exobiologie

Les extraterrestres sont-ils là sous nos yeux ?

Difficile de détecter quelque chose sans avoir aucune idée de ce que c'est.

Cette année, plusieurs missions sont en quête de vie sur la planète rouge. Mais reconnaîtrions-nous des extraterrestres si nous les trouvions ? En juillet, trois missions non habitées se sont envolées vers Mars : de Chine (Tianwen-1), depuis les États-Unis (Mars 2020 Perseverance Rover de la Nasa) et des Émirats arabes unis (Hope). Les missions chinoise et américaine sont équipées d'atterrisseurs qui rechercheront des signes de vie actuelle ou passée sur Mars. La Nasa prévoit également d'envoyer sa sonde Europa Clipper sur la lune de Jupiter, Europa, et l'atterrisseur robotisé Dragonfly sur la lune de Saturne, Titan. Ces deux lunes sont considérées comme des terrains de chasse prometteurs pour la vie dans notre système solaire, tout comme les océans souterrains d'Encelade, la lune glacée de Saturne.

En attendant, nous pouvons désormais entrevoir la composition chimique des atmosphères des planètes qui orbitent autour d'autres étoiles (exoplanètes), dont plus de 4 000 sont aujourd'hui connues. Certains espèrent que ces études pourraient révéler d'éventuelles signatures de vie.

Mais ces recherches peuvent-elles être efficaces si nous n'avons pas une idée claire de ce qu'est la "vie" ? La définition officieuse de la Nasa est la suivante : "système chimique autonome capable d'évolution darwinienne". "La Nasa a besoin d'une définition de la vie pour savoir comment construire des détecteurs et quels types d'instruments utiliser lors de ses missions", explique le zoologiste Arik Kershenbaum, de l'université de Cambridge. Mais tout le monde ne pense pas qu'elle utilise la bonne définition.

L'astrobiologiste Lynn Rothschild, du centre de recherche Ames de la Nasa en Californie, voit une mise en garde dans l'histoire de Winnie l'ourson d'AA Milne, dans laquelle Pooh et Piglet chassent un Woozle sans savoir à quoi il ressemble et confondent leurs propres empreintes avec ses traces. "On ne peut chasser quelque chose sans avoir aucune idée de ce que c'est", dit-elle.

Le problème de la définition de la vie hante les planétologues depuis que les deux atterrisseurs Viking de la Nasa se sont posés sur Mars en 1976. Depuis, les rovers ont parcouru des dizaines de kilomètres sur les plaines martiennes mais n'ont trouvé aucun signe de vie. Mais saurions-nous la reconnaître si nous la voyions ?

Certains astrobiologistes - scientifiques qui étudient la possibilité de vie sur d'autres mondes - pensent que notre vision est trop étroite. Nous ne connaissons qu'un seul type de vie : la vie terrestre. Tous les êtres vivants sur Terre sont constitués de cellules adaptées à un environnement aquatique, utilisant une machinerie moléculaire construite à partir de protéines et codée sous forme de gènes dans l'ADN. Peu de scientifiques pensent que la vie extraterrestre - si tant est qu'elle existe - repose sur les mêmes éléments chimiques. "Il serait erroné de supposer que la biochimie qui nous est familière est celle que nous allons trouver sur d'autres planètes", déclare Kershenbaum. La surface de Titan, par exemple, est trop froide (moins 179 °C) pour contenir de l'eau liquide, mais la mission de l'atterrisseur Huygens en 2005 a révélé la présence de lacs d'un autre type, constitués d'hydrocarbures comme ceux de l'essence, principalement du méthane et de l'éthane.

Rothschild pense que les règles universelles de la chimie réduisent certaines des options. "J'ai du mal à imaginer une autre forme de vie qui ne soit pas basée sur le carbone", dit-elle. Il est donc logique de concevoir les missions planétaires de recherche de la vie en gardant cela à l'esprit. L'eau présente également "une tonne d'avantages" en tant que solvant de la vie. Même si des réactions chimiques intéressantes se produisaient dans les lacs de méthane de Titan, elles seraient fortement ralenties par les températures glaciales. La vie pourrait-elle se dérouler à un rythme aussi glacial ? Le planétologue Stuart Bartlett, de l'Institut de technologie de Californie à Pasadena, garde l'esprit ouvert. "Il pourrait y avoir des organismes flottant dans l'atmosphère de Titan qui boivent essentiellement de l'essence pour se maintenir", dit-il.

On a longtemps pensé que toute entité méritant d'être qualifiée de vivante possède des attributs qui ne dépendent pas de sa composition chimique précise. Il est toutefois très difficile de définir ces qualités générales. Les systèmes vivants - même les bactéries - sont extrêmement complexes, maintenus par des informations qui passent (dans notre cas via les gènes) entre les générations et créent une organisation. Mais il ne s'agit pas de l'ordre froid et mort des cristaux, où les atomes sont empilés selon des motifs réguliers. Il s'agit plutôt de l'ordre dynamique d'une ville ou d'une formation nuageuse, que les scientifiques qualifient de "déséquilibré" : il est constamment alimenté en énergie et ne s'installe pas dans un état statique.

Bartlett et Wong proposent une catégorie plus large appelée "lyfe", dont la vie telle que nous la connaissons n'est qu'une variante.

Lorsque James Lovelock, aujourd'hui connu pour l'hypothèse Gaia qui propose que notre planète entière soit assimilée à une entité vivante, participa à la conception des atterrisseurs Viking dans les années 1970, il suggéra de rechercher un tel déséquilibre chimique dans l'environnement - que seule la vie pourrait éventuellement maintenir sur des échelles de temps géologiques. Il s'agit plutôt de l'ordre dynamique d'une ville ou d'une formation nuageuse, que les scientifiques qualifient de "déséquilibré" : Les deux étant constamment alimentés en énergie et ne s'installent pas dans un état statique.  Mais des états de "déséquilibre ordonné" peuvent également être trouvés dans des systèmes non vivants, comme des liquides fluides, de sorte que ce seul critère ne permet pas d'identifier la vie.

Bartlett, en collaboration avec l'astrobiologiste Michael Wong de l'Université de Washington à Seattle, soutient que nous devons échapper au carcan de la pensée terrestre sur la vie. Ils proposent d'introduire une catégorie plus large appelée "lyfe" (prononcé, d'une façon étrangement typique du West Country, comme "loif"), dont la vie telle que nous la connaissons n'est qu'une variation. "Notre proposition tente de se libérer de certains des préjugés potentiels dus au fait que nous faisons partie de cette seule instanciation de lyfe", explique Bartlett. Ils suggèrent quatre critères pour la lyfe :

1. Elle puise dans les sources d'énergie de son environnement qui l'empêchent de devenir uniforme et immuable.

2. Elle connaît une croissance exponentielle (par exemple par réplication).

3. Elle peut se réguler pour rester stable dans un environnement changeant.

4. Elle apprend et se souvient des informations sur cet environnement. L'évolution darwinienne est un exemple de cet apprentissage sur des échelles de temps très longues : les gènes préservent les adaptations utiles à des circonstances particulières.

Les deux chercheurs affirment qu'il existe des systèmes "sublyfe" qui ne répondent qu'à certains de ces critères, et peut-être aussi des "superlyfe" qui en remplissent d'autres : des formes lyfe qui ont des capacités supérieures aux nôtres et qui pourraient nous regarder comme nous regardons des processus complexes mais non vivants tels que la croissance des cristaux.

"Nous espérons cette définition libère suffisamment notre imagination pour que nous ne passions pas à côté de formes de lyfe qui pourraient se cacher à la vue de tous", déclare Bartlett. Lui et Wong suggèrent que certains organismes lytiques pourraient utiliser des sources d'énergie inexploitées ici sur Terre, comme les champs magnétiques ou l'énergie cinétique, l'énergie du mouvement. "Il n'existe aucune forme de vie connue qui exploite directement l'énergie cinétique dans son métabolisme", déclare Bartlett.

Selon eux, il pourrait y avoir d'autres moyens de stocker des informations que dans des brins génétiques comme l'ADN. Les scientifiques ont, par exemple, déjà imaginé des moyens artificiels de stocker et de traiter l'information en utilisant des réseaux bidimensionnels de molécules synthétiques, comme des réseaux en damier ou des abaques. Selon Bartlett, la distinction entre "alyfe" et "non-lyfe" pourrait être floue : être "alyve" pourrait être une question de degré. Après tout, les scientifiques se disputent déjà sur la question de savoir si les virus peuvent être considérés comme tels, même si personne ne doute de leur capacité à détruire la vie.

Il est sceptique quant à la notion de la définition de travail de la Nasa selon laquelle la vie ne peut apparaître et se développer que par l'évolution darwinienne. Il affirme que même les organismes terrestres peuvent façonner leur comportement d'une manière qui ne dépend pas d'un mécanisme Darwinien, à savoir des mutations aléatoires couplées à une compétition pour les ressources qui sélectionne les mutations avantageuses. "L'évolution darwinienne existe bien sûr, mais je pense qu'elle doit être complétée par une vision plus large de l'apprentissage biologique", déclare-t-il.

L'astrobiologiste et physicienne Sara Walker, de l'Arizona State University, partage cet avis. "Il se peut que certains systèmes possèdent de nombreux attributs de la vie mais ne franchissent jamais le seuil de la vie darwinienne", dit-elle. Mais dans son nouveau livre The Zoologist's Guide to the Galaxy, Kershenbaum affirme qu'il est difficile d'imaginer un autre processus susceptible de produire des systèmes chimiques complexes dignes d'être considérés comme vivants (ou alyves). L'évolution par sélection naturelle, dit-il, suit "des principes bien définis dont nous savons qu'ils s'appliqueront non seulement sur Terre mais aussi ailleurs dans l'univers" - et il est "très confiant dans le fait qu'elle sera à l'origine de la diversité de la vie sur les planètes extraterrestres". Si c'est le cas, affirme-t-il, nous pouvons faire des hypothèses raisonnables sur d'autres attributs de ces planètes : par exemple, la vie aura un processus comme la photosynthèse pour récolter l'énergie de l'étoile mère.

Bartlett et Wong se demandent également si les choses vivantes doivent avoir des frontières physiques bien définies.

Après tout, alors que nous pourrions imaginer n'être que tout ce qui se trouve à l'intérieur de notre peau, nous dépendons d'autres organismes en nous : le micro-biote des bactéries dans nos intestins par exemple. Et certains philosophes soutiennent que notre esprit s'étend au-delà de notre cerveau et de notre corps, par exemple dans nos appareils technologiques. "Nous pensons que la vie est un processus qui se déroule probablement à l'échelle de planètes entières", déclare Bartlett. Walker convient que "la seule limite naturelle des processus vivants est la planète", ce qui rappelle l'hypothèse Gaia de Lovelock.

Mais en l'absence d'une limite pour les ingrédients moléculaires, dit Rothschild, tous les composants d'un système vivant se dilueraient dans son environnement, comme des gouttelettes d'encre dans l'eau. Et Kershenbaum affirme que des organismes distincts et délimités sont nécessaires si l'évolution est darwinienne, car ce n'est qu'alors qu'il y a quelque chose d'autre à concurrencer.

Walker pense qu'en fait Bartlett et Wong ne vont pas assez loin dans leur tentative de libérer les idées quant à une vie terracentrique. Leur notion de lyfe, dit-elle, "fait table rase de bon nombre des problèmes omniprésents dans les définitions actuelles de la vie en proposant une définition plus large basée sur les définitions existantes. Les problèmes de base restent les mêmes. Nous n'avons pas besoin de nouvelles définitions de la vie. Ce dont nous avons besoin, c'est de nouvelles théories qui s'attaquent aux principes sous-jacents qui régissent la physique du vivant dans notre univers."

Une autre possibilité d'élargir notre vision de ce que pourrait être la vie est que nous devenions capables de créer de toutes pièces, en laboratoire, des systèmes vivants totalement différents de ceux que nous connaissons. "Nous en sommes beaucoup plus proches que vous ne le pensez", déclare M. Rothschild. En fait, cela s'est peut-être déjà produit et nous ne nous en sommes pas rendu compte, ajoute-t-elle, en plaisantant à moitié. Si nous ne savons pas ce que nous cherchons, un chercheur a peut-être déjà créé une nouvelle forme de vie - et l'a jetée dans l'évier.

En fin de compte, nous ne devrions peut-être pas être trop sûrs que la vie corresponde à une quelconque définition naturelle, estime M. Rothschild. "Je crois que ce que nous avons actuellement, ce sont des définitions non naturelles de la vie, parce que nous n'avons qu'un seul point de données. Je me demande si la vie n'est pas simplement ce que nous définissons."

"Nous pourrions découvrir des systèmes si bizarres et inattendus qu'il serait ompossible de décider s'ils sont vivants ou non", dit Kershenbaum. "Mais si nous découvrons quelque chose de vraiment intéressant et complexe qui ne correspond pas tout à fait à la définition de la vie, cela restera une avancée passionnante. Nous n'allons pas l'ignorer parce que ça ne correspond pas à notre définition !"

Auteur: Ball Philip

Info: The Guardian, 5 Septembre 2020 - Are aliens hiding in plain sight?

[ dépassement conceptuel ] [ spéculations ] [ changement de paradigme ] [ révolution scientifique ] [ monade planétaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

Commentaires

No comments