Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après une recherche complexe. Et utilisez le nuage de corrélats !!!!.....
Lire la suite >>
Résultat(s): 4
Temps de recherche: 0.027s
palier évolutif
On a le coupable de la chute dramatique en oxygène survenue dans les océans il y a 94 millions d’années
Il y a 94 millions d’années, la vie marine connaissait une période difficile. De nombreuses espèces disparaissent, sous l’effet de l’appauvrissement en oxygène du milieu océanique. Si l’activité volcanique était déjà suspectée comme étant la cause de cette crise, le véritable coupable vient d’être clairement identifié.
On sait à quel point atmosphère et océan sont deux milieux étroitement liés et dépendants. Ainsi, toute perturbation climatique se répercute d'une manière ou d'une autre sur le milieu marin. C'est ainsi que l’on observe actuellement une acidification des océans, en réponse au réchauffement climatique.
Dans son histoire, la Terre a connu de nombreuses fluctuations environnementales de ce type, certains événements particulièrement sévères ayant mené à des crises biologiques, voire à des extinctions de masse. Hormis la crise actuelle qui est causée par les activités humaines, toutes les autres trouvent leur origine dans des combinaisons de paramètres naturels (volcanisme, variations de l’orbite terrestre, agencement des continents...).
La formation des grands plateaux volcaniques souvent à l’origine des crises biologiques
Des épisodes de volcanisme intense, marqués par l’effusion de gigantesques volumes de lave sur plusieurs dizaines de milliers d’années, sont souvent à l’origine de ces bouleversements climatiques. La formation de ces grands plateaux basaltiques que l'on appelle des LIP (Large Igneous Province) émet en effet de grandes quantités de CO2, qui vont au fil du temps s'accumuler dans l'atmosphère, entraînant un réchauffement global du climat et une perturbation du cycle du carbone. Cette hausse des températures engendre ainsi une augmentation des processus d'érosion des roches continentales, et donc un apport en nutriments plus important dans l'océan. Dopée par cet apport nutritif, la productivité organique de l'océan augmente. Algues et micro-organismes se développent en masse. De grandes quantités de matière organique vont alors commencer à se déposer dans le fond des océans. Et cela ne va pas être sans conséquence sur l'environnement marin. La dégradation de toute cette matière organique par les bactéries va en effet entraîner une forte consommation de l'oxygène. Peu à peu, la teneur en O2 de l'océan baisse et des zones anoxiques (sans oxygène) commencent à se former. Or, sans oxygène, pas de vie, même dans les océans.
Ces événements anoxiques océaniques sont ainsi souvent associés à des extinctions de masse dans le domaine marin. On les identifie dans les séries sédimentaires par la présence de strates de couleur noire car chargées en matière organique, et par l'absence de faune benthique normalement typique de cet environnement. Ces conditions peuvent perdurer plusieurs milliers d'années.
Une sévère extinction dans les océans il y a 94 millions d’années
Le Crétacé est marqué par deux grands épisodes de ce type. Notés OAE 1 et OAE 2 (OAE pour Oceanic Anoxic Event), ils se sont produits respectivement il y a 120 et 94 millions d'années. Le second événement anoxique, qui marque la limite entre le Cénomanien et le Turonien, est ainsi caractérisé par une extinction de masse particulièrement sévère dans le milieu marin. Les célèbres ichtyosaures et presque tous les pliosaures disparaissent à ce moment-là. Si le rôle des volcans dans l'origine de cet événement dramatique est depuis longtemps suggéré, la source exacte restait débattue. Jusqu'à présent, deux suspects potentiels étaient proposés : le LIP des Caraïbes et le LIP de l'Extrême-Arctique. Une nouvelle étude, publiée dans la revue Nature communications, pointe cependant du doigt un autre coupable.
(Photo : carte présentant la paléogéographie au milieu du crétacé)$
L'analyse géochimique et isotopique de sédiments prélevés dans le bassin de Mentelle au large de l'Australie révèle en effet que l'Événement anoxique océanique 2 (OAE 2), survenu il y a 94 millions d'années, serait lié à l'activité éruptive du plateau océanique de Kerguelen, qui serait arrivé à l'émersion à ce moment-là.
Bien que les causes de cet événement soient totalement différentes de celles de la crise climatique actuelle, comprendre les origines et les mécanismes de ces crises passées est essentiel pour anticiper au mieux l'évolution de notre environnement.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
https://www.futura-sciences.com/ Morgane Gilliard, 20 juin 2024
[
crétacique
]
[
pressions de sélection
]
[
palier évolutif
]
[
équilibres ponctués
]
palier évolutif
La découverte d'une extraordinaire symbiose marine résout l'un des grands mystères de l'océan
Une équipe dirigée par l'Institut Max Planck de microbiologie marine a mis au jour la symbiose entre une bactérie Rhizobium et une algue marine du groupe des diatomées. Ce couple d'organismes permettrait d'expliquer une grande partie de la fixation de l'azote dans l'océan – un processus crucial.
C'était l'un des grands mystères dont les biologistes marins cherchaient encore la clé : comment, en dehors des régions océaniques riches en cyanobactéries, les végétaux marins obtiennent-ils de l'azote sous une forme qu'ils sont capables d'assimiler ?
Il aura fallu une grande expédition océanographique depuis la côte allemande jusqu'aux zones tropicales de l'Atlantique Nord, et quatre années d'analyses ADN, pour résoudre l'énigme. La réponse, dévoilée dans une étude publiée par la revue Nature (9 mai 2024), tient en un mot : la symbiose.
Cette association très intime entre deux êtres vivants a façonné la planète telle que nous la connaissons aujourd'hui, depuis les récifs coralliens (symbiose entre le corail et l'algue zooxanthelle) jusqu'à la mycorhize, fine dentelle qui fait vivre nos sols (symbiose entre des champignons et les racines des plantes). Et trouve désormais une nouvelle illustration.
Un travail de détective
Partie de la côte allemande à bord de deux navires direction les tropiques en 2020, l'équipe dirigée par des chercheurs de l'Institut Max Planck de microbiologie marine a recueilli plusieurs centaines de litres d'eau de mer. Dans cet échantillon massif, il leur a d'abord fallu repérer le gène codant pour une enzyme impliquée dans la fixation biologique de l'azote, pour ensuite reconstituer pas à pas le reste du génome de l'organisme inconnu qui s'avérait capable d'effectuer cette transformation chimique.
"Il s'est agi d'un travail de détective long et minutieux", confie Bernhard Tschitschko, premier auteur de l'étude et expert en bio-informatique (communiqué), "mais en fin de compte, le génome a résolu de nombreux mystères. Nous savions que le gène de la nitrogénase provenait d'une bactérie apparentée (au genre) Vibrio, mais de manière inattendue, l'organisme lui-même était étroitement lié aux (bactéries) Rhizobia qui vivent en symbiose avec les légumineuses."
En effet, sur la terre ferme, les bactéries du genre Rhizobium se trouvent en symbiose avec les racines des plantes légumineuses, telles que les haricots ou les pois, au niveau de petits renflements appelés "nodosités". En échange d'azote assimilable par ses propres cellules, le végétal fournit à son minuscule symbiote de l'énergie ainsi qu'un milieu pauvre en oxygène, propice à son activité.
Mais dans l'océan, quel hôte pouvait bien héberger ces précieux fixateurs d'azote ? À l'aide d'un marquage fluorescent appliqué à ces bactéries, les auteurs de l'étude ont constaté que celles-ci se nichaient à l'intérieur de diatomées – des algues microscopiques faisant partie de la composition du plancton. Il s'agit selon eux de la " première symbiose connue entre une diatomée et un fixateur d'azote autre qu'une cyanobactérie. "
Le stade précoce d'une fusion ?
La bactérie symbiotique, qui a reçu le nom (provisoire) de Candidatus Tectiglobus diatomicola, reçoit du carbone de la part de l'algue en échange d'une forme d'azote assimilable par celle-ci… et pas qu'un peu, d'ailleurs !
" Pour soutenir la croissance de la diatomée, la bactérie fixe 100 fois plus d'azote qu'elle n'en a besoin pour elle-même ", détaille Wiebke Mohr, co-auteur de l'étude.
En retournant en mer, les scientifiques ont repéré cette nouvelle symbiose un peu partout dans le monde, en particulier dans des zones pauvres en cyanobactéries. Ce qui tend à confirmer le rôle crucial joué par cette intime alliance dans le fonctionnement de l'écosystème marin, lequel absorbe la moitié du dioxyde de carbone émis par les activités humaines, limitant ainsi en partie le réchauffement climatique.
Par ailleurs, les auteurs notent que cette symbiose bactérie-diatomée pourrait constituer le stade précoce d'une fusion entre deux organismes pour n'en former qu'un, le plus petit étant amené à devenir un simple organite, ou compartiment cellulaire, au sein du plus grand. Un processus qui s'est déjà produit au cours de l'évolution, donnant naissance aux mitochondries, les " usines à énergie " de nos cellules, ainsi qu'aux chloroplastes, sièges de la photosynthèse chez les végétaux.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
geo.fr - Nastasia Michaels, 14 mai 2024
[
microbiome
]
[
radiations adaptatives
]
[
pressions de sélection
]
[
équilibres ponctués
]
palier évolutif
L’explosion cambrienne déclenchée par plusieurs transgressions marines ?
Il y a 542 millions d'années apparaissaient, durant une période de quelques dizaines de millions d'années seulement, les grandes lignées d'animaux multicellulaires, comme les vertébrés et les arthropodes. Les lignées végétales et bactériennes se sont elles aussi diversifiées.
Quel fut le déclencheur de cet événement planétaire ?
La libération massive d'ions dans les océans, due à une érosion devenue intense, affirme une équipe américaine. Les organismes marins auraient utilisé ces polluants pour fabriquer des squelettes et des coquilles, une invention qui leur fut très profitable.
Les premières formes de vie seraient apparues sur Terre il y a 3,5 milliards d'années. Curieusement, ces êtres restèrent en grande majorité unicellulaires (vivant parfois en colonies) jusqu'à l'explosion cambrienne survenue il y a seulement 542 millions d'années. Cet événement vit alors naître de nombreux organismes pluricellulaires et des structures biominérales (par exemple des coquillages) en seulement quelques millions d'années, preuve d'une accélération soudaine de l'évolution (comme en témoignent par exemple les schistes de Burgess). Mais quel fut le facteur déclenchant ? Cette question taraude de nombreux scientifiques depuis longtemps car peu d'hypothèses convaincantes ont été apportées.
Il existe pour la même époque une autre grande curiosité, mais cette fois d'ordre géologique, clairement observable dans le Grand Canyon. L'analyse des couches stratigraphiques de cette région révèle l'histoire de la Terre sur près de 2 milliards d'années, ou presque, car il reste plusieurs discordances chronologiques. Ainsi, il n'y a pas de trace de roches datant de l'époque de l'explosion cambrienne. Des sédiments âgés de 525 millions d'années reposent directement sur des roches métamorphiques de 1.740 millions d'années et des couches sédimentaires inclinées âgées de 1.200 à 740 millions d'années. Des roches sédimentaires "jeunes" provenant de mers peu profondes recouvrent donc de "vieilles" roches sans aucune continuité logique. Mais une question se pose : a-t-on vraiment perdu des informations sur l'évolution de la Terre pendant 215 millions d'années à cause de cette inconformité géologique ?
Il semble bien que non. Selon Shanan Peters de l'université de Wisconsin-Madison, cette absence de données géologiques permettrait d'expliquer le mécanisme déclencheur de l'explosion cambrienne. Les résultats obtenus par l'équipe de ce chercheur sont présentés dans la revue Nature. L'inconformité résulterait d'une succession d'événements géologiques ayant causé la libération massive d'ions dans les océans. Les animaux se seraient adaptés en synthétisant des cristaux pour se débarrasser de ces éléments potentiellement néfastes, donnant ainsi naissance à la biominéralisation. Cette dernière changea alors radicalement le cours de l’évolution, tant les avantages qu'elle apporte sont nombreux.
(Illustration - Le Grand Canyon s'étend sur 450 km de long et possède une profondeur moyenne de 1.300 mètres. Les strates visibles permettent littéralement de lire l'histoire géologique du continent nord-américain - L’explosion cambrienne serait liée à un trop plein d'ions)
Ces explications font suite à l'analyse des propriétés géochimiques de plus de 20.000 échantillons de roches prélevés en Amérique du Nord.
Au début du Cambrien, les mers seraient montées et descendues à plusieurs reprises, en érodant à chaque fois les substrats rencontrés et mettant ainsi à nu d'anciennes roches provenant directement des profondeurs de la croûte terrestre. Cette succession de transgressions marines explique donc la disparition de plusieurs couches stratigraphiques. Exposées à l'air et à l'eau, les roches crustales auraient réagi chimiquement, libérant dans les océans de grandes quantités d'ions calcium, potassium, fer et silice. La chimie de l'eau fut alors profondément modifiée.
Un dernier retour des mers il y a 525 millions d'années provoqua le dépôt de sédiments plus jeunes. De nombreuses traces géologiques confirment ces événements - couches de glauconite et d'autres roches particulièrement riches en potassium, fer et silice.
(ici un schéma montre la brutale accélération de l'évolution au Cambrien avec apparition de beaucoup de genres d'espèces vivantes - diversité.
Des minerais pour évacuer le trop plein d’ions
Chaque organisme vivant maintient un équilibre ionique avec le milieu. L'arrivée massive d'ions dans l'environnement marin a dû profondément perturber cette balance. Plusieurs espèces se seraient mises à stocker leurs excédents en ions calcium, potassium, fer et silice sous forme de minerais afin de rétablir l'équilibre. Cette stratégie a deux avantages : les effets des particules chargées sont limités et elles ne sont pas rejetées dans le milieu où elles pourraient à nouveau jouer un rôle néfaste.
Voilà pourquoi les trois biominéraux majoritairement présents au sein des organismes vivants seraient apparus lors de l'explosion cambrienne. Le phosphate de calcium est le constituant principal de nos os et dents. Le carbonate de calcium entre quant à lui dans la biosynthèse des coquilles d'invertébrés. Et le dioxyde de silicium est utilisé par les radiolaires, du zooplancton, pour synthétiser leur "squelette" siliceux.
Les avantages évolutifs procurés par ces minéraux sont conséquents puisqu'ils sont utilisés pour la conception de coquilles et d'épines (rôle de protection), de squelettes (rôle de soutien) et de griffes ou dents (rôle dans la prédation). Leur apparition permet de mieux comprendre le changement soudain du cours de l'évolution.
Ce que certains qualifiaient de "trou" dans les enregistrements de l'histoire de la Terre se révèle en réalité être une source d'information d'une valeur inestimable. La "grande inconformité" (en anglais Great Unconformity) révèle ainsi un mécanisme probable du déclenchement de l'explosion radiative du Cambrien.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
Quentin Mauguit, Futura-sciences.com, 24/04/2012
[
animal-minéral
]
[
paléontologie
]
[
radiations adaptatives
]
[
pressions de sélection
]
[
palier évolutif
]
[
équilibres ponctués
]
palier évolutif
Découverte d’une nouvelle forme de vie née de la fusion d’une bactérie avec une algue
Ayant eu lieu il y a 100 millions d’années, il s’agit seulement du troisième cas connu de ce phénomène.
(Image - La forme de vie née de la fusion entre l'algue Braarudosphaera bigelowii et la cyanobactérie UCYN-A."
Des chercheurs ont découvert une forme de vie de nature extrêmement rare née de la fusion d’une algue avec une bactérie fixatrice d’azote il y a 100 millions d’années. Appelé endosymbiose primaire, le phénomène se produit lorsqu’un organisme en engloutit un autre pour faire de celui-ci un organite, à l’instar des mitochondries et des chloroplastes. Il s’agit du troisième cas recensé d’endosymbiose. Il pourrait ouvrir la voie à une production plus durable d’azote pour l’agriculture.
Au cours des 4 milliards d’années de vie sur Terre, seulement deux cas d’endosymbiose primaire étaient connus jusqu’ici. La première s’est produite il y a 2,2 milliards d’années, lorsqu’une archée a absorbé une bactérie pour l’intégrer dans son arsenal métabolique en la convertissant en mitochondrie. Cette étape constitue une phase majeure dans l’évolution de tous les organismes sur Terre, leur permettant notamment d’évoluer vers des formes plus complexes.
(Photo : Des mitochondries dans une cellule.)
La seconde endosymbiose primaire connue s’est produite il y a 1,6 milliard d’années, lorsque des organismes unicellulaires ont absorbé des cyanobactéries capables de convertir la lumière en énergie (photosynthèse). Ces bactéries sont devenues les chloroplastes que les plantes chlorophylliennes utilisent encore à ce jour pour convertir la lumière du Soleil en énergie.
D’un autre côté, on pensait que seules les bactéries pouvaient extraire l’azote atmosphérique et le convertir en une forme utilisable (en ammoniac) pour le métabolisme cellulaire. Les plantes pouvant fixer l’azote (comme les légumineuses) effectuent ce processus en hébergeant ces bactéries au niveau de leurs nodules racinaires.
La découverte de l’équipe du Berkeley Lab bouleverse cette notion avec le premier organite capable de fixer de l’azote et intégré dans une cellule eucaryote (une algue marine). " Il est très rare que des organites résultent de ce genre de choses ( endosymbiose primaire ) ", explique Tyler Coale de l’Université de Californie à Santa Cruz, dans un communiqué du Berkeley Lab. " La première fois que cela s’est produit à notre connaissance, cela a donné naissance à toute vie complexe. Tout ce qui est plus compliqué qu’une cellule bactérienne doit son existence à cet événement ", a-t-il déclaré, en faisant référence aux origines des mitochondries. Le nouvel organite, décrit dans deux études publiées dans les revues Cell Press et Science, est baptisé " nitroplaste ".
Un organite à part entière
La découverte de l’organite a nécessité plusieurs décennies de travail. En 1998, les chercheurs ont identifié une courte séquence d’ADN qui semblait provenir d’une cyanobactérie fixatrice d’azote (UCYN-A) abondante dans le Pacifique. D’un autre côté, une autre équipe de l’Université de Kochi (au Japon) a identifié une algue marine (Braarudosphaera bigelowii) qui semblait être l’hôte symbiotique de la bactérie. En effet, l’ADN de cette dernière a été découvert en importante quantité dans les cellules de l’algue.
Alors que les chercheurs considéraient l’UCYN-A comme un simple endosymbiote de l’algue, les deux nouvelles études suggèrent qu’elle a co-évolué avec son hôte de sorte à devenir un organite à part entière. En effet, après plus de 300 expéditions, l’équipe japonaise est parvenue à isoler et cultiver l’algue en laboratoire. Cela a permis de montrer que le rapport de taille entre les UCYN-A et leurs algues hôtes est similaire d’une espèce à l’autre.
D’autre part, les chercheurs ont utilisé un modèle informatique pour analyser la croissance de la cellule hôte et de la bactérie par le biais des échanges de nutriments. Ils ont constaté que leurs métabolismes sont parfaitement synchronisés, ce qui leur permettrait de coordonner leur croissance. " C’est exactement ce qui se passe avec les organites ", explique Jonathan Zehr, de l’Université de Californie à Santa Cruz et coauteur des deux études. " Si vous regardez les mitochondries et le chloroplaste, c’est la même chose : ils évoluent avec la cellule ", ajoute-t-il.
Les experts ont également montré que la bactérie UCYN-A repose sur sa cellule hôte pour sa réplication protéique et sa multiplication. Pour ce faire, ils ont utilisé une technique d’imagerie à rayons X et une tomographie permettant d’observer les processus cellulaires en temps réel. " Nous avons montré grâce à l’imagerie à rayons X que le processus de réplication et de division de l’hôte algal et de l’endosymbiote est synchronisé ", indique Carolyn Larabell, du Berkeley Lab.
(Illustrations montrant les algues à différents stades de division cellulaire. UCYN-A, l’entité fixatrice d’azote désormais considérée comme un organite, est visible en cyan ; le noyau des algues est représenté en bleu, les mitochondries en vert et les chloroplastes en violet.)
Une quantification des protéines des deux organismes a aussi été réalisée. Il a été constaté qu’environ la moitié des protéines de l’UCYN-A est synthétisée par sa cellule hôte, qui les marque avec une séquence protéinique spécifique. Ce marquage permet ensuite à la cellule de les envoyer au nitroplaste, qui les importe et les utilise pour son propre métabolisme. " C’est l’une des caractéristiques de quelque chose qui passe d’un endosymbionte à un organite ", explique Zehr. " Ils commencent à éjecter des morceaux d’ADN, et leurs génomes deviennent de plus en plus petits, et ils commencent à dépendre de la cellule mère pour que ces produits génétiques soient transportés dans la cellule ".
Un potentiel pour une production d’azote plus durable
Les chercheurs estiment que les nitroplastes ont évolué il y a environ 100 millions d’années. Comme l’UCYN-A est présente dans presque tous les océans du monde, elle est probablement impliquée dans le cycle de l’azote atmosphérique. Cette découverte pourrait avoir d’importantes implications pour l’agriculture, le procédé industriel utilisé actuellement pour convertir l’azote atmosphérique en ammoniac (procédé Haber-Bosch) étant très énergivore. Ce dernier permet notamment d’assurer 50 % de la production alimentaire mondiale et est responsable d’environ 1,4 % des émissions carbone.
Toutefois, de nombreuses questions restent sans réponse concernant le nitroplaste et son hôte algal. En prochaine étape, les chercheurs prévoient ainsi de déterminer s’il est présent dans d’autres cellules ainsi que les effets que cela pourrait avoir. Cela pourrait permettre d’intégrer directement la fixation de l’azote dans les plantes de sorte à améliorer les récoltes.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano·19 avril 2024
[
symbiogénétique
]