Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après une recherche complexe. Et utilisez le nuage de corrélats !!!!.....
Lire la suite >>
Résultat(s): 6
Temps de recherche: 0.0382s
homme-animal
C'est le nouvel eldorado des animaux. Quel paradoxe ! des scientifiques ont même démontré que la radioactivité serait moins néfaste pour les animaux que l'agriculture, la chasse ou encore la déforestation. L'animal se débrouille mieux sans l'homme.
Auteur:
Koszelyk Alexandra
Années: 1976 -
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: F
Profession et précisions: professeure de Lettres Classiques.
Continent – Pays: Europe - France
Info:
À crier dans les ruines. A propos de Tchernobyl
[
radiations
]
proto-eucaryote
Des scientifiques découvrent "par hasard" que la vie sur Terre est beaucoup plus ancienne qu'on ne le pensait auparavant
Une rencontre fortuite dans une région reculée de l'Australie et des années d'analyse minutieuse ont permis de repousser de 750 millions d'années les preuves de l'apparition d'une vie complexe sur la planète.
Le Dr Erica Barlow, géobiologiste à l'université de Nouvelle-Galles du Sud (UNSW), a découvert une nouvelle façon de comprendre comment la vie s'est formée sur la planète en analysant une roche qu'elle avait posée sur son bureau.
Barlow a trouvé cette roche lors d'une excursion dans l'arrière-pays de l'Australie occidentale il y a une dizaine d'années.
Elle a étudié les stromatolites dans le cadre de son projet de recherche de premier cycle et a passé ses journées dans la région de Pilbara à cartographier la zone et à analyser les structures rocheuses. Barlow rentrait au camp lorsqu'une petite pierre noire et brillante reflétant la lumière du soleil a attiré son attention. Elle se détachait du paysage rouge et il l'a ramassée en souvenir de son voyage.
La roche mystérieuse cache des secrets.
La roche est restée sur le bureau de Mme Barlow au Centre australien d'astrobiologie pendant plusieurs mois, alors qu'elle travaillait sur son projet sur les stromatolithes. Son superviseur à l'UNSW, le professeur associé Martin Van Kranendonk, a vu la roche - connue sous le nom de chert noir - et l'a encouragée à rechercher des microfossiles à l'intérieur. Ce qu'Erica a vu l'a choquée.
La plupart des microfossiles ont la forme de longs filaments, mais ce fossile était rond.
"Le microfossile que j'ai trouvé n'existait pas dans les archives géologiques", explique Barlow. "Il s'agissait d'un type de vie totalement nouveau".
Le grand événement d'oxydation et le développement de la vie sur Terre
La datation indépendante des couches rocheuses entourant le chert noir encastré suggère que les microfossiles ont environ 2,4 milliards d'années.
Cette estimation de l'âge coïncide avec le "Grand événement d'oxydation" : un tournant volatil dans l'histoire de la Terre au cours duquel les niveaux d'oxygène à la surface de la planète ont augmenté de façon spectaculaire et irréversible.
Barlow explique que l'augmentation soudaine et unique de l'oxygène a été théoriquement liée au développement de toute vie complexe sur Terre, mais que rien dans les archives fossiles ne prouvait cette théorie - jusqu'à aujourd'hui...
La seule forme de vie connue qui existait avant le Grand Événement d'Oxydation était " procaryotique " : des organismes simples, unicellulaires et sans noyau, comme les bactéries.
Cependant, la forme relativement complexe et la grande taille du fossile découvert par le Dr Barlow suggèrent que sa forme de vie pourrait avoir été une première étape vers une forme de vie " eucaryote ", c'est-à-dire une forme de vie complexe, généralement multicellulaire, dotée d'un noyau.
"Nous avons montré la première preuve fossile directe reliant l'évolution de l'environnement pendant la Grande Oxydation à une augmentation de la complexité de la vie", déclare Barlow. "Cela montre une avancée dans l'organisation de la vie à cette époque".
Cet événement est parfois appelé la " catastrophe de l'oxygène ", catastrophique pour de nombreuses formes de vie à l'époque, qui avaient besoin d'environnements pauvres en oxygène pour survivre.
Si les recherches futures confirment cette théorie, ce fossile serait la plus ancienne preuve connue d'une vie complexe sur Terre, mais il faudra sans doute attendre un certain temps avant que la technologie ne permette de l'évaluer.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
https://www.tameteo.com/,Joana Campos, 11. 7. 2024
[
palier
]
[
abiotique
]
[
biotique
]
[
proto-vie
]
[
changement phylétique
]
[
radiations adaptatives
]
[
pressions de sélection
]
palier évolutif
La découverte d'une extraordinaire symbiose marine résout l'un des grands mystères de l'océan
Une équipe dirigée par l'Institut Max Planck de microbiologie marine a mis au jour la symbiose entre une bactérie Rhizobium et une algue marine du groupe des diatomées. Ce couple d'organismes permettrait d'expliquer une grande partie de la fixation de l'azote dans l'océan – un processus crucial.
C'était l'un des grands mystères dont les biologistes marins cherchaient encore la clé : comment, en dehors des régions océaniques riches en cyanobactéries, les végétaux marins obtiennent-ils de l'azote sous une forme qu'ils sont capables d'assimiler ?
Il aura fallu une grande expédition océanographique depuis la côte allemande jusqu'aux zones tropicales de l'Atlantique Nord, et quatre années d'analyses ADN, pour résoudre l'énigme. La réponse, dévoilée dans une étude publiée par la revue Nature (9 mai 2024), tient en un mot : la symbiose.
Cette association très intime entre deux êtres vivants a façonné la planète telle que nous la connaissons aujourd'hui, depuis les récifs coralliens (symbiose entre le corail et l'algue zooxanthelle) jusqu'à la mycorhize, fine dentelle qui fait vivre nos sols (symbiose entre des champignons et les racines des plantes). Et trouve désormais une nouvelle illustration.
Un travail de détective
Partie de la côte allemande à bord de deux navires direction les tropiques en 2020, l'équipe dirigée par des chercheurs de l'Institut Max Planck de microbiologie marine a recueilli plusieurs centaines de litres d'eau de mer. Dans cet échantillon massif, il leur a d'abord fallu repérer le gène codant pour une enzyme impliquée dans la fixation biologique de l'azote, pour ensuite reconstituer pas à pas le reste du génome de l'organisme inconnu qui s'avérait capable d'effectuer cette transformation chimique.
"Il s'est agi d'un travail de détective long et minutieux", confie Bernhard Tschitschko, premier auteur de l'étude et expert en bio-informatique (communiqué), "mais en fin de compte, le génome a résolu de nombreux mystères. Nous savions que le gène de la nitrogénase provenait d'une bactérie apparentée (au genre) Vibrio, mais de manière inattendue, l'organisme lui-même était étroitement lié aux (bactéries) Rhizobia qui vivent en symbiose avec les légumineuses."
En effet, sur la terre ferme, les bactéries du genre Rhizobium se trouvent en symbiose avec les racines des plantes légumineuses, telles que les haricots ou les pois, au niveau de petits renflements appelés "nodosités". En échange d'azote assimilable par ses propres cellules, le végétal fournit à son minuscule symbiote de l'énergie ainsi qu'un milieu pauvre en oxygène, propice à son activité.
Mais dans l'océan, quel hôte pouvait bien héberger ces précieux fixateurs d'azote ? À l'aide d'un marquage fluorescent appliqué à ces bactéries, les auteurs de l'étude ont constaté que celles-ci se nichaient à l'intérieur de diatomées – des algues microscopiques faisant partie de la composition du plancton. Il s'agit selon eux de la " première symbiose connue entre une diatomée et un fixateur d'azote autre qu'une cyanobactérie. "
Le stade précoce d'une fusion ?
La bactérie symbiotique, qui a reçu le nom (provisoire) de Candidatus Tectiglobus diatomicola, reçoit du carbone de la part de l'algue en échange d'une forme d'azote assimilable par celle-ci… et pas qu'un peu, d'ailleurs !
" Pour soutenir la croissance de la diatomée, la bactérie fixe 100 fois plus d'azote qu'elle n'en a besoin pour elle-même ", détaille Wiebke Mohr, co-auteur de l'étude.
En retournant en mer, les scientifiques ont repéré cette nouvelle symbiose un peu partout dans le monde, en particulier dans des zones pauvres en cyanobactéries. Ce qui tend à confirmer le rôle crucial joué par cette intime alliance dans le fonctionnement de l'écosystème marin, lequel absorbe la moitié du dioxyde de carbone émis par les activités humaines, limitant ainsi en partie le réchauffement climatique.
Par ailleurs, les auteurs notent que cette symbiose bactérie-diatomée pourrait constituer le stade précoce d'une fusion entre deux organismes pour n'en former qu'un, le plus petit étant amené à devenir un simple organite, ou compartiment cellulaire, au sein du plus grand. Un processus qui s'est déjà produit au cours de l'évolution, donnant naissance aux mitochondries, les " usines à énergie " de nos cellules, ainsi qu'aux chloroplastes, sièges de la photosynthèse chez les végétaux.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
geo.fr - Nastasia Michaels, 14 mai 2024
[
microbiome
]
[
radiations adaptatives
]
[
pressions de sélection
]
[
équilibres ponctués
]
palier évolutif
L’explosion cambrienne déclenchée par plusieurs transgressions marines ?
Il y a 542 millions d'années apparaissaient, durant une période de quelques dizaines de millions d'années seulement, les grandes lignées d'animaux multicellulaires, comme les vertébrés et les arthropodes. Les lignées végétales et bactériennes se sont elles aussi diversifiées.
Quel fut le déclencheur de cet événement planétaire ?
La libération massive d'ions dans les océans, due à une érosion devenue intense, affirme une équipe américaine. Les organismes marins auraient utilisé ces polluants pour fabriquer des squelettes et des coquilles, une invention qui leur fut très profitable.
Les premières formes de vie seraient apparues sur Terre il y a 3,5 milliards d'années. Curieusement, ces êtres restèrent en grande majorité unicellulaires (vivant parfois en colonies) jusqu'à l'explosion cambrienne survenue il y a seulement 542 millions d'années. Cet événement vit alors naître de nombreux organismes pluricellulaires et des structures biominérales (par exemple des coquillages) en seulement quelques millions d'années, preuve d'une accélération soudaine de l'évolution (comme en témoignent par exemple les schistes de Burgess). Mais quel fut le facteur déclenchant ? Cette question taraude de nombreux scientifiques depuis longtemps car peu d'hypothèses convaincantes ont été apportées.
Il existe pour la même époque une autre grande curiosité, mais cette fois d'ordre géologique, clairement observable dans le Grand Canyon. L'analyse des couches stratigraphiques de cette région révèle l'histoire de la Terre sur près de 2 milliards d'années, ou presque, car il reste plusieurs discordances chronologiques. Ainsi, il n'y a pas de trace de roches datant de l'époque de l'explosion cambrienne. Des sédiments âgés de 525 millions d'années reposent directement sur des roches métamorphiques de 1.740 millions d'années et des couches sédimentaires inclinées âgées de 1.200 à 740 millions d'années. Des roches sédimentaires "jeunes" provenant de mers peu profondes recouvrent donc de "vieilles" roches sans aucune continuité logique. Mais une question se pose : a-t-on vraiment perdu des informations sur l'évolution de la Terre pendant 215 millions d'années à cause de cette inconformité géologique ?
Il semble bien que non. Selon Shanan Peters de l'université de Wisconsin-Madison, cette absence de données géologiques permettrait d'expliquer le mécanisme déclencheur de l'explosion cambrienne. Les résultats obtenus par l'équipe de ce chercheur sont présentés dans la revue Nature. L'inconformité résulterait d'une succession d'événements géologiques ayant causé la libération massive d'ions dans les océans. Les animaux se seraient adaptés en synthétisant des cristaux pour se débarrasser de ces éléments potentiellement néfastes, donnant ainsi naissance à la biominéralisation. Cette dernière changea alors radicalement le cours de l’évolution, tant les avantages qu'elle apporte sont nombreux.
(Illustration - Le Grand Canyon s'étend sur 450 km de long et possède une profondeur moyenne de 1.300 mètres. Les strates visibles permettent littéralement de lire l'histoire géologique du continent nord-américain - L’explosion cambrienne serait liée à un trop plein d'ions)
Ces explications font suite à l'analyse des propriétés géochimiques de plus de 20.000 échantillons de roches prélevés en Amérique du Nord.
Au début du Cambrien, les mers seraient montées et descendues à plusieurs reprises, en érodant à chaque fois les substrats rencontrés et mettant ainsi à nu d'anciennes roches provenant directement des profondeurs de la croûte terrestre. Cette succession de transgressions marines explique donc la disparition de plusieurs couches stratigraphiques. Exposées à l'air et à l'eau, les roches crustales auraient réagi chimiquement, libérant dans les océans de grandes quantités d'ions calcium, potassium, fer et silice. La chimie de l'eau fut alors profondément modifiée.
Un dernier retour des mers il y a 525 millions d'années provoqua le dépôt de sédiments plus jeunes. De nombreuses traces géologiques confirment ces événements - couches de glauconite et d'autres roches particulièrement riches en potassium, fer et silice.
(ici un schéma montre la brutale accélération de l'évolution au Cambrien avec apparition de beaucoup de genres d'espèces vivantes - diversité.
Des minerais pour évacuer le trop plein d’ions
Chaque organisme vivant maintient un équilibre ionique avec le milieu. L'arrivée massive d'ions dans l'environnement marin a dû profondément perturber cette balance. Plusieurs espèces se seraient mises à stocker leurs excédents en ions calcium, potassium, fer et silice sous forme de minerais afin de rétablir l'équilibre. Cette stratégie a deux avantages : les effets des particules chargées sont limités et elles ne sont pas rejetées dans le milieu où elles pourraient à nouveau jouer un rôle néfaste.
Voilà pourquoi les trois biominéraux majoritairement présents au sein des organismes vivants seraient apparus lors de l'explosion cambrienne. Le phosphate de calcium est le constituant principal de nos os et dents. Le carbonate de calcium entre quant à lui dans la biosynthèse des coquilles d'invertébrés. Et le dioxyde de silicium est utilisé par les radiolaires, du zooplancton, pour synthétiser leur "squelette" siliceux.
Les avantages évolutifs procurés par ces minéraux sont conséquents puisqu'ils sont utilisés pour la conception de coquilles et d'épines (rôle de protection), de squelettes (rôle de soutien) et de griffes ou dents (rôle dans la prédation). Leur apparition permet de mieux comprendre le changement soudain du cours de l'évolution.
Ce que certains qualifiaient de "trou" dans les enregistrements de l'histoire de la Terre se révèle en réalité être une source d'information d'une valeur inestimable. La "grande inconformité" (en anglais Great Unconformity) révèle ainsi un mécanisme probable du déclenchement de l'explosion radiative du Cambrien.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
Quentin Mauguit, Futura-sciences.com, 24/04/2012
[
animal-minéral
]
[
paléontologie
]
[
radiations adaptatives
]
[
pressions de sélection
]
[
palier évolutif
]
[
équilibres ponctués
]
paliers bayésiens
Une nouvelle preuve montre que les graphiques "expanseurs" se synchronisent.
La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.
Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.
Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniseur. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphiques d'expansion, qui sont clairsemés mais également bien connectés.
Les expanseurs graphiques s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d'erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergents vers la réalité qu'elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées, entre autres problèmes.
Le nouveau résultat « donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation », a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux.
Synchronisation douce-amère
"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulantes cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules. "
En 1975, le médecin japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphique, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s'ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu'elle connecte.
Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord dépendant de deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d'équations différentielles couplées sont pratiquement impossibles à résoudre.
Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", at-elle déclaré.
"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.
Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d'oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en feraient ce qu'on appelle un modèle homogène), il a trouvé une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.
Mélodie et silence
Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor, de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphiques homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.
En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.
Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en suggérant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourrait éviter la synchronisation globale, même si chaque nœud était lié plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.
De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générées aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.
Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous démarrez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.
Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique ancien, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre les clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce devient seuil minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés .
Le deuxième type de graphe qu'ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d'arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)
(Photo avec schéma)
Les graphiques bien connectés bien qu'ils soient clairsemés (n'ayant qu'un petit nombre d'arêtes) sont appelés graphiques d'expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère que si vous construisez cependant un graphe d' ajustement et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.
Joindre les deux bouts
En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générerez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.
En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.
Il semblait que le hasard accompagnait des problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphiques d'Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendons." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.
Au cours des mois suivants, l'équipe a complété le reste de l'argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphique a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.
Sur la seule route
L'un des plus grands mystères restants de l'étude mathématique de la synchronisation ne nécessite qu'une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d'oscillateurs se synchronisent , mais que d'autres s'en écartent ? Dans cette situation, « presque tous nos outils disparaissent immédiatement », a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu'il avait entrepris de résoudre avant de se tourner vers la synchronisation.
Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête soient identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.
Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphiques aléatoires plus réalistes. En août dernier, ils ont partagé un article, co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphiques géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui exigeaient un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettront également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.
Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. "
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023
[
évolution
]
[
radiations adaptatives
]
[
pressions de sélection
]
[
palier évolutif
]
[
équilibres ponctués
]
[
syntonisations
]
protérozoïque
Des molécules fossilisées révèlent un monde perdu de vie ancienne
Une nouvelle analyse de sédiments vieux d’un milliard d’années comble une lacune dans les archives fossiles, révélant une dynastie de premiers eucaryotes qui pourraient avoir façonné l’histoire de la vie sur Terre.
Un arbre a quelque chose en commun avec les mauvaises herbes et les champignons qui poussent autour de ses racines, les écureuils qui grimpent sur son tronc, les oiseaux perchés sur ses branches et le photographe qui prend des photos de la scène. Ils ont tous un génome et une machinerie cellulaire soigneusement emballés dans des compartiments reliés par des membranes, un système organisationnel qui les place dans un groupe de formes de vie extrêmement performantes appelés eucaryotes.
Les débuts de l’histoire des eucaryotes fascinent depuis longtemps les scientifiques qui aspirent à comprendre quand la vie moderne a commencé et comment elle a évolué. Mais retracer les premiers eucaryotes à travers l’histoire de la Terre a été difficile. Des données fossiles limitées montrent que leur premier ancêtre est apparu il y a au moins 1,6 milliard d’années. Pourtant, d’autres preuves révélatrices de leur existence manquent. Les eucaryotes devraient produire et laisser derrière eux certaines molécules distinctives, mais les versions fossilisées de ces molécules n'apparaissent dans les archives rocheuses qu'il y a 800 millions d'années. Cet écart inexpliqué de 800 millions d'années dans l'histoire des premiers eucaryotes, période cruciale au cours de laquelle le dernier ancêtre commun de toute la vie complexe d'aujourd'hui est apparu, a enveloppé de mystère l'histoire des débuts de la vie.
"Il existe un énorme écart temporel entre les archives fossiles de ce que nous pensons être les premiers eucaryotes et les premiers biomarqueurs des eucaryotes", a déclaré Galen Halverson , professeur à l'Université McGill de Montréal.
Il existe de nombreuses explications possibles à cet écart paradoxal. Peut-être que les eucaryotes étaient trop rares à cette époque pour laisser derrière eux des preuves de fossiles moléculaires. Ou peut-être étaient-ils abondants, mais leurs fossiles moléculaires n’ont pas survécu aux dures conditions géologiques.
Une étude récente publiée dans Nature propose une explication alternative : les scientifiques ont peut-être recherché les mauvaises molécules fossilisées pendant tout ce temps. Lorsque les auteurs de l’étude ont recherché des versions plus primitives des produits chimiques recherchés par d’autres, ils les ont découverts en abondance – révélant ce qu’ils ont décrit comme " un monde perdu " d’eucaryotes qui vivaient il y a 800 millions à au moins 1,6 milliard d’années.
"Ces molécules ont toujours été là", a déclaré Jochen Brocks , géochimiste à l'Université nationale australienne de Canberra, qui a codirigé l'étude avec Benjamin Nettersheim, alors étudiant diplômé . "Nous ne pouvions pas les trouver parce que nous ne savions pas à quoi elles ressemblaient."
Les résultats apportent une nouvelle clarté à la dynamique de la vie eucaryote précoce. L'abondance de ces fossiles moléculaires suggère que les organismes primitifs ont prospéré dans les océans pendant des centaines de millions d'années avant que les ancêtres des eucaryotes modernes ne prennent le relais, semant des formes de vie qui évolueraient un jour vers les animaux, les plantes, les champignons et les protistes que nous voyons. aujourd'hui.
"C'est une hypothèse élégante qui semble réconcilier ces enregistrements très disparates", a déclaré Halverson, qui n'a pas participé à l'étude. " Cela donne un sens à tout."
Ces découvertes ont été une bonne nouvelle pour des paléontologues comme Phoebe Cohen , présidente de géosciences au Williams College dans le Massachusetts, qui a longtemps pensé qu'il manquait quelque chose dans le dossier des biomarqueurs. "Il existe une histoire riche et dynamique de la vie avant l'évolution des animaux, qui est plus difficile à comprendre car nous ne pouvons pas la voir", a déclaré Cohen. "Mais c'est extrêmement important car cela prépare le terrain pour le monde que nous avons aujourd'hui."
Le casse-tête des protostéroïdes
Lorsque les archives fossiles sont décevantes, les scientifiques disposent d’autres moyens pour estimer le moment où différentes espèces se sont dérivées les unes des autres dans l’arbre évolutif. Parmi ces outils figurent principalement les horloges moléculaires : des fragments d’ADN qui mutent à un rythme constant, permettant aux scientifiques d’estimer le passage du temps. Selon les horloges moléculaires, le dernier ancêtre commun des eucaryotes modernes, qui appartenait à un ensemble diversifié d’organismes appelé groupe couronne, est apparu pour la première fois il y a au moins 1,2 milliard d’années.
Mais l’histoire des eucaryotes ne commence pas là. D’autres eucaryotes primitifs, connus sous le nom de groupe souche, ont vécu des centaines de millions d’années avant l’évolution de notre premier ancêtre commun. Les chercheurs en savent peu sur eux, au-delà du fait qu’ils ont existé. La petite poignée d’anciens fossiles d’eucaryotes découverts sont trop ambigus pour être identifiés comme une tige ou une couronne.
En l’absence de fossiles corporels convaincants, les chercheurs recherchent des fossiles moléculaires. Les fossiles moléculaires, qui se conservent séparément des fossiles corporels, peuvent être difficiles à cerner pour les scientifiques. Ils doivent d’abord identifier quelles molécules auraient pu être produites uniquement par les organismes qu’ils souhaitent étudier. Ensuite, ils doivent composer avec le fait que toutes ces molécules ne se fossilisent pas bien.
La matière organique se désintègre à des rythmes différents et certaines parties des eucaryotes se conservent mieux que d’autres dans la roche. Les tissus se dissolvent en premier. L’ADN peut rester plus longtemps, mais pas trop longtemps : l’ADN le plus ancien jamais découvert a environ 2 millions d’années. Les molécules de graisse, cependant, peuvent potentiellement survivre pendant des milliards d’années.
Les eucaryotes créent de grandes quantités de molécules de graisse appelées stérols, un type de stéroïde qui constitue un composant essentiel des membranes cellulaires. Étant donné que la présence d’une membrane cellulaire est révélatrice des eucaryotes et que les molécules de graisse ont tendance à persister dans la roche, les stérols sont devenus le fossile moléculaire de référence pour ce groupe.
Les eucaryotes modernes fonctionnent avec trois grandes familles de stérols : le cholestérol chez les animaux, les phytostérols chez les plantes et l'ergostérol chez les champignons et certains protistes. Leur synthèse commence par une molécule linéaire, que la cellule façonne en quatre anneaux afin que la forme résultante s'intègre parfaitement dans une membrane, a déclaré Brocks. Ce processus comporte de nombreuses étapes : il faut huit étapes enzymatiques supplémentaires aux cellules animales pour fabriquer du cholestérol, tandis que les cellules végétales nécessitent 11 étapes enzymatiques supplémentaires pour fabriquer un phytostérol.
En route pour fabriquer son stérol avancé, une cellule crée une série de molécules plus simples à chaque étape du processus. Lorsqu’ils sont branchés sur une membrane artificielle, même ces stérols intermédiaires offrent la perméabilité et la rigidité dont une cellule a besoin pour fonctionner comme elle le devrait. Le biochimiste Konrad Bloch, qui a reçu le prix Nobel en 1964 en partie pour avoir découvert les étapes cellulaires de fabrication du cholestérol , "en a été perplexe", a déclaré Brocks. Pourquoi une cellule déploierait-elle des efforts supplémentaires pour fabriquer un stérol plus complexe alors qu’une molécule plus simple ferait le travail ?
En 1994, Bloch a écrit un livre dans lequel il prédisait que chacun de ces stérols intermédiaires avait été autrefois le produit final utilisé dans la membrane d'une cellule eucaryote ancestrale. Chaque étape supplémentaire a peut-être nécessité plus d'énergie de la cellule, mais la molécule résultante constituait une légère amélioration par rapport à la précédente – une amélioration suffisante pour surpasser le précurseur et s'imposer dans l'histoire de l'évolution.
Si cela était vrai, cela expliquerait pourquoi personne n’avait pu trouver de fossiles moléculaires de stérols avant l’expansion rapide des eucaryotes modernes, il y a environ 800 millions d’années. Les chercheurs recherchaient des cholestérols et d’autres structures modernes dans les archives rocheuses. Ils ne se rendaient pas compte que les anciennes voies biochimiques étaient plus courtes et que les organismes des groupes souches ne produisaient pas de stérols modernes : ils faisaient des protostérols.
Mouture de café moléculaire
En 2005, environ cinq ans après la mort de Bloch, Brocks et ses collègues ont rapporté dans Nature les premiers indices de l'existence de telles molécules intermédiaires. Dans d'anciens sédiments, ils avaient trouvé des stéroïdes de structure inhabituelle qu'ils ne reconnaissaient pas. Mais à l’époque, Brocks ne pensait pas qu’un eucaryote aurait pu les créer. " À l’époque, j’étais assez convaincu qu’ils étaient bactériens ", a-t-il déclaré. "Personne ne pensait du tout à la possibilité d'avoir des eucaryotes du groupe souche."
Il a continué à échantillonner des roches anciennes et à rechercher ces curieuses molécules. Environ une décennie après le début de leurs travaux, Nettersheim et lui ont réalisé que de nombreuses structures moléculaires dans les échantillons de roche semblaient " primitives " et ne ressemblaient pas à celles que fabriquent généralement les bactéries, a déclaré Brocks. Serait-ce les stérols intermédiaires de Bloch ?
(Photo : De rares fossiles microscopiques de la vie ancienne fournissent des horodatages sur l’évolution des eucaryotes. Satka favosa (à gauche) et Valeria lophostriata datent d'il y a 1,6 milliard d'années. On ne sait pas si les organismes, probablement des protistes, appartiennent au groupe tige ou couronne. )
Il leur fallait davantage de preuves. Au cours de la décennie qui a suivi, Brocks et Nettersheim ont contacté des sociétés pétrolières et minières pour demander des échantillons de tout sédiment ancien qu'elles avaient accidentellement découvert lors d'expéditions de forage.
"La plupart des gens auraient trouvé deux exemples et publiés", a déclaré Andrew Knoll , professeur d'histoire naturelle à l'Université Harvard qui n'a pas participé à l'étude. (Il était le conseiller postdoctoral de Brocks il y a des années.) " Jochen a passé la majeure partie de la décennie à étudier les roches du Protérozoïque du monde entier. "
Pendant ce temps, les chercheurs ont créé un modèle de recherche pour identifier les molécules présentes dans les sédiments. Ils ont converti les molécules intermédiaires modernes fabriquées lors de la synthèse des stérols en équivalents géologiques plausibles des stéroïdes. (Le cholestérol, par exemple, se fossilise sous forme de cholestane.) " Si vous ne savez pas à quoi ressemble la molécule, vous ne la verrez pas 2, a déclaré Brocks.
En laboratoire, ils ont extrait des molécules fossiles des échantillons de sédiments en utilisant un processus qui " ressemble un peu à la préparation du café ", a déclaré Nettersheim. Après avoir broyé les roches, ils ont ajouté des solvants organiques pour en extraire les molécules – tout comme l’eau chaude est utilisée pour extraire le café des grains torréfiés et moulus.
(Photo :Benjamin Nettersheim, géochimiste à l'Université de Brême, examine les cartes moléculaires d'anciens sédiments rocheux à la recherche de biomarqueurs de la vie ancienne.)
Pour analyser leurs échantillons et les comparer à leurs références, ils ont utilisé la spectrométrie de masse, qui détermine le poids des molécules, et la chromatographie, qui révèle leur composition atomique.
Le processus est ardu. "Vous analysez des centaines de roches et ne trouvez rien", a déclaré Brocks. Lorsque l’on trouve quelque chose, il s’agit souvent d’une contamination récente. Mais plus ils analysaient d’échantillons, plus ils trouvaient de fossiles.
Certains échantillons étaient remplis à ras bord de protostéroïdes. Ils ont découvert ces molécules dans des roches datant d'il y a 800 millions à 1,6 milliard d'années. Il semblait que non seulement les eucaryotes anciens étaient présents depuis environ 800 millions d’années avant le décollage des eucaryotes modernes, mais qu’ils étaient également abondants.
Les chercheurs ont même pu reconnaître le processus évolutif des eucaryotes à mesure que leurs stéroïdes devenaient plus complexes. Par exemple, dans des roches vieilles de 1,3 milliard d’années, ils ont découvert une molécule intermédiaire plus avancée que les protostéroïdes vieux de 1,6 milliard d’années, mais pas aussi avancée que les stéroïdes modernes.
"C'était une façon très intelligente de traiter les archives manquantes de fossiles moléculaires", a déclaré David Gold , géobiologiste à l'Université de Californie à Davis, qui n'a pas participé à l'étude. Leur découverte a immédiatement comblé une lacune de 800 millions d’années dans l’histoire de la naissance de la vie moderne.
Un monde perdu
Les découvertes moléculaires, combinées aux données génétiques et fossiles, révèlent l'image la plus claire à ce jour de la dynamique eucaryote précoce d'il y a environ 1 milliard d'années, au cours de la mystérieuse ère médiane du Protérozoïque, ont déclaré les experts. D'après les preuves de Brocks et Nettersheim, les eucaryotes des groupes tige et couronne (stem and crown) ont probablement vécu ensemble pendant des centaines de millions d'années et se sont probablement fait concurrence pendant une période que les géologues appellent le milliard ennuyeux en raison de sa lente évolution biologique.
L'absence de stéroïdes plus modernes à cette époque suggère que le groupe couronne n'a pas immédiatement pris le dessus. Au contraire, les organismes liés à la membrane ont commencé petit à mesure qu'ils trouvaient des niches dans l'ancien écosystème, a déclaré Gold. " Il faut beaucoup de temps pour que les [eucaryotes] deviennent écologiquement dominants ", a-t-il déclaré.
(Photo : Ces anciens microfossiles partagent un ancêtre avec tous les eucaryotes vivant aujourd’hui. Vieille d’un milliard d’années, l’algue benthique Proterocladus antiquus (au centre) est le plus ancien fossile de couronne connu. Il y a 750 millions d'années, les eucaryotes du groupe couronne tels que l'amibozoaire Bonniea dacruchares (à gauche) et le rhizarien Melicerion poikilon (à droite) étaient courants.)
De gauche à droite : Susannah Porter ; Avec l'aimable autorisation de Virginia Tech ; Susannah Porter
Au début, le groupe souche avait peut-être un avantage. Les niveaux d’oxygène dans l’atmosphère étaient nettement inférieurs à ce qu’ils sont aujourd’hui. Étant donné que la construction de protostérols nécessite moins d’oxygène et d’énergie que les stérols modernes, les eucaryotes du groupe souche étaient probablement plus efficaces et plus abondants.
Leur influence déclina lorsque le monde traversa une transition critique connue sous le nom de période tonienne. Il y a entre 1 milliard et 720 millions d’années, l’oxygène, les nutriments et autres matières premières cellulaires ont augmenté dans les océans. Des fossiles d'eucaryotes modernes, comme des algues et des champignons, commencent à apparaître dans les archives rocheuses, et les stéroïdes modernes commencent à dépasser en nombre les protostéroïdes dans les biomarqueurs fossilisés – des preuves qui suggèrent que les eucaryotes du groupe couronne avaient commencé à prospérer, à augmenter en nombre et à se diversifier.
Pourquoi les stérols deviendraient-ils plus compliqués avec le temps ? Les auteurs suggèrent que les stérols les plus complexes confèrent à leurs propriétaires un certain avantage évolutif, peut-être lié à la dynamique des membranes cellulaires des créatures. Quelle que soit la raison, le changement de stérol était significatif sur le plan évolutif. La composition des stérols modernes a probablement donné aux eucaryotes du groupe couronne un avantage par rapport au groupe souche. Finalement, " ce monde perdu d’anciens eucaryotes a été remplacé par les eucaryotes modernes ", a déclaré Brocks.
Une ride bactérienne
L’histoire évolutive des chercheurs sur les stérols est convaincante, mais elle n’est pas solide comme le roc.
"Je ne serais pas surpris" si leur interprétation est correcte, a déclaré Gold. Cependant, il existe une autre possibilité. Bien que les scientifiques aient tendance à associer les stérols aux eucaryotes, certaines bactéries peuvent également les fabriquer. Les fossiles moléculaires de l’étude auraient-ils pu être laissés par des bactéries ?Gordon Love , géochimiste à l'Université de Californie à Riverside, pense que le scénario bactérien est plus logique. "Ces protostéroïdes se retrouvent dans les roches de tous âges", a-t-il déclaré. "Ils ne disparaissent pas tout simplement, ce qui signifie que quelque chose d'autre que les eucaryotes souches est capable de les fabriquer." Il a fait valoir que les bactéries, qui dominaient la mer à cette époque, auraient pu facilement produire des protostéroïdes.
Les auteurs ne peuvent pas exclure cette possibilité. En fait, ils soupçonnent que certaines de leurs molécules fossiles ont été fabriquées par des bactéries. Mais la possibilité que leur vaste collection de protostéroïdes fossilisés, s'étendant sur des centaines de millions d'années, ait été entièrement constituée de bactéries semble peu probable, a déclaré Brocks.
" Si vous regardez l'écologie de ces bactéries aujourd'hui et leur abondance, il n'y a tout simplement aucune raison de croire qu'elles pourraient devenir si abondantes qu'elles auraient pu produire toutes ces molécules", a-t-il déclaré. Dans le monde moderne, les bactéries produisent des protostérols uniquement dans des environnements de niche tels que les sources hydrothermales ou les suintements de méthane.
Cohen, paléontologue du Williams College, est d'accord avec Brocks. L’interprétation selon laquelle ces molécules ont été faites par des eucaryotes " est cohérente avec toutes les autres sources de preuves ", a-t-elle déclaré – des archives fossiles aux analyses de l’horloge moléculaire. " Je ne suis pas aussi inquiète 2 quant à cette possibilité, a-t-elle déclaré.
L’une ou l’autre interprétation présente plus de questions que de réponses. "Les deux histoires seraient absolument folles et bizarres", a déclaré Brocks. Ce sont " des visions différentes de notre monde ", a-t-il ajouté, et il serait bien de savoir laquelle est la vraie.
Faute de machine à remonter le temps, les chercheurs recherchent davantage de preuves pour améliorer leur certitude dans un sens ou dans l’autre. Mais il n’existe qu’un nombre limité de façons de reconstruire ou de percevoir la vie ancienne – et même les meilleures suppositions des scientifiques ne peuvent jamais combler complètement cette lacune. "La plupart des formes de vie n'ont laissé aucune trace sur Terre", a déclaré Nettersheim. " Le bilan que nous voyons est limité. … Pendant la majeure partie de l’histoire de la Terre, la vie aurait pu être très différente. "
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
Quanta Magazine, Yasemin Saplakoglu, 23 octobre 2023
[
unicité
]
[
microbiote
]
[
paliers évolutifs
]
[
précambrien
]
[
protérozoïque
]
[
radiations adaptatives
]
[
pressions de sélection
]
[
équilibres ponctués
]