARN et d'autres molécules, capturant ainsi mieux les paysages biologiques des cellules.

Les protéines sont les machines moléculaires qui soutiennent chaque cellule et chaque organisme, et savoir à quoi elles ressemblent sera essentiel pour comprendre comment elles fonctionnent normalement et fonctionnent mal en cas de maladie. Aujourd’hui, les chercheurs ont fait un grand pas en avant vers cet objectif grâce au développement de nouveaux algorithmes d’apprentissage automatique capables de prédire les formes rdéployées et repliées non seulement des protéines mais aussi d’autres biomolécules avec une précision sans précédent.

Dans un article publié aujourd'hui dans Nature , Google DeepMind et sa société dérivée Isomorphic Labs ont annoncé la dernière itération de leur programme AlphaFold, AlphaFold3, capable de prédire les structures des protéines, de l'ADN, de l'ARN, des ligands et d'autres biomolécules, seuls ou liés ensemble dans différentes configurations. Les résultats font suite à une mise à jour similaire d'un autre algorithme de prédiction de structure d'apprentissage profond, appelé RoseTTAFold All-Atom, publié en mars dans Science .

Même si les versions précédentes de ces algorithmes pouvaient prédire la structure des protéines – une réussite remarquable en soi – elles ne sont pas allées assez loin pour dissiper les mystères des processus biologiques, car les protéines agissent rarement seules. "Chaque fois que je donnais une conférence AlphaFold2, je pouvais presque deviner quelles seraient les questions", a déclaré John Jumper, qui dirige l'équipe AlphaFold chez Google DeepMind. "Quelqu'un allait lever la main et dire : 'Oui, mais ma protéine interagit avec l'ADN.' Pouvez-vous me dire comment ?' " Jumper devrait bien admettre qu'AlphaFold2 ne connaissait pas la réponse.

Mais AlphaFold3 pourrait le faire. Avec d’autres algorithmes d’apprentissage profond émergents, il va au-delà des protéines et s’étend sur un paysage biologique plus complexe et plus pertinent qui comprend une bien plus grande diversité de molécules interagissant dans les cellules.

" On découvre désormais toutes les interactions complexes qui comptent en biologie ", a déclaré Brenda Rubenstein , professeure agrégée de chimie et de physique à l'Université Brown, qui n'a participé à aucune des deux études. " On commence à avoir une vision plus large."

Comprendre ces interactions est " fondamental pour la fonction biologique ", a déclaré Paul Adams , biophysicien moléculaire au Lawrence Berkeley National Laboratory qui n’a également participé à aucune des deux études. " Les deux groupes ont fait des progrès significatifs pour résoudre ce problème. "

Les deux algorithmes ont leurs limites, mais ils ont le potentiel d’évoluer vers des outils de prédiction encore plus puissants. Dans les mois à venir, les scientifiques commenceront à les tester et, ce faisant, ils révéleront à quel point ces algorithmes pourraient être utiles.

Progrès de l’IA en biologie

L’apprentissage profond est une variante de l’apprentissage automatique vaguement inspirée du cerveau humain. Ces algorithmes informatiques sont construits à l’aide de réseaux complexes de nœuds d’information (appelés neurones) qui forment des connexions en couches les unes avec les autres. Les chercheurs fournissent au réseau d’apprentissage profond des données d’entraînement, que l’algorithme utilise pour ajuster les forces relatives des connexions entre les neurones afin de produire des résultats toujours plus proches des exemples d’entraînement. Dans le cas des systèmes d'intelligence artificielle protéique, ce processus amène le réseau à produire de meilleures prédictions des formes des protéines sur la base de leurs données de séquence d'acides aminés.

AlphaFold2, sorti en 2021, a constitué une avancée majeure dans l’apprentissage profond en biologie. Il a ouvert la voie à un monde immense de structures protéiques jusque-là inconnues et est déjà devenu un outil utile pour les chercheurs qui cherchent à tout comprendre, depuis les structures cellulaires jusqu'à la tuberculose. Cela a également inspiré le développement d’outils supplémentaires d’apprentissage biologique profond. Plus particulièrement, le biochimiste David Baker et son équipe de l’Université de Washington ont développé en 2021 un algorithme concurrent appelé RoseTTAFold , qui, comme AlphaFold2, prédit les structures protéiques à partir de séquences de données.

Depuis, les deux algorithmes ont été mis à jour avec de nouvelles fonctionnalités. RoseTTAFold Diffusion pourrait être utilisé pour concevoir de nouvelles protéines qui n’existent pas dans la nature. AlphaFold Multimer pourrait étudier l’interaction de plusieurs protéines. " Mais ce que nous avons laissé sans réponse ", a déclaré Jumper, " était : comment les protéines communiquent-elles avec le reste de la cellule ? "

Le succès des premières itérations d'algorithmes d'apprentissage profond de prédiction des protéines reposait sur la disponibilité de bonnes données d'entraînement : environ 140 000 structures protéiques validées qui avaient été déposées pendant 50 ans dans la banque de données sur les protéines. De plus en plus, les biologistes ont également déposé les structures de petites molécules, d'ADN, d'ARN et leurs combinaisons. Dans cette expansion de l'algorithme d'AlphaFold pour inclure davantage de biomolécules, " la plus grande inconnue ", a déclaré Jumper, "est de savoir s'il y aurait suffisamment de données pour permettre à l'algorithme de prédire avec précision les complexes de protéines avec ces autres molécules."

Apparemment oui. Fin 2023, Baker puis Jumper ont publié les versions préliminaires de leurs nouveaux outils d’IA, et depuis, ils soumettent leurs algorithmes à un examen par les pairs.

Les deux systèmes d'IA répondent à la même question, mais les architectures sous-jacentes de leurs méthodes d'apprentissage profond diffèrent, a déclaré Mohammed AlQuraishi , biologiste des systèmes à l'Université de Columbia qui n'est impliqué dans aucun des deux systèmes. L'équipe de Jumper a utilisé un processus appelé diffusion – technologie qui alimente la plupart des systèmes d'IA génératifs non basés sur du texte, tels que Midjourney et DALL·E, qui génèrent des œuvres d'art basées sur des invites textuelles, a expliqué AlQuraishi. Au lieu de prédire directement la structure moléculaire puis de l’améliorer, ce type de modèle produit d’abord une image floue et l’affine de manière itérative.

D'un point de vue technique, il n'y a pas de grand saut entre RoseTTAFold et RoseTTAFold All-Atom, a déclaré AlQuraishi. Baker n'a pas modifié massivement l'architecture sous-jacente de RoseTTAFold, mais l'a mise à jour pour inclure les règles connues des interactions biochimiques. L'algorithme n'utilise pas la diffusion pour prédire les structures biomoléculaires. Cependant, l'IA de Baker pour la conception de protéines le fait. La dernière itération de ce programme, connue sous le nom de RoseTTAFold Diffusion All-Atom, permet de concevoir de nouvelles biomolécules en plus des protéines.

" Le type de dividendes qui pourraient découler de la possibilité d'appliquer les technologies d'IA générative aux biomolécules n'est que partiellement réalisé grâce à la conception de protéines", a déclaré AlQuraishi. "Si nous pouvions faire aussi bien avec de petites molécules, ce serait incroyable." 

Évaluer la concurrence

Côte à côte, AlphaFold3 semble être plus précis que RoseTTAFold All-Atom. Par exemple, dans leur analyse dans Nature , l'équipe de Google a constaté que leur outil est précis à environ 76 % pour prédire les structures des protéines interagissant avec de petites molécules appelées ligands, contre une précision d'environ 42 % pour RoseTTAFold All-Atom et 52 % pour le meilleur. outils alternatifs disponibles.

Les performances de prédiction de structure d'AlphaFold3 sont " très impressionnantes ", a déclaré Baker, " et meilleures que celles de RoseTTAFold All-Atom ".

Toutefois, ces chiffres sont basés sur un ensemble de données limité qui n'est pas très performant, a expliqué AlQuraishi. Il ne s’attend pas à ce que toutes les prédictions concernant les complexes protéiques obtiennent un score aussi élevé. Et il est certain que les nouveaux outils d’IA ne sont pas encore assez puissants pour soutenir à eux seuls un programme robuste de découverte de médicaments, car cela nécessite que les chercheurs comprennent des interactions biomoléculaires complexes. Pourtant, " c'est vraiment prometteur ", a-t-il déclaré, et nettement meilleur que ce qui existait auparavant.

Adams est d'accord. "Si quelqu'un prétend pouvoir utiliser cela demain pour développer des médicaments avec précision, je n'y crois pas", a-t-il déclaré. " Les deux méthodes sont encore limitées dans leur précision, [mais] les deux constituent des améliorations spectaculaires par rapport à ce qui était possible. "

(Image gif, tournante, en 3D : AlphaFold3 peut prédire la forme de complexes biomoléculaires, comme cette protéine de pointe provenant d'un virus du rhume. Les structures prédites de deux protéines sont visualisées en bleu et vert, tandis que les petites molécules (ligands) liées aux protéines sont représentées en jaune. La structure expérimentale connue de la protéine est encadrée en gris.)

Ils seront particulièrement utiles pour créer des prédictions approximatives qui pourront ensuite être testées informatiquement ou expérimentalement. Le biochimiste Frank Uhlmann a eu l'occasion de pré-tester AlphaFold3 après avoir croisé un employé de Google dans un couloir du Francis Crick Institute de Londres, où il travaille. Il a décidé de rechercher une interaction protéine-ADN qui était " vraiment déroutante pour nous ", a-t-il déclaré. AlphaFold3 a craché une prédiction qu'ils testent actuellement expérimentalement en laboratoire. "Nous avons déjà de nouvelles idées qui pourraient vraiment fonctionner", a déclaré Uhlmann. " C'est un formidable outil de découverte. "

Il reste néanmoins beaucoup à améliorer. Lorsque RoseTTAFold All-Atom prédit les structures de complexes de protéines et de petites molécules, il place parfois les molécules dans la bonne poche d'une protéine mais pas dans la bonne orientation. AlphaFold3 prédit parfois de manière incorrecte la chiralité d'une molécule – l'orientation géométrique distincte " gauche " ou " droite " de sa structure. Parfois, il hallucine ou crée des structures inexactes.

Et les deux algorithmes produisent toujours des images statiques des protéines et de leurs complexes. Dans une cellule, les protéines sont dynamiques et peuvent changer en fonction de leur environnement : elles se déplacent, tournent et passent par différentes conformations. Il sera difficile de résoudre ce problème, a déclaré Adams, principalement en raison du manque de données de formation. " Ce serait formidable de déployer des efforts concertés pour collecter des données expérimentales conçues pour éclairer ces défis ", a-t-il déclaré.

Un changement majeur dans le nouveau produit de Google est qu'il ne sera pas open source. Lorsque l’équipe a publié AlphaFold2, elle a publié le code sous-jacent, qui a permis aux biologistes de reproduire et de jouer avec l’algorithme dans leurs propres laboratoires. Mais le code d'AlphaFold3 ne sera pas accessible au public.

 " Ils semblent décrire la méthode en détail. Mais pour le moment, au moins, personne ne peut l’exécuter et l’utiliser comme il l’a fait avec [AlphaFold2] ", a déclaré AlQuraishi. C’est " un grand pas en arrière. Nous essaierons bien sûr de le reproduire."

Google a cependant annoncé qu'il prenait des mesures pour rendre le produit accessible en proposant un nouveau serveur AlphaFold aux biologistes exécutant AlphaFold3. Prédire les structures biomoléculaires nécessite une tonne de puissance de calcul : même dans un laboratoire comme Francis Crick, qui héberge des clusters informatiques hautes performances, il faut environ une semaine pour produire un résultat, a déclaré Uhlmann. En comparaison, les serveurs plus puissants de Google peuvent faire une prédiction en 10 minutes, a-t-il déclaré, et les scientifiques du monde entier pourront les utiliser. "Cela va démocratiser complètement la recherche sur la prédiction des protéines", a déclaré Uhlmann.

Le véritable impact de ces outils ne sera pas connu avant des mois ou des années, alors que les biologistes commenceront à les tester et à les utiliser dans la recherche. Et ils continueront à évoluer. La prochaine étape de l'apprentissage profond en biologie moléculaire consiste à " gravir l'échelle de la complexité biologique ", a déclaré Baker, au-delà même des complexes biomoléculaires prédits par AlphaFold3 et RoseTTAFold All-Atom. Mais si l’histoire de l’IA en matière de structure protéique peut prédire l’avenir, alors ces modèles d’apprentissage profond de nouvelle génération continueront d’aider les scientifiques à révéler les interactions complexes qui font que la vie se réalise.

" Il y a tellement plus à comprendre ", a déclaré Jumper. "C'est juste le début."

Auteur: Internet

Info: https://www.quantamagazine.org/new-ai-tools-predict-how-lifes-building-blocks-assemble-20240508/ - Yasemin Saplakoglu, 8 mai 2024

[ briques du vivant ] [ texte-image ] [ modélisation mobiles ] [ nano mécanismes du vivant ]

 

Commentaires: 0

Ajouté à la BD par miguel