mathématiques matricielles
En physique classique, la résolution d'une équation d'onde pour, disons, une onde sonore peut vous donner la pression de l'onde sonore à un certain point dans l'espace et le temps. En résolvant l'équation d'onde de Schrödinger, vous obtenez ce que l'on appelle une fonction d'onde. Cette fonction d'onde, désignée par la lettre grecque ψ (psi), est quelque chose d'assez étrange. Elle représente l'état quantique de la particule, mais l'état quantique n'est pas un nombre ou une quantité unique qui révèle, par exemple, que l'électron se trouve à cette position à ce moment et à cette position à un autre moment. Au contraire, ψ est lui-même une vague ondulante qui a, à tel ou tel moment donné, des valeurs différentes dans différentes positions. Plus étrange encore, ces valeurs ne sont pas des nombres réels ; il peut par exemple s'agir de nombres complexes avec des parties imaginaires. Ainsi, la fonction d'onde à un moment donné n'est pas localisée dans une région de l'espace ; elle est plutôt étalée, elle est partout et a des composantes imaginaires. L'équation de Schrödinger permet donc de calculer comment l'état du système quantique, ψ, change avec le temps.
Auteur:
Ananthaswamy Anil
Années: 196? -
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: H
Profession et précisions: journaliste et écrivain
Continent – Pays: Asie - Inde
Info:
Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality
[
particules élémentaires
]
[
conflits d'ambivalences
]
question
La séparabilité dynamique est "une sorte d'hypothèse du réductionnisme", explique M. Ormrod. "On peut expliquer les grandes choses en termes de petits morceaux.
Le fait de préserver le caractère absolu des événements observés pourrait signifier que ce réductionnisme ne tient pas : tout comme un état non local de Bell ne peut être réduit à certains états constitutifs, il se peut que la dynamique d'un système soit également holistique, ce qui ajoute un autre type de nonlocalité à l'univers. Il est important de noter que le fait d'y renoncer ne fait pas tomber une théorie en contradiction avec les théories de la relativité d'Einstein, tout comme les physiciens ont soutenu que la non-localité de Bell ne nécessite pas d'influences causales superluminales ou non locales, mais simplement des états non séparables.
"Peut-être que la leçon de Bell est que les états des particules distantes sont inextricablement liés, et que la leçon des nouveaux théorèmes est que leur dynamique l'est aussi", ont écrit Ormrod, Venkatesh et Barrett dans leur article.
"J'aime beaucoup l'idée de rejeter la séparabilité dynamique, car si cela fonctionne, alors ... nous aurons le beurre et l'argent du beurre", déclare Ormrod. "Nous pouvons continuer à croire ce que nous considérons comme les choses les plus fondamentales du monde : le fait que la théorie de la relativité est vraie, que l'information est préservée, et ce genre de choses. Mais nous pouvons aussi croire à l'absoluité des événements observés".
Jeffrey Bub, philosophe de la physique et professeur émérite à l'université du Maryland, College Park, est prêt à avaler quelques pilules amères si cela signifie vivre dans un univers objectif. "Je voudrais m'accrocher à l'absoluité des événements observés", déclare-t-il. "Il me semble absurde d'y renoncer simplement à cause du problème de la mesure en mécanique quantique. À cette fin, Bub pense qu'un univers dans lequel les dynamiques ne sont pas séparables n'est pas une si mauvaise idée. "Je pense que je serais provisoirement d'accord avec les auteurs pour dire que la non-séparabilité [dynamique] est l'option la moins désagréable", déclare-t-il.
Le problème est que personne ne sait encore comment construire une théorie qui rejette la séparabilité dynamique - à supposer qu'elle soit possible à construire - tout en conservant les autres propriétés telles que la préservation de l'information et la non-localité de Bell.
Auteur:
Ananthaswamy Anil
Années: 196? -
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: H
Profession et précisions: journaliste et écrivain
Continent – Pays: Asie - Inde
Info:
"Newtonian Space-Time", Texas Quarterly 10 : 174-200, May 22, 2023. Extrait de l'article : Le "problème de la mesure" de la théorie quantique pourrait être une pilule empoisonnée pour la réalité objective. La résolution d'un problème quantique notoire pourrait nécessiter l'abandon de certaines des hypothèses les plus chères à la science concernant le monde physique.
[
recherche fondamentale
]
[
limites anthropiques
]
homme-machine
Une nouvelle approche du calcul réinvente l'intelligence artificielle
Par l'imprégnation d'énormes vecteurs de sens sémantique, nous pouvons amener les machines à raisonner de manière plus abstraite et plus efficace qu'auparavant.
Malgré le succès retentissant de ChatGPT et d'autres grands modèles de langage, les réseaux de neurones artificiels (ANN) qui sous-tendent ces systèmes pourraient être sur la mauvaise voie.
D'une part, les ANN sont "super gourmands en énergie", a déclaré Cornelia Fermüller , informaticienne à l'Université du Maryland. "Et l'autre problème est [leur] manque de transparence." De tels systèmes sont si compliqués que personne ne comprend vraiment ce qu'ils font, ou pourquoi ils fonctionnent si bien. Ceci, à son tour, rend presque impossible de les amener à raisonner par analogie, ce que font les humains - en utilisant des symboles pour les objets, les idées et les relations entre eux.
Ces lacunes proviennent probablement de la structure actuelle des RNA et de leurs éléments constitutifs : les neurones artificiels individuels. Chaque neurone reçoit des entrées, effectue des calculs et produit des sorties. Les RNA modernes sont des réseaux élaborés de ces unités de calcul, formés pour effectuer des tâches spécifiques.
Pourtant, les limites des RNA sont évidentes depuis longtemps. Considérez, par exemple, un ANN qui sépare les cercles et les carrés. Une façon de le faire est d'avoir deux neurones dans sa couche de sortie, un qui indique un cercle et un qui indique un carré. Si vous voulez que votre ANN discerne également la couleur de la forme - bleu ou rouge - vous aurez besoin de quatre neurones de sortie : un pour le cercle bleu, le carré bleu, le cercle rouge et le carré rouge. Plus de fonctionnalités signifie encore plus de neurones.
Cela ne peut pas être la façon dont notre cerveau perçoit le monde naturel, avec toutes ses variations. "Vous devez proposer que, eh bien, vous avez un neurone pour toutes les combinaisons", a déclaré Bruno Olshausen , neuroscientifique à l'Université de Californie à Berkeley. "Donc, vous auriez dans votre cerveau, [disons,] un détecteur Volkswagen violet."
Au lieu de cela, Olshausen et d'autres soutiennent que l'information dans le cerveau est représentée par l'activité de nombreux neurones. Ainsi, la perception d'une Volkswagen violette n'est pas codée comme les actions d'un seul neurone, mais comme celles de milliers de neurones. Le même ensemble de neurones, tirant différemment, pourrait représenter un concept entièrement différent (une Cadillac rose, peut-être).
C'est le point de départ d'une approche radicalement différente de l'informatique connue sous le nom d'informatique hyperdimensionnelle. La clé est que chaque élément d'information, comme la notion d'une voiture, ou sa marque, son modèle ou sa couleur, ou tout cela ensemble, est représenté comme une seule entité : un vecteur hyperdimensionnel.
Un vecteur est simplement un tableau ordonné de nombres. Un vecteur 3D, par exemple, comprend trois nombres : les coordonnées x , y et z d'un point dans l'espace 3D. Un vecteur hyperdimensionnel, ou hypervecteur, pourrait être un tableau de 10 000 nombres, par exemple, représentant un point dans un espace à 10 000 dimensions. Ces objets mathématiques et l'algèbre pour les manipuler sont suffisamment flexibles et puissants pour amener l'informatique moderne au-delà de certaines de ses limites actuelles et favoriser une nouvelle approche de l'intelligence artificielle.
"C'est ce qui m'a le plus enthousiasmé, pratiquement de toute ma carrière", a déclaré Olshausen. Pour lui et pour beaucoup d'autres, l'informatique hyperdimensionnelle promet un nouveau monde dans lequel l'informatique est efficace et robuste, et les décisions prises par les machines sont entièrement transparentes.
Entrez dans les espaces de grande dimension
Pour comprendre comment les hypervecteurs rendent le calcul possible, revenons aux images avec des cercles rouges et des carrés bleus. Nous avons d'abord besoin de vecteurs pour représenter les variables SHAPE et COLOR. Ensuite, nous avons également besoin de vecteurs pour les valeurs pouvant être affectées aux variables : CERCLE, CARRÉ, BLEU et ROUGE.
Les vecteurs doivent être distincts. Cette distinction peut être quantifiée par une propriété appelée orthogonalité, ce qui signifie être à angle droit. Dans l'espace 3D, il existe trois vecteurs orthogonaux entre eux : un dans la direction x , un autre dans la direction y et un troisième dans la direction z . Dans un espace à 10 000 dimensions, il existe 10 000 vecteurs mutuellement orthogonaux.
Mais si nous permettons aux vecteurs d'être presque orthogonaux, le nombre de ces vecteurs distincts dans un espace de grande dimension explose. Dans un espace à 10 000 dimensions, il existe des millions de vecteurs presque orthogonaux.
Créons maintenant des vecteurs distincts pour représenter FORME, COULEUR, CERCLE, CARRÉ, BLEU et ROUGE. Parce qu'il y a tellement de vecteurs presque orthogonaux possibles dans un espace de grande dimension, vous pouvez simplement assigner six vecteurs aléatoires pour représenter les six éléments ; ils sont presque garantis d'être presque orthogonaux. "La facilité de créer des vecteurs presque orthogonaux est une raison majeure d'utiliser la représentation hyperdimensionnelle", a écrit Pentti Kanerva , chercheur au Redwood Center for Theoretical Neuroscience de l'Université de Californie à Berkeley, dans un article influent de 2009.
L'article s'appuyait sur des travaux effectués au milieu des années 1990 par Kanerva et Tony Plate, alors étudiant au doctorat avec Geoff Hinton à l'Université de Toronto. Les deux ont développé indépendamment l'algèbre pour manipuler les hypervecteurs et ont fait allusion à son utilité pour le calcul en haute dimension.
Étant donné nos hypervecteurs pour les formes et les couleurs, le système développé par Kanerva et Plate nous montre comment les manipuler à l'aide de certaines opérations mathématiques. Ces actions correspondent à des manières de manipuler symboliquement des concepts.
La première opération est la multiplication. C'est une façon de combiner les idées. Par exemple, multiplier le vecteur FORME par le vecteur CERCLE lie les deux en une représentation de l'idée "LA FORME est CERCLE". Ce nouveau vecteur "lié" est presque orthogonal à la fois à SHAPE et à CIRCLE. Et les composants individuels sont récupérables - une caractéristique importante si vous souhaitez extraire des informations à partir de vecteurs liés. Étant donné un vecteur lié qui représente votre Volkswagen, vous pouvez dissocier et récupérer le vecteur pour sa couleur : VIOLET.
La deuxième opération, l'addition, crée un nouveau vecteur qui représente ce qu'on appelle une superposition de concepts. Par exemple, vous pouvez prendre deux vecteurs liés, "SHAPE is CIRCLE" et "COLOR is RED", et les additionner pour créer un vecteur qui représente une forme circulaire de couleur rouge. Là encore, le vecteur superposé peut être décomposé en ses constituants.
La troisième opération est la permutation ; cela implique de réorganiser les éléments individuels des vecteurs. Par exemple, si vous avez un vecteur tridimensionnel avec des valeurs étiquetées x , y et z , la permutation peut déplacer la valeur de x vers y , y vers z et z vers x. "La permutation vous permet de construire une structure", a déclaré Kanerva. "Ça permet de gérer des séquences, des choses qui se succèdent." Considérons deux événements, représentés par les hypervecteurs A et B. Nous pouvons les superposer en un seul vecteur, mais cela détruirait les informations sur l'ordre des événements. La combinaison de l'addition et de la permutation préserve l'ordre ; les événements peuvent être récupérés dans l'ordre en inversant les opérations.
Ensemble, ces trois opérations se sont avérées suffisantes pour créer une algèbre formelle d'hypervecteurs permettant un raisonnement symbolique. Mais de nombreux chercheurs ont été lents à saisir le potentiel de l'informatique hyperdimensionnelle, y compris Olshausen. "Cela n'a tout simplement pas été pris en compte", a-t-il déclaré.
Exploiter le pouvoir
En 2015, un étudiant d'Olshausen nommé Eric Weiss a démontré un aspect des capacités uniques de l'informatique hyperdimensionnelle. Weiss a compris comment représenter une image complexe comme un seul vecteur hyperdimensionnel contenant des informations sur tous les objets de l'image, y compris leurs propriétés, telles que les couleurs, les positions et les tailles.
"Je suis pratiquement tombé de ma chaise", a déclaré Olshausen. "Tout d'un coup, l'ampoule s'est allumée."
Bientôt, d'autres équipes ont commencé à développer des algorithmes hyperdimensionnels pour reproduire des tâches simples que les réseaux de neurones profonds avaient commencé à effectuer environ deux décennies auparavant, comme la classification d'images.
Considérons un ensemble de données annotées composé d'images de chiffres manuscrits. Un algorithme analyse les caractéristiques de chaque image en utilisant un schéma prédéterminé. Il crée ensuite un hypervecteur pour chaque image. Ensuite, l'algorithme ajoute les hypervecteurs pour toutes les images de zéro pour créer un hypervecteur pour l'idée de zéro. Il fait ensuite la même chose pour tous les chiffres, créant 10 hypervecteurs "de classe", un pour chaque chiffre.
Maintenant, l'algorithme reçoit une image non étiquetée. Il crée un hypervecteur pour cette nouvelle image, puis compare l'hypervecteur aux hypervecteurs de classe stockés. Cette comparaison détermine le chiffre auquel la nouvelle image ressemble le plus.
Pourtant, ce n'est que le début. Les points forts de l'informatique hyperdimensionnelle résident dans la capacité de composer et de décomposer des hypervecteurs pour le raisonnement. La dernière démonstration en date a eu lieu en mars, lorsqu'Abbas Rahimi et ses collègues d'IBM Research à Zurich ont utilisé l'informatique hyperdimensionnelle avec des réseaux de neurones pour résoudre un problème classique de raisonnement visuel abstrait - un défi important pour les RNA typiques, et même certains humains. Connu sous le nom de matrices progressives de Raven, le problème présente des images d'objets géométriques dans, disons, une grille 3 par 3. Une position dans la grille est vide. Le sujet doit choisir, parmi un ensemble d'images candidates, l'image qui correspond le mieux au blanc.
"Nous avons dit:" C'est vraiment ... l'exemple qui tue pour le raisonnement abstrait visuel, allons-y "", a déclaré Rahimi.
Pour résoudre le problème à l'aide de l'informatique hyperdimensionnelle, l'équipe a d'abord créé un dictionnaire d'hypervecteurs pour représenter les objets dans chaque image ; chaque hypervecteur du dictionnaire représente un objet et une combinaison de ses attributs. L'équipe a ensuite formé un réseau de neurones pour examiner une image et générer un hypervecteur bipolaire - un élément peut être +1 ou -1 - aussi proche que possible d'une superposition d'hypervecteurs dans le dictionnaire ; l'hypervecteur généré contient donc des informations sur tous les objets et leurs attributs dans l'image. "Vous guidez le réseau de neurones vers un espace conceptuel significatif", a déclaré Rahimi.
Une fois que le réseau a généré des hypervecteurs pour chacune des images de contexte et pour chaque candidat pour l'emplacement vide, un autre algorithme analyse les hypervecteurs pour créer des distributions de probabilité pour le nombre d'objets dans chaque image, leur taille et d'autres caractéristiques. Ces distributions de probabilité, qui parlent des caractéristiques probables à la fois du contexte et des images candidates, peuvent être transformées en hypervecteurs, permettant l'utilisation de l'algèbre pour prédire l'image candidate la plus susceptible de remplir l'emplacement vacant.
Leur approche était précise à près de 88 % sur un ensemble de problèmes, tandis que les solutions de réseau neuronal uniquement étaient précises à moins de 61 %. L'équipe a également montré que, pour les grilles 3 par 3, leur système était presque 250 fois plus rapide qu'une méthode traditionnelle qui utilise des règles de logique symbolique pour raisonner, car cette méthode doit parcourir un énorme livre de règles pour déterminer la bonne prochaine étape.
Un début prometteur
Non seulement l'informatique hyperdimensionnelle nous donne le pouvoir de résoudre symboliquement des problèmes, mais elle résout également certains problèmes épineux de l'informatique traditionnelle. Les performances des ordinateurs d'aujourd'hui se dégradent rapidement si les erreurs causées, par exemple, par un retournement de bit aléatoire (un 0 devient 1 ou vice versa) ne peuvent pas être corrigées par des mécanismes de correction d'erreurs intégrés. De plus, ces mécanismes de correction d'erreurs peuvent imposer une pénalité sur les performances allant jusqu'à 25 %, a déclaré Xun Jiao , informaticien à l'Université de Villanova.
Le calcul hyperdimensionnel tolère mieux les erreurs, car même si un hypervecteur subit un nombre important de retournements de bits aléatoires, il reste proche du vecteur d'origine. Cela implique que tout raisonnement utilisant ces vecteurs n'est pas significativement impacté face aux erreurs. L'équipe de Jiao a montré que ces systèmes sont au moins 10 fois plus tolérants aux pannes matérielles que les ANN traditionnels, qui sont eux-mêmes des ordres de grandeur plus résistants que les architectures informatiques traditionnelles. "Nous pouvons tirer parti de toute [cette] résilience pour concevoir du matériel efficace", a déclaré Jiao.
Un autre avantage de l'informatique hyperdimensionnelle est la transparence : l'algèbre vous indique clairement pourquoi le système a choisi la réponse qu'il a choisie. Il n'en va pas de même pour les réseaux de neurones traditionnels. Olshausen, Rahimi et d'autres développent des systèmes hybrides dans lesquels les réseaux de neurones cartographient les éléments du monde physique en hypervecteurs, puis l'algèbre hyperdimensionnelle prend le relais. "Des choses comme le raisonnement analogique vous tombent dessus", a déclaré Olshausen. "C'est ce que nous devrions attendre de tout système d'IA. Nous devrions pouvoir le comprendre comme nous comprenons un avion ou un téléviseur.
Tous ces avantages par rapport à l'informatique traditionnelle suggèrent que l'informatique hyperdimensionnelle est bien adaptée à une nouvelle génération de matériel extrêmement robuste et à faible consommation d'énergie. Il est également compatible avec les "systèmes informatiques en mémoire", qui effectuent le calcul sur le même matériel qui stocke les données (contrairement aux ordinateurs von Neumann existants qui transfèrent inefficacement les données entre la mémoire et l'unité centrale de traitement). Certains de ces nouveaux appareils peuvent être analogiques, fonctionnant à très basse tension, ce qui les rend économes en énergie mais également sujets aux bruits aléatoires. Pour l'informatique de von Neumann, ce caractère aléatoire est "le mur que vous ne pouvez pas franchir", a déclaré Olshausen. Mais avec l'informatique hyperdimensionnelle, "vous pouvez simplement percer".
Malgré ces avantages, l'informatique hyperdimensionnelle en est encore à ses balbutiements. "Il y a un vrai potentiel ici", a déclaré Fermüller. Mais elle souligne qu'il doit encore être testé contre des problèmes du monde réel et à des échelles plus grandes, plus proches de la taille des réseaux de neurones modernes.
"Pour les problèmes à grande échelle, cela nécessite un matériel très efficace", a déclaré Rahimi. "Par exemple, comment [faites-vous] une recherche efficace sur plus d'un milliard d'articles ?"
Tout cela devrait venir avec le temps, a déclaré Kanerva. "Il y a d'autres secrets [que] les espaces de grande dimension détiennent", a-t-il déclaré. "Je vois cela comme le tout début du temps pour le calcul avec des vecteurs."
Auteur:
Ananthaswamy Anil
Années: 196? -
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: H
Profession et précisions: journaliste et écrivain
Continent – Pays: Asie - Inde
Info:
https://www.quantamagazine.org/ Mais 2023
[
machine learning
]