Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 1496
Temps de recherche: 0.0506s

homme-animal

Dauphins : cerveau, conscience et intelligence

Les scientifiques rassemblés à San Diego, Californie, à l'occasion du Congrès annuel de l'Association Américaine pour l'Avancement de la Science, en ce mois de février 2010, ont conclu que le dauphin était un mammifère aussi évolué et intelligent que l’humain. Pour confirmer leurs assertions, ils se fondent notamment sur le développement phénoménal de son lobe frontal, siège de la pensée consciente et sur sa capacité que partagent seulement les grands singes et les éléphants de se reconnaître dans un miroir.

Ils insistent aussi sur le fait que le dauphin Tursiops Truncatus, (mais que sait-on des autres cétacés, de leur langage, de leurs cultures si riches et si variées?.) dispose du plus gros cerveau du monde, après celui de l’Homme, selon la théorie du coefficient encéphalique. Méfiance : celle-ci ne tient cependant pas compte des circonvolutions du cortex, largement plus nombreuses chez le cachalot ou d'autres cétacés que chez l'Homme. A la seule aune de ce coefficient, le singe Saïmiri nous dépasserait tous !

Par ailleurs, le carburant du cerveau, c’est le glucose, et à ce niveau, Dauphins et Humains partagent un métabolisme quasiment identique. De telles capacités cognitives, selon les scientifiques de San Diego où, rappelons-le, se trouve également le principal centre de dressage des dauphins militaires aux USA – pose un grave problème éthique quant à la détention forcée en delphinarium de ces remarquables cétacés. Ce point a été évoqué.

Notons que la sur-évolution des cétacés, un espèce née trente millions d'années avant JC, alors que nous ne totalisons au compteur que 160.000 ans en tant qu'Homo Sapiens, selon les dernières données de Pascal Picq, ne se situe pas seulement au niveau de la pensée consciente.

I. L’INTELLIGENCE DES DAUPHINS EN QUESTION

A quel niveau, la barre ?

De vigoureux débats ont régulièrement lieu à propos de l’intelligence du dauphin, où se retrouvent et s’opposent globalement trois opinions : Il y a ceux qui mettent la barre très haut. Ils pensent - peut-être à raison – que les dauphins sont dotés de pouvoirs paranormaux, et transcendent de très loin toutes nos possibilités mentales. Par exemple, pour Jim Nollman, la pensée cachalot étant produite par un cerveau cinq fois plus puissant que le nôtre est forcément cinq fois plus complexe et donc inaccessible à notre compréhension.

Sur un mode nettement moins rationnel et plus égoïste, la mouvance New Age tend à considérer les dauphins comme des extraterrestres arrivant de Sirius pour apporter un message au Monde et servir aux progrès des Hommes. C’est de cette mouvance, malheureusement, qu’est issue la mode des Dolphin Assisted Therapy (DAT) et l’on peut donc craindre que ces idéologies ne servent avant tout à favoriser l’expansion de ce marché.

Il y a ceux qui mettent la barre très bas. Et ceux-là très clairement, ont reçu pour mission de justifier les captures pour les delphinariums ou les massacres des baleines. On lira ainsi avec stupéfaction certaines études réductrices qui ramènent le cerveau du cétacé aux dimensions de celui du hérisson ou tendent à prétendre que les baleines ne sont finalement que de gros "bovidés de la mer", stupides, indolentes et presque insensibles. De même, toute la galaxie de chercheurs et vétérinaires vendus à l’industrie du delphinarium déclarera d’une seule voix que l’intelligence du dauphin ne dépasse guère celle du chien.

Et il y a ceux qui tentent de faire la part des choses... Et notamment d’aborder de manière objective une série de d’études scientifiques ou d’observations de terrain convergentes. En regroupant ces recherches, en les collationnant, en les mettant en perspectives, il devient alors très difficile de croire que les cétacés puissent n’être que des "toutous marins"…

Le frein de l’anthropocentrisme

La disqualification systématique des compétences cognitives des cétacés n’est pourtant pas le fait de seuls baleiniers ou des "dolphin trainers". Certains cétologues et associations (Anne Collet, Greenpeace) adoptent cette position, affirment-ils, par souci d’objectivité. En fait, il semble surtout qu’une sorte de terreur sacrée les saisisse devant l’effondrement de l’un des derniers dogmes inexpugnables du canon scientifique : "l’Homme, mesure de toutes choses, image de Dieu sur terre, est seul doté de conscience et de langage".

"En traçant une limite stricte entre l’Homme et la Bête" ajoute Keith Thomas, "le but principal de nos théoriciens modernes était surtout de justifier la chasse, la domestication, l’ingestion de la chair d’un animal mort, la vivisection – qui devint une pratique scientifique courante dès le 19 ème siècle - et l’extermination à large échelle de la vermine et des prédateurs".

On trouve un peu partout – mais surtout dans le monde de l’édition francophone – de pitoyables gesticulations mentales visant à dénigrer, chaque fois que faire se peut, toute contestation de cette vérité première, aussi évidente que la course du soleil autour de la terre. Innombrables sont les études qui nient que la guenon Washoe, le bonobo Kanzi ou le perroquet Alex puissent parlent de vrais langages. Un article récent allait même jusqu’à contester la notion de "conscience de soi" chez l’animal non-humain et le fait que les expériences de reconnaissance face au miroir puissent avoir valeur de preuve en ce domaine.

Bref, pour beaucoup d’humanistes de la vieille école, la prééminence de l’être humain sur le plan de l’intellect est un dogme, une conviction d’ordre affectif presque désespérée, et non pas une certitude scientifique. L’anthropocentrisme qui fonde toute notre vision du monde nous rend, semble-t-il, incapable d’appréhender la possibilité d’une conscience autre, "exotique" selon le mot de H.Jerison, mais parfaitement complète, aboutie et auto-réflexive.

Pourtant, insiste Donald Griffin : "Il n’est pas plus anthropomorphique, au sens strict du terme, de postuler l’existence d’expériences mentales chez d’autres espèces animales, que de comparer leurs structures osseuses, leurs systèmes nerveux ou leurs anticorps avec ceux des humains".

TECHNOLOGIE ET INTELLIGENCE

Cerveau vaste et puissant que celui du dauphin, certes. Mais encore ? Qu’en fait-il ? C’est là l’ultime argument massue de notre dernier carré d’humanistes qui, très expressément, maintient la confusion entre Intelligence et Technologie. Or nous savons – nous ne pouvons plus nier – que d’autres types d’intelligences existent. On se reportera notamment au passionnant ouvrage de Marc Hauser "Wild Minds : what animals really think" (Allen Lane éditions, Penguin Press, London 2000) qui définit en termes clairs la notion "d’outillage mental". Même si de grands paramètres restent communs à la plupart des espèces psychiquement évoluées, dit en substance l’auteur (règle de la conservation des objets, cartes mentales pour s’orienter, capacité de numériser les choses, etc.), à chaque environnement correspond néanmoins une vision du monde, un mode de pensée propre, qui permet à l’individu de survivre au mieux.

Les écureuils sont capables de garder à l’esprit des cartes mentales d’une précision hallucinante, fondée sur des images géométriques. Les baleines chassent avec des rideaux de bulles, dont le réglage demande une grande concentration et une puissance de calcul peu commune. Les orques et les dauphins ne produisent rien, c’est vrai mais ils sont là depuis des millions d’années, ne détruisent pas leur biotope, vivent en belle harmonie, n’abandonnent pas leurs blessés, ne se font pas la guerre entre eux et dominaient tous les océans jusqu’à ce que l’Homme vienne pour les détruire. Toutes vertus généralement qualifiées de "sens moral" et qui révèlent un très haut degré de compréhension du monde.

Il en est de même pour l’être humain : technicien jusqu’au bout des doigts, champion incontesté de la manipulation d’objets et de chaînes de pensées, adepte des lignes droites, de la course et de la vitesse, il vit dans un monde à gravité forte qui le maintient au sol et lui donne de l’environnement une vision bidimensionnelle.

L’imprégnation génétique de nos modes de conscience est forte : nous avons gardé de nos ancêtres la structure sociale fission-fusion mâtinée de monogamie, la protection de nos "frontières" est toujours assurée, comme chez les autres chimpanzés, par des groupes de jeunes mâles familialement associés (frères, cousins puis soldats se battant pour la Mère Patrie), notre goût pour la science, le savoir et les découvertes n’est qu’une forme sublimée de la néophilie presque maladive que partagent tous les grands primates, et notre passion pour les jardins, les parcs, les pelouses bien dégagés et les "beaux paysages" vient de ce que ceux-ci évoquent la savane primitive, dont les grands espaces partiellement arborés nous permettaient autrefois de nous cacher aisément puis de courir sur la proie...

Mais bien sûr, l’homme est incapable de bondir de branche en branche en calculant son saut au plus juste, il est incapable de rassembler un banc de poissons diffus rien qu’en usant de sons, incapable de tuer un buffle à l’affût en ne se servant que de son corps comme arme, etc.

Ce n’est certes pas pour nous un titre de gloire que d’être les plus violents, les plus cruels, les plus astucieux, les plus carnivores, mais surtout les plus habiles et donc les plus polluants de tous les grands hominoïdes ayant jamais vécu sur cette planète, et cela du seul fait que nous n’avons pas su ou pas voulu renoncer à nos outils mentaux primordiaux ni à nos règles primitives.

Au-delà de nos chefs-d’oeuvre intellectuels – dont nous sommes les seuls à percevoir la beauté – et de nos créations architecturales si calamiteuses au niveau de l’environnement, la fureur primitive des chimpanzés est toujours bien en nous, chevillée dans nos moindres gestes et dans tous nos désirs : plus que jamais, le pouvoir et le sexe restent au centre des rêves de tous les mâles de la tribu...

De la Relativité Restreinte d’Einstein à la Bombe d’Hiroshima

Une dernière question se pose souvent à propos de l’intelligence des cétacés : représente-t-elle ou non un enjeu important dans le cadre de leur protection ?

Là encore, certaines associations s’indignent que l’on puisse faire une différence entre la tortue luth, le tamarin doré, le cachalot ou le panda. Toutes ces espèces ne sont-elles pas également menacées et leur situation dramatique ne justifie-t-elle pas une action de conservation d’intensité égale ? Ne sont-elles pas toutes des "animaux" qu’il convient de protéger ? Cette vision spéciste met une fois encore tous les animaux dans le même sac, et le primate humain dans un autre…

Par ailleurs, force est de reconnaître que l’intelligence prodigieuse des cétacés met un autre argument dans la balance : en préservant les dauphins et baleines, nous nous donnons une dernière chance d’entrer en communication avec une autre espèce intelligente. Il est de même pour les éléphants ou les grands singes mais le développement cognitif des cétacés semblent avoir atteint un tel degré que les contacts avec eux pourraient atteindre au niveau de vrais échanges culturels.

Les seuls animaux à disposer d’un outil de communication relativement similaire au nôtre c’est à dire transmis sur un mode syntaxique de nature vocale – sont en effet les cétacés. On pourrait certainement communiquer par certains signes et infra-sons avec les éléphants, par certains gestes-symboles et mimiques avec les chimpanzés libres, mais ces échanges ne fourniraient sans doute que des informations simples, du fait de notre incapacité à nous immerger complètement dans la subtilité de ces comportements non-verbaux. Tout autre serait un dialogue avec des dauphins libres qui sont, comme nous, de grands adeptes du "vocal labeling", de la désignation des choses par des sons, de l’organisation de ces sons en chaînes grammaticalement organisées et de la création de sons nouveaux pour désigner de nouveaux objets.

Cette possibilité, inouïe et jamais advenue dans l’histoire humaine, est pour nous l’un des principaux enjeux de la conservation des "peuples de la mer" véritables nations cétacéennes dont nous ne devinerons sans doute que très lentement les limites du prodigieux univers mental. Une telle révolution risque bien d’amener d’extraordinaires changements dans notre vision du monde.

Il n’est d’ailleurs pas impossible que notre pensée technologique nous rende irrémédiablement aveugle à certaines formes de réalité ou fermé à certains modes de fonctionnement de la conscience. Comme l’affirme Jim Nollman, il se peut en effet que les cachalots soient capables d’opérations mentales inaccessibles à notre compréhension.

Il se peut que leur cerveau prodigieusement développé les rende à même de percevoir, mettons, cinq ou six des onze dimensions fondamentales de l’univers (Lire à ce propos : "L’Univers élégant" de Brian Greene, Robert Laffont éditeur) plutôt que les quatre que nous percevons ? Quel aspect peut avoir l’océan et le ciel sous un regard de cette sorte ?

Si nous ne leur parlons pas, impossible à savoir.

On imagine la piètre idée qu’ont pu se faire les premiers colons anglais de ces yogis immobiles qu’ils découvraient au fond d’une grotte en train de méditer... Se doutaient-ils seulement à quoi ces vieux anachorètes pouvaient passer leur temps ? Avaient-ils la moindre idée du contenu des Upanishads ou des Shiva Sutras, la moindre idée de ce que pouvait signifier le verbe "méditer" pour ces gens et pour cette culture ?

Les baleines bleues, les cachalots, les cétacés les plus secrets des grands fonds (zyphius, mésoplodon) sont-ils, de la même manière, des sages aux pensées insondables nageant aux frontières d’autres réalités… et que nous chassons pour leur viande ?

On se souvient aussi du mépris profond que l’Occident manifestait jusqu’il y a peu aux peuples primitifs. Les Aborigènes d’Australie vivaient nus, n’avaient que peu d’outils et se contentaient de chasser. Stupides ? Eh bien non ! La surprise fut totale lorsque enfin, on pris la peine de pénétrer la complexité inouïe de leurs mythes, de leurs traditions non-écrites et de leur univers mental... notions quasi inaccessible à la compréhension cartésienne d’un homme "civilisé".

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ Umwelt ] [ hiérarchie ] [ sociologie ] [ xénocommunication ] [ fermeture anthropienne ]

 

Commentaires: 0

homme-machine

Comment l'IA comprend des trucs que personne ne lui lui a appris

Les chercheurs peinent à comprendre comment les modèles d'Intelligence artificielle, formés pour perroquetter les textes sur Internet, peuvent effectuer des tâches avancées comme coder, jouer à des jeux ou essayer de rompre un mariage.

Personne ne sait encore comment ChatGPT et ses cousins ​​de l'intelligence artificielle vont transformer le monde, en partie parce que personne ne sait vraiment ce qui se passe à l'intérieur. Certaines des capacités de ces systèmes vont bien au-delà de ce pour quoi ils ont été formés, et même leurs inventeurs ne savent pas pourquoi. Un nombre croissant de tests suggèrent que ces systèmes d'IA développent des modèles internes du monde réel, tout comme notre propre cerveau le fait, bien que la technique des machines soit différente.

"Tout ce que nous voulons faire avec ces systèmes pour les rendre meilleurs ou plus sûrs ou quelque chose comme ça me semble une chose ridicule à demander  si nous ne comprenons pas comment ils fonctionnent", déclare Ellie Pavlick de l'Université Brown,  un des chercheurs travaillant à combler ce vide explicatif.

À un certain niveau, elle et ses collègues comprennent parfaitement le GPT (abréviation de generative pretrained transformer) et d'autres grands modèles de langage, ou LLM. Des modèles qui reposent sur un système d'apprentissage automatique appelé réseau de neurones. De tels réseaux ont une structure vaguement calquée sur les neurones connectés du cerveau humain. Le code de ces programmes est relativement simple et ne remplit que quelques pages. Il met en place un algorithme d'autocorrection, qui choisit le mot le plus susceptible de compléter un passage sur la base d'une analyse statistique laborieuse de centaines de gigaoctets de texte Internet. D'autres algorithmes auto-apprenants supplémentaire garantissant que le système présente ses résultats sous forme de dialogue. En ce sens, il ne fait que régurgiter ce qu'il a appris, c'est un "perroquet stochastique", selon les mots d'Emily Bender, linguiste à l'Université de Washington. Mais les LLM ont également réussi à réussir l'examen pour devenir avocat, à expliquer le boson de Higgs en pentamètre iambique (forme de poésie contrainte) ou à tenter de rompre le mariage d'un utilisateurs. Peu de gens s'attendaient à ce qu'un algorithme d'autocorrection assez simple acquière des capacités aussi larges.

Le fait que GPT et d'autres systèmes d'IA effectuent des tâches pour lesquelles ils n'ont pas été formés, leur donnant des "capacités émergentes", a surpris même les chercheurs qui étaient généralement sceptiques quant au battage médiatique sur les LLM. "Je ne sais pas comment ils le font ou s'ils pourraient le faire plus généralement comme le font les humains, mais tout ça mes au défi mes pensées sur le sujet", déclare Melanie Mitchell, chercheuse en IA à l'Institut Santa Fe.

"C'est certainement bien plus qu'un perroquet stochastique, qui auto-construit sans aucun doute une certaine représentation du monde, bien que je ne pense pas que ce soit  vraiment de la façon dont les humains construisent un modèle de monde interne", déclare Yoshua Bengio, chercheur en intelligence artificielle à l'université de Montréal.

Lors d'une conférence à l'Université de New York en mars, le philosophe Raphaël Millière de l'Université de Columbia a offert un autre exemple à couper le souffle de ce que les LLM peuvent faire. Les modèles avaient déjà démontré leur capacité à écrire du code informatique, ce qui est impressionnant mais pas trop surprenant car il y a tellement de code à imiter sur Internet. Millière est allé plus loin en montrant que le GPT peut aussi réaliser du code. Le philosophe a tapé un programme pour calculer le 83e nombre de la suite de Fibonacci. "Il s'agit d'un raisonnement en plusieurs étapes d'un très haut niveau", explique-t-il. Et le robot a réussi. Cependant, lorsque Millière a demandé directement le 83e nombre de Fibonacci, GPT s'est trompé, ce qui suggère que le système ne se contentait pas de répéter ce qui se disait sur l'internet. Ce qui suggère que le système ne se contente pas de répéter ce qui se dit sur Internet, mais qu'il effectue ses propres calculs pour parvenir à la bonne réponse.

Bien qu'un LLM tourne sur un ordinateur, il n'en n'est pas un lui-même. Il lui manque des éléments de calcul essentiels, comme sa propre mémoire vive. Reconnaissant tacitement que GPT seul ne devrait pas être capable d'exécuter du code, son inventeur, la société technologique OpenAI, a depuis introduit un plug-in spécialisé -  outil que ChatGPT peut utiliser pour répondre à une requête - qui remédie à cela. Mais ce plug-in n'a pas été utilisé dans la démonstration de Millière. Au lieu de cela, ce dernier suppose plutôt que la machine a improvisé une mémoire en exploitant ses mécanismes d'interprétation des mots en fonction de leur contexte -  situation similaire à la façon dont la nature réaffecte des capacités existantes à de nouvelles fonctions.

Cette capacité impromptue démontre que les LLM développent une complexité interne qui va bien au-delà d'une analyse statistique superficielle. Les chercheurs constatent que ces systèmes semblent parvenir à une véritable compréhension de ce qu'ils ont appris. Dans une étude présentée la semaine dernière à la Conférence internationale sur les représentations de l'apprentissage (ICLR), le doctorant Kenneth Li de l'Université de Harvard et ses collègues chercheurs en intelligence artificielle, Aspen K. Hopkins du Massachusetts Institute of Technology, David Bau de la Northeastern University et Fernanda Viégas , Hanspeter Pfister et Martin Wattenberg, tous à Harvard, ont créé leur propre copie plus petite du réseau neuronal GPT afin de pouvoir étudier son fonctionnement interne. Ils l'ont entraîné sur des millions de matchs du jeu de société Othello en alimentant de longues séquences de mouvements sous forme de texte. Leur modèle est devenu un joueur presque parfait.

Pour étudier comment le réseau de neurones encodait les informations, ils ont adopté une technique que Bengio et Guillaume Alain, également de l'Université de Montréal, ont imaginée en 2016. Ils ont créé un réseau de "sondes" miniatures pour analyser le réseau principal couche par couche. Li compare cette approche aux méthodes des neurosciences. "C'est comme lorsque nous plaçons une sonde électrique dans le cerveau humain", dit-il. Dans le cas de l'IA, la sonde a montré que son "activité neuronale" correspondait à la représentation d'un plateau de jeu d'Othello, bien que sous une forme alambiquée. Pour confirmer ce résultat, les chercheurs ont inversé la sonde afin d'implanter des informations dans le réseau, par exemple en remplaçant l'un des marqueurs noirs du jeu par un marqueur blanc. "En fait, nous piratons le cerveau de ces modèles de langage", explique Li. Le réseau a ajusté ses mouvements en conséquence. Les chercheurs ont conclu qu'il jouait à Othello à peu près comme un humain : en gardant un plateau de jeu dans son "esprit" et en utilisant ce modèle pour évaluer les mouvements. Li pense que le système apprend cette compétence parce qu'il s'agit de la description la plus simple et efficace de ses données pour l'apprentissage. "Si l'on vous donne un grand nombre de scripts de jeu, essayer de comprendre la règle qui les sous-tend est le meilleur moyen de les comprimer", ajoute-t-il.

Cette capacité à déduire la structure du monde extérieur ne se limite pas à de simples mouvements de jeu ; il apparaît également dans le dialogue. Belinda Li (aucun lien avec Kenneth Li), Maxwell Nye et Jacob Andreas, tous au MIT, ont étudié des réseaux qui jouaient à un jeu d'aventure textuel. Ils ont introduit des phrases telles que "La clé est dans le coeur du trésor", suivies de "Tu prends la clé". À l'aide d'une sonde, ils ont constaté que les réseaux encodaient en eux-mêmes des variables correspondant à "coeur" et "Tu", chacune avec la propriété de posséder ou non une clé, et mettaient à jour ces variables phrase par phrase. Le système n'a aucun moyen indépendant de savoir ce qu'est une boîte ou une clé, mais il a acquis les concepts dont il avait besoin pour cette tâche."

"Une représentation de cette situation est donc enfouie dans le modèle", explique Belinda Li.

Les chercheurs s'émerveillent de voir à quel point les LLM sont capables d'apprendre du texte. Par exemple, Pavlick et sa doctorante d'alors, l'étudiante Roma Patel, ont découvert que ces réseaux absorbent les descriptions de couleur du texte Internet et construisent des représentations internes de la couleur. Lorsqu'ils voient le mot "rouge", ils le traitent non seulement comme un symbole abstrait, mais comme un concept qui a une certaine relation avec le marron, le cramoisi, le fuchsia, la rouille, etc. Démontrer cela fut quelque peu délicat. Au lieu d'insérer une sonde dans un réseau, les chercheurs ont étudié sa réponse à une série d'invites textuelles. Pour vérifier si le systhème ne faisait pas simplement écho à des relations de couleur tirées de références en ligne, ils ont essayé de le désorienter en lui disant que le rouge est en fait du vert - comme dans la vieille expérience de pensée philosophique où le rouge d'une personne correspond au vert d'une autre. Plutôt que répéter une réponse incorrecte, les évaluations de couleur du système ont évolué de manière appropriée afin de maintenir les relations correctes.

Reprenant l'idée que pour remplir sa fonction d'autocorrection, le système recherche la logique sous-jacente de ses données d'apprentissage, le chercheur en apprentissage automatique Sébastien Bubeck de Microsoft Research suggère que plus la gamme de données est large, plus les règles du système faire émerger sont générales. "Peut-être que nous nous constatons un tel bond en avant parce que nous avons atteint une diversité de données suffisamment importante pour que le seul principe sous-jacent à toutes ces données qui demeure est que des êtres intelligents les ont produites... Ainsi la seule façon pour le modèle d'expliquer toutes ces données est de devenir intelligent lui-même".

En plus d'extraire le sens sous-jacent du langage, les LLM sont capables d'apprendre en temps réel. Dans le domaine de l'IA, le terme "apprentissage" est généralement réservé au processus informatique intensif dans lequel les développeurs exposent le réseau neuronal à des gigaoctets de données et ajustent petit à petit ses connexions internes. Lorsque vous tapez une requête dans ChatGPT, le réseau devrait être en quelque sorte figé et, contrairement à l'homme, ne devrait pas continuer à apprendre. Il fut donc surprenant de constater que les LLM apprennent effectivement à partir des invites de leurs utilisateurs, une capacité connue sous le nom d'"apprentissage en contexte". "Il s'agit d'un type d'apprentissage différent dont on ne soupçonnait pas l'existence auparavant", explique Ben Goertzel, fondateur de la société d'IA SingularityNET.

Un exemple de la façon dont un LLM apprend vient de la façon dont les humains interagissent avec les chatbots tels que ChatGPT. Vous pouvez donner au système des exemples de la façon dont vous voulez qu'il réponde, et il obéira. Ses sorties sont déterminées par les derniers milliers de mots qu'il a vus. Ce qu'il fait, étant donné ces mots, est prescrit par ses connexions internes fixes - mais la séquence de mots offre néanmoins une certaine adaptabilité. Certaines personnes utilisent le jailbreak à des fins sommaires, mais d'autres l'utilisent pour obtenir des réponses plus créatives. "Il répondra mieux aux questions scientifiques, je dirais, si vous posez directement la question, sans invite spéciale de jailbreak, explique William Hahn, codirecteur du laboratoire de perception de la machine et de robotique cognitive à la Florida Atlantic University. "Sans il sera un meilleur universitaire." (Comme son nom l'indique une invite jailbreak -prison cassée-, invite à  moins délimiter-verrouiller les fonctions de recherche et donc à les ouvrir, avec les risques que ça implique) .

Un autre type d'apprentissage en contexte se produit via l'incitation à la "chaîne de pensée", ce qui signifie qu'on demande au réseau d'épeler chaque étape de son raisonnement - manière de faire qui permet de mieux résoudre les problèmes de logique ou d'arithmétique en passant par plusieurs étapes. (Ce qui rend l'exemple de Millière si surprenant  puisque le réseau a trouvé le nombre de Fibonacci sans un tel encadrement.)

En 2022, une équipe de Google Research et de l'École polytechnique fédérale de Zurich - Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov et Max Vladymyrov - a montré que l'apprentissage en contexte suit la même procédure de calcul de base que l'apprentissage standard, connue sous le nom de descente de gradient". 

Cette procédure n'était pas programmée ; le système l'a découvert sans aide. "C'est probablement une compétence acquise", déclare Blaise Agüera y Arcas, vice-président de Google Research. De fait il pense que les LLM peuvent avoir d'autres capacités latentes que personne n'a encore découvertes. "Chaque fois que nous testons une nouvelle capacité que nous pouvons quantifier, nous la trouvons", dit-il.

Bien que les LLM aient suffisamment d'angles morts et autres défauts pour ne pas être qualifiés d'intelligence générale artificielle, ou AGI - terme désignant une machine qui atteint l'ingéniosité du cerveau animal - ces capacités émergentes suggèrent à certains chercheurs que les entreprises technologiques sont plus proches de l'AGI que même les optimistes ne l'avaient deviné. "Ce sont des preuves indirectes que nous en sommes probablement pas si loin", a déclaré Goertzel en mars lors d'une conférence sur le deep learning à la Florida Atlantic University. Les plug-ins d'OpenAI ont donné à ChatGPT une architecture modulaire un peu comme celle du cerveau humain. "La combinaison de GPT-4 [la dernière version du LLM qui alimente ChatGPT] avec divers plug-ins pourrait être une voie vers une spécialisation des fonctions semblable à celle de l'homme", déclare Anna Ivanova, chercheuse au M.I.T.

Dans le même temps, les chercheurs s'inquiètent de voir leur capacité à étudier ces systèmes s'amenuiser. OpenAI n'a pas divulgué les détails de la conception et de l'entraînement de GPT-4, en partie du à la concurrence avec Google et d'autres entreprises, sans parler des autres pays. "Il y aura probablement moins de recherche ouverte de la part de l'industrie, et les choses seront plus cloisonnées et organisées autour de la construction de produits", déclare Dan Roberts, physicien théoricien au M.I.T., qui applique les techniques de sa profession à la compréhension de l'IA.

Ce manque de transparence ne nuit pas seulement aux chercheurs, il entrave également les efforts qui visent à comprendre les répercussions sociales de l'adoption précipitée de la technologie de l'IA. "La transparence de ces modèles est la chose la plus importante pour garantir la sécurité", affirme M. Mitchell.

Auteur: Musser Georges

Info: https://www.scientificamerican.com,  11 mai 2023. *algorithme d'optimisation utilisé dans l'apprentissage automatique et les problèmes d'optimisation. Il vise à minimiser ou à maximiser une fonction en ajustant ses paramètres de manière itérative. L'algorithme part des valeurs initiales des paramètres et calcule le gradient de la fonction au point actuel. Les paramètres sont ensuite mis à jour dans la direction du gradient négatif (pour la minimisation) ou positif (pour la maximisation), multiplié par un taux d'apprentissage. Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit rempli. La descente de gradient est largement utilisée dans la formation des modèles d'apprentissage automatique pour trouver les valeurs optimales des paramètres qui minimisent la différence entre les résultats prédits et les résultats réels. Trad et adaptation Mg

[ singularité technologique ] [ versatilité sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

question

La conscience est-elle partie prenante de l'univers et de sa structure ?

Des physiciens et des philosophes se sont récemment rencontrés pour débattre d'une théorie de la conscience appelée panpsychisme.

Il y a plus de 400 ans, Galilée a montré que de nombreux phénomènes quotidiens, tels qu'une balle qui roule sur une pente ou un lustre qui se balance doucement au plafond d'une église, obéissent à des lois mathématiques précises. Pour cette intuition, il est souvent salué comme le fondateur de la science moderne. Mais Galilée a reconnu que tout ne se prêtait pas à une approche quantitative. Des choses telles que les couleurs, les goûts et les odeurs "ne sont rien de plus que de simples noms", a déclaré Galilée, car "elles ne résident que dans la conscience". Ces qualités ne sont pas réellement présentes dans le monde, affirmait-il, mais existent uniquement dans l'esprit des créatures qui les perçoivent. "Par conséquent, si l'on supprimait la créature vivante, écrivait-il, toutes ces qualités seraient effacées et anéanties.

Depuis l'époque de Galilée, les sciences physiques ont fait un bond en avant, expliquant le fonctionnement des plus petits quarks jusqu'aux plus grands amas de galaxies. Mais expliquer les choses qui résident "uniquement dans la conscience" - le rouge d'un coucher de soleil, par exemple, ou le goût amer d'un citron - s'est avéré beaucoup plus difficile. Les neuroscientifiques ont identifié un certain nombre de corrélats neuronaux de la conscience - des états cérébraux associés à des états mentaux spécifiques - mais n'ont pas expliqué comment la matière forme les esprits en premier lieu. Comme l'a dit le philosophe Colin McGinn dans un article publié en 1989, "d'une manière ou d'une autre, nous avons l'impression que l'eau du cerveau physique est transformée en vin de la conscience". Le philosophe David Chalmers a célèbrement surnommé ce dilemme le "problème difficile" de la conscience*.

Des chercheurs se sont récemment réunis pour débattre de ce problème au Marist College de Poughkeepsie, dans l'État de New York, à l'occasion d'un atelier de deux jours consacré à une idée connue sous le nom de panpsychisme. Ce concept propose que la conscience soit un aspect fondamental de la réalité, au même titre que la masse ou la charge électrique. L'idée remonte à l'Antiquité - Platon l'a prise au sérieux - et a eu d'éminents partisans au fil des ans, notamment le psychologue William James et le philosophe et mathématicien Bertrand Russell. Elle connaît depuis peu un regain d'intérêt, notamment à la suite de la publication en 2019 du livre du philosophe Philip Goff, Galileo's Error, qui plaide vigoureusement en sa faveur.

M. Goff, de l'université de Durham en Angleterre, a organisé l'événement récent avec le philosophe mariste Andrei Buckareff, et il a été financé par une subvention de la Fondation John Templeton. Dans une petite salle de conférence dotée de fenêtres allant du sol au plafond et donnant sur l'Hudson, environ deux douzaines d'universitaires ont examiné la possibilité que la conscience se trouve peut-être en bas de l'échelle.

L'attrait du panpsychisme réside en partie dans le fait qu'il semble apporter une solution à la question posée par M. Chalmers : nous n'avons plus à nous préoccuper de la manière dont la matière inanimée forme des esprits, car l'esprit était là depuis le début, résidant dans le tissu de l'univers. Chalmers lui-même a adopté une forme de panpsychisme et a même suggéré que les particules individuelles pourraient être conscientes d'une manière ou d'une autre. Il a déclaré lors d'une conférence TED qu'un photon "pourrait avoir un élément de sentiment brut et subjectif, un précurseur primitif de la conscience". Le neuroscientifique Christof Koch est également d'accord avec cette idée. Dans son livre Consciousness paru en 2012, il note que si l'on accepte la conscience comme un phénomène réel qui ne dépend d'aucune matière particulière - qu'elle est "indépendante du substrat", comme le disent les philosophes - alors "il est facile de conclure que le cosmos tout entier est imprégné de sensibilité".

Pourtant, le panpsychisme va à l'encontre du point de vue majoritaire dans les sciences physiques et en philosophie, qui considère la conscience comme un phénomène émergent, quelque chose qui apparaît dans certains systèmes complexes, tels que le cerveau humain. Selon ce point de vue, les neurones individuels ne sont pas conscients, mais grâce aux propriétés collectives de quelque 86 milliards de neurones et à leurs interactions - qui, il est vrai, ne sont encore que mal comprises - les cerveaux (ainsi que les corps, peut-être) sont conscients. Les enquêtes suggèrent qu'un peu plus de la moitié des philosophes universitaires soutiennent ce point de vue, connu sous le nom de "physicalisme" ou "émergentisme", tandis qu'environ un tiers rejette le physicalisme et penche pour une alternative, dont le panpsychisme est l'une des nombreuses possibilités.

Lors de l'atelier, M. Goff a expliqué que la physique avait manqué quelque chose d'essentiel en ce qui concerne notre vie mentale intérieure. En formulant leurs théories, "la plupart des physiciens pensent à des expériences", a-t-il déclaré. "Je pense qu'ils devraient se demander si ma théorie est compatible avec la conscience, car nous savons qu'elle est réelle.

De nombreux philosophes présents à la réunion ont semblé partager l'inquiétude de M. Goff quant à l'échec du physicalisme lorsqu'il s'agit de la conscience. "Si vous connaissez les moindres détails des processus de mon cerveau, vous ne saurez toujours pas ce que c'est que d'être moi", déclare Hedda Hassel Mørch, philosophe à l'université des sciences appliquées de Norvège intérieure. "Il existe un fossé explicatif évident entre le physique et le mental. Prenons l'exemple de la difficulté d'essayer de décrire la couleur à quelqu'un qui n'a vu le monde qu'en noir et blanc. Yanssel Garcia, philosophe à l'université du Nebraska Omaha, estime que les faits physiques seuls sont inadéquats pour une telle tâche. "Il n'y a rien de physique que l'on puisse fournir [à une personne qui ne voit qu'en nuances de gris] pour qu'elle comprenne ce qu'est l'expérience de la couleur ; il faudrait qu'elle en fasse elle-même l'expérience", explique-t-il. "La science physique est, en principe, incapable de nous raconter toute l'histoire. Parmi les différentes alternatives proposées, il estime que "le panpsychisme est notre meilleure chance".

Mais le panpsychisme attire également de nombreuses critiques. Certains soulignent qu'il n'explique pas comment de petits morceaux de conscience s'assemblent pour former des entités conscientes plus substantielles. Ses détracteurs affirment que cette énigme, connue sous le nom de "problème de la combinaison", équivaut à une version du problème difficile propre au panpsychisme. Le problème de la combinaison "est le défi majeur de la position panpsychiste", admet M. Goff. "Et c'est là que se concentre la majeure partie de notre énergie.

D'autres remettent en question le pouvoir explicatif du panpsychisme. Dans son livre Being You (2021), le neuroscientifique Anil Seth écrit que les principaux problèmes du panpsychisme sont qu'"il n'explique rien et qu'il ne conduit pas à des hypothèses vérifiables. C'est une échappatoire facile au mystère apparent posé par le problème difficile".

Si la plupart des personnes invitées à l'atelier étaient des philosophes, les physiciens Sean Carroll et Lee Smolin, ainsi que le psychologue cognitif Donald Hoffman, ont également pris la parole. Carroll, un physicaliste pur et dur, a joué le rôle de chef de file officieux de l'opposition pendant le déroulement de l'atelier. (Lors d'un débat public très suivi entre Goff et Carroll, la divergence de leurs visions du monde est rapidement devenue évidente. Goff a déclaré que le physicalisme ne menait "précisément nulle part" et a suggéré que l'idée même d'essayer d'expliquer la conscience en termes physiques était incohérente. M. Carroll a affirmé que le physicalisme se porte plutôt bien et que, bien que la conscience soit l'un des nombreux phénomènes qui ne peuvent être déduits des phénomènes microscopiques, elle constitue néanmoins une caractéristique réelle et émergente du monde macroscopique. Il a présenté la physique des gaz comme un exemple parallèle. Au niveau micro, on parle d'atomes, de molécules et de forces ; au niveau macro, on parle de pression, de volume et de température. Il s'agit de deux types d'explications, en fonction du "niveau" étudié, mais elles ne présentent pas de grand mystère et ne constituent pas un échec pour la physique. En peu de temps, Goff et Carroll se sont enfoncés dans les méandres de l'argument dit de la connaissance (également connu sous le nom de "Marie dans la chambre noire et blanche"), ainsi que de l'argument des "zombies". Tous deux se résument à la même question clé : Y a-t-il quelque chose à propos de la conscience qui ne peut être expliqué par les seuls faits physiques ? Une grande partie du ping-pong rhétorique entre Goff et Carroll a consisté pour Goff à répondre oui à cette question et pour Carroll à y répondre non.

Une autre objection soulevée par certains participants est que le panpsychisme n'aborde pas ce que les philosophes appellent le problème des "autres esprits". (Vous avez un accès direct à votre propre esprit, mais comment pouvez-vous déduire quoi que ce soit de l'esprit d'une autre personne ?) "Même si le panpsychisme est vrai, il y aura toujours un grand nombre de choses - notamment des choses liées à l'expérience des autres - que nous ne connaîtrons toujours pas", déclare Rebecca Chan, philosophe à l'université d'État de San José. Elle craint que l'invocation d'une couche sous-jacente d'esprit ne revienne à invoquer Dieu. Je me demande parfois si la position panpsychiste n'est pas similaire aux arguments du "dieu des lacunes"", dit-elle, en référence à l'idée que Dieu est nécessaire pour combler les lacunes de la connaissance scientifique.

D'autres idées ont été évoquées. L'idée du cosmopsychisme a été évoquée - en gros, l'idée que l'univers lui-même est conscient. Paul Draper, philosophe à l'université de Purdue qui a participé via Zoom, a parlé d'une idée subtilement différente connue sous le nom de "théorie de l'éther psychologique", à savoir que les cerveaux ne produisent pas la conscience mais l'utilisent plutôt. Selon cette théorie, la conscience existait déjà avant que les cerveaux n'existent, comme un ether omniprésent. Si cette idée est correcte, écrit-il, "alors (selon toute vraisemblance) Dieu existe".

M. Hoffman, chercheur en sciences cognitives à l'université de Californie à Irvine, qui s'est également adressé à l'atelier via Zoom, préconise de rejeter l'idée de l'espace-temps et de rechercher quelque chose de plus profond. (Il a cité l'idée de plus en plus populaire en physique ces derniers temps selon laquelle l'espace et le temps ne sont peut-être pas fondamentaux, mais constituent plutôt des phénomènes émergents). L'entité plus profonde liée à la conscience, suggère Hoffman, pourrait consister en "sujets et expériences" qui, selon lui, "sont des entités au-delà de l'espace-temps, et non dans l'espace-temps". Il a développé cette idée dans un article de 2023 intitulé "Fusions of Consciousness" (Fusions de conscience).

M. Smolin, physicien à l'Institut Perimeter pour la physique théorique en Ontario, qui a également participé via Zoom, a également travaillé sur des théories qui semblent offrir un rôle plus central aux agents conscients. Dans un article publié en 2020, il a suggéré que l'univers "est composé d'un ensemble de vues partielles de lui-même" et que "les perceptions conscientes sont des aspects de certaines vues" - une perspective qui, selon lui, peut être considérée comme "une forme restreinte de panpsychisme".

Carroll, qui s'est exprimé après la session à laquelle participaient Hoffman et Smolin, a noté que ses propres opinions divergeaient de celles des intervenants dès les premières minutes (au cours du déjeuner, il a fait remarquer que participer à l'atelier donnait parfois l'impression d'être sur un subreddit pour les fans d'une série télévisée qui ne vous intéresse tout simplement pas). Il a admis que les débats interminables sur la nature de la "réalité" le laissaient parfois frustré. Les gens me demandent : "Qu'est-ce que la réalité physique ? C'est la réalité physique ! Il n'y a rien qu'elle 'soit'. Que voulez-vous que je dise, qu'elle est faite de macaronis ou d'autre chose ?" (Même Carroll admet cependant que la réalité est plus complexe qu'il n'y paraît. Il est un fervent partisan de l'interprétation "multi-mondes" de la mécanique quantique, selon laquelle notre univers n'est qu'une facette d'un vaste multivers quantique).

Si tout cela semble n'avoir aucune valeur pratique, M. Goff a évoqué la possibilité que la façon dont nous concevons les esprits puisse avoir des implications éthiques. Prenons la question de savoir si les poissons ressentent la douleur. La science traditionnelle ne peut étudier que le comportement extérieur d'un poisson, et non son état mental. Pour M. Goff, se concentrer sur le comportement du poisson n'est pas seulement une erreur, c'est aussi une "horreur", car cela laisse de côté ce qui est en fait le plus important : ce que le poisson ressent réellement. "Nous allons cesser de nous demander si les poissons sont conscients et nous contenter de regarder leur comportement ? Qui se soucie du comportement ? Je veux savoir s'il a une vie intérieure, c'est tout ce qui compte ! Pour les physicalistes comme Carroll, cependant, les sentiments et le comportement sont intimement liés, ce qui signifie que nous pouvons éviter de faire souffrir un animal en ne le plaçant pas dans une situation où il semble souffrir en raison de son comportement. "S'il n'y avait pas de lien entre eux [comportement et sentiments], nous serions en effet dans le pétrin", déclare Carroll, "mais ce n'est pas notre monde".

Seth, le neuroscientifique, n'était pas présent à l'atelier, mais je lui ai demandé quelle était sa position dans le débat sur le physicalisme et ses différentes alternatives. Selon lui, le physicalisme offre toujours plus de "prise empirique" que ses concurrents, et il déplore ce qu'il considère comme une crispation excessive sur ses prétendus échecs, y compris la difficulté supposée due à un problème complexe. Critiquer le physicalisme au motif qu'il a "échoué" est une erreur volontaire de représentation", déclare-t-il. "Il se porte très bien, comme l'attestent les progrès de la science de la conscience. Dans un article récemment publié dans le Journal of Consciousness Studies, Seth ajoute : "Affirmer que la conscience est fondamentale et omniprésente n'éclaire en rien la raison pour laquelle l'expérience du bleu est telle qu'elle est, et pas autrement. Cela n'explique pas non plus les fonctions possibles de la conscience, ni pourquoi la conscience est perdue dans des états tels que le sommeil sans rêve, l'anesthésie générale et le coma".

Même ceux qui penchent pour le panpsychisme semblent parfois hésiter à plonger dans le grand bain. Comme le dit Garcia, malgré l'attrait d'un univers imprégné de conscience, "j'aimerais qu'on vienne m'en dissuader".

 

Auteur: Internet

Info: Dan Falk, September 25, 2023

[ perspectiviste ] [ atman ] [ interrogation ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

psychosomatique

Nous avons 2 cerveaux.

On se demande souvent pourquoi les gens ont des "boules" dans l'estomac avant d'aller sur scène ? Ou pourquoi un entretien d'emploi imminent peut causer des crampes intestinales ? Ainsi que : pourquoi les antidépresseur qui visent le cerveau causent la nausée ou un bouleversement abdominal chez des millions de personnes qui prennent de telles drogues ?

Les scientifiques disent que la raison de ces réactions est que notre corps a deux cerveaux : le familier, dans le crâne et, moins connus, mais extrêmement importants un autre dans l'intestin humain- Tout comme des jumeaux siamois, les deux cerveaux sont reliés ensemble ; quand l'un est affecté, l'autre aussi. Le cerveau de l'intestin, connu sous le nom de système nerveux entérique, est situé dans les gaines du tissu qui tapissent l'oesophage, l'estomac, le petit intestin et le colon. Si on le considère comme une simple entité, c'est un réseau de neurones, de neurotransmetteurs et de protéines qui zappent des messages entre eux, soutiennent des cellules comme celles du cerveau proprement dit et offrent des circuits complexes qui lui permettent d'agir indépendamment, d'apprendre, de se rappeler et, selon le dicton, de produire des sensations dans les intestins.

Le cerveau de l'intestin joue un rôle important dans le bonheur et la misère humains. Mais peu de gens savent qu'il existe indique le Dr. Michael Gershon, professeur d'anatomie et de biologie des cellules au centre médical presbytérien de Colombia à New York. Pendant des années, on a dit aux gens qui ont des ulcères, des problèmes pour avaler ou des douleurs abdominales chroniques que leurs problèmes étaient imaginaires ou, émotifs, c'est à dire simplement dans leurs têtes. Ces gens ont donc faits la navette entre divers psychiatres pour le traitement. Les médecins avaient raison en attribuant ces problèmes au cerveau dit le DR. Gershon, mais ils blâment le faux. Beaucoup de désordres gastro-intestinaux, comme le syndrome d'entrailles irritable proviennent des problèmes dans le propre cerveau de l'intestin, affirme-t'il. Les symptômes provenant des deux cerveaux - tendent à être confus : " Comme le cerveau peut déranger l'intestin, l'intestin peut également déranger le cerveau... si tu es enchaîné aux toilette avec un serre joint, tu seras aussi affecté."

Les détails de la façon dont le système nerveux entérique reflète le système nerveux central ont émergé ces dernières années, dit le Dr. Gershon, et c'est considéré comme un nouveau champ d'investigation appelé neuro-gastro-enterologie par la médecine. Ainsi, presque chaque substance qui aide à faire fonctionner et à commander le cerveau a donné des résultat dans l'intestin, dit Gershon. Les neurotransmetteurs principaux comme la sérotonine, dopamine, glutamate, nopépinéphrine et l'oxyde nitrique sont là. Deux douzaine de petites protéines cervicales, appelées les neuropeptides, sont dans l'intestin, comme les cellules principales du système immunitaire. Les Enkephalins, une classe d'opiacés normaux du corps, sont dans l'intestin et, constatation qui laisse les chercheurs perplexe, l'intestin est une riche source de benzodiazépines - la famille des produits chimiques psycho-actifs qui inclut des drogues toujours populaires telles que le Valium et le Xanax.

En termes évolutionnistes, il est assez clair que le corps a deux cerveaux, dit le Dr. David Wingate, professeur de science gastro-intestinale à l'université de Londres et conseiller à l'hôpital royal de Londres. Les premiers systèmes nerveux étaient des animaux non tubulaires qui collaient aux roches et attendaient le passage de nourriture. Le système limbique est souvent désignée sous le nom de "cerveau reptilien". Alors que la vie évoluait, les animaux ont eu besoin d'un cerveau plus complexe pour trouver la nourriture et un partenaire sexuel et ainsi ont développé un système nerveux central. Mais le système nerveux de l'intestin était trop important pour l'intégrer à cette nouvelle tête, même avec de longs raccordements sur tout le corps. Un rejeton à toujours besoin de manger et digérer de la nourriture à la naissance. Par conséquent, la nature semble avoir préservé le système nerveux entérique en tant que circuit indépendant.

Chez de plus grands animaux, il est simplement relié de manière vague au système nerveux central et peut la plupart du temps fonctionner seul, sans instructions de l'extérieur. C'est en effet l'image vue par les biologistes développementalistes. Une motte de tissus appelée la "crête neurale" se forme tôt dans l'embryogenese dit le DR.Gershon. Une section se transforme en système nerveux central. Un autre morceau émigre pour devenir le système nerveux entérique. Et postérieurieurement seulement les deux systèmes nerveux seront relié par l'intermédiaire d'une sorte de câble appelé le nerf "vagus". Jusque à relativement récemment, les gens ont pensé que les muscles et les nerfs sensoriels de l'intestin étaient câblés directement au cerveau et que le cerveau commandait l'intestin par deux voies qui augmentaient ou diminuaient les taux de l'activité. L'intestin étant un simple tube avec des réflexes. L'ennui est que personne ne pris la peine de compter les fibres de nerf dans l'intestin. Quand on l'a fait on fut étonné de constater que l'intestin contient 100 millions de neurones - plus que la moelle épinière.

Pourtant le conduit vagus n'envoie qu'environ deux mille fibres de nerf vers l'intestin. Le cerveau envoie des signaux à l'intestin en parlant à un nombre restreint de'"neurones de commande", qui envoient à leur tour des signaux aux neurones internes de l'intestin qui diffusent les messages. Les neurones et les inter neurones de commande sont dispersées dans deux couches de tissu intestinal appelées le plexus myenteric et le plexus subrmuscosal. ("le plexus solaire" est en fait un terme de boxe qui se réfère simplement aux nerfs de l'abdomen.) Ces neurones commandent et contrôlent le modèle de l'activité de l'intestin. Le nerf vagus modifie seulement le volume en changeant le taux de mise à feu. Les plexus contiennent également les cellules gliales qui nourrissent les neurones, les cellules pylônes impliquées dans des immuno-réactions, et "une barrière de sang cervical " qui maintient ces substances nocives loin des neurones importants. Ils ont des sondes pour les protéines de sucre, d'acidité et d'autres facteurs chimiques qui pourraient aider à surveiller le progrès de la digestion, déterminant comment l'intestin mélange et propulse son contenu. "Ce n'est pas une voie simple", Y sont employés des circuits intégrés complexes, pas différents du cerveau." Le cerveau de l'intestin et le cerveau de la tête agissent de la même manière quand ils sont privés d'informations venant du monde extérieur.

Pendant le sommeil, le cerveau de la tête produit des cycles de 90-minutes de sommeil lent, ponctué par des périodes de sommeil avec des mouvement d'oeil rapide (REM) où les rêves se produisent. Pendant la nuit, quand il n'a aucune nourriture, le cerveau de l'intestin produit des cycles 90-minute de lentes vagues de contractions des muscles, ponctuées par de courts gerbes de mouvements rapides des muscles, dit le Dr. Wingate. Les deux cerveaux peuvent donc s'influencer dans cet état. On a trouvé des patients présentant des problèmes d'entrailles ayant un sommeil REM anormal. Ce qui n'est pas contradictoire avec la sagesse folklorique qui voudrait que l'indigestion pousse au cauchemar. Alors que la lumière se fait sur les connexions entre les deux cerveaux, les chercheurs commencent à comprendre pourquoi les gens agissent et se sentent de telle manière.

Quand le cerveau central rencontre une situation effrayante, il libère les hormones d'effort qui préparent le corps combattre ou à se sauver dit le DR.Gershon. L'estomac contient beaucoup de nerfs sensoriels qui sont stimulés par cette montée chimique subite - ainsi surviennent les ballonnements. Sur le champ de bataille, le cerveau de la tête indique au cerveau d'intestin arrêter dit le DR.Gershon " Effrayé un animal en train de courir ne cesse pas de déféquer ". La crainte fait aussi que le nerf vagus au "monte le volume" des circuits de sérotonine dans l'intestin. Ainsi, trop stimulé, l'intestin impulse des vitesse élevés et, souvent, de la diarrhée. De même, des gens s'étouffent avec l'émotion. Quand des nerfs dans l'oesophage sont fortement stimulés, les gens peuvent éprouver des problèmes d'ingestion. Même le prétendu " Moment de Maalox " d'efficacité publicitaire peut être expliqué par les deux cerveaux agissant en interaction, dit le Dr. Jackie D. Wood, président du département de physiologie à l'université de l'Etat de l'Ohio à Columbus. Les signaux d'effort du cerveau de la tête peuvent changer la fonction de nerf entre l'estomac et l'oesophage, ayant pour résultat la brûlure d'estomac.

Dans les cas d'efforts extrême. le cerveau dominant semble protéger l'intestin en envoyant des signaux aux cellules pylônes immunologiques dans le plexus. Les cellules pylônes sécrètent l'histamine, la prostaglandine et d'autres agents qui aident à produire l'inflammation. "C'est protecteur. Si un animal est en danger et sujet au trauma, la substance sale dans les intestins est seulement à quelques cellules du reste du corps. En enflammant l'intestin, le cerveau amorce l'intestin pour la surveillance. Si la barrière se casse, l'intestin est prêt à faire les réparations ". Dit le DR. Wood. Malheureusement, ces produits chimiques libérés causent également la diarrhée et les crampes. Ceci explique également beaucoup d'interactions.."quand tu prends une drogue pour avoir des effets psychiques sur le cerveau, il est très probable que tu auras aussi des effets sur l'intestin. Réciproquement, les drogues développées pour le cerveau ont des utilisations pour l'intestin.

Par exemple, l'intestin est chargé avec la sérotonine des neurotransmetteur. Quand des récepteurs de pression de la doublure de l'intestin sont stimulés, la sérotonine est libérée et commence le mouvement réflexe du péristaltisme. Maintenant un quart des personnes prenant du Prozac ou des antidépresseur semblables ont des problèmes gastro- intestinaux comme la nausée, diarrhée et constipation. Ces drogues agissent sur la sérotonine, empêchant sa prise par les cellules cible de sorte qu'elle demeure plus abondante dans le système nerveux central. Dans une étude le DR.Gershon et ses collègues expliquent les effets secondaires du Prozac sur l'intestin. Ils ont monté une section de colon du cobaye sur un stand et ont mis un petit granule à l'extrémité de la "bouche". Le colon isolé fouette le granule vers le bas vers l'extrémité "anale" de la colonne, juste comme il le ferai à l'intérieur de l'animal. Quand les chercheurs ont mis un peu de Prozac dans le colon, le granule " y est entré dans la haute vitesse". La drogue a doublé la vitesse à laquelle le granule a traversé le colon, ce qui expliqueraient pourquoi certains ont la diarrhée. Le Prozac a été parfois utilisé à petites doses pour traiter la constipation chronique, a il ajouté. Mais quand les chercheurs ont augmenté la quantité de Prozac dans le colon du cobaye, le granule a cessé de se déplacer. Le DR Gershon dit que c'est pourquoi certains deviennent constipé avec cette drogue. Et parce que les nerfs sensoriels stimulés par Prozac peuvent également causer la nausée. Certains antibiotiques comme la crythromycine agissent sur des récepteurs d'intestin et produisent des oscillations. Certaines ont alors des crampes et des nausées. Des drogues comme la morphine et l'héroïne s'attachent aux récepteurs des opiacé de l'intestin, produisant la constipation. En effet, les deux cerveaux peuvent être intoxiqués aux opiacés. Les victimes des maladies d'Alzheimer et de Parkinson souffrent de constipation. Les nerfs dans leur intestin sont aussi malades que les cellules de nerf dans leurs cerveaux. Juste comme le cerveau central affecte l'intestin, le cerveau de l'intestin peut parler à la tête. La plupart des sensations d'intestin qui entrent dans la part consciente sont des choses négatives comme la douleur et le ballonnement.

Les gens ne s'attendent pas à sentir "du bon" venant de l'intestin... mais cela ne signifie pas que de tels signaux sont absents. Par conséquent, il y a la question intrigante : pourquoi l'intestin produit-il de la benzodiazépine ? Le cerveau humain contient des récepteurs pour la benzodiazépine, une drogue qui soulage l'inquiétude, suggérant que le corps produise sa propre source interne de la drogue, dit le Dr. Anthony Basile, neurochimiste au laboratoire de neurologie aux instituts nationaux de la santé a Bethesda. Il y a plusieurs années, dit-il, un scientifique italien a fait une découverte plus effrayante. Les patients présentant un disfonctionnement du foie tombèrent dans un coma profond. Le coma put être renversé, en quelques minutes, en donnant aux patients une drogue qui bloque la benzodiazépine. Quand le foie s'arrête, les substances habituellement neutralisées par le foie vont au cerveau. Certaines sont mauvaises, comme l'ammoniaque et les mercaptans, qui sont "les composés puants que les putois pulvérisent pour se défendre ". Mais une série de composés est également identique à la benzodiazépine. " Nous ne savons pas s'ils viennent de l'intestin lui-même, de bactéries dans l'intestin ou de la nourriture". dit. Le Dr Basile. Mais quand le foie s'arrête la benzodiazépine de l'intestin va directement au cerveau, mettant le patient dans le coma.

L'intérêt pour de telles interactions entre le cerveau d'intestin et celui de tête est énorme... Par exemple, beaucoup de personnes sont allergiques à certaines nourritures, comme les mollusques et les crustacés. C'est parce que les cellules pylônes dans l'intestin deviennent mystérieusement sensibilisées aux antigènes de la nourriture. La prochaine fois que l'antigène apparaît dans l'intestin ; les cellules pylônes appellent un programme, libérant des modulateurs chimiques, qui essaye d'éliminer la menace. La personne allergique se retrouve donc avec de la diarrhée et des crampes. Beaucoup de maladies auto-immunes comme la maladie de Krohn et les colites ulcérative peuvent impliquer le cerveau de l'intestin. Les conséquences peuvent être horribles, comme dans la maladie de Chagas, qui est provoquée par un parasite trouvé en Amérique du sud. Les infectés développent une réponse auto-immune des neurones de leur intestin. Leurs systèmes immunitaires détruit alors lentement leurs propres neurones intestinales. Quand assez de neurones sont mortes, les intestins éclatent littéralement.

Restent ces questions : Est ce que le cerveau de l'intestin apprend ? Pense - il pour lui-même ? L'intestin humain a été longtemps vu comme le réceptacle des bons et des mauvais sentiments. Des états peut-être émotifs du cerveau de la tête sont reflétés dans le cerveau de l'intestin, ou sont-ils ressentis que par ceux qui prêtent l'attention à elles. Le cerveau de l'intestin prend la forme de deux réseaux de raccordements neuraux dans la doublure de l'appareil gastro-intestinal, appelée le plexus myenteric et le plexus subrnucosal. Les nerfs sont fortement reliés ensemble et ont une influence directe sur des choses comme la vitesse de la digestion, le mouvement et des sécrétions de la muqueuses "comme-des-doigts" qui ligne les intestins et les contractions des différents genres de muscle dans les parois de l'intestin. Autoroute cerveau intestin à 2 voies : RUE Bidirectionnelle : L'intestin a son propre esprit, le système nerveux entérique. Juste comme le cerveau dans la tête, disent les chercheurs. Ce système envoie et reçoit des impulsions, enregistre, fait des expériences et répond aux émotions. Ses cellules nerveuse sont baignées et influencées par les mêmes neurotransmetteurs. L'intestin peut déranger le cerveau juste comme le cerveau peut déranger l'intestin. Diagramme des parois du petit intestin : un plan de coupe montre deux réseaux de nerfs qui composent le système nerveux entérique, ou "cerveau dans l'intestin". Le premier réseau, appelé le plexus submucosal, est juste sous la doublure muqueuse. le second, le plexus myenteric, se trouve entre les deux manteaux de muscle.

Auteur: Blakeslee Sandra

Info: New York Times 23 Janvier 1996

[ dyspepsie ] [ tourista ]

 

Commentaires: 0

homme-machine

Chat GPT ou le perroquet grammairien

L’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur le langage humain et sur ce qu’on appelle parler. Notamment, les IA redonnent naissance à un débat ancien sur la grammaire générative et sur l’innéisme des facultés langagières. Mais les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction, et considérant aussi la façon dont les animaux communiquent.

a capacité de ChatGPT à produire des textes en réponse à n’importe quelle requête a immédiatement attiré l’attention plus ou moins inquiète d’un grand nombre de personnes, les unes animées par une force de curiosité ou de fascination, et les autres, par un intérêt professionnel.

L’intérêt professionnel scientifique que les spécialistes du langage humain peuvent trouver aux Large Language Models ne date pas d’hier : à bien des égards, des outils de traduction automatique comme DeepL posaient déjà des questions fondamentales en des termes assez proches. Mais l’irruption des IA conversationnelles dans la sphère publique a conféré une pertinence supplémentaire aux débats sur ce que les Large Language Models sont susceptibles de nous dire sur le langage humain et sur ce qu’on appelle parler.

L’outil de traduction DeepL (ou les versions récentes de Google Translate) ainsi que les grands modèles de langage reposent sur des techniques d’" apprentissage profond " issues de l’approche " neuronale " de l’Intelligence Artificielle : on travaille ici sur des modèles d’IA qui organisent des entités d’information minimales en les connectant par réseaux ; ces réseaux de connexion sont entraînés sur des jeux de données considérables, permettant aux liaisons " neuronales " de se renforcer en proportion des probabilités de connexion observées dans le jeu de données réelles – c’est ce rôle crucial de l’entraînement sur un grand jeu de données qui vaut aux grands modèles de langage le sobriquet de " perroquets stochastiques ". Ces mécanismes probabilistes sont ce qui permet aussi à l’IA de gagner en fiabilité et en précision au fil de l’usage. Ce modèle est qualifié de " neuronal " car initialement inspiré du fonctionnement des réseaux synaptiques. Dans le cas de données langagières, à partir d’une requête elle-même formulée en langue naturelle, cette technique permet aux agents conversationnels ou aux traducteurs neuronaux de produire très rapidement des textes généralement idiomatiques, qui pour des humains attesteraient d’un bon apprentissage de la langue.

IA neuronales et acquisition du langage humain

Au-delà de l’analogie " neuronale ", ce mécanisme d’entraînement et les résultats qu’il produit reproduisent les théories de l’acquisition du langage fondées sur l’interaction avec le milieu. Selon ces modèles, généralement qualifiés de comportementalistes ou behavioristes car étroitement associés aux théories psychologiques du même nom, l’enfant acquiert le langage par l’exposition aux stimuli linguistiques environnants et par l’interaction (d’abord tâtonnante, puis assurée) avec les autres. Progressivement, la prononciation s’aligne sur la norme majoritaire dans l’environnement individuel de la personne apprenante ; le vocabulaire s’élargit en fonction des stimuli ; l’enfant s’approprie des structures grammaticales de plus en plus contextes ; et en milieu bilingue, les enfants apprennent peu à peu à discriminer les deux ou plusieurs systèmes auxquels ils sont exposés. Cette conception essentiellement probabiliste de l’acquisition va assez spontanément de pair avec des théories grammaticales prenant comme point de départ l’existence de patrons (" constructions ") dont la combinatoire constitue le système. Dans une telle perspective, il n’est pas pertinent qu’un outil comme ChatGPT ne soit pas capable de référer, ou plus exactement qu’il renvoie d’office à un monde possible stochastiquement moyen qui ne coïncide pas forcément avec le monde réel. Cela ne change rien au fait que ChatGPT, DeepL ou autres maîtrisent le langage et que leur production dans une langue puisse être qualifiée de langage : ChatGPT parle.

Mais ce point de vue repose en réalité sur un certain nombre de prémisses en théorie de l’acquisition, et fait intervenir un clivage lancinant au sein des sciences du langage. L’actualité de ces dernières années et surtout de ces derniers mois autour des IA neuronales et génératives redonne à ce clivage une acuité particulière, ainsi qu’une pertinence nouvelle pour l’appréhension de ces outils qui transforment notre rapport au texte et au discours. La polémique, comme souvent (trop souvent ?) quand il est question de théorie du langage et des langues, se cristallise – en partie abusivement – autour de la figure de Noam Chomsky et de la famille de pensée linguistique très hétérogène qui se revendique de son œuvre, généralement qualifiée de " grammaire générative " même si le pluriel (les grammaires génératives) serait plus approprié.

IA générative contre grammaire générative

Chomsky est à la fois l’enfant du structuralisme dans sa variante états-unienne et celui de la philosophie logique rationaliste d’inspiration allemande et autrichienne implantée sur les campus américains après 1933. Chomsky est attaché à une conception forte de la logique mathématisée, perçue comme un outil d’appréhension des lois universelles de la pensée humaine, que la science du langage doit contribuer à éclairer. Ce parti-pris que Chomsky qualifiera lui-même de " cartésien " le conduit à fonder sa linguistique sur quelques postulats psychologiques et philosophiques, dont le plus important est l’innéisme, avec son corollaire, l’universalisme. Selon Chomsky et les courants de la psychologie cognitive influencée par lui, la faculté de langage s’appuie sur un substrat génétique commun à toute l’espèce humaine, qui s’exprime à la fois par un " instinct de langage " mais aussi par l’existence d’invariants grammaticaux, identifiables (via un certain niveau d’abstraction) dans toutes les langues du monde.

La nature de ces universaux fluctue énormément selon quelle période et quelle école du " générativisme " on étudie, et ce double postulat radicalement innéiste et universaliste reste très disputé aujourd’hui. Ces controverses mettent notamment en jeu des conceptions très différentes de l’acquisition du langage et des langues. Le moment fondateur de la théorie chomskyste de l’acquisition dans son lien avec la définition même de la faculté de langage est un violent compte-rendu critique de Verbal Behavior, un ouvrage de synthèse des théories comportementalistes en acquisition du langage signé par le psychologue B.F. Skinner. Dans ce compte-rendu publié en 1959, Chomsky élabore des arguments qui restent structurants jusqu’à aujourd’hui et qui définissent le clivage entre l’innéisme radical et des théories fondées sur l’acquisition progressive du langage par exposition à des stimuli environnementaux. C’est ce clivage qui préside aux polémiques entre linguistes et psycholinguistes confrontés aux Large Language Models.

On comprend dès lors que Noam Chomsky et deux collègues issus de la tradition générativiste, Ian Roberts, professeur de linguistique à Cambridge, et Jeffrey Watumull, chercheur en intelligence artificielle, soient intervenus dans le New York Times dès le 8 mars 2023 pour exposer un point de vue extrêmement critique intitulée " La fausse promesse de ChatGPT ". En laissant ici de côté les arguments éthiques utilisés dans leur tribune, on retiendra surtout l’affirmation selon laquelle la production de ChatGPT en langue naturelle ne pourrait pas être qualifiée de " langage " ; ChatGPT, selon eux, ne parle pas, car ChatGPT ne peut pas avoir acquis la faculté de langage. La raison en est simple : si les Grands Modèles de Langage reposent intégralement sur un modèle behaviouriste de l’acquisition, dès lors que ce modèle, selon eux, est réfuté depuis soixante ans, alors ce que font les Grands Modèles de Langage ne peut être qualifié de " langage ".

Chomsky, trop têtu pour qu’on lui parle ?

Le point de vue de Chomsky, Roberts et Watumull a été instantanément tourné en ridicule du fait d’un choix d’exemple particulièrement malheureux : les trois auteurs avançaient en effet que certaines constructions syntaxiques complexes, impliquant (dans le cadre générativiste, du moins) un certain nombre d’opérations sur plusieurs niveaux, ne peuvent être acquises sur la base de l’exposition à des stimuli environnementaux, car la fréquence relativement faible de ces phénomènes échouerait à contrebalancer des analogies formelles superficielles avec d’autres tournures au sens radicalement différent. Dans la tribune au New York Times, l’exemple pris est l’anglais John is too stubborn to talk to, " John est trop entêté pour qu’on lui parle ", mais en anglais on a littéralement " trop têtu pour parler à " ; la préposition isolée (ou " échouée ") en position finale est le signe qu’un constituant a été supprimé et doit être reconstitué aux vues de la structure syntaxique d’ensemble. Ici, " John est trop têtu pour qu’on parle à [John] " : le complément supprimé en anglais l’a été parce qu’il est identique au sujet de la phrase.

Ce type d’opérations impliquant la reconstruction d’un complément d’objet supprimé car identique au sujet du verbe principal revient dans la plupart des articles de polémique de Chomsky contre la psychologie behaviouriste et contre Skinner dans les années 1950 et 1960. On retrouve même l’exemple exact de 2023 dans un texte du début des années 1980. C’est en réalité un exemple-type au service de l’argument selon lequel l’existence d’opérations minimales universelles prévues par les mécanismes cérébraux humains est nécessaire pour l’acquisition complète du langage. Il a presque valeur de shibboleth permettant de séparer les innéistes et les comportementalistes. Il est donc logique que Chomsky, Roberts et Watumull avancent un tel exemple pour énoncer que le modèle probabiliste de l’IA neuronale est voué à échouer à acquérir complètement le langage.

On l’aura deviné : il suffit de demander à ChatGPT de paraphraser cette phrase pour obtenir un résultat suggérant que l’agent conversationnel a parfaitement " compris " le stimulus. DeepL, quand on lui demande de traduire cette phrase en français, donne deux solutions : " John est trop têtu pour qu’on lui parle " en solution préférée et " John est trop têtu pour parler avec lui " en solution de remplacement. Hors contexte, donc sans qu’on sache qui est " lui ", cette seconde solution n’est guère satisfaisante. La première, en revanche, fait totalement l’affaire.

Le détour par DeepL nous montre toutefois la limite de ce petit test qui a pourtant réfuté Chomsky, Roberts et Watumull : comprendre, ici, ne veut rien dire d’autre que " fournir une paraphrase équivalente ", dans la même langue (dans le cas de l’objection qui a immédiatement été faite aux trois auteurs) ou dans une autre (avec DeepL), le problème étant que les deux équivalents fournis par DeepL ne sont justement pas équivalents entre eux, puisque l’un est non-ambigu référentiellement et correct, tandis que l’autre est potentiellement ambigu référentiellement, selon comment on comprend " lui ". Or l’argument de Chomsky, Roberts et Watumull est justement celui de l’opacité du complément d’objet… Les trois auteurs ont bien sûr été pris à défaut ; reste que le test employé, précisément parce qu’il est typiquement behaviouriste (observer extérieurement l’adéquation d’une réaction à un stimulus), laisse ouverte une question de taille et pourtant peu présente dans les discussions entre linguistes : y a-t-il une sémantique des énoncés produits par ChatGPT, et si oui, laquelle ? Chomsky et ses co-auteurs ne disent pas que ChatGPT " comprend " ou " ne comprend pas " le stimulus, mais qu’il en " prédit le sens " (bien ou mal). La question de la référence, présente dans la discussion philosophique sur ChatGPT mais peu mise en avant dans le débat linguistique, n’est pas si loin.

Syntaxe et sémantique de ChatGPT

ChatGPT a une syntaxe et une sémantique : sa syntaxe est homologue aux modèles proposés pour le langage naturel invoquant des patrons formels quantitativement observables. Dans ce champ des " grammaires de construction ", le recours aux données quantitatives est aujourd’hui standard, en particulier en utilisant les ressources fournies par les " grand corpus " de plusieurs dizaines de millions voire milliards de mots (quinze milliards de mots pour le corpus TenTen francophone, cinquante-deux milliards pour son équivalent anglophone). D’un certain point de vue, ChatGPT ne fait que répéter la démarche des modèles constructionalistes les plus radicaux, qui partent de co-occurrences statistiques dans les grands corpus pour isoler des patrons, et il la reproduit en sens inverse, en produisant des données à partir de ces patrons.

Corrélativement, ChatGPT a aussi une sémantique, puisque ces théories de la syntaxe sont majoritairement adossées à des modèles sémantiques dits " des cadres " (frame semantics), dont l’un des inspirateurs n’est autre que Marvin Minsky, pionnier de l’intelligence artificielle s’il en est : la circulation entre linguistique et intelligence artificielle s’inscrit donc sur le temps long et n’est pas unilatérale. Là encore, la question est plutôt celle de la référence : la sémantique en question est très largement notionnelle et ne permet de construire un énoncé susceptible d’être vrai ou faux qu’en l’actualisant par des opérations de repérage (ne serait-ce que temporel) impliquant de saturer grammaticalement ou contextuellement un certain nombre de variables " déictiques ", c’est-à-dire qui ne se chargent de sens que mises en relation à un moi-ici-maintenant dans le discours.

On touche ici à un problème transversal aux clivages dessinés précédemment : les modèles " constructionnalistes " sont plus enclins à ménager des places à la variation contextuelle, mais sous la forme de variables situationnelles dont l’intégration à la description ne fait pas consensus ; les grammaires génératives ont très longtemps évacué ces questions hors de leur sphère d’intérêt, mais les considérations pragmatiques y fleurissent depuis une vingtaine d’années, au prix d’une convocation croissante du moi-ici-maintenant dans l’analyse grammaticale, du moins dans certains courants. De ce fait, l’inscription ou non des enjeux référentiels et déictiques dans la définition même du langage comme faculté humaine représente un clivage en grande partie indépendant de celui qui prévaut en matière de théorie de l’acquisition.

À l’école du perroquet

La bonne question, en tout cas la plus féconde pour la comparaison entre les productions langagières humaines et les productions des grands modèles de langage, n’est sans doute pas de savoir si " ChatGPT parle " ni si les performances de l’IA neuronale valident ou invalident en bloc tel ou tel cadre théorique. Une piste plus intéressante, du point de vue de l’étude de la cognition et du langage humains, consiste à comparer ces productions sur plusieurs niveaux : les mécanismes d’acquisition ; les régularités sémantiques dans leur diversité, sans les réduire aux questions de référence et faisant par exemple intervenir la conceptualisation métaphorique des entités et situations désignées ; la capacité à naviguer entre les registres et les variétés d’une même langue, qui fait partie intégrante de la maîtrise d’un système ; l’adaptation à des ontologies spécifiques ou à des contraintes communicatives circonstancielles… La formule du " perroquet stochastique ", prise au pied de la lettre, indique un modèle de ce que peut être une comparaison scientifique du langage des IA et du langage humain.

Il existe en effet depuis plusieurs décennies maintenant une linguistique, une psycholinguistique et une pragmatique de la communication animale, qui inclut des recherches comparant l’humain et l’animal. Les progrès de l’étude de la communication animale ont permis d’affiner la compréhension de la faculté de langage, des modules qui la composent, de ses prérequis cognitifs et physiologiques. Ces travaux ne nous disent pas si " les animaux parlent ", pas plus qu’ils ne nous disent si la communication des corbeaux est plus proche de celle des humains que celle des perroquets. En revanche ils nous disent comment diverses caractéristiques éthologiques, génétiques et cognitives sont distribuées entre espèces et comment leur agencement produit des modes de communication spécifiques. Ces travaux nous renseignent, en nous offrant un terrain d’expérimentation inédit, sur ce qui fait toujours système et sur ce qui peut être disjoint dans la faculté de langage. Loin des " fausses promesses ", les grands modèles de langage et les IA neuronales nous offrent peut-être l’occasion d’étendre le domaine de la réflexion sur l’architecture des systèmes possibles de cognition, de communication et d’interaction. 



 

Auteur: Modicom Pierre-Yves

Info: https://aoc.media/ 14 nov 2023

[ onomasiologie bayésienne ] [ sémiose homme-animal ] [ machine-homme ] [ tiercités hors-sol ] [ signes fixés externalisables ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

CAPACITÉS COGNITIVES DU DAUPHIN

Au-delà de leur physiologie cérébrale, les dauphins font preuve de capacités extrêmement rares dans le domaine animal. Comme les humains, les dauphins peuvent imiter, aussi bien sur le mode gestuel que sur le mode vocal, ce qui est soi est déjà exceptionnel. Si certains oiseaux peuvent imiter la voix, ils n’imitent pas les attitudes. Les singes, de leur côté, imitent les gestes et non les mots. Le dauphin est capable des deux. Les dauphins chassent les poissons et se nourrissent d’invertébrés, mais ils usent pour ce faire de techniques complexes et variables, acquises durant l’enfance grâce à l’éducation. L’usage des outils ne leur est pas inconnu : un exemple frappant de cette capacité est la façon dont deux dauphins captifs s’y sont pris pour extraire une murène cachée dans le creux d’un rocher à l’intérieur de leur bassin. L’un d’eux a d’abord attrapé un petit poisson scorpion très épineux, qui passait dans le secteur, et l’ayant saisi dans son rostre, s’en est servi comme d’un outil pour extraire la murène de sa cachette. S’exprimant à propos de leur intelligence, le Dr Louis M.Herman, Directeur du Kewalo Basin Marine Mammal Laboratory de l’Université d’Hawaii, note que les dauphins gardent en mémoire des événements totalement arbitraires, sans le moindre rapport avec leur environnement naturel et sans aucune incidence biologique quant à leur existence.

Recherches sur le langage des dauphins

Beaucoup d’humains trouvent intrigante l’idée de communiquer avec d’autres espèces. A cet égard, le dauphin constitue un sujet attractif, particulièrement dans le domaine du langage animal, du fait de ses capacités cognitives et de son haut degré de socialisation. Dès le début des années soixante, c’est le neurologue John Lilly qui, le premier, s’est intéressé aux vocalisations des cétacés. Les recherches de Lilly se poursuivirent durant toute une décennie, tout en devenant de moins en moins conventionnelles. Le savant alla même jusqu’à tester les effets du L.S.D. sur les émissions sonores des dauphins et dut finalement interrompre ses recherches en 1969, lorsque cinq de ses dauphins se suicidèrent en moins de deux semaines. Malheureusement, nombre de découvertes ou de déclarations de John Lilly sont franchement peu crédibles et ont jeté le discrédit sur l’ensemble des recherches dans le domaine du langage animal. De ce fait, ces recherches sont aujourd’hui rigoureusement contrôlées et très méticuleuses, de sorte que les assertions des scientifiques impliquées dans ce secteur restent désormais extrêmement réservées.

Louis Herman est sans doute l’un des plus importants chercheurs à mener des études sur la communication et les capacités cognitives des dauphins. Son instrument de travail privilégié est la création de langues artificielles, c’est-à-dire de langages simples crées pour l’expérience, permettant d’entamer des échanges avec les dauphins. Louis Herman a surtout concentré ses travaux sur le phénomène de la "compréhension" du langage bien plus que sur la "production" de langage, arguant que la compréhension est le premier signe d’une compétence linguistique chez les jeunes enfants et qu’elle peut être testée de façon rigoureuse. En outre, la structure grammaticale qui fonde les langages enseignés s’inspire le plus souvent de celle de l’anglais. Certains chercheurs ont noté qu’il aurait été mieux venu de s’inspirer davantage de langues à tons ou à flexions, comme le chinois, dont la logique aurait parue plus familière aux cétacés. Dans les travaux d’Herman, on a appris à deux dauphins, respectivement nommés Akeakamai (Ake) et Phoenix, deux langues artificielles. Phoenix a reçu l’enseignement d’un langage acoustique produit par un générateur de sons électroniques. Akeakamai, en revanche, a du apprendre un langage gestuel (version simplifiée du langage des sourds-muets), c’est-à-dire visuel. Les signaux de ces langues artificiels représentent des objets, des modificateurs d’objet (proche, loin, gros, petit, etc.) ou encore des actions. Ni les gestes ni les sons ne sont sensés représenter de façon analogique les objets ou les termes relationnels auxquels ils se réfèrent. Ces langages utilisent également une syntaxe, c’est-à-dire des règles de grammaire simples, ce qui signifie que l’ordre des mots influe sur le sens de la phrase. Phoenix a appris une grammaire classique, enchaînant les termes de gauche à droite (sujet-verbe-complément) alors que la grammaire enseignée à Ake allait dans l’autre sens et exigeait de sa part qu’elle voit l’ensemble du message avant d’en comprendre le sens correctement. Par exemple, dans le langage gestuel de Ake, la séquence des signaux PIPE-SURFBOARD-FETCH ("tuyau – planche à surf – apporter") indiquait l’ordre d’amener la planche de surf jusqu’au tuyau, alors que SURFBOARD-PIPE-FETCH ("planche-tuyau- rapporter") signifiait qu’il fallait, au contraire, amener le tuyau jusqu’ à la planche de surf. Phoenix et Ake ont ainsi appris environ 50 mots, lesquels, permutés l’un avec l’autre au sein de séquences courtes, leur permirent bientôt de se servir couramment de plus de mille phrases, chacune produisant une réponse neuve et non apprise.

Compte tenu de l’influence possible de la position dans l’espace des expérimentateurs sur l’expérimentation, les lieux d’apprentissage et les entraîneurs se voyaient changés de session en session. Dans le même temps, des observateurs "aveugles", qui ne connaissaient pas les ordres et ne voyaient pas les entraîneurs, notaient simplement le comportement des dauphins, afin de vérifier ensuite qu’il correspondait bien aux commandes annoncées. Les entraîneurs allaient jusqu’à porter des cagoules noires, afin de ne révéler aucune expression ou intention faciale et se tenaient immobiles, à l’exception des mains. Les dauphins se montrèrent capables de reconnaître les signaux du langage gestuels aussi bien lorsqu’il étaient filmés puis rediffusés sur un écran vidéo que lorsque ces mêmes signes étaient exécutés à l’air libre par l’entraîneur. Même le fait de ne montrer que des mains pâles sur un fond noir ou des taches de lumière blanche reproduisant la dynamique des mains, a largement suffi aux dauphins pour comprendre le message ! Il semble donc que les dauphins répondent davantage aux symboles abstraits du langage qu’à tout autre élément de la communication.

Par ailleurs, si les dauphins exécutent aisément les ordres qu’on leur donne par cette voie gestuelle, ils peuvent également répondre de façon correcte à la question de savoir si un objet précis est présent ou absent, en pressant le levier approprié (le clair pour PRESENT, le sombre pour ABSENT). Ceci démontre évidement leur faculté de "déplacement mental", qui consiste à manipuler l’image d’objets qui ne se trouvent pas dans les environs. Des expériences additionnelles ont conduit à préciser comment le dauphin conçoit l’étiquetage des objets, comment il les qualifie de son point de vue mental. "Nous avons constaté" nous apprend Louis Herman, "qu’au regard du dauphin, le signe CERCEAU n’est pas seulement le cerceau précis utilisé dans le cadre de cette expérience précise, c’est plutôt TOUT OBJET DE GRANDE TAILLE PERCE D’UN GRAND TROU AU MILIEU. Un seul concept général associe donc pour le dauphin les cerceaux ronds, carrés, grands et petits, flottants ou immergés, que l’on utilise généralement lors de la plupart des expériences". Parmi les choses que le Dr Herman estime n’avoir pu enseigner aux dauphins, il y a le concept du "non" en tant que modificateur logique. L’ordre de "sauter au-dessus d’une non-balle" indique en principe que le dauphin doit sauter au-dessus de n’importe quoi, sauf d’une balle ! Mais cela n’est pas compris, pas plus, affirme toujours Herman, que le concept de "grand" ou de "petit".

Communication naturelle chez les dauphins

On sait que les dauphins émettent de nombreux sifflements, de nature très diverse. La fonction de la plupart d’entre eux demeure toujours inconnue mais on peut affirmer aujourd’hui que la moitié d’entre eux au moins constitue des "signatures sifflées". Un tel signal se module dans une fourchette de 5 à 20 kilohertz et dure moins d’une seconde. Il se distingue des autres sifflements - et de la signature de tous les autres dauphins – par ses contours particuliers et ses variations de fréquences émises sur un temps donné, ainsi que le montrent les sonogrammes. Les jeunes développent leur propre signature sifflée entre l’âge de deux mois et d’un an. Ces sifflements resteront inchangés douze ans au moins et le plus souvent pour la durée entière de la vie de l’animal. Par ailleurs, au-delà de leur seule fonction nominative, certains des sifflements du dauphin apparaissent comme de fidèles reproductions de ceux de leurs compagnons et servent manifestement à interpeller les autres par leur nom. Lorsqu’ils sont encore très jeunes, les enfants mâles élaborent leur propre signature sifflée, qui ressemble fort à celle de leur mère. En revanche, les jeunes femelles doivent modifier les leurs, précisément pour se distinguer de leur mère.

Ces différences reflètent sans doute celles qui existent dans les modes de vie des femelles et des mâles. Puisque les filles élèvent leur propre enfant au sein du groupe maternel, un sifflement distinct est donc indispensable pour pouvoir distinguer la maman de la grand mère. La signature sifflée masculine, presque identique à celle de la mère, permet tout au contraire d’éviter l’inceste et la consanguinité. Le psychologue James Ralston et l’informaticien Humphrey Williams ont découvert que la signature sifflée pouvait véhiculer bien plus que la simple identité du dauphin qui l’émet. En comparant les sonogrammes des signatures sifflées durant les activités normales et lors de situations stressantes, ils découvrirent que la signature sifflée, tout en conservant sa configuration générale, pouvait changer en termes de tonalité et de durée et transmettre ainsi des informations sur l’état émotionnel de l’animal. Les modifications causé par cet état émotionnel sur les intonations de la signature varient en outre selon les individus. Les dauphins semblent donc utiliser les sifflement pour maintenir le contact lorsqu’ils se retrouvent entre eux ou lorsqu’ils rencontrent d’autres groupes, mais aussi, sans doute, pour coordonner leur activités collectives. Par exemple, des sifflements sont fréquemment entendus lorsque le groupe entier change de direction ou d’activité.

De son côté, Peter Tyack (Woods Hole Oceanographic Institute) a travaillé aux côtés de David Staelin, professeur d’ingénierie électronique au M.I.T., afin de développer un logiciel d’ordinateur capable de détecter les "matrices sonores" et les signaux répétitifs parmi le concert de couinements, piaulements et autres miaulements émis par les dauphins. Une recherche similaire est menée par l’Université de Singapore (Dolphin Study Group). Avec de tels outils, les chercheurs espèrent en apprendre davantage sur la fonction précise des sifflements.

Dauphins sociaux

Les observations menées sur des individus sauvages aussi bien qu’en captivité révèlent un très haut degré d’ordre social dans la société dauphin. Les femelles consacrent un an à leur grossesse et puis les trois années suivantes à élever leur enfant. Les jeunes s’éloignent en effet progressivement de leur mère dès leur troisième année, restant près d’elle jusqu’à six ou dix ans ! – et rejoignent alors un groupe mixte d’adolescents, au sein duquel ils demeurent plusieurs saisons. Parvenus à l’âge pleinement adulte, vers 15 ans en moyenne, les mâles ne reviennent plus que rarement au sein du "pod" natal. Cependant, à l’intérieur de ces groupes d’adolescents, des liens étroits se nouent entre garçons du même âge, qui peuvent persister la vie entière. Lorsque ces mâles vieillissent, ils ont tendance à s’associer à une bande de femelles afin d’y vivre une paisible retraite. Bien que les dauphins pratiquent bien volontiers la promiscuité sexuelle, les familles matriarcales constituent de fortes unités de base de la société dauphin. Lorsqu’une femelle donne naissance à son premier enfant, elle rejoint généralement le clan de sa propre mère et élève son delphineau en compagnie d’autres bébés, nés à la même saison. La naissance d’un nouveau-né donne d’ailleurs souvent lieu à des visites d’autres membres du groupe, mâles ou femelles, qui s’étaient séparés de leur mère depuis plusieurs années. Les chercheurs ont également observé des comportements de "baby-sitting", de vieilles femelles, des soeurs ou bien encore d’autres membres du groupe, voire même un ancien mâle prenant alors en charge la surveillance des petits. On a ainsi pu observer plusieurs dauphins en train de mettre en place une véritable "cour de récréation", les femelles se plaçant en U et les enfants jouant au milieu ! (D’après un texte du Dr Poorna Pal)

Moi, dauphin.

Mais qu’en est-il finalement de ce moi central au coeur de ce monde circulaire sans relief, sans couleurs constitué de pixels sonores ? C’est là que les difficultés deviennent insurmontables tant qu’un "contact" n’aura pas été vraiment établi par le dialogue car le "soi" lui-même, le "centre de la personne" est sans doute construit de façon profondément différente chez l’homme et chez le dauphin. H.Jerison parle carrément d’une "conscience collective". Les mouvements de groupe parfaitement coordonnés et quasi-simultanés, à l’image des bancs de poissons ou des troupeaux de gnous, que l’on observe régulièrement chez eux, suppose à l’évidence une pensée "homogène" au groupe, brusquement transformé en une "personne plurielle". On peut imaginer ce sentiment lors d’un concert de rock ou d’une manifestation, lorsqu’une foule entière se tend vers un même but mais ces attitudes-là sont grossières, globales, peu nuancées. Toute autre est la mise à l’unisson de deux, trois, cinq (les "gangs" de juvéniles mâles associés pour la vie) ou même de plusieurs centaines de dauphins ensemble (de formidables "lignes de front" pour la pêche, qui s’étendent sur des kilomètres) et là, bien sûr, nous avons un comportement qui traduit un contenu mental totalement inconnu de nous. On sait que lorsqu’un dauphin voit, tout le monde l’entend. En d’autres termes chaque fois qu’un membre du groupe focalise son faisceau de clicks sur une cible quelconque, l’écho lui revient mais également à tous ceux qui l’entourent. Imaginons que de la même manière, vous regardiez un beau paysage. La personne qui vous tournerait le dos et se tiendrait à l’arrière derrière vous pourrait le percevoir alors aussi bien que vous le faites. Cette vision commune, qui peut faire croire à de la télépathie, n’est pas sans conséquence sur le contenu mental de chaque dauphin du groupe, capable de fusionner son esprit à ceux des autres quand la nécessité s’en fait sentir. Ceci explique sans doute la formidable capacité d’empathie des dauphins mais aussi leur fidélité "jusqu’à la mort" quand il s’agit de suivre un compagnon qui s’échoue. Chez eux, on ne se sépare pas plus d’un ami en détresse qu’on ne se coupe le bras quand il est coincé dans une portière de métro ! En d’autres circonstances, bien sûr, le dauphin voyage seul et il "rassemble" alors sa conscience en un soi individualisé, qui porte un nom, fait des choix et s’intègre dans une lignée. Il en serait de même pour l’homme si les mots pouvaient faire surgir directement les images qu’ils désignent dans notre cerveau, sans passer par le filtre d’une symbolisation intermédiaire. Si quelqu’un me raconte sa journée, je dois d’abord déchiffrer ses mots, les traduire en image et ensuite me les "représenter". Notre système visuel étant indépendant de notre système auditif, un processus de transformation préalable est nécessaire à la prise de conscience du message. Au contraire, chez le dauphin, le système auditif est à la fois un moyen de communication et un moyen de cognition "constructiviste" (analyse sensorielle de l’environnement). La symbolisation n’est donc pas nécessaire aux transferts d’images, ce qui n’empêche nullement qu’elle puisse exister au niveau des concepts abstraits. Quant à cette conscience fusion-fission, cet "ego fluctuant à géométrie variable", ils préparent tout naturellement le dauphin à s’ouvrir à d’autres consciences que la sienne. D’où sans doute, son besoin de nous sonder, de nous comprendre et de nous "faire" comprendre. Un dauphin aime partager son cerveau avec d’autres, tandis que l’homme vit le plus souvent enfermé dans son crâne. Ces êtres-là ont décidément beaucoup à nous apprendre...

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ mimétisme ] [ sémiotique ] [ intelligence grégaire ]

 

Commentaires: 0

homme-animal

Le processus d’encéphalisation
Parmi l’ensemble des animaux non-humains, les dauphins sont dotés du quotient encéphalique le plus élevé au monde, soit à peu près celui de l’être humain.
A ce petit jeu, d’ailleurs, le cachalot nous dépasse tous largement !
Une telle augmentation du volume cérébral, bien au-delà des simples besoins de la motricité ou de la sensorialité, est qualifiée "d’encéphalisation structurelle".
Ce phénomène n’est pas rare. Il semble que dès le Jurassique, des dinosauriens bipèdes de taille moyenne aient commencé à augmenter de manière encore timide leurs capacités cérébrales.
Au Tertiaire, les ancêtres des éléphants et des cétacés se sont lancés à leur tour dans la course au gros cerveau mais ce n’est qu’au Quaternaire, il y a de cela de trois à six millions d’années, que certains primates hominoïdes développent une boîte crânienne de type néoténique à fontanelles non suturées durant les premiers temps de l’enfance, afin de permettre une croissance ultérieure de l’un des cerveaux les plus puissants du monde.
Ce processus d’encéphalisation apparaît également chez certains oiseaux – corvidés, psittacidés – à peu près vers la même époque. A chaque fois, bien sûr, des comportements très élaborés sont toujours associés à un accroissement spectaculaire du tissu cérébral.
Une si curieuse convergence de formes, la survenance simultanée ou successive de tous ces "grands fronts", pose bien évidemment question en termes darwiniens.
Le ptérodactyle, la mouche, le colibri, la chauve-souris ont des ailes pour voler, la truite, l’ichtyosaure, le marsouin ont un corps fait pour nager, le grillon fouisseur et la taupe ont des pattes en forme de pelles pour creuser, etc.
Mais à quoi rime dès lors un vaste crâne et à quelle fonction est-il dévolu ?
Essentiellement à comprendre le monde et ceux qui le composent, en ce compris les membres de sa propre espèce, avec lesquels il faut sans cesse gérer une relation équilibrée.
Même les gros cerveaux les plus solitaires vivent en fait en société : tigres, baleines bleues, panthères, orangs-outans gardent des liens étroits, bien que distants ou différés, avec leur fratrie et leurs partenaires.
L’intelligence est à coup sûr l’arme suprême contre les aléas du monde, ses mutations incessantes, puisqu’elle permet notamment de gérer un groupe comme un seul corps mais aussi de pénétrer les lois subtiles qui sont à la base du mouvement des choses.
En augmentant d’un degré supérieur ces facultés par le moyen du langage, lequel conserve le savoir des générations mortes, l’homme et le cétacé ont sans doute franchi un nouveau pas vers une plus grande adaptabilité.
Le problème de l’humain, mais nous n’y reviendrons pas davantage, c’est qu’il ne s’est servi jusqu’à ce jour que d’une partie de son intelligence et qu’il se laisse ensevelir vivants dans ses propres déchets, et avec lui les reste du monde, pour n’avoir pas su contrôler sa propre reproduction ni la saine gestion de son environnement.
Intelligents ou non ? (Le point de vue de Ken Levasseur)
Dans un courrier CFN posté en avril 2003 relatif à l’utilisation de dauphins militaires en Irak, Ken Levasseur, l’un des meilleurs spécialistes actuels de cette question, a tenu à faire le point à propos de l’intelligence réelle ou supposée de ces mammifères marins. Aux questions que lui avait adressées un étudiant sur ce thème, Ken répond ici de manière définitive, sur la base de de son expérience et de ses intimes convictions.
Eu égard aux remarquables recherches menées par Ken depuis des années et au fait qu’il a travaillé longtemps aux côtés du professeur Louis Hermann, son point de vue n’est évidemment pas négligeable ni ses opinions sans fondements. On lira d’ailleurs sur ce site même son article en anglais relatif au cerveau du dauphin
Inutile de dire que le gestionnaire de ce site partage totalement le point de vue de Ken Levasseur, dont les travaux l’inspirent depuis de nombreuses années, au même titre que ceux de Wade Doak ou de Jim Nollman : tous ont en commun d’affirmer que les dauphins ne sont pas des animaux au sens strict mais bien l’équivalent marin de l’humanité terrestre.
Q- A quel niveau d’intelligence réelle les dauphins se situent-ils ? A celui du chien ? Du grand singe ? D’un être humain ?
R- Mon meilleur pronostic est qu’un jour prochain, nous pourrons prouver que la plupart des espèces de cétacés disposent d’une intelligence équivalente ou supérieure à celle d’un humain adulte.
Q- Quelles sont les preuves nous permettant d’affirmer que les dauphins sont intelligents ?
R- Il a été démontré depuis longtemps que les dauphins peuvent développer des capacités cognitives qui équivalent ou excèdent les possibilités mentales de l’être humain. Aujourd’hui, nous sommes à même de définir exactement en quoi consiste l’intelligence humaine. Une fois que nous parviendrons à définir l’intelligence d’une manière strictement objective et valable pour toutes les autres espèces, on permettra enfin aux cétacés de faire la preuve de la leur.
Q- Quelles preuves avons-nous que les dauphins ne sont PAS intelligents ?
R- Il n’y a aucune preuve scientifique qui tendrait à prouver que l’intelligence du dauphin serait située entre celle du chien et celle du chimpanzé (comme l’affirment les delphinariums et la marine américaine) .
Q- Est-ce que les dauphins possèdent un langage propre ?
R- La définition d’une "langue", comme celle de l’intelligence, repose sur des bases subjectives définies pour et par les humains. Une fois que nous pourrons disposer d’une définition plus objective de ce qu’est un langage, et que les recherches sur la communication des dauphins ne seront plus "classifiée" par les américains, il est fort probable que les chercheurs puissent enfin conduire les recherches appropriées et qu’ils reconnaissent que les dauphins disposent de langages naturels.
Q- Est-ce leur capacité à apprendre et à exécuter des tours complexes qui les rend plus intelligents ou non ?
R- La capacité du dauphin à apprendre à exécuter des tours complexes est surtout une indication de l’existence d’un niveau élevé des capacités mentales, interprétées comme synonymes d’une intelligence élevée.
Q- Jusqu’à quel point ont été menées les recherches sur les dauphins et leur intelligence ? Que savent vraiment les scientifiques à leur propos ?
R- La US Navy a "classifié" ses recherches sur les dauphins en 1967, au moment où l’acousticien Wayne Batteau est parvenu à développer des moyens efficaces pour communiquer avec des dauphins dressés. La communication et l’intelligence des dauphins constituent donc désormais des données militaires secrètes, qui ne peuvent plus être divulguées au public.
Q- Est-ce que les dauphins disposent d’un langage propre ? Y a t-il des recherches qui le prouvent ?
R- Vladimir Markov et V. M. Ostrovskaya en ont fourni la preuve en 1990 en utilisant la "théorie des jeux" pour analyser la communication des dauphins dans un environnement contrôlé et à l’aide de moyens efficaces. Il est donc très probable que les dauphins aient une langue naturelle.
Q- Les capacités tout à fait spéciales des dauphins en matière d’écholocation ont-elles quelque chose à voir avec leurs modes de communication?
R- A mon sens, les recherches futures fourniront la preuve que le langage naturel des cétacés est fondé sur les propriétés physiques de l’écholocation, de la même manière que les langues humaines se basent sur des bruits et des représentations.
Q- Quelle est VOTRE opinion à propos de l’intelligence des dauphins ?
R- Pendant deux ans, j’ai vécu à quinze pieds (1 Pied : 30 cm 48) d’un dauphin et à trente-cinq pieds d’un autre. À mon avis, les dauphins possèdent une intelligence équivalente à celle d’un être humain. Ils devraient bénéficier dès lors de droits similaires aux Droits de l’Homme et se trouver protégé des incursions humaines dans son cadre de vie.
Q- La ressemblance entre les humains et les dauphins a-t-elle quelque chose à voir avec leur intelligence commune ?
R- Les dauphins sont très éloignés des humains à de nombreux niveaux mais les ressemblances que nous pouvons noter sont en effet fondées sur le fait que les dauphins possèdent des capacités mentales plus élevées (que la plupart des autres animaux) et sont à ce titre interprétés en tant qu’intelligence de type humain.
Q- La grande taille de leur cerveau, relativement à celle de leur corps, est-elle un indicateur de leur haute intelligence ?
R- Le volume absolu d’un cerveau ne constitue pas une preuve d’intelligence élevée. Le coefficient encéphalique (taille du cerveau par rapport à la taille de corps) n’en est pas une non plus. Néanmoins, on pourrait dire que la taille absolue du cerveau d’une espèce donnée par rapport au volume global du corps constitue un bon indicateur pour comparer les capacités mentales de différentes espèces. Souvenons-nous par ailleurs que les cétacés ne pèsent rien dans l’eau, puisqu’ils flottent et qu’une grande part de leur masse se compose simplement de la graisse. Cette masse de graisse ne devrait pas être incluse dans l’équation entre le poids du cerveau et le poids du corps car cette graisse n’est traversée par aucun nerf ni muscle et n’a donc aucune relation de cause à effet avec le volume du cerveau.
Q- Est-ce que la capacité des dauphins à traiter des clics écholocatoires à une vitesse inouïe nous laisse-t-elle à penser qu’ils sont extrêmement intelligents ?
R- On a pu montrer que les dauphins disposaient, et de loin, des cerveaux les plus rapides du monde. Lorsqu’ils les observent, les humains leur semblent se mouvoir avec une extrême lenteur en émettant des sons extrêmement bas. Un cerveau rapide ne peut forcément disposer que de capacités mentales très avancées.
Q- Pensez-vous des scientifiques comprendront un jour complètement les dauphins?
R- Est-ce que nos scientifiques comprennent bien les humains? Si tout va bien, à l’avenir, les dauphins devraient être compris comme les humains se comprennent entre eux.
Q- Le fait que les dauphins possèdent une signature sifflée est-elle une preuve de l’existence de leur langage ?
R- Non. Cette notion de signature sifflée est actuellement mal comprise et son existence même est sujette à caution.
Q- Les dauphins font plein de choses très intelligentes et nous ressemblent fort. Est-ce parce qu’ils sont vraiment intelligents ou simplement très attractifs ?
R- La réponse à votre question est une question d’expérience et d’opinion. Ce n’est une question qui appelle une réponse scientifique, chacun a son opinion personnelle sur ce point.
Q- Pouvons-nous vraiment émettre des conclusions au sujet de l’intelligence des dauphins, alors que nous savons si peu à leur propos et qu’ils vivent dans un environnement si différent du nôtre ?
R- Jusqu’à présent, ce genre de difficultés n’a jamais arrêté personne. Chacun tire ses propres conclusions. Les scientifiques ne se prononcent que sur la base de ce qu’ils savent vrai en fonction des données expérimentales qu’ils recueillent.
Q- Est-ce que nous pourrons-nous jamais communiquer avec les dauphins ou même converser avec eux ?
R- Oui, si tout va bien, et ce seront des conversations d’adulte à adulte, rien de moins.
II. DAUPHIN : CERVEAU ET MONDE MENTAL
"Parmi l’ensemble des animaux non-humains, les dauphins disposent d’un cerveau de grande taille très bien développé, dont le coefficient encéphalique, le volume du néocortex, les zones dites silencieuses (non motrices et non sensorielles) et d’autres indices d’intelligence sont extrêmement proches de ceux du cerveau humain" déclare d’emblée le chercheur russe Vladimir Markov.
Lorsque l’on compare le cerveau des cétacés avec celui des grands primates et de l’homme en particulier, on constate en effet de nombreux points communs mais également des différences importantes :
– Le poids moyen d’un cerveau de Tursiops est de 1587 grammes.
Son coefficient encéphalique est de l’ordre de 5.0, soit à peu près le double de celui de n’importe quel singe. Chez les cachalots et les orques, ce même coefficient est de cinq fois supérieur à celui de l’homme.
– Les circonvolutions du cortex cervical sont plus nombreuses que celles d’un être humain. L’indice de "pliure" (index of folding) est ainsi de 2.86 pour l’homme et de 4.47 pour un cerveau de dauphin de taille globalement similaire.
Selon Sam Ridgway, chercheur "réductionniste de la vieille école", l’épaisseur de ce même cortex est de 2.9 mm en moyenne chez l’homme et de 1.60 à 1.76 mm chez le dauphin. En conséquence, continue-t-il, on peut conclure que le volume moyen du cortex delphinien (560cc) se situe à peu près à 80 % du volume cortical humain. Ce calcul est évidemment contestable puisqu’il ne tient pas compte de l’organisation très particulière du cerveau delphinien, mieux intégré, plus homogène et moins segmenté en zones historiquement distinctes que le nôtre.
Le fait que les cétacés possèdent la plus large surface corticale et le plus haut indice de circonvolution cérébral au monde joue également, comme on s’en doute, un rôle majeur dans le développement de leurs capacités cérébrales.
D’autres scientifiques, décidément troublés par le coefficient cérébral du dauphin, tentent aujourd’hui de prouver qu’un tel développement n’aurait pas d’autre usage que d’assurer l’écholocation. Voici ce que leur répond le neurologue H. Jerison : "La chauve-souris dispose à peu de choses près des mêmes capacités que le dauphin en matière d’écholocation, mais son cerveau est gros comme une noisette. L’outillage écholocatoire en tant que tel ne pèse en effet pas lourd. En revanche, le TRAITEMENT de cette même information "sonar" par les zones associatives prolongeant les zones auditives, voilà qui pourrait expliquer le formidable développement de cette masse cérébrale. Les poissons et tous les autres êtres vivants qui vivent dans l’océan, cétacés mis à part, se passent très bien d’un gros cerveau pour survivre et même le plus gros d’entre eux, le requin-baleine, ne dépasse pas l’intelligence d’une souris…"
La croissance du cerveau d’un cétacé est plus rapide et la maturité est atteinte plus rapidement que chez l’homme.
Un delphineau de trois ans se comporte, toutes proportions gardées, comme un enfant humain de huit ans. Cette caractéristique apparemment "primitive" est paradoxalement contredite par une enfance extrêmement longue, toute dévolue à l’apprentissage. Trente années chez le cachalot, vingt chez l’homme, douze à quinze chez le dauphin et environ cinq ans chez le chimpanzé.
Les temps de vie sont du même ordre : 200 ans en moyenne chez la baleine franche, 100 ans chez le cachalot, 80 chez l’orque, 78 ans chez l’homme, 60 chez le dauphin, sous réserve bien sûr des variations favorables ou défavorables de l’environnement.
Pourquoi un gros cerveau ?
"Nous devons nous souvenir que le monde mental du dauphin est élaboré par l’un des systèmes de traitement de l’information parmi les plus vastes qui ait jamais existé parmi les mammifères" déclare H.Jerison, insistant sur le fait que "développer un gros cerveau est extrêmement coûteux en énergie et en oxygène. Cet investissement a donc une raison d’être en terme d’évolution darwinienne. Nous devons dès lors considérer la manière dont ces masses importantes de tissu cérébral ont été investies dans le contrôle du comportement et de l’expérimentation du monde, ceci en comparaison avec l’usage qu’en font les petites masses cérébrales".
Un cerveau est par essence un organe chargé de traiter l’information en provenance du monde extérieur.
Les grands cerveaux exécutent cette tâche en tant qu’ensemble élaborés de systèmes de traitement, alors que le cerveau de la grenouille ou de l’insecte, par exemple, se contente de modules moins nombreux, dont la finesse d’analyse est comparativement plus simple.
Cela ne nous empêche pas cependant de retrouver des structures neuronales étonnamment semblables d’un animal à l’autre : lorsqu’un promeneur tombe nez à nez avec un crotale, c’est le même plancher sub-thalamique dévolue à la peur qui s’allume chez l’une et l’autre des ces créatures. Quant un chien ou un humain se voient soulagés de leurs angoisses par le même produit tranquillisant, ce sont évidemment les mêmes neuromédiateurs qui agissent sur les mêmes récepteurs neuronaux qui sont la cause du phénomène.
A un très haut niveau de cette hiérarchie, le traitement en question prend la forme d’une représentation ou d’un modèle du monde (Craik, 1943, 1967, Jerison, 1973) et l’activité neuronale se concentre en "paquets d’informations" (chunks) à propos du temps et de l’espace et à propos d’objets, en ce compris les autres individus et soi-même.
" Puisque le modèle du monde qui est construit de la sorte" insiste H.Jerison, "se trouve fondé sur des variables physiquement définies issues directement du monde externe et puisque ces informations sont traitées par des cellules nerveuses et des réseaux neuronaux structurellement semblables chez tous les mammifères supérieurs, les modèles du monde construits par différents individus d’une même espèce ou même chez des individus d’espèces différentes, ont de bonnes chances d’être également similaires".
Et à tout le moins compréhensibles l’un pour l’autre.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

néo-darwinisme

Pour décoder la manipulation ou le marketing viral : la mémétique

Qu’y a-t-il de commun entre un drapeau de pirates, la chanson Happy birthday to you, un crucifix, des sigles courants (TV, USA, WC...), un jeu de Pokémon, un panneau stop, une histoire belge bien connue et le logo de Nike ? Ce sont des mèmes. C’est à dire des “entités réplicatives d’informations”, autrement dit des codes culturels qui, par imitation ou contagion, transmettent des solutions inventées par une population. Quand vous faites du marketing viral ou du lobbying, quand la télévision manipule votre “temps de cerveau humain disponible” à des fins commerciales ou idéologiques, vous êtes sans le savoir dans le champ de la mémétique comme M. Jourdain était dans celui de la prose.

La vraie vie n’est pas seulement faite de ce qu’on apprend à l’école ou à l’université... Les relations entre spécialités sont au moins aussi utiles que l’approfondissement d’une expertise spécifique... Ce n’est pas parce qu’une discipline n’a pas (encore) de reconnaissance académique qu’elle n’est pas sérieuse... Surtout quand la connaissance évolue plus vite que les mentalités, quand le fossé se creuse entre théorie et pratique, quand l’académisme dépend de normes formelles ou de chasses gardées plus que du progrès de la civilisation... La mémétique en est un bon exemple qui, malgré sa valeur scientifique et son utilité sociale, est méprisée comme ont pu l’être ses ancêtres darwiniens. Dommage, car si elle était mieux connue, nous serions moins faciles à manipuler.

LA MÉMÉTIQUE, C’EST SÉRIEUX !

Le mème est à la culture ce que le gène est à la nature. L’Oxford English Dictionary le définit comme un élément de culture dont on peut considérer qu’il se transmet par des moyens non génétiques, en particulier par l’imitation. Il a pour habitat ou pour vecteur l’homme lui-même ou tout support d’information. Dans les années 1970, des chercheurs de différentes disciplines s’interrogeaient sur la possible existence d’un équivalent culturel de l’ADN*. C’est en 1976, dans Le gène égoïste, que l’éthologiste Richard Dawkins baptisa le mème à partir d’une association entre gène et mimesis (du grec imitation), suggérant aussi les notions de mémoire, de ressemblance (du français même), de plus petite unité d’information. “Bref, un mot génial, bien trouvé, imparable. Un pur réplicateur qui s’ancre davantage dans votre mémoire chaque fois que vous essayez de l’oublier !” (Pascal Jouxtel).

La mémétique applique à la culture humaine des concepts issus de la théorie de l’évolution et envisage une analogie entre patrimoines culturels et génétique : il y a variation (mutation), sélection et transmission de codes culturels qui sont en concurrence pour se reproduire dans la société. Cette réplication a un caractère intra- et inter-humain. Elle dépend de la capacité du mème à se faire accepter : vous l’accueillez, l’hébergez, le rediffusez parce que vous en tirez une gratification aux yeux d’autrui, par exemple en termes d’image (vous avez le 4x4 vu à la télé), de rareté (il a une carte Pikatchu introuvable) ou autre avantage relationnel (petits objets transactionnels attractifs). Elle est stimulée par les technologies de l’information, qui renforcent le maillage des flux échangés et les accélèrent : la réplication est plus forte par les mass media (cf. les codes véhiculés par les émissions de téléréalité) et sur les réseaux (SMS ou Internet) que dans une société moins médiatisée où les flux sont moins foisonnants. 

On ne démontrera pas en quelques lignes la valeur ou l’intérêt de cette science, mais un ouvrage le fait avec talent : Comment les systèmes pondent, de P. Jouxtel (Le Pommier, Paris, 2005). On se bornera ici à extraire de ce livre un complément de définition : “la mémétique revendique une forme d’autonomie du pensé par rapport au penseur, d’antériorité causale des flux devant les structures, et se pose entre autres comme une science de l’auto-émergence du savoir par compétition entre les niveaux plus élémentaires de la pensée... Transdisciplinaire par nature, la mémétique est une branche extrême de l’anthropologie sociale croisée avec des résultats de l’intelligence artificielle, des sciences cognitives et des sciences de la complexité. Elle s’inscrit formellement dans le cadre darwinien tout en se démarquant des précédentes incursions de la génétique dans les sciences humaines classiques, comme la sociobiologie ou la psychologie évolutionniste, et s’oppose radicalement à toute forme vulgaire de darwinisme social”.

RESTER DANS LE JEU, JOUER À CÔTÉ OU AGIR SUR LE JEU ?

Jouxtel veut aussi promouvoir en milieu francophone une théorie qui y est un peu suspecte, coupable d’attaches anglo-saxonnes, masi qui pourtant trouve ses racines dans notre héritage culturel : autonomie du pensé, morphogenèse (apparition spontanée de formes élémentaires), évolution darwinienne dans la sphère immatérielle des concepts (Monod)... Le rejet observé en France tient aussi au divorce qu’on y entretient entre sciences sociales et sciences naturelles ou à la méfiance vis-à-vis de certains aspects de l’algorithme évolutionnaire (mutation, sélection, reproduction), en particulier “on fait une confusion terrible en croyant que la sélection s’applique aux gens alors qu’elle ne s’applique qu’aux règles du jeu”. De fait, cette forme d’intégration de la pensée s’épanouit mieux dans des cultures favorisant l’ouverture et les échanges que dans celles qui s’attachent à délimiter des territoires cloisonnés. Mais conforter notre fermeture serait renoncer à exploiter de précieuses ressources. Renoncer aussi à apporter une contribution de la pensée en langue française dans un champ aussi stratégique. Donc également renoncer à y exercer une influence.

Outre les enjeux de l’acceptation et des développements francophones de cette science, quels sont ceux de son utilisation ? De façon générale, ce sont des enjeux liés au libre-arbitre et à l’autonomie de la personne quand il s’agit de mettre en évidence les codages sous-jacents de comportements sociaux ou de pratiques culturelles. L’image du miroir éclaire cette notion : on peut rester dans la pièce en croyant que c’est là que se joue le jeu, ou passer derrière le miroir et découvrir d’autres dimensions - c’est ce que la mémétique nous aide à faire. De même dans le diaporama Zoom arrière (www.algoric.com/y/zoom.htm) où, après des images suggérant une perception de premier degré (scène du quotidien dans une cour de ferme), on découvre que la situation peut comporter d’autres dimensions... Plus précisément, pour illustrer l’utilité opérationnelle de la mémétique, on pourra regarder du côté des thèmes qui alimentent régulièrement cette chronique - innovation, marketing, communication stratégique, gouvernance... - autour de trois cas de figure : on peut jouer dans le jeu (idéal théorique souvent trahi par les joueurs), jouer à côté du jeu (égarés, tricheurs) ou agir sur le jeu (en changeant de niveau d’appréhension).

D’AUTRES DEGRÉS SUR LA PYRAMIDE DE MASLOW ?

Une analogie avec la pyramide de Maslow montre comment une situation peut être abordée à différents niveaux. Nos motivations varient sur une échelle de 1 (survie) à 5 (accomplissement) selon le contexte et selon notre degré de maturité. Ainsi, un marketing associé à l’argument mode ou paraître - voiture, téléphone, etc. - sera plus efficace auprès des populations visant les niveaux intermédiaires, appartenance et reconnaissance, que chez celles qui ont atteint le niveau 5. De même pour ce qui nous concerne ici : selon ses caractéristiques et son environnement, une personne ou un groupe prend plus ou moins de hauteur dans l’analyse d’une situation - or, moins on s’élève sur cette échelle, plus on est manipulable, surtout dans une société complexe et différenciée. Prenons par exemple la pétition de Philip Morris pour une loi anti-tabac. Quand j’invite un groupe à décoder cette initiative surprenante, j’obtiens des analyses plus ou moins distanciées, progressant de la naïveté (on y voit une initiative altruiste d’un empoisonneur repenti) à une approche de second degré (c’est un moyen d’empêcher les recours judiciaires de victimes du tabac) ou à une analyse affinée (lobbying de contre-feu pour faire obstacle à une menace plus grave). Plus on s’élève sur cette échelle, plus on voit de variables et plus on a de chances d’avoir prise sur le phénomène analysé. Une approche mémétique poursuivra la progression, par exemple en trouvant là des mèmes pondus par le “système pro-tabac” pour assurer sa descendance, à l’instar de ceux qu’il a pondus au cinéma pendant des années en faisant fumer les héros dans les films.

Il est facile de traiter au premier degré les attentats du 11 septembre 2001, par exemple en y voyant une victoire des forces de libération contre un symbole du libéralisme sauvage ou une attaque des forces du mal contre le rempart de la liberté - ce qui pour les mèmes revient au même car ce faisant, y compris avec des analyses un peu moins primaires, on alimente une diversion favorisant l’essor de macro-systèmes : “terrorisme international”, “capitalisme financier” ou autres. Ceux-ci dépassent les acteurs (Bush, Ben Laden...), institutions (Etat américain, Al-Qaida...) ou systèmes (démocratie, islamisme...), qui ne sont que des vecteurs de diffusion de mèmes dans un affrontement entre macro-systèmes.

QUAND CE DONT ON PARLE N’EST PAS CE DONT IL S’AGIT...

Autre cas intéressant de réplicateurs : les traditionnelles chaînes de l’amitié, consistant à manipuler un individu en exploitant sa naïveté, avec un emballage rudimentaire mais très efficace auprès de celui qui manque d’esprit critique : si tu brises la chaîne les foudres du ciel s’abattront sur toi, si tu la démultiplies tu connaîtras le bonheur, ou au moins la prospérité. On n’y croit pas, mais on ne sait jamais... Internet leur a donné une nouvelle vie - nous avons tous des amis pourtant très fréquentables qui tombent dans le piège et essaient de nous y entraîner ! - et a affiné la perversité de la manipulation avec les hoax et autres virus. Le marketing viral utilise ces ressorts. La réplication peut se faire de façon plus subtile, voire insidieuse, par exemple avec des formes de knowledge management (KM) “de premier degré” - en bref : la mondialisation induit un impératif d’innovation ; on veut dépasser les réactions quantitatives et malthusiennes qui s’attaquent aux coûts car elles jettent le bébé avec l’eau du bain en détruisant aussi les gisements de valeur ; on va donc privilégier la rapidité d’adaptation à un environnement changeant, donc innover en permanence, donc mobiliser le savoir et la créativité, donc fonctionner en réseau. Si l’on continue à gravir des échelons, on s’aperçoit que cette approche réactive reste “dans le jeu” alors qu’on a besoin de prendre du recul par rapport au jeu lui-même pour le remettre en question, voire le réinventer. La mémétique éclaire la complexité de cet exercice difficile où il faut pouvoir changer de logique, de paradigme, pour aborder un problème au niveau des processus du jeu et non plus au niveau de ses contenus. Comme dans la communication stratégique.

Déjà dans le lobbying classique, on savait depuis longtemps que le juriste applique la loi, le lobbyiste la change : le premier reste dans le jeu, quitte à tout faire pour contourner le texte ou en changer l’interprétation, alors que le second, constatant que la situation a évolué, s’emploie à faire changer les règles, voire le jeu lui-même. De même dans les appels d’offres, où certains suivent le cahier des charges quand d’autres contribuent à le définir en agissant en amont. De même dans le lobby-marketing, par exemple quand on s’attache à changer la nature de la relation plus que son contenu ou sa forme, pour passer de solliciteur à sollicité : faire que mon interlocuteur me prie de bien vouloir lui vendre ce que précisément je veux lui vendre... comme est aussi supposé le faire tout bon enseignant qui, ne se bornant pas à transférer des savoirs, veut donner envie d’apprendre ! Déjà difficile pour un lobbyiste néophyte, ce changement de perspective n’est pas naturel dans un “monde de l’innovation” où l’on privilégie un “rationnel plutôt cerveau gauche” qui ne prédispose pas à décoder le jeu pour pouvoir le mettre en question et le réinventer. 

L’interpellation mémétique peut conduire très loin, notamment quand elle montre comment l’essor des réseaux favorise des réplications de mèmes qui ne nous sont pas nécessairement favorables. Elle peut ainsi contredire des impulsions “évidentes” en KM, à commencer par celle qui fait admettre que pour innover et “s’adapter” il faut fonctionner en réseau et en réseaux de réseaux. Avec un peu de recul mémétique, on pourra considérer qu’il s’agit moins de s’adapter au système que d’adapter le système, donc pas nécessairement de suivre la course aux réseaux subis mais d’organiser l’adéquation avec des réseaux choisis, voire maîtrisés...

Aux origines de la mémétique

La possibilité que la sphère des humanités s’ouvre au modèle darwinien n’est pas nouvelle. Sans remonter à Démocrite, on la trouve chez le biochimiste Jacques Monod, dans Le hasard et la nécessité. La notion de monde des idées (noosphère) a été introduite par l’anthropologue Pierre Teilhard de Chardin. Alan Turing et Johannes Von Neumann, pères de l’informatique moderne, ont envisagé que les lois de la vie s’appliquent aussi à des machines ou créatures purement faites d’information. L’épistémologie évolutionnaire de Friedrich Von Hayek en est une autre illustration. D’autres parentés sont schématisées dans la carte ci-dessous.

De façon empirique, au quotidien, on peut observer la séparation du fait humain d’avec la nature, ainsi que son accélération : agriculture, urbanisation et autres activités sont visibles de l’espace, émissions de radio et autres expressions y sont audibles ; nos traces sont partout, livres, codes de lois, arts, technologies, religions… Est-ce l’homme qui a propulsé la culture ou celle-ci qui l’a tiré hors de son origine animale ?

En fait, grâce à ses outils, l’homme a favorisé une évolution combinée, un partenariat, un entraînement mutuel entre le biologique et le culturel. André Leroi-Gourhan raconte la co-évolution de l’outil, du langage et de la morphologie. Claude Lévi-Strauss parle de l’autonomie de l’organisation culturelle, par-delà les différences ethniques. Emile Durkheim revendique l’irréductibilité du fait social à la biologie. Parallèlement, l’observation des sociétés animales démontre que la nature produit des phénomènes collectifs, abstraits, allant bien au-delà des corps. Selon certaines extensions radicales de la sociobiologie à l’homme, toutes nos capacités seraient codées génétiquement, donc toute pratique culturelle - architecture, droit, économie ou art - ne serait qu’un phénotype étendu de l’homme. La réduction des comportements à leurs avantages évolutionnaires biologiques s’est atténuée. Le cerveau est modulaire, le schéma général de ses modules est inscrit dans les gènes, mais on a eu du mal à admettre que leur construction puisse se faire sur la base de flux cognitifs, d’apports d’expériences. 

Il y a des façons d’agir ou de penser qui au fil du temps ont contribué à la survie de ceux qui étaient naturellement aptes à les pratiquer : la peur du noir, la capacité de déguiser ses motivations, le désir de paraître riche ; ou plus subtilement la tendance à croire à une continuation de la vie après la mort, à une providence qui aide, à une vie dans l’invisible ; ou même le réflexe intellectuel consistant à supposer un but à toute chose. Mais il existe des idées, des modes de vie, des techniques, bref des éléments de culture indépendants de l’ADN, qui se transmettent par des moyens non génétiques, en particulier par l’imitation : c’est la thèse de Susan Blackmore, pour qui, entre ces mèmes en compétition, la sélection se fait en fonction de leur “intérêt propre” et non de celui des gènes.

L’argument de Pascal Jouxtel s’inspire d’une formule de Luca Cavalli-Sforza : l’évolution naturelle de l’homme est terminée car tous les facteurs naturels de sélection sont sous contrôle culturel. Tout ce qui pourrait influencer la fécondité ou la mortalité infantile est maîtrisé ou dépend de facteurs géopolitiques, économiques ou religieux. En revanche, la culture continue à évoluer : lois, art, technologies, réseaux de communication, structures de pouvoir, systèmes de valeurs. Le grand changement, c’est que les mèmes évoluent pour leur propre compte, en exploitant le terrain constitué par les réseaux de cerveaux humains, mais indépendamment, et parfois au mépris des besoins de leurs hôtes biologiques. 

“Ce sont des solutions mémétiquement évoluées qui sont aujourd’hui capables de breveter un génome. Il en va de même des religions et des systèmes politiques qui tuent. La plus majestueuse de toutes ces solutions s’appelle Internet, le cerveau global... Tout ce qui relie les humains est bon pour les mèmes. Il est logique, dans la même optique, de coder de façon de plus en plus digitalisée tous les modèles qui doivent être transmis, stockés et copiés. C’est ainsi que le monde se transforme de plus en plus en un vaste Leroy-Merlin culturel, au sein duquel il devient chaque jour plus facile de reproduire du prêt-à-penser, du prêt-à-vivre, du prêt-à-être. A mesure que l’on se familiarise avec l’hypothèse méméticienne, il devient évident qu’elle invite à un combat, à une résistance et à un dépassement. Elle nous montre que des modèles peuvent se reproduire dans le tissu social jusqu’à devenir dominants sans avoir une quelconque valeur de vérité ou d’humanité. Elle nous pose des questions comme : que valent nos certitudes ? De quel droit pouvons-nous imposer nos convictions et notre façon de vivre ?... Comment puis-je dire que je pense ?” (P. Jouxtel, www.memetique.org). Et bien sûr : comment les systèmes pondent-ils ?

Auteur: Quentin Jean-Pierre

Info: Critique du livre de Pascal Jouxtel "comment les systèmes..."

[ sociolinguistique ] [ PNL ]

 

Commentaires: 0

Ajouté à la BD par miguel

protérozoïque

Des molécules fossilisées révèlent un monde perdu de vie ancienne

Une nouvelle analyse de sédiments vieux d’un milliard d’années comble une lacune dans les archives fossiles, révélant une dynastie de premiers eucaryotes qui pourraient avoir façonné l’histoire de la vie sur Terre.

Un arbre a quelque chose en commun avec les mauvaises herbes et les champignons qui poussent autour de ses racines, les écureuils qui grimpent sur son tronc, les oiseaux perchés sur ses branches et le photographe qui prend des photos de la scène. Ils ont tous un génome et une machinerie cellulaire soigneusement emballés dans des compartiments reliés par des membranes, un système organisationnel qui les place dans un groupe de formes de vie extrêmement performantes appelés eucaryotes.

Les débuts de l’histoire des eucaryotes fascinent depuis longtemps les scientifiques qui aspirent à comprendre quand la vie moderne a commencé et comment elle a évolué. Mais retracer les premiers eucaryotes à travers l’histoire de la Terre a été difficile. Des données fossiles limitées montrent que leur premier ancêtre est apparu il y a au moins 1,6 milliard d’années. Pourtant, d’autres preuves révélatrices de leur existence manquent. Les eucaryotes devraient produire et laisser derrière eux certaines molécules distinctives, mais les versions fossilisées de ces molécules n'apparaissent dans les archives rocheuses qu'il y a 800 millions d'années. Cet écart inexpliqué de 800 millions d'années dans l'histoire des premiers eucaryotes, période cruciale au cours de laquelle le dernier ancêtre commun de toute la vie complexe d'aujourd'hui est apparu, a enveloppé de mystère l'histoire des débuts de la vie.

"Il existe un énorme écart temporel entre les archives fossiles de ce que nous pensons être les premiers eucaryotes et les premiers biomarqueurs des eucaryotes", a déclaré Galen Halverson , professeur à l'Université McGill de Montréal.

Il existe de nombreuses explications possibles à cet écart paradoxal. Peut-être que les eucaryotes étaient trop rares à cette époque pour laisser derrière eux des preuves de fossiles moléculaires. Ou peut-être étaient-ils abondants, mais leurs fossiles moléculaires n’ont pas survécu aux dures conditions géologiques.

Une étude récente publiée dans Nature propose une explication alternative : les scientifiques ont peut-être recherché les mauvaises molécules fossilisées pendant tout ce temps. Lorsque les auteurs de l’étude ont recherché des versions plus primitives des produits chimiques recherchés par d’autres, ils les ont découverts en abondance – révélant ce qu’ils ont décrit comme " un monde perdu " d’eucaryotes qui vivaient il y a 800 millions à au moins 1,6 milliard d’années.

"Ces molécules ont toujours été là", a déclaré Jochen Brocks , géochimiste à l'Université nationale australienne de Canberra, qui a codirigé l'étude avec Benjamin Nettersheim, alors étudiant diplômé . "Nous ne pouvions pas les trouver parce que nous ne savions pas à quoi elles ressemblaient."

Les résultats apportent une nouvelle clarté à la dynamique de la vie eucaryote précoce. L'abondance de ces fossiles moléculaires suggère que les organismes primitifs ont prospéré dans les océans pendant des centaines de millions d'années avant que les ancêtres des eucaryotes modernes ne prennent le relais, semant des formes de vie qui évolueraient un jour vers les animaux, les plantes, les champignons et les protistes que nous voyons. aujourd'hui.

"C'est une hypothèse élégante qui semble réconcilier ces enregistrements très disparates", a déclaré Halverson, qui n'a pas participé à l'étude. " Cela donne un sens à tout."

Ces découvertes ont été une bonne nouvelle pour des paléontologues comme Phoebe Cohen , présidente de géosciences au Williams College dans le Massachusetts, qui a longtemps pensé qu'il manquait quelque chose dans le dossier des biomarqueurs. "Il existe une histoire riche et dynamique de la vie avant l'évolution des animaux, qui est plus difficile à comprendre car nous ne pouvons pas la voir", a déclaré Cohen. "Mais c'est extrêmement important car cela prépare le terrain pour le monde que nous avons aujourd'hui."

Le casse-tête des protostéroïdes

Lorsque les archives fossiles sont décevantes, les scientifiques disposent d’autres moyens pour estimer le moment où différentes espèces se sont dérivées les unes des autres dans l’arbre évolutif. Parmi ces outils figurent principalement les horloges moléculaires : des fragments d’ADN qui mutent à un rythme constant, permettant aux scientifiques d’estimer le passage du temps. Selon les horloges moléculaires, le dernier ancêtre commun des eucaryotes modernes, qui appartenait à un ensemble diversifié d’organismes appelé groupe couronne, est apparu pour la première fois il y a au moins 1,2 milliard d’années.

Mais l’histoire des eucaryotes ne commence pas là. D’autres eucaryotes primitifs, connus sous le nom de groupe souche, ont vécu des centaines de millions d’années avant l’évolution de notre premier ancêtre commun. Les chercheurs en savent peu sur eux, au-delà du fait qu’ils ont existé. La petite poignée d’anciens fossiles d’eucaryotes découverts sont trop ambigus pour être identifiés comme une tige ou une couronne.

En l’absence de fossiles corporels convaincants, les chercheurs recherchent des fossiles moléculaires. Les fossiles moléculaires, qui se conservent séparément des fossiles corporels, peuvent être difficiles à cerner pour les scientifiques. Ils doivent d’abord identifier quelles molécules auraient pu être produites uniquement par les organismes qu’ils souhaitent étudier. Ensuite, ils doivent composer avec le fait que toutes ces molécules ne se fossilisent pas bien.

La matière organique se désintègre à des rythmes différents et certaines parties des eucaryotes se conservent mieux que d’autres dans la roche. Les tissus se dissolvent en premier. L’ADN peut rester plus longtemps, mais pas trop longtemps : l’ADN le plus ancien jamais découvert a environ 2 millions d’années. Les molécules de graisse, cependant, peuvent potentiellement survivre pendant des milliards d’années.

Les eucaryotes créent de grandes quantités de molécules de graisse appelées stérols, un type de stéroïde qui constitue un composant essentiel des membranes cellulaires. Étant donné que la présence d’une membrane cellulaire est révélatrice des eucaryotes et que les molécules de graisse ont tendance à persister dans la roche, les stérols sont devenus le fossile moléculaire de référence pour ce groupe.

Les eucaryotes modernes fonctionnent avec trois grandes familles de stérols : le cholestérol chez les animaux, les phytostérols chez les plantes et l'ergostérol chez les champignons et certains protistes. Leur synthèse commence par une molécule linéaire, que la cellule façonne en quatre anneaux afin que la forme résultante s'intègre parfaitement dans une membrane, a déclaré Brocks. Ce processus comporte de nombreuses étapes : il faut huit étapes enzymatiques supplémentaires aux cellules animales pour fabriquer du cholestérol, tandis que les cellules végétales nécessitent 11 étapes enzymatiques supplémentaires pour fabriquer un phytostérol.

En route pour fabriquer son stérol avancé, une cellule crée une série de molécules plus simples à chaque étape du processus. Lorsqu’ils sont branchés sur une membrane artificielle, même ces stérols intermédiaires offrent la perméabilité et la rigidité dont une cellule a besoin pour fonctionner comme elle le devrait. Le biochimiste Konrad Bloch, qui a reçu le prix Nobel en 1964 en partie pour avoir découvert les étapes cellulaires de fabrication du cholestérol , "en a été perplexe", a déclaré Brocks. Pourquoi une cellule déploierait-elle des efforts supplémentaires pour fabriquer un stérol plus complexe alors qu’une molécule plus simple ferait le travail ?

En 1994, Bloch a écrit un livre dans lequel il prédisait que chacun de ces stérols intermédiaires avait été autrefois le produit final utilisé dans la membrane d'une cellule eucaryote ancestrale. Chaque étape supplémentaire a peut-être nécessité plus d'énergie de la cellule, mais la molécule résultante constituait une légère amélioration par rapport à la précédente – une amélioration suffisante pour surpasser le précurseur et s'imposer dans l'histoire de l'évolution.

Si cela était vrai, cela expliquerait pourquoi personne n’avait pu trouver de fossiles moléculaires de stérols avant l’expansion rapide des eucaryotes modernes, il y a environ 800 millions d’années. Les chercheurs recherchaient des cholestérols et d’autres structures modernes dans les archives rocheuses. Ils ne se rendaient pas compte que les anciennes voies biochimiques étaient plus courtes et que les organismes des groupes souches ne produisaient pas de stérols modernes : ils  faisaient des protostérols.

Mouture de café moléculaire

En 2005, environ cinq ans après la mort de Bloch, Brocks et ses collègues ont rapporté dans Nature les premiers indices de l'existence de telles molécules intermédiaires. Dans d'anciens sédiments, ils avaient trouvé des stéroïdes de structure inhabituelle qu'ils ne reconnaissaient pas. Mais à l’époque, Brocks ne pensait pas qu’un eucaryote aurait pu les créer. " À l’époque, j’étais assez convaincu qu’ils étaient bactériens ", a-t-il déclaré. "Personne ne pensait du tout à la possibilité d'avoir des eucaryotes du groupe souche."

Il a continué à échantillonner des roches anciennes et à rechercher ces curieuses molécules. Environ une décennie après le début de leurs travaux, Nettersheim et lui ont réalisé que de nombreuses structures moléculaires dans les échantillons de roche semblaient " primitives " et ne ressemblaient pas à celles que fabriquent généralement les bactéries, a déclaré Brocks. Serait-ce les stérols intermédiaires de Bloch ?

(Photo : De rares fossiles microscopiques de la vie ancienne fournissent des horodatages sur l’évolution des eucaryotes.  Satka favosa  (à gauche) et  Valeria lophostriata  datent d'il y a 1,6 milliard d'années. On ne sait pas si les organismes, probablement des protistes, appartiennent au groupe tige ou couronne. )

Il leur fallait davantage de preuves. Au cours de la décennie qui a suivi, Brocks et Nettersheim ont contacté des sociétés pétrolières et minières pour demander des échantillons de tout sédiment ancien qu'elles avaient accidentellement découvert lors d'expéditions de forage.

"La plupart des gens auraient trouvé deux exemples et publiés", a déclaré Andrew Knoll , professeur d'histoire naturelle à l'Université Harvard qui n'a pas participé à l'étude. (Il était le conseiller postdoctoral de Brocks il y a des années.) " Jochen a passé la majeure partie de la décennie à étudier les roches du Protérozoïque du monde entier. "

Pendant ce temps, les chercheurs ont créé un modèle de recherche pour identifier les molécules présentes dans les sédiments. Ils ont converti les molécules intermédiaires modernes fabriquées lors de la synthèse des stérols en équivalents géologiques plausibles des stéroïdes. (Le cholestérol, par exemple, se fossilise sous forme de cholestane.) " Si vous ne savez pas à quoi ressemble la molécule, vous ne la verrez pas 2, a déclaré Brocks.

En laboratoire, ils ont extrait des molécules fossiles des échantillons de sédiments en utilisant un processus qui " ressemble un peu à la préparation du café ", a déclaré Nettersheim. Après avoir broyé les roches, ils ont ajouté des solvants organiques pour en extraire les molécules – tout comme l’eau chaude est utilisée pour extraire le café des grains torréfiés et moulus.

(Photo :Benjamin Nettersheim, géochimiste à l'Université de Brême, examine les cartes moléculaires d'anciens sédiments rocheux à la recherche de biomarqueurs de la vie ancienne.)

Pour analyser leurs échantillons et les comparer à leurs références, ils ont utilisé la spectrométrie de masse, qui détermine le poids des molécules, et la chromatographie, qui révèle leur composition atomique.

Le processus est ardu. "Vous analysez des centaines de roches et ne trouvez rien", a déclaré Brocks. Lorsque l’on trouve quelque chose, il s’agit souvent d’une contamination récente. Mais plus ils analysaient d’échantillons, plus ils trouvaient de fossiles.

Certains échantillons étaient remplis à ras bord de protostéroïdes. Ils ont découvert ces molécules dans des roches datant d'il y a 800 millions à 1,6 milliard d'années. Il semblait que non seulement les eucaryotes anciens étaient présents depuis environ 800 millions d’années avant le décollage des eucaryotes modernes, mais qu’ils étaient également abondants.

Les chercheurs ont même pu reconnaître le processus évolutif des eucaryotes à mesure que leurs stéroïdes devenaient plus complexes. Par exemple, dans des roches vieilles de 1,3 milliard d’années, ils ont découvert une molécule intermédiaire plus avancée que les protostéroïdes vieux de 1,6 milliard d’années, mais pas aussi avancée que les stéroïdes modernes.

"C'était une façon très intelligente de traiter les archives manquantes de fossiles moléculaires", a déclaré David Gold , géobiologiste à l'Université de Californie à Davis, qui n'a pas participé à l'étude. Leur découverte a immédiatement comblé une lacune de 800 millions d’années dans l’histoire de la naissance de la vie moderne.

Un monde perdu

Les découvertes moléculaires, combinées aux données génétiques et fossiles, révèlent l'image la plus claire à ce jour de la dynamique eucaryote précoce d'il y a environ 1 milliard d'années, au cours de la mystérieuse ère médiane du Protérozoïque, ont déclaré les experts. D'après les preuves de Brocks et Nettersheim, les eucaryotes des groupes tige et couronne (stem and crown)  ont probablement vécu ensemble pendant des centaines de millions d'années et se sont probablement fait concurrence pendant une période que les géologues appellent le milliard ennuyeux en raison de sa lente évolution biologique.

L'absence de stéroïdes plus modernes à cette époque suggère que le groupe couronne n'a pas immédiatement pris le dessus. Au contraire, les organismes liés à la membrane ont commencé petit à mesure qu'ils trouvaient des niches dans l'ancien écosystème, a déclaré Gold. " Il faut beaucoup de temps pour que les [eucaryotes] deviennent écologiquement dominants ", a-t-il déclaré.

(Photo : Ces anciens microfossiles partagent un ancêtre avec tous les eucaryotes vivant aujourd’hui. Vieille d’un milliard d’années, l’algue benthique  Proterocladus antiquus  (au centre) est le plus ancien fossile de couronne connu. Il y a 750 millions d'années, les eucaryotes du groupe couronne tels que l'amibozoaire Bonniea dacruchares  (à gauche) et le rhizarien  Melicerion poikilon  (à droite) étaient courants.)

De gauche à droite : Susannah Porter ; Avec l'aimable autorisation de Virginia Tech ; Susannah Porter

Au début, le groupe souche avait peut-être un avantage. Les niveaux d’oxygène dans l’atmosphère étaient nettement inférieurs à ce qu’ils sont aujourd’hui. Étant donné que la construction de protostérols nécessite moins d’oxygène et d’énergie que les stérols modernes, les eucaryotes du groupe souche étaient probablement plus efficaces et plus abondants.

Leur influence déclina lorsque le monde traversa une transition critique connue sous le nom de période tonienne. Il y a entre 1 milliard et 720 millions d’années, l’oxygène, les nutriments et autres matières premières cellulaires ont augmenté dans les océans. Des fossiles d'eucaryotes modernes, comme des algues et des champignons, commencent à apparaître dans les archives rocheuses, et les stéroïdes modernes commencent à dépasser en nombre les protostéroïdes dans les biomarqueurs fossilisés – des preuves qui suggèrent que les eucaryotes du groupe couronne avaient commencé à prospérer, à augmenter en nombre et à se diversifier.

Pourquoi les stérols deviendraient-ils plus compliqués avec le temps ? Les auteurs suggèrent que les stérols les plus complexes confèrent à leurs propriétaires un certain avantage évolutif, peut-être lié à la dynamique des membranes cellulaires des créatures. Quelle que soit la raison, le changement de stérol était significatif sur le plan évolutif. La composition des stérols modernes a probablement donné aux eucaryotes du groupe couronne un avantage par rapport au groupe souche. Finalement, " ce monde perdu d’anciens eucaryotes a été remplacé par les eucaryotes modernes ", a déclaré Brocks.

Une ride bactérienne

L’histoire évolutive des chercheurs sur les stérols est convaincante, mais elle n’est pas solide comme le roc.

"Je ne serais pas surpris" si leur interprétation est correcte, a déclaré Gold. Cependant, il existe une autre possibilité. Bien que les scientifiques aient tendance à associer les stérols aux eucaryotes, certaines bactéries peuvent également les fabriquer. Les fossiles moléculaires de l’étude auraient-ils pu être laissés par des bactéries ?Gordon Love , géochimiste à l'Université de Californie à Riverside, pense que le scénario bactérien est plus logique. "Ces protostéroïdes se retrouvent dans les roches de tous âges", a-t-il déclaré. "Ils ne disparaissent pas tout simplement, ce qui signifie que quelque chose d'autre que les eucaryotes souches est capable de les fabriquer." Il a fait valoir que les bactéries, qui dominaient la mer à cette époque, auraient pu facilement produire des protostéroïdes.

Les auteurs ne peuvent pas exclure cette possibilité. En fait, ils soupçonnent que certaines de leurs molécules fossiles ont été fabriquées par des bactéries. Mais la possibilité que leur vaste collection de protostéroïdes fossilisés, s'étendant sur des centaines de millions d'années, ait été entièrement constituée de bactéries semble peu probable, a déclaré Brocks.


" Si vous regardez l'écologie de ces bactéries aujourd'hui et leur abondance, il n'y a tout simplement aucune raison de croire qu'elles pourraient devenir si abondantes qu'elles auraient pu produire toutes ces molécules", a-t-il déclaré. Dans le monde moderne, les bactéries produisent des protostérols uniquement dans des environnements de niche tels que les sources hydrothermales ou les suintements de méthane.

Cohen, paléontologue du Williams College, est d'accord avec Brocks. L’interprétation selon laquelle ces molécules ont été faites par des eucaryotes " est cohérente avec toutes les autres sources de preuves ", a-t-elle déclaré – des archives fossiles aux analyses de l’horloge moléculaire. " Je ne suis pas aussi inquiète 2 quant à cette possibilité, a-t-elle déclaré.

L’une ou l’autre interprétation présente plus de questions que de réponses. "Les deux histoires seraient absolument folles et bizarres", a déclaré Brocks. Ce sont " des visions différentes de notre monde ", a-t-il ajouté, et il serait bien de savoir laquelle est la vraie.

Faute de machine à remonter le temps, les chercheurs recherchent davantage de preuves pour améliorer leur certitude dans un sens ou dans l’autre. Mais il n’existe qu’un nombre limité de façons de reconstruire ou de percevoir la vie ancienne – et même les meilleures suppositions des scientifiques ne peuvent jamais combler complètement cette lacune. "La plupart des formes de vie n'ont laissé aucune trace sur Terre", a déclaré Nettersheim. " Le bilan que nous voyons est limité. … Pendant la majeure partie de l’histoire de la Terre, la vie aurait pu être très différente. "


Auteur: Internet

Info: Quanta Magazine, Yasemin Saplakoglu, 23 octobre 2023

[ unicité ] [ microbiote ] [ palier évolutif ] [ précambrien ] [ protérozoïque ]

 

Commentaires: 0

Ajouté à la BD par miguel