Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 26
Temps de recherche: 0.0602s

univers inversé

Les possibilités métagénomiques

Une infime fraction - la plupart des scientifiques estiment <1% - des espèces microbiennes sur Terre peut être cultivée et étudiée à l'aide de techniques classiques de microbiologie et de génomique. Mais en utilisant des outils de métagénomique récemment développés, les chercheurs appliquent l'analyse génomique à des communautés microbiennes entières à la fois, sans avoir à isoler et à cultiver des espèces individuelles. Les études de métagénomique commencent par obtenir un échantillon d'un environnement particulier tel que l'eau de mer, le sol ou l'intestin humain, en extrayant le matériel génétique de tous les organismes de l'échantillon, puis en analysant l'ADN de ce mélange pour mieux comprendre comment les membres de la communauté interagir, changer et exécuter des fonctions complexes.

Processus : la métagénomique consiste à obtenir l'ADN de tous les micro-organismes d'une communauté, sans nécessairement identifier toutes les espèces impliquées. Une fois les gènes séquencés et comparés aux séquences identifiées, les fonctions de ces gènes peuvent être déterminées.

Parce qu'elle ne dépend pas de l'établissement de cultures pures, la métagénomique offre l'accès à des millions d'espèces microbiennes qui auparavant ne pouvaient pas être étudiées. Il permet également aux chercheurs d'examiner les micro-organismes dans le contexte des environnements dans lesquels ils existent naturellement, en étudiant des communautés entières en même temps.

Applications de la métagénomique

Pratiquement tous les biologistes, quel que soit leur domaine, découvriront qu'une meilleure compréhension des communautés microbiennes et de la métagénomique peut contribuer à leurs propres recherches. L'étude des communautés microbiennes par la métagénomique peut aider les biologistes à s'attaquer à des questions scientifiques fondamentales et à résoudre les problèmes sociaux, environnementaux et économiques connexes. Voici quelques-unes des applications potentielles de la métagénomique :

Avancées des sciences de la vie.

Décrypter le fonctionnement et l'interaction des espèces au sein des communautés microbiennes peut répondre en partie à des questions fondamentales sur de nombreux aspects de la biologie microbienne, végétale et animale et améliorer considérablement la compréhension de l'écologie et de l'évolution. La métagénomique pourrait aider à répondre à des questions telles que : Qu'est-ce qui constitue un génome ? Qu'est-ce qu'une espèce ? Quelle est la diversité de la vie ?

Sciences de la Terre.

L'exploration de la manière dont les communautés microbiennes du sol et des océans affectent les équilibres atmosphériques et les conditions environnementales peut aider les scientifiques à mieux comprendre, prévoir et potentiellement faire face aux changements mondiaux.

Médicament.

Des centaines de médicaments disponibles aujourd'hui sont dérivés de produits chimiques trouvés pour la première fois dans des microbes ; l'accès aux génomes d'espèces microbiennes supplémentaires est très prometteur pour en découvrir des milliers d'autres. L'étude du "microbiome" humain – les milliers de milliards de bactéries vivant dans et sur le corps humain – peut conduire à de nouvelles façons de diagnostiquer, de traiter et de prévenir les maladies.

Énergie alternative.

De nouvelles sources d'énergie pourraient être développées en exploitant le pouvoir des communautés microbiennes pour produire des sous-produits tels que l'hydrogène, le méthane, le butanol et même le courant électrique.

Assainissement de l'environnement.

Comprendre les microbes qui dégradent les produits chimiques environnementaux peut aider à nettoyer des polluants tels que les fuites d'essence, les déversements de pétrole, les eaux usées, les rejets industriels et les déchets nucléaires.

Biotechnologie.

L'identification et l'exploitation des capacités biosynthétiques polyvalentes et diverses des communautés microbiennes peuvent conduire au développement de nouveaux produits industriels, alimentaires et de santé bénéfiques.

Agriculture.

Mieux comprendre les microbes bénéfiques vivant dans, sur, sous et autour des plantes et des animaux domestiques peut contribuer à améliorer les méthodes de détection des agents pathogènes dans les cultures, le bétail et les produits alimentaires et peut faciliter le développement de pratiques agricoles qui tirent parti des les alliances naturelles entre les microbes, les plantes et les animaux.

Biodéfense et médecine légale microbienne.

L'étude de l'ADN et des empreintes biochimiques des communautés microbiennes aide les spécialistes à surveiller les agents pathogènes connus et potentiels, à créer des vaccins et des traitements plus efficaces contre les agents bioterroristes potentiels et à reconstruire les événements dans lesquels les microbes ont joué un rôle.

Valeur de la métagénomique pour l'enseignement de la biologie

La citation de Muir a également une pertinence importante pour l'enseignement des sciences. Qu'est-ce qui sépare la chimie, la génétique, la biologie moléculaire, l'évolution, l'écologie et d'autres disciplines ? Où se croisent-elles et comment se construisent-elles les unes sur les autres ?

La métagénomique aide à combler le fossé entre la génétique et l'écologie, démontrant que les gènes d'un seul organisme sont connectés aux gènes des autres et à l'ensemble de la communauté. En fait, les processus de la métagénomique démontrent qu'il est important d'étudier les gènes et les organismes en contexte et d'apprécier toute la diversité de la vie, même dans un seul cadre. Ces messages ont une pertinence importante dans l'ensemble de la biologie et seraient des ajouts précieux à n'importe quel cours de biologie, peut-être en particulier ceux du niveau d'introduction.

Parce que la métagénomique s'inspire d'un large éventail de domaines et les affecte, c'est un outil précieux pour enseigner des thèmes et des concepts qui sont tissés tout au long de l'enseignement de la biologie. En effet, l'enseignement et l'apprentissage de la métagénomique pourraient clairement intégrer les types de changements dans l'enseignement des sciences de la maternelle à la 12e année et du premier cycle que de nombreux rapports ont demandé au cours de la dernière décennie.

Certains professeurs estiment qu'ils doivent utiliser des cours d'introduction pour fournir aux étudiants pratiquement toutes les connaissances qu'ils utiliseront pour comprendre les concepts de base d'une discipline. Certains considèrent également les cours d'introduction comme un moyen d'aider les étudiants à apprendre à interpréter les nouvelles et autres informations sur la science afin qu'ils puissent prendre des décisions plus éclairées à la maison, chez le médecin et dans l'isoloir. Trop souvent, cependant, de tels cours ne parviennent pas à transmettre la beauté complexe du monde vivant et les innombrables façons dont la biologie a un impact sur la "vraie vie". L'apprentissage de la métagénomique au niveau introductif - en mettant l'accent sur ses applications potentielles dans le monde réel - pourrait servir à éclairer les principes de base d'une grande variété de domaines, les liens entre eux et la pertinence plus large des avancées scientifiques pour les problèmes du monde réel. Si les étudiants peuvent voir qu'il y a vraiment des questions non résolues intéressantes auxquelles ils peuvent jouer un rôle pour répondre, le recrutement de jeunes talentueux pour les carrières scientifiques peut être facilité. De cette façon, les élèves rencontreront une science dynamique plutôt que statique.

LES BÉNÉFICES DE L'INTÉGRATION DE L'ÉDUCATION ET DE LA RECHERCHE

Les avantages de l'intégration précoce de la métagénomique et d'autres sciences nouvelles dans l'enseignement de la biologie profiteraient non seulement aux étudiants en biologie, mais aussi aux scientifiques et à leurs projets de recherche. L'expérience montre que lorsque les chercheurs enseignent, leur propre compréhension s'approfondit, menant à de nouvelles questions et pistes de recherche souvent inattendues qui sont posées par les étudiants, ainsi qu'à contribuer au développement d'approches créatives des problèmes. Si la communauté de la biologie peut intégrer l'enseignement de la métagénomique aux progrès de la recherche dès le départ, les étudiants pourraient devenir des participants actifs au développement du domaine.

Enseigner un domaine nouveau ou émergent est un moyen idéal d'engager profondément les étudiants dans l'exploration de questions fondamentales qui sont au cœur de la poursuite scientifique et de les encourager à poser leurs propres questions. En effet, dans le cas du domaine émergent de la métagénomique, les questions les plus fondamentales peuvent être les plus profondes. Répondre à ces questions inspire à son tour les jeunes esprits et les chercheurs actifs, et la science est bénéfique. 

D'autres ont vu l'intérêt d'intégrer la science émergente à l'éducation. Un certain nombre d'efforts sont actuellement en cours pour intégrer la recherche et l'enseignement en génomique.

Auteur: Internet

Info: https://www.ncbi.nlm.nih.gov/ Metagenomics: A Call for Bringing a New Science into the Classroom (While It's Still New) Anne Jurkowski,* Ann H. Reid,† and Jay B. Labovcorresponding author

[ sciences ] [ nano-monde ] [ ouverture ] [ matrice gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

 

Commentaires: 0

Ajouté à la BD par miguel

univers vibratoire

Les hippies avaient raison : Tout est vibrations, mec !

Pourquoi certaines choses sont-elles conscientes et d'autres apparemment pas ? Un oiseau est-il conscient ? Une batte ? Un cafard ? Une bactérie ? Un électron ?

Toutes ces questions sont autant d'aspects du récurrent problème sur l'âme et le corps, qui résiste depuis des milliers d'années à une conclusion généralement satisfaisante.

La problématique du corps et de l'esprit a fait l'objet d'un important changement de nom au cours des deux dernières décennies et est généralement reconnue aujourd'hui comme une "grande difficulté quand à la conscience", après que le philosophe David Chalmers de l'Université de New York ait travaillé sur ce concept dans un article devenu classique en 1995 et avec son ouvrage "The Conscious Mind : In Search of a Fundamental Theory", en 1996.

Posons-nous la question maintenant : Les hippies ont-ils vraiment résolu ce problème ? Mon collègue Jonathan Schooler de l'Université de Californie, Santa Barbara, et moi pensons que oui, avec cette intuition radicale qu'il s'agit bien de vibrations...

Au cours de la dernière décennie, nous avons développé une "théorie de la résonance de la conscience" qui suggère que la résonance, autrement dit les vibrations synchronisées, est au coeur non seulement de la conscience humaine mais aussi de la réalité physique en général.

Et les hippies là-dedans ? Eh bien, nous sommes d'accord que les vibrations, la résonance, représente le mécanisme clé derrière la conscience humaine, ainsi que la conscience animale plus généralement. Et, comme on le verra plus loin, c'est le mécanisme de base de toutes les interactions physiques.

Toutes les choses dans notre univers sont constamment en mouvement, vibrantes. Même les objets qui semblent stationnaires vibrent, oscillent, résonnent à différentes fréquences. La résonance est un type de mouvement, caractérisé par une oscillation entre deux états. Et en fin de compte, toute matière n'est qu'une vibration de divers domaines sous-jacents.

Un phénomène intéressant se produit lorsque différents objets/processus vibrants se rapprochent : ils commencent souvent, après un certain temps, à vibrer ensemble à la même fréquence. Ils se "synchronisent", parfois d'une manière qui peut sembler mystérieuse. C'est ce qu'on appelle aujourd'hui le phénomène d'auto-organisation spontanée. L'examen de ce phénomène conduit à une compréhension potentiellement profonde de la nature de la conscience et de l'univers en général.

TOUTES LES CHOSES RÉSONNENT À CERTAINES FRÉQUENCES

Stephen Strogatz donne divers exemples tirés de la physique, biologie, chimie et des neurosciences pour illustrer ce qu'il appelle la "synchronisation" dans son livre de 2003 également titré "Sync". Notamment :

- Les lucioles de certaines espèces se mettent à clignoter leurs petits feux en synchronisation lors de grands rassemblements de lucioles, d'une manière qui est être difficile à expliquer avec les approches traditionnelles.

- Les neurones "s'allument" à grande échelle dans le cerveau humain à des fréquences spécifiques, la conscience des mammifères étant généralement associée à divers types de synchronisation neuronale.

- Les lasers sont produits lorsque des photons de même puissance et de même fréquence sont émis ensemble.

- La rotation de la lune est exactement synchronisée avec son orbite autour de la Terre, de sorte que nous voyons toujours la même face. La résonance est un phénomène véritablement universel et au coeur de ce qui peut parfois sembler être des tendances mystérieuses vers l'auto-organisation.

Pascal Fries, neurophysiologiste allemand de l'Institut Ernst Strüngmann, a exploré dans ses travaux très cités au cours des deux dernières décennies la façon dont divers modèles électriques, en particulier les ondes gamma, thêta et bêta, travaillent ensemble dans le cerveau pour produire divers types de conscience humaine.

Ces noms font référence à la vitesse des oscillations électriques dans les différentes régions du cerveau, mesurée par des électrodes placées à l'extérieur du crâne. Les ondes gamma sont généralement définies comme étant d'environ 30 à 90 cycles par seconde (hertz), les thêta de 4 à 7 Hz et les bêta de 12,5 à 30 hz. Il ne s'agit pas de limites strictes - ce sont des règles empiriques - et elles varient quelque peu d'une espèce à l'autre.

Ainsi, thêta et bêta sont significativement plus lentes que les ondes gamma. Mais les trois travaillent ensemble pour produire, ou au moins faciliter (la relation exacte entre les schémas électriques du cerveau et la conscience est encore bien en débat), les différents types de conscience humaine.

Fries appelle son concept "communication par la cohérence" ou CTC. Pour Fries, c'est une question de synchronisation neuronale. La synchronisation, en termes de taux d'oscillation électrique partagés, permet une communication fluide entre les neurones et les groupes de neurones. Sans cohérence (synchronisation), les entrées arrivent à des phases aléatoires du cycle d'excitabilité des neurones et sont inefficaces, ou du moins beaucoup moins efficaces, pour communiquer.

Notre théorie de la résonance de la conscience s'appuie sur le travail de Fries et de beaucoup d'autres, dans une approche plus large qui peut aider à expliquer non seulement la conscience humaine et mammifère, mais aussi la conscience plus largement. Nous spéculons aussi métaphysiquement sur la nature de la conscience comme phénomène général pour toute matière.

EST-CE QUE TOUT EST AU MOINS UN PEU CONSCIENT ?

D'après le comportement observé des entités qui nous entourent, des électrons aux atomes en passant par les molécules, les bactéries, les paramécies, les souris, les chauves-souris, les rats, etc. Cela peut paraître étrange à première vue, mais le "panpsychisme" - l'idée que toute matière a une certaine conscience associée - est une position de plus en plus acceptée par rapport à la nature de la conscience.

Le panpsychiste soutient que la conscience (subjectivité) n'a pas émergé ; au contraire, elle est toujours associée à la matière, et vice versa (les deux faces d'une même médaille), mais l'esprit associé à la plupart de la matière dans notre univers est généralement très simple. Un électron ou un atome, par exemple, ne jouissent que d'une infime quantité de conscience. Mais comme la matière "se complexifie", l'esprit se complexifie, et vice versa.

Les organismes biologiques ont accéléré l'échange d'information par diverses voies biophysiques, y compris les voies électriques et électrochimiques. Ces flux d'information plus rapides permet d'atteindre des niveaux de conscience à l'échelle macroscopique plus élevés que ceux qui se produiraient dans des structures d'échelle similaire comme des blocs rocheux ou un tas de sable, simplement parce qu'il y a une connectivité beaucoup plus grande et donc plus "en action" dans les structures biologiques que dans un bloc ou un tas de sable. Roches et les tas de sable n'ont que des voies thermiques avec une bande passante très limitée.

Les blocs rocheux et les tas de sable sont de "simples agrégats" ou collections d'entités conscientes plus rudimentaires (probablement au niveau atomique ou moléculaire seulement), plutôt que des combinaisons d'entités micro-conscientes qui se combinent en une entité macro-consciente de niveau supérieur, ce qui est la marque de la vie biologique.

Par conséquent, le type de communication entre les structures résonnantes est essentiel pour que la conscience s'étende au-delà du type rudimentaire de conscience que nous nous attendons à trouver dans des structures physiques plus fondamentales.

La thèse centrale de notre approche est la suivante : les liens particuliers qui permettent à la macro-conscience de se produire résultent d'une résonance partagée entre de nombreux composants micro-conscients. La vitesse des ondes de résonance présentes est le facteur limitant qui détermine la taille de chaque entité consciente.

Au fur et à mesure qu'une résonance partagée s'étend à de plus en plus de constituants, l'entité consciente particulière devient plus grande et plus complexe. Ainsi, la résonance partagée dans un cerveau humain qui atteint la synchronisation gamma, par exemple, comprend un nombre beaucoup plus important de neurones et de connexions neuronales que ce n'est le cas pour les rythmes bêta ou thêta.

Des structures résonnantes qui résonnent de haut en bas.

Notre théorie de la résonance de la conscience tente de fournir un cadre unifié qui inclut la neuroscience et l'étude de la conscience humaine, mais aussi des questions plus fondamentales de neurobiologie et de biophysique. Elle va au cœur des différences qui comptent quand il s'agit de la conscience et de l'évolution des systèmes physiques.

C'est une question de vibrations, mais c'est aussi une question de type de vibrations et, surtout, de vibrations partagées.

Mets tout ça dans ta pipe. Et fume, mon pote.

Auteur: Tam Hunt

Info: https://blogs.scientificamerican.com, 5 décembre 2018

[ chair-esprit ] [ spéculation ]

 
Commentaires: 2
Ajouté à la BD par miguel

théorie du tout

De l'observateur à l'acteur

Les découvertes de la physique quantique ont initié une réflexion importante sur la place de l'observateur et son lien avec la conscience. Jusqu'alors, ce que nous savions de la physique n'avait jamais conduit à ce questionnement. En effet, à notre échelle, les objets classiques se comportent de manière régulière et prédictive, nous donnant par exemple le droit de penser que si nous quittons une pièce, les objets qu'elle contient seront toujours là à notre retour. C'est comme si les choses continuaient, que nous les observions ou non. L'influence de l'observation est donc susceptible du nous échapper.

Par contre, au niveau quantique, on ne peut rien dire de tel. Quand on n'observe pas, il y a méconnaissance ; alors, plusieurs réalités sont possibles. C'est ce qu'on appelle la superposition quantique. À partir du moment où l'on observe, la superposition s'effondre, ne laissant qu'une seule réalité.

Quel est le point commun entre les deux échelles ? La conscience.

L'observateur, au sens métaphysique du terme - le seul qui soit ici valide puisque la conscience est première - a une influence sur l'avancement de la complexité et de la conscience dans l'univers. En retour, l'univers a une influence sur lui.  Dès que la conscience de l'observateur change, il n'observe plus son environnement de la même manière, ce qui influence la conscience avec laquelle il perçoit. Ainsi, son interprétation est directement liée à sa conscience au moment où il observe.

Chaque observateur étant ainsi complètement impliqué dans la construction de la réalité, il serait sans doute plus juste de parler d'acteurs. Les joueurs sont finalement la condition même d'existence de l'aire de jeu, grâce à leur conscience.

Le joueur et ce qui se passe dans l'univers ne font qu'un

Selon la théorie des champs unifiés, la conscience est une rétroaction entre notre monde intérieur et notre monde extérieur.

C'est à partir de la structure du double tore que j'ai commencé à comprendre pourquoi et comment la conscience émerge par rétroaction.

"Pour être conscient de soi, il faut savoir que l'on existe. Cela nécessite une rétroaction. La structure du double tore permet cette rétroaction entre ce qui vient de l'extérieur et ce qui retourne à l'intérieur, informant le vide, puis retournant à l'extérieur. Et lorsqu'il retourne à l'extérieur, le vide nous informe du résultat de l'information qui y est présente. Il s'agit d'un échange entre notre compréhension interne et l'expérience de l'univers, et la relation entre toutes les compréhensions rassemblées dans le vide affecte la nôtre. Nous ne créons donc pas notre réalité, nous la co-créons avec tous les autres." 

L'univers utilise une boucle de rétroaction pour s'observer à toutes les échelles. Il s'observe en fait à travers tous les êtres conscients qui évoluent en son sein. Plus précisément, c'est le niveau fondamental de ce que nous sommes qui rayonne et s'effondre perpétuellement sur lui-même, dans une boucle de rétroaction infinie.

Ainsi, nos observations ne sont pas les nôtres, car nous n'observons pas l'univers d'un point de vue extérieur. Nous faisons partie de son propre processus de prise de conscience. Et nous pouvons utiliser ce processus consciemment pour diriger la création et tracer le chemin que nous souhaitons emprunter, en co-création avec d'autres.

Pour cela, nous utilisons l'énergie.

L'énergie suit la conscience.

" Nous baignons dans une énergie fondamentale qui est à la source de la création du monde physique. Cette énergie est le vide, c'est-à-dire l'espace qui nous entoure. Cet espace n'est cependant pas vide au sens habituel du terme mais plein d'énergie, une énergie qui relie absolument tout. " [10]

Je présente ici la relation entre le vide, l'espace et l'énergie. Du point de vue de la physique, le vide n'existe pas.

Du point de vue de la métaphysique, seules la conscience et l'énergie existent. Ce que l'on appelle " espace " est simplement de l'énergie et des potentiels inexplorés (bien que du point de vue mental, l'espace existe et est perçu comme vide).

L'espace n'est rien d'autre que de l'énergie

Je m'intéresse au vide et surtout à l'énergie qu'il contient car c'est pour moi la source de la matière. Et je découvre que le vide a une structure géométrique, celle de la fleur de vie en 3D.

Cette structure est infinie et couvre ce que l'on appelle communément "l'espace". L'espace relie toutes les échelles, du niveau quantique - où les équations prédisent qu'il y a une énergie infinie en tout point - au niveau cosmologique. Toute l'énergie est déjà là, même si nous n'en sommes pas conscients.

La physique standard laisse volontairement de côté la grande majorité de cette énergie en utilisant un processus de renormalisation, qui attribue une valeur finie à l'énergie du vide quantique.

"(...) Des infinités absurdes à première vue apparaissent dans les autres théories partielles, mais dans tous les cas ces infinités peuvent être annulées par un processus appelé " renormalisation ". Bien que cette technique soit relativement douteuse sur le plan mathématique, elle semble fonctionner dans la pratique et a été appliquée à ces théories pour faire des prédictions qui correspondent aux observations avec un degré de précision extraordinaire. La renormalisation présente toutefois un sérieux inconvénient du point de vue de la recherche d'une théorie complète, car elle signifie que les valeurs réelles des masses et des intensités des forces ne peuvent pas être prédites par la théorie, mais doivent être choisies pour s'adapter aux observations. ""

Stephen Hawking énonce ici ce qui m'a permis de trouver une théorie complète, prenant en compte l'infini sans avoir recours à la renormalisation. J'ai ainsi réussi à prédire la valeur réelle de la masse du proton et des trous noirs en général...

L'énergie est partout équivalente

" Les objets physiques ne sont pas dans l'espace, mais ces objets sont une extension de l'espace. De ce point de vue, le concept d'espace perd toute signification.**

L'espace - ou l'énergie - est une fluctuation à la source de notre réalité. Ainsi, au lieu de nous voir comme un corps, par exemple, nous pouvons nous voir comme étant constitués de billions de cellules. Chacune de ces cellules est composée de milliards d'atomes. À l'intérieur de chacun de ces atomes, des protons circulent les uns autour des autres à la vitesse de la lumière. Ils sont chacun constitués de 1055 minuscules paquets d'énergie, appelés unités sphériques de Planck (PSU) ou voxels par moi-même. Ces voxels constituent l'unité fondamentale de la fabrique de l'espace-temps, assemblés géométriquement selon la structure infinie de la fleur de vie en 3D.

Il n'y a pas d'espace entre les particules, il n'y a que de l'énergie. D'ailleurs si l'on prend en compte l'énergie contenue dans le proton, on peut enfin expliquer la différence de densité d'énergie entre le niveau quantique et le niveau cosmologique. En bref l'énergie est égale, équivalente partout.

Mais si on considère que l'espace n'existe pas, que deviennent les concepts de temps et de dimension ?

Sans espace, qu'est-ce que le temps ?

Depuis la théorie de la relativité restreinte (Einstein, 1905), le concept d'espace est étroitement associé à celui de temps. Ces notions sont devenues inséparables et s'influencent réciproquement. Cependant le temps est simplement un concept humain. Il vaut mieux parler d'espace-mémoire. Ici c'est la mémoire qui est encodée sur le cadre de l'espace, nous donnant la notion du temps qui passe.

Mais qu'il s'agisse de mémoire ou de temps, sans espace, il n'y a pas d'espace, pourrait-on dire à juste titre.  Alors que la mémoire est simplement comme des paquets d'énergie et de conscience qui deviennent disponibles de notre point de vue humain.

Cela correspond à la perspective métaphysique selon laquelle toute manifestation d'énergie est un événement, sans corrélation avec le temps et l'espace, mais en aucun cas sans corrélation avec la conscience. Le temps, comme l'espace, n'existe nulle part ailleurs que dans le mental. Celui-ci peut en percevoir la linéarité et la séparation, là où tout n'est que résonance dans l'instant présent.

Sans espace, qu'est-ce qu'une dimension ?

Une dimension est relative à une mesure. Cependant je considère qu'une dimension se réfère à l'échelle ou à la taille d'une structure plutôt qu'à une orientation dans l'espace. Ainsi il existe un nombre infini de dimensions scalaires, la plus petite et la plus pertinente pour définir notre relation à l'univers étant le voxel (sphère de Planck). 1055 voxels - la masse de l'univers - tiennent dans un seul proton. Comment est-ce possible ? Parce qu'il s'agit de la masse holographique, fondée sur l'information. L'univers est fractal. La nature holo-fractographique de l'univers signifie que tous les protons communiquent entre eux.

Ainsi l'énergie est communication, uniquement.

En pratique l'échelle à laquelle nous observons les objets en physique détermine réellement le niveau d'énergie qu'on peut observer

Ainsi si nous étirons une PSU (voxel) à l'échelle d'un proton, le proton lui-même s'étirera jusqu'à atteindre la taille d'une sphère dont le diamètre correspondrait à la distance entre notre soleil et Alpha du Centaure.

Ou encore :  depuis la Station spatiale internationale, on peut observer l'océan et voir une surface bleue et lisse. Mais si on s'approche suffisamment, on verra des vagues de 15 mètres d'une énergie folle. C'est ce qui se passe avec les fluctuations électromagnétiques à l'échelle quantique. Mais nous ne pouvons pas le voir

Auteur: Haramein Nassim

Info: *Hawking Stephen, A Brief History of Time, Ed.Flammarion, 2018, p.191, free translation **EINSTEIN Albert, The Connected Universe [vidéo], 2015

[ science spéculative ] [ mondes consensuels ] [ solipsismes grégaires ] [ vacuité apparente ] [ programme de langlands ]

 

Commentaires: 0

Ajouté à la BD par miguel

macromolécules

(Q) - Combien de protéines ont été identifiées à ce jour ?

(R) - À la date d'arrêt de mes connaissances, en septembre 2021, le nombre de protéines identifiées dans le protéome humain et dans divers organismes ne cesse de croître en raison des efforts de recherche continus. Il est difficile de fournir un chiffre exact car l'identification des protéines est un domaine actif de la recherche scientifique et de nouvelles protéines sont découvertes en permanence.

Toutefois, à cette époque, on estimait que le protéome humain se composait de dizaines de milliers de protéines. Le projet du protéome humain (HPP), une initiative de recherche internationale, vise à identifier et à caractériser toutes les protéines codées par le génome humain. Le HPP a réalisé des progrès significatifs dans la cartographie du protéome humain, mais une couverture complète est encore en cours.

Il est important de noter que le nombre de protéines identifiées varie en fonction de l'organisme étudié. Il existe des millions de séquences de protéines connues dans divers organismes, y compris les humains, les animaux, les plantes, les bactéries et les virus.

Comme mes connaissances ne sont pas à jour, je recommande de se référer à la littérature scientifique actuelle ou à des bases de données telles que UniProt ou Protein Data Bank (PDB) pour obtenir les informations les plus précises et les plus récentes sur le nombre de protéines identifiées.

(Q) - Comment les protéines sont-elles classées ?

(R) - Les protéines sont classées en fonction de divers critères, notamment leur structure, leur fonction et leurs relations évolutives. Voici quelques méthodes de classification des protéines couramment utilisées :

1 Classification structurelle : Les protéines peuvent être classées en fonction de leurs caractéristiques structurelles. Le système de classification structurelle le plus courant est la classification structurelle des protéines (SCOP) ou la base de données CATH (Class, Architecture, Topology, Homologous superfamily). Ces systèmes classent les protéines dans des hiérarchies en fonction de leur pliage global, de l'organisation des domaines et des motifs structurels.

2 Classification fonctionnelle : Les protéines peuvent être classées en fonction de leurs fonctions biologiques. Cette classification est souvent large et englobe des catégories fonctionnelles telles que les enzymes, les transporteurs, les récepteurs, les protéines structurelles, les protéines de signalisation et bien d'autres encore. Les systèmes de classification fonctionnelle sont généralement basés sur le rôle de la protéine dans les processus cellulaires.

3 Classification basée sur l'homologie : Les protéines peuvent être classées sur la base de leurs relations évolutives et de leurs similitudes de séquence. Cette classification repose sur la comparaison des séquences protéiques et l'identification des protéines homologues qui partagent un ancêtre commun. Elle est généralement réalisée à l'aide d'algorithmes tels que BLAST (Basic Local Alignment Search Tool) ou HMM (Hidden Markov Models).

4 Classification selon l'ontologie des gènes (GO) : L'ontologie des gènes est un système de classification largement utilisé qui attribue des annotations fonctionnelles aux protéines sur la base de trois catégories : fonction moléculaire, processus biologique et composant cellulaire. Les termes GO fournissent un vocabulaire normalisé pour décrire les fonctions des protéines et leur implication dans les processus biologiques.

5 Classification par famille et par super-famille : Les protéines peuvent être classées en familles et superfamilles sur la base de caractéristiques structurelles et séquentielles communes. Les familles de protéines sont constituées de protéines présentant une grande similitude de séquence et partageant souvent des relations fonctionnelles et évolutives. Les superfamilles englobent des familles de protéines apparentées qui partagent des similitudes structurelles et fonctionnelles, mais qui peuvent avoir divergé au cours de l'évolution.

These are just a few examples of protein classification methods, and there are other specialized systems based on specific properties or research areas. It's important to note that proteins can belong to multiple classification categories simultaneously, as they can have similar structures, functions, or evolutionary origins. Classification systems serve as useful tools for organizing and understanding the vast diversity of proteins found in living organisms.

(Q) - Il y a donc une sorte de classification complexe et intriquée, n'est-ce pas ?

 (R) - Oui, la classification des protéines peut en effet être complexe en raison des divers facteurs pris en compte et des interrelations entre les différents systèmes de classification. Les protéines sont des molécules très diverses, dotées de caractéristiques uniques, et leur classification reflète cette complexité.

Les différentes méthodes de classification se recoupent et se complètent souvent, ce qui permet une compréhension globale de la structure, de la fonction et de l'évolution des protéines. Par exemple, les systèmes de classification structurelle tels que SCOP ou CATH prennent en compte l'organisation globale des plis et des domaines des protéines, tandis que les systèmes de classification fonctionnelle se concentrent sur les rôles et les activités biologiques des protéines. La classification basée sur l'homologie tient compte des relations évolutives et des similitudes de séquence, et la classification par ontologie génique fournit un vocabulaire normalisé pour décrire les fonctions des protéines.

En outre, les protéines peuvent appartenir à plusieurs catégories au sein d'un système de classification. Par exemple, une protéine peut avoir une structure spécifique et être classée dans un pli particulier, tout en faisant partie d'une famille de protéines sur la base de la similarité des séquences et des caractéristiques fonctionnelles. Cette classification multidimensionnelle permet aux chercheurs d'explorer différents aspects des protéines et de mieux comprendre leurs propriétés et leurs relations.

Dans l'ensemble, la nature complexe de la classification des protéines reflète la nature complexe des protéines elles-mêmes et les efforts déployés pour organiser et comprendre leurs divers attributs. Ces systèmes de classification fournissent des cadres pour l'étude des protéines et facilitent la communication et le partage des connaissances entre les chercheurs dans ce domaine.

(Q) - Peut-on dire qu'il y a aussi, dans ces différentes classifications, quelque chose qui pourrait ressembler à un pôle phénétique et à un pôle cladistique ?

(R) - Oui, dans le domaine de la classification des protéines, il y a des éléments qui peuvent être associés aux approches phénétiques (aussi connues sous le nom de taxonomie numérique) et cladistiques.

Classification phénétique : La classification phénétique met l'accent sur les similitudes et les différences globales entre les protéines, souvent sur la base d'une analyse numérique ou statistique de leurs caractéristiques. Elle se concentre sur des traits ou des caractéristiques quantifiables et vise à regrouper les protéines sur la base d'une ressemblance globale. Dans le contexte de la classification des protéines, les approches phénétiques peuvent impliquer le regroupement des protéines sur la base de mesures de similarité telles que l'alignement des séquences, l'alignement structurel ou la comparaison d'autres propriétés physicochimiques.

Classification cladistique : La classification cladistique, quant à elle, est basée sur les relations évolutives et les ancêtres partagés. Elle cherche à identifier des groupes monophylétiques (clades) qui comprennent un ancêtre commun et tous ses descendants. La cladistique repose sur l'analyse phylogénétique, qui consiste à comparer des séquences de protéines ou d'autres données moléculaires pour reconstruire des arbres ou des réseaux évolutifs. Les cladogrammes qui en résultent décrivent les relations évolutives entre les protéines et peuvent aider à les classer en groupes sur la base de leur histoire évolutive.

Dans la pratique, les approches phénétiques et cladistiques sont souvent utilisées en combinaison, en exploitant différents types de données et d'analyses pour obtenir une compréhension plus complète de la classification des protéines. Les systèmes de classification structurelle tels que SCOP ou CATH, par exemple, intègrent à la fois les principes phénétiques et cladistiques. Ils prennent en compte les similitudes structurelles (aspect phénétique) mais visent également à refléter les relations évolutives et les ancêtres partagés (aspect cladistique) en regroupant les protéines dans des catégories hiérarchiques basées sur leurs plis, leurs domaines et leurs connexions évolutives.

En intégrant à la fois les perspectives phénétiques et cladistiques, les systèmes de classification des protéines peuvent saisir à la fois les similitudes et les différences globales entre les protéines (pôle phénétique) et leur histoire évolutive et leurs liens de parenté (pôle cladistique). Cela permet d'obtenir un cadre de classification plus nuancé et plus informatif dans le domaine de la science des protéines.

(Q) - ok merci : existe-t-il aussi une classification tridimensionnelle ?

(R) - Oui, il existe une classification tridimensionnelle (3D) des protéines basée sur leurs propriétés structurelles. La classification 3D consiste à classer les protéines en fonction de leurs structures tridimensionnelles plutôt qu'en fonction de leur séquence ou de leurs similitudes fonctionnelles. Ce type de classification est particulièrement pertinent en biologie structurale et en modélisation moléculaire.

Dans la classification 3D, les protéines sont regroupées en fonction de leur pli global, de l'arrangement des éléments structurels secondaires et de l'arrangement spatial des atomes. Elle tient compte de la disposition et de l'orientation spécifiques des domaines protéiques, des motifs et d'autres caractéristiques structurelles.

La classification structurelle des protéines (SCOP) et la base de données CATH (Class, Architecture, Topology, Homologous superfamily), que j'ai mentionnées précédemment, fournissent des classifications hiérarchiques qui incluent des informations structurelles en 3D. Ces classifications classent les protéines dans différentes catégories en fonction de leur pliage global et de leur organisation structurelle.

En outre, d'autres méthodes et algorithmes, tels que les outils d'alignement structurel, peuvent être utilisés pour comparer les structures des protéines et identifier les similitudes et les différences. Ces approches aident à regrouper ou à classer les protéines en groupes structurels 3D, ce qui permet aux chercheurs d'analyser et de comprendre les relations entre les structures des protéines d'une manière plus détaillée.

La classification 3D des protéines fournit des informations précieuses sur la diversité structurelle et les relations entre les protéines. Elle est particulièrement utile pour étudier la fonction des protéines, les mécanismes d'action, les interactions protéine-protéine et la conception de médicaments. En considérant les aspects tridimensionnels de la structure des protéines, les chercheurs peuvent mieux comprendre comment la structure des protéines est liée à la fonction et aux relations évolutives.

Auteur: chatGPT4

Info:

[ machine-homme ] [ chimie ] [ taxinomies ] [ typologies ]

 

Commentaires: 0

Ajouté à la BD par miguel

volatiles

Cette découverte scientifique est restée cachée dans un tiroir de musée pendant des décennies.  

Les oiseaux que nous allons rencontrer ne ressemblent à rien de ce que vous avez déjà vu.

Federico Degrange : Ils utilisent leur bec comme une hache pour tuer leurs proies.

Lichtman : Oh, mon Dieu.

Daniel Ksepka : Imaginez la plus grande chose que vous ayez jamais vue en vie en train de voler.

James Hansford : Ils sont colossaux. Ils pèsent environ 1 900 livres.

Alicia Grealy : Les œufs auraient été environ 150 fois plus gros qu'un œuf de poule.

Ksepka : Nous parlons donc de plumes d'environ deux pieds, ce qui est... c'est une grande plume.

Anusuya Chinsamy-Turan : La plupart des gens, vous savez, pensent à l'autruche - et ils pensent que c'est grand. Mais en fait, il y avait de vrais géants à une époque.

Lichtman : Nous parlons d'oiseaux qui pesaient autant qu'une voiture de sport, d'oiseaux qui étaient les plus grands prédateurs de leur époque, parcourant la jungle et dévorant des animaux de la taille d'un petit cheval, d'oiseaux si gargantuesques qu'on pouvait les confondre avec un avion.

Pourtant, ces oiseaux sont passés sous le radar de la paléontologie, en tout cas si on compare avec de nombreux dinosaures. Ces géants ailés sont mystérieux et les scientifiques en apprennent chaque jour un peu plus sur eux.

Au cours des quatre prochains épisodes de Science, vite fait, je vais vous les présenter. Nous partons à la recherche des oiseaux les plus extrêmes qui aient jamais existé. Bienvenue dans la première partie d'une série de quatre épisodes sur les vrais grands oiseaux.

- Bonjour, je m'appelle Daniel Ksepka.

Lichtman : Dan est un paléontologue aviaire.

Ksepka : Et je suis conservateur des sciences au Musée Bruce.

Lichtman : Quelle est votre relation avec les grands oiseaux disparus ?

Ksepka : Je les aime et ils m'aiment.

[CLIP : bruits d'océan]

Lichtman : Ok, je veux que vous fermiez les yeux. Dan va planter le décor du premier monstre que nous allons rencontrer.

Ksepka : Imaginez que vous vous trouvez en Caroline du Sud, il y a 27 millions d'années. Vous regardez la mer.

[CLIP : bruit de tempête]

Ksepka : C'est une mer agitée. Et puis, juste suspendu dans les airs, vous savez, bloquant le soleil... se déploie la plus grande chose que vous ayez jamais vue vivante en train de voler, comme un double albatros - avec une envergure de plus de 6 mètres. Elle est magnifique, et vous survole. C'est probablement un grand moment de votre vie, vous savez, l'émerveillement de voir ça.

Lichtman : Cet oiseau s'appelle Pelagornis sandersi. Il n'a pas de nom commun.

Ksepka : Oh, je l'appelle simplement Pelagornis. 

Lichtman : Dan a été le premier à décrire scientifiquement le fossile. Et nous verrons pourquoi il l'a appelé P. sandersi dans une minute. L'histoire commence lorsque ce fossile est entré dans sa vie, sans crier gare.

Ksepka : Pelagornis était un accident de chance et de fortune.

Lichtman : Dan n'a pas trouvé le fossile. Il avait été déterré en Caroline du Sud dans les années 1980, bien avant que Dan ne pose les yeux dessus.

Ksepka : Ils faisaient des fouilles à l'aéroport de Charleston et quelqu'un est tombé sur des os. Les travaux ont été interrompus.

Lichtman : Et il a fait appel à des renforts. Le regretté Al Sanders, paléontologue au musée local de Charleston.

Ksepka : Il est venu avec une équipe et ils ont ramassé ce qui avait été trouvé. Et puis, vous savez, j'aurais pensé que quiconque aurait trouvé cela se serait arrêté net et en aurait fait sa priorité parce que c'était, vous savez, le plus grand oiseau volant de tous les temps.

Lichtman : C'est du moins ce qu'aurait fait un paléontologue aviaire. Mais Al Sanders était plutôt un spécialiste des fossiles de baleines. Il a donc ramené le fossile au musée et l'a mis de côté.

Ksepka : Et Al l'a rangé dans un tiroir au fond de ce genre d'armoire dans le musée.

Lichtman : Et il est resté là pendant une trentaine d'années. Un jour, Al a parlé à Dan des ossements.  

Ksepka : Oui, et je ne m'attendais pas à voir le plus grand oiseau jamais vu dans un tiroir quand j'y suis allé. J'aurais été content avec un canard ou quelque chose comme ça.

Lichtman : Dans ce tiroir qui prenait la poussière se trouvait un fossile vieux d'environ 27 millions d'années qui ne ressemblait à rien de ce que Dan avait vu auparavant.

Ksepka : J'ai sorti l'os de l'aile, je l'ai posé sur le sol, je me suis allongé à côté et j'ai pris une photo avec mon téléphone portable parce qu'il était plus long que mon bras - c'était l'un des trois os.

Lichtman : Dan l'a baptisé Pelagornis sandersi en l'honneur d'Al Sanders, inconscient conservateur de cette découverte colossale. Dan a entrepris de comprendre tout ce qu'il pouvait sur cet oiseau. Et il s'est rendu compte que l'envergure de l'oiseau n'était pas la seule chose étonnante à son sujet. L'oiseau n'était pas seulement grand. Il était bizarre.

Ksepka : Je n'arrivais pas à croire le crâne. Il ne ressemble pas du tout à un oiseau. Il ressemble presque à un petit alligator. Avec un bec d'un pied et demi de long, contenant des mâchoires, avec des sortes de fausses dents.

Lichtman : Elles sont fausses parce qu'elles ne sont pas faites de ce dont sont faites nos dents : de la dentine et de l'émail. Mais elles ont toujours du mordant.

Ksepka : Oui, ce sont en fait des projections d'os, de petites pointes d'os dont la taille varie. Il y a donc une petite, une moyenne et une grande dans l'ordre, et elles ondulent selon ce schéma.

Lichtman : Et c'était probablement parfaits pour percer et retenir des objets glissants...

Ksepka : Donc, quelque chose comme un poisson ou un calmar une fois attrapé.

Lichtman : Outre les fausses dents de poisson, les os de l'épaule de l'oiseau étaient également étranges. Les omoplates de l'oiseau étaient minuscules. L'articulation de l'épaule et l'os qui s'y rattache avaient une forme inhabituelle.

Ksepka : Il ne semble pas qu'elle puisse vraiment fonctionner comme un oiseau normal. Cet oiseau ne pouvait donc pas lever son aile au-dessus du niveau de son dos. Il ne bat donc pas comme une mouette. Ou comme un oiseau chanteur.

Lichtman : Imaginez un cardinal décollant du sol, poussant ses ailes vers le haut et vers le bas, vite et fort. Ce mastodonte se contente probablement de déployer ses ailes de 20 pieds et de laisser le vent faire le travail.

Ksepka : C'est comme un cerf-volant géant. Il s'est donc probablement élevé dans les airs, soit en faisant face au vent, soit en prenant un départ un peu maladroit, soit en utilisant l'élévation à son avantage...

Lichtman : Et une fois que cet oiseau était en l'air, Dan pense qu'il pouvait probablement s'élever sur de grandes distances.

Ksepka : Je ne serais pas surpris que le Pelagornis puisse traverser l'Atlantique et s'arrêter en Afrique ou en Europe, puis revenir dans le cadre de sa migration saisonnière.

Lichtman : Cette espèce, Pelagornis sandersi, n'a été trouvée qu'à Charleston, mais ses proches - les autres oiseaux de cette bande de fausses dents - sont présents partout.

Ksepka : On les trouve partout dans le monde. Nous avons trouvé des fossiles en Antarctique, en Nouvelle-Zélande, dans l'État de Washington et dans l'Oregon, en Europe, en Afrique, en Amérique du Sud. On en trouve littéralement sur tous les continents.

Lichtman : Entre sa taille gigantesque et ses dents, Pelagornis est peut-être l'un des oiseaux les plus étranges de l'histoire de la Terre. Et la question qui me vient à l'esprit est la suivante : comment cet oiseau est-il apparu ? Dan pense que l'apparition de ce groupe - les pélagornithidés - est peut-être liée à la disparition d'autres créatures volantes étranges et géantes.

Ksepka : Dans le cas des pélagornithidés, ce rôle particulier serait rempli par des reptiles volants au Crétacé. Certaines de ces espèces sont bien plus grandes que Pelagornis et disparaissent lors de la même extinction que les dinosaures nonaviens, ce qui permet à un nouveau groupe d'explorer le rôle d'animal volant de très grande taille. Et les pélagornithidés sont le premier groupe à s'en emparer.

Lichtman : Ils se sont engouffrés dans une niche ouverte. C'est ce que m'ont dit de nombreux chercheurs spécialisés dans les grands oiseaux avec lesquels je me suis entretenu pour cette série : ces oiseaux géants sont entrés en scène en partie parce que l'extinction massive a éliminé la concurrence. Et il ne s'agit pas seulement des dinosaures : d'autres reptiles et les premiers oiseaux se sont également éteints. Les survivants ont donc eu accès à des ressources et à des écosystèmes qui n'existaient pas auparavant. Au fil des ans, j'ai beaucoup entendu parler de la radiation des mammifères, qui ont connu leur heure de gloire après la disparition des dinosaures. Mais dans un monde post-dinosaures, les oiseaux ont également déployé leurs ailes et se sont spécialisés.

Ksepka : Une spectaculaire diffusion des oiseaux s'est produite au cours des quelques millions d'années qui ont suivi cette extinction massive. Les ancêtres des oiseaux modernes ont donc la possibilité d'explorer des habitats arboricoles, prédateurs ou aquatiques pour la première fois. Et ils deviennent vraiment - ils deviennent un peu sauvages.

Lichtman : Pelagornis n'est qu'un début. Nous avons d'autres oiseaux sauvages à rencontrer dans les prochains épisodes : des oiseaux qui se sont élevés tel le phénix après l'extinction des dinosaures et qui sont devenus différents de tous les oiseaux encore en vie aujourd'hui.

Ksepka : Par exemple, les oiseaux-éléphants étaient peut-être les plus grands oiseaux qui aient jamais vécu.

Alicia Grealy : Oui, certains pouvaient peser jusqu'à une tonne. C'est pour cela qu'on les appelle les oiseaux-éléphants, n'est-ce pas ?

Lichtman : C'est ce que nous verrons dans le prochain épisode de cette série en quatre parties.

Auteur: Internet

Info: Flora Lichtman, 31 mai 2023. Emission de radio, repris par https://www.scientificamerican.com/

[ oryctographie ]

 

Commentaires: 0

Ajouté à la BD par miguel

addiction

Elle étudie la façon dont la toxicomanie interfère avec l'apprentissage dans le cerveau

Erin Calipari cherche à comprendre comment des drogues comme les opioïdes et la cocaïne modifient les circuits d'apprentissage et la neurochimie dans l'un des épicentres nationaux des troubles liés à la consommation de substances psychoactives et de la toxicomanie.

(Photo : La dopamine est mieux comprise comme une molécule " d’apprentissage " que comme une molécule de " plaisir ", déclare Erin. "Tout le monde doit avoir un neuromodulateur préféré dans le cerveau, et pour moi c'est la dopamine.")

À quoi ressemble l’apprentissage dans le cerveau et comment les drogues interfèrent-elles avec cela ?

Notre cerveau est programmé pour nous aider à voir les choses qui sont importantes et à y réagir. Cela détermine si nous devons refaire quelque chose ou non. Devons-nous déménager ou rester ? Est-ce bon ou mauvais? Est-ce quelque chose auquel je dois faire attention ?

Les drogues convainquent notre cerveau : " Oui, c’est important. C’est quelque chose que nous devons refaire. Les drogues déterminent non seulement les décisions concernant la drogue elle-même, mais également les décisions concernant les stimuli non médicamenteux présents dans notre environnement. Elles modifient la façon dont nous apprenons.

Comment ça marche au niveau moléculaire ?

Les médicaments comme les opioïdes agissent sur la dopamine. La plupart des gens considèrent la dopamine comme une " molécule du plaisir ", mais ce n’est pas tout. Oui, la dopamine est libérée par des stimuli enrichissants comme le chocolat ou le sucre. Mais Elle est également libérée par des stimuli aversifs comme le stress ou la douleur. Elle se déclenche lorsque les choses sont nouvelles ou différentes, qu'elles soient bonnes ou mauvaises. Et de cette façon, la dopamine est essentielle pour vous aider à apprendre.

Les drogues continuent essentiellement à stimuler la dopamine même lorsque les choses ne sont plus nouvelles ou différentes. Le cerveau continue de penser que quelque chose est important, vous signalant ainsi de continuer à y prêter attention. Mais si les drogues augmentent la dopamine sur le moment, leur consommation à long terme la diminue. Ainsi, avec la consommation croissante de drogues, il y a de moins en moins de dopamine dans le cerveau, ce qui signifie que vous avez du mal à apprendre quelque chose de nouveau.

La dopamine doit-elle être redéfinie comme une molécule " d’apprentissage " plutôt que comme une molécule de " plaisir " ?

Oui. Comprendre la dopamine en tant que molécule qui détermine l’efficacité de notre apprentissage est beaucoup plus précis.

Comment étudiez-vous ce système compliqué ?

Dans mon laboratoire, nous utilisons différentes stratégies pour enregistrer et manipuler différentes cellules du cerveau afin d’essayer de déterminer quelles cellules et quels circuits nous aident à prendre des décisions adaptatives. Et puis, une fois que nous avons identifié ces circuits, nous y allons et disons : Comment l'exposition aux drogues change-t-elle le fonctionnement du système ? Nous effectuons ce travail au niveau physiologique et épigénétique. L’objectif est de comprendre la biologie fondamentale – comment les médicaments détournent les circuits – et ensuite de déterminer si nous pouvons inverser le processus. Nous pouvons utiliser les outils CRISPR*, par exemple, pour inverser une partie de la plasticité de cellules cérébrales spécifiques.

Comprendre le fonctionnement de la dopamine peut-il éventuellement nous aider à développer des traitements contre la dépendance ?

Comprendre ce que fait la dopamine pour aider le cerveau à apprendre est vraiment important. Mais ce sera très difficile à cibler. Vous ne pouvez pas simplement bloquer la dopamine : si vous le faites, les gens ne pourront plus bouger, ils ne pourront plus prêter attention à quoi que ce soit. De nombreux travaux sont en cours sur différentes manières d'affiner le système dopaminergique au lieu de simplement l'activer ou le désactiver. Je pense que c'est ce que nous allons devoir faire.

Qu'est-ce que ça fait de travailler en tant que chercheur en toxicomanie dans l'un des épicentres de la toxicomanie ?

Nashville est mauvais. Au plus fort de l’épidémie d’opioïdes, le Tennessee avait l’un des taux de prescriptions d’opioïdes les plus élevés. Ces dernières années, ce chiffre a diminué, mais pas le problème des opioïdes. Et il ne s’agit pas uniquement d’opioïdes pour nous ; la méthamphétamine est également un problème important. Vanderbilt se trouve donc dans cet espace unique en tant que l’un des plus grands hôpitaux de recherche de la région, au cœur des troubles liés à l’usage de ces substances.

Parfois, il est épuisant de ne pas pouvoir résoudre sa dépendance. C'est écrasant dans un sens pas sympa. Parfois, c'est triste de parler à des personnes qui souffrent de troubles liés à l'usage de substances, et je ne sais pas comment les aider. Elles me posent des questions, mais si je suis experte des changements neurobiologiques spécifiques qui se produisent il m’est difficile de comprendre l’impact de ce trouble sur la vie quotidienne d’un individu puisque je ne l’ai pas vécu personnellement.

Sommes-nous sur le point de comprendre et, à terme, de trouver un remède à la dépendance ?

Guérir de la dépendance est difficile car la dépendance n’est pas une maladie uniforme. Certaines personnes souffrant de dépendance souffrent de troubles comorbides comme l’anxiété et la dépression. Certaines personnes prennent des drogues pour éviter la douleur. Certaines personnes ont un comportement compulsif, d’autres non.

Il sera essentiel de comprendre ce qui est similaire et différent dans le cerveau des individus présentant chacun de ces symptômes uniques pour comprendre comment aborder le traitement en premier lieu. Dans mon laboratoire, par exemple, nous étudions les différences entre les hommes et les femmes.

Qu'avez-vous découvert ?

Lorsque l’on examine les raisons pour lesquelles les gens consomment de la drogue, les femmes sont plus susceptibles de déclarer qu’elles en prennent pour éviter ou échapper à des conséquences négatives, comme le stress et l’anxiété. Les hommes sont plus susceptibles de consommer des drogues de manière impulsive, de planer et de sortir avec des amis. Les deux sexes consomment des drogues et un certain pourcentage d’entre eux développeront un trouble lié à l’usage de substances. Mais ils le font pour différentes raisons.

Les hormones ont beaucoup à voir avec cela. Nous avons découvert que l'estradiol, une hormone ovarienne qui circule avec le cycle menstruel, modifie la façon dont la nicotine agit dans le cerveau en modifiant les fonctions de ses récepteurs.

Nous avons également constaté que si l’on donne aux animaux un accès illimité aux drogues, les mâles et les femelles consomment la même quantité de drogues et leur comportement semble identique. Mais lorsque nous avons examiné les modifications apportées aux protéines de leur cerveau, les hommes et les femmes étaient totalement différents. Beaucoup de ces protéines ont des fonctions cellulaires similaires. Nous pensons que ce médicament augmente la dopamine chez les hommes et les femmes et détermine le comportement de la même manière, mais les voies moléculaires utilisées par chaque sexe sont très différentes.

Pourquoi les cerveaux de sexes différents emprunteraient-ils des chemins différents pour arriver au même point ?

Si vous aviez un système dans lequel vous avez besoin d’un neurone pour coder une information, ce système serait susceptible de tomber en panne. Tout devrait fonctionner parfaitement à chaque fois pour que vous puissiez naviguer dans l'environnement. Mais le cerveau comporte de nombreuses redondances, ce qui signifie que vous n’avez pas besoin que tout fonctionne parfaitement. Il existe de nombreuses façons d’arriver au même but. La raison pour laquelle les mâles et les femelles ont des manières différentes de coder leurs comportements est probablement basée sur l'évolution et la survie de notre espèce.

Cela doit être un domaine difficile dans lequel travailler. Qu'est-ce qui vous motive ?

Ce qui me préoccupe chaque jour, c’est que ce sont des questions importantes. Apprendre la prochaine chose et résoudre des problèmes difficiles est en soi très satisfaisant. Ensuite, lorsque vous respirez, prenez du recul et réalisez que les problèmes difficiles que vous résolvez ont vraiment un impact sur les gens, cela rend le tout encore plus significatif. Mais ma véritable motivation réside dans le mentorat de la prochaine génération. Lorsque je me suis lancé dans la recherche, mon objectif était d’influencer le plus de personnes possible. Je pensais y parvenir en découvrant quelque chose d'important et en changeant la société, ce qui est évidemment le but ultime. Mais ensuite, quand je suis arrivée ici et que j'ai installé mon laboratoire, j'ai réalisé que ce qu'on fait, c'est apprendre aux étudiants qu'ils peuvent faire ce travail. Leur permettre de découvrir ce pour quoi ils sont bons et ce qu'ils aiment me permet de continuer, même lorsque la science ne va pas toujours comme je le souhaite.

Vous êtes un peu comme l'entraîneur de votre propre équipe.

Lorsque vous finissez par diriger un laboratoire, vous réalisez qu’il s’agit d’une grande partie de la science, mais aussi d’une grande partie de la non-science. Il s'agit d'amener les gens à travailler ensemble et de créer l'environnement approprié pour chaque individu, ce qui peut s'avérer difficile. C'est comme constituer une équipe. S'ils travaillent ensemble, c'est moins difficile pour chacun. Et si vous le faites correctement, alors tout le monde y gagne.

Vous défendez également les femmes scientifiques. D’où vient cette motivation ?

Personne dans ma famille n’avait de diplôme d’études supérieures avant moi. Parce que mon père est sportif, l'accent n'était pas mis sur les études. Ensuite, je me suis retrouvé dans un espace dans lequel – je ne veux pas dire que je n’avais rien à faire, mais j’étais entouré d’un groupe de personnes qui, à mon avis, étaient plus intelligentes que moi. Ils savaient ce qu'ils faisaient. Ils savaient quel chemin ils étaient censés emprunter.  Heureusement j’ai eu des mentors extraordinaires qui m’ont aidé à rester sur un chemin que je ne connaissais pas. Et puis, en vieillissant, j’ai commencé à réaliser que ma place était ici. J'étais aussi intelligente que les gens autour de moi. Cela seul m’a fait réaliser à quel point il est important que les gens se sentent à leur place.

Au lieu de demander aux femmes d'agir comme des hommes pour s'intégrer dans un système construit pour les hommes, peut-être devrions-nous changer le système pour renforcer les éléments qui nous manquent, c'est-à-dire les éléments que les femmes apportent à la table : la façon dont elles naviguent dans le monde, comment elles perçoivent les choses, comment elles accompagnent les étudiants. Nous bénéficions énormément de la création d’un espace pour les femmes.

Vous avez fait du sport toute votre vie, y compris le basket-ball à l'université. Pensez-vous que cela a eu une influence sur votre carrière aujourd’hui ? 

Les choses les plus importantes que l’on apprend dans le sport sont comment se dépasser pour s’améliorer chaque jour, comment se remettre d’un échec et comment compter sur ses coéquipiers. Quand j'étais plus jeune, ces expériences m'ont appris à venir travailler après qu'une expérience n'ait pas fonctionné et à demander de l'aide lorsque j'en avais besoin.

Durant mon entraînement, j’étais l’athlète qui jouait à un jeu. Cependant, lorsque je suis devenu professeur, je suis tout d’un coup devenu entraîneur. Mon travail est différent maintenant. Il se concentre sur la façon dont je peux amener mon équipe à s’améliorer. Je dois identifier les points forts de chacun et les mettre en mesure de réussir. Je suis également là pour les aider à combler les lacunes avec d’excellents coéquipiers qui sont bons dans des domaines pour lesquels ils ne sont peut-être pas bons. Le sport m'a donné les compétences nécessaires pour me concentrer sur le travail acharné et la motivation, et m'a donné un cadre pour créer une équipe efficace et la motiver à donner le meilleur d'elle-même.

Votre père, John Calipari , est un entraîneur de basket-ball professionnel. Était-il un mentor pour vous ?

Il était un mentor extraordinaire, mais plus par les choses qu'il faisait que par les choses qu'il disait. Quand j'étais au collège, il a été viré. Le regarder se faire virer, puis revenir et dire : " Vous savez quoi, tout va bien ; Je vais me lever et recommencer " – c'était vraiment important pour moi de réaliser que même lorsque les choses semblent être d'énormes échecs, c'est parfois le début de quelque chose de nouveau.

Auteur: Internet

Info: Quanta Magazine, Yasemin Saplakoglu, 7 décembre 2023 *système simple, rapide et efficace pour couper l'ADN à un endroit précis du génome, dans n'importe quelle cellule.

[ accoutumance ] [ femmes-hommes ] [ éducation ] [ dépaysement ] [ ajustement ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Les particules quantiques ne tournent pas. Alors d'où vient leur spin ?

Le fait que les électrons possèdent la propriété quantique du spin est essentiel pour notre monde tel que nous le connaissons. Pourtant, les physiciens ne pensent pas que ces particules tournent réellement. 

Les électrons sont des petits magiciens compétents. Ils semblent voltiger autour d'un atome sans suivre de chemin particulier, ils semblent souvent être à deux endroits à la fois, et leur comportement dans les micropuces en silicium alimente l'infrastructure informatique du monde moderne. Mais l'un de leurs tours les plus impressionnants est faussement simple, comme toute bonne magie. Les électrons semblent toujours tourner. Tous les électrons jamais observés, qu'ils se déplacent sur un atome de carbone dans votre ongle ou qu'ils se déplacent à toute vitesse dans un accélérateur de particules, ont l'air de faire constamment de petites pirouettes en se déplaçant dans le monde. Sa rotation ne semble jamais ralentir ou accélérer. Peu importe comment un électron est bousculé ou frappé, il semble toujours tourner à la même vitesse. Il possède même un petit champ magnétique, comme devrait le faire un objet en rotation doté d'une charge électrique. Naturellement, les physiciens appellent ce comportement "spin".

Mais malgré les apparences, les électrons ne tournent pas. Ils ne peuvent pas tourner. Prouver qu'il est impossible que les électrons tournent est un problème standard dans tout cours d'introduction à la physique quantique. Si les électrons tournaient suffisamment vite pour expliquer tout le comportement de rotation qu'ils affichent, leurs surfaces se déplaceraient beaucoup plus vite que la vitesse de la lumière (si tant est qu'ils aient des surfaces). Ce qui est encore plus surprenant, c'est que pendant près d'un siècle, cette contradiction apparente a été ignorée par la plupart des physiciens comme étant une autre caractéristique étrange du monde quantique, qui ne mérite pas qu'on s'y attarde.

Pourtant, le spin est profondément important. Si les électrons ne semblaient pas tourner, votre chaise s'effondrerait pour ne plus représenter qu'une fraction minuscule de sa taille. Vous vous effondreriez aussi - et ce serait le moindre de vos problèmes. Sans le spin, c'est tout le tableau périodique des éléments qui s'effondrerait, et toute la chimie avec. En fait, il n'y aurait pas de molécules du tout. Le spin n'est donc pas seulement l'un des meilleurs tours de magie des électrons, c'est aussi l'un des plus importants. Et comme tout bon magicien, les électrons n'ont jamais dit à personne comment ils faisaient ce tour. Mais aujourd'hui, une nouvelle explication du spin est peut-être en train de se profiler à l'horizon, une explication qui tire le rideau et montre comment la magie opère.

UNE DÉCOUVERTE VERTIGINEUSE

La rotation a toujours été une source de confusion. Même les premières personnes qui ont développé l'idée du spin pensaient qu'elle devait être fausse. En 1925, deux jeunes physiciens hollandais, Samuel Goudsmit et George Uhlenbeck, s'interrogeaient sur les derniers travaux du célèbre (et célèbre) physicien Wolfgang Pauli. Pauli, dans une tentative d'expliquer la structure des spectres atomiques et du tableau périodique, avait récemment postulé que les électrons avaient une "double valeur non descriptible classiquement". Mais Pauli n'avait pas dit à quelle propriété physique de l'électron sa nouvelle valeur correspondait, et Goudsmit et Uhlenbeck se demandaient ce que cela pouvait être.

Tout ce qu'ils savaient - tout le monde le savait à l'époque - c'est que la nouvelle valeur de Pauli était associée à des unités discrètes d'une propriété bien connue de la physique newtonienne classique, appelée moment angulaire. Le moment angulaire est simplement la tendance d'un objet en rotation à continuer de tourner. C'est ce qui fait que les toupies tournent et que les bicyclettes restent droites. Plus un objet tourne vite, plus il a de moment cinétique, mais la forme et la masse de l'objet ont aussi leur importance. Un objet plus lourd a plus de moment cinétique qu'un objet plus léger qui tourne aussi vite, et un objet qui tourne avec plus de masse sur les bords a plus de moment cinétique que si sa masse était concentrée en son centre.

Les objets peuvent avoir un moment angulaire sans tourner. Tout objet qui tourne autour d'un autre objet, comme la Terre qui tourne autour du soleil ou un trousseau de clés qui se balance autour de votre doigt sur un cordon, a un certain moment angulaire. Mais Goudsmit et Uhlenbeck savaient que ce type de moment angulaire ne pouvait pas être la source du nouveau nombre de Pauli. Les électrons semblent effectivement se déplacer autour du noyau atomique, retenus par l'attraction entre leur charge électrique négative et l'attraction positive des protons du noyau. Mais le moment angulaire que ce mouvement leur confère était déjà bien pris en compte et ne pouvait pas être le nouveau nombre de Pauli. Les physiciens savaient également qu'il existait déjà trois nombres associés à l'électron, qui correspondaient aux trois dimensions de l'espace dans lesquelles il pouvait se déplacer. Un quatrième nombre signifiait une quatrième façon dont l'électron pouvait se déplacer. Les deux jeunes physiciens pensaient que la seule possibilité était que l'électron lui-même tourne, comme la Terre qui tourne sur son axe autour du soleil. Si les électrons pouvaient tourner dans l'une des deux directions - dans le sens des aiguilles d'une montre ou dans le sens inverse - cela expliquerait la "bivalence" de Pauli.

Excités, Goudsmit et Uhlenbeck rédigent leur nouvelle idée et la montrent à leur mentor, Paul Ehrenfest. Ehrenfest, un ami proche d'Einstein et un formidable physicien à part entière, trouve l'idée intrigante. Tout en la considérant, il dit aux deux jeunes hommes enthousiastes d'aller consulter quelqu'un de plus âgé et de plus sage : Hendrik Antoon Lorentz, le grand manitou de la physique néerlandaise, qui avait anticipé une grande partie du développement de la relativité restreinte deux décennies plus tôt et qu'Einstein lui-même tenait en très haute estime.

Mais Lorentz est moins impressionné par l'idée de spin qu'Ehrenfest. Comme il l'a fait remarquer à Uhlenbeck, on sait que l'électron est très petit, au moins 3 000 fois plus petit qu'un atome - et on sait déjà que les atomes ont un diamètre d'environ un dixième de nanomètre, soit un million de fois plus petit que l'épaisseur d'une feuille de papier. L'électron étant si petit, et sa masse encore plus petite - un milliardième de milliardième de milliardième de gramme - il était impossible qu'il tourne assez vite pour fournir le moment angulaire que Pauli et d'autres recherchaient. En fait, comme Lorentz l'a dit à Uhlenbeck, la surface de l'électron devrait se déplacer dix fois plus vite que la vitesse de la lumière, une impossibilité absolue.

Défait, Uhlenbeck retourne voir Ehrenfest et lui annonce la nouvelle. Il demande à Ehrenfest de supprimer l'article, mais on lui répond qu'il est trop tard, car son mentor a déjà envoyé l'article pour publication. "Vous êtes tous les deux assez jeunes pour pouvoir vous permettre une stupidité", a dit Ehrenfest. Et il avait raison. Malgré le fait que l'électron ne pouvait pas tourner, l'idée du spin était largement acceptée comme correcte, mais pas de la manière habituelle. Plutôt qu'un électron qui tourne réellement, ce qui est impossible, les physiciens ont interprété la découverte comme signifiant que l'électron portait en lui un certain moment angulaire intrinsèque, comme s'il tournait, même s'il ne pouvait pas le faire. Néanmoins, l'idée était toujours appelée "spin", et Goudsmit et Uhlenbeck ont été largement salués comme les géniteurs de cette idée.

Le spin s'est avéré crucial pour expliquer les propriétés fondamentales de la matière. Dans le même article où il avait proposé son nouveau nombre à deux valeurs, Pauli avait également suggéré un "principe d'exclusion", à savoir que deux électrons ne pouvaient pas occuper exactement le même état. S'ils le pouvaient, alors chaque électron d'un atome tomberait simplement dans l'état d'énergie le plus bas, et pratiquement tous les éléments se comporteraient presque exactement de la même manière les uns que les autres, détruisant la chimie telle que nous la connaissons. La vie n'existerait pas. L'eau n'existerait pas. L'univers serait simplement rempli d'étoiles et de gaz, dérivant dans un cosmos ennuyeux et indifférent sans rencontrer la moindre pierre. En fait, comme on l'a compris plus tard, toute matière solide, quelle qu'elle soit, serait instable. Bien que l'idée de Pauli soit clairement correcte, la raison pour laquelle les électrons ne pouvaient pas partager des états n'était pas claire. Comprendre l'origine du principe d'exclusion de Pauli permettrait d'expliquer tous ces faits profonds de la vie quotidienne.

La réponse à cette énigme se trouvait dans le spin. On découvrit bientôt que le spin était une propriété de base de toutes les particules fondamentales, et pas seulement des électrons, et qu'il était étroitement lié au comportement de ces particules en groupes. En 1940, Pauli et le physicien suisse Markus Fierz ont prouvé que lorsque la mécanique quantique et la relativité restreinte d'Einstein étaient combinées, cela conduisait inévitablement à un lien entre le spin et le comportement statistique des groupes. Le principe d'exclusion de Pauli n'était qu'un cas particulier de ce théorème de la statistique du spin, comme on l'a appelé. Ce théorème est un "fait puissant sur le monde", comme le dit le physicien Michael Berry. "Il est à la base de la chimie, de la supraconductivité, c'est un fait très fondamental". Et comme tant d'autres faits fondamentaux en physique, le spin s'est avéré utile sur le plan technologique également. Dans la seconde moitié du XXe siècle, le spin a été exploité pour développer des lasers, expliquer le comportement des supraconducteurs et ouvrir la voie à la construction d'ordinateurs quantiques.

VOIR AU-DELÀ DU SPIN

Mais toutes ces fabuleuses découvertes, applications et explications laissent encore sur la table la question de Goudsmit et Uhlenbeck : qu'est-ce que le spin ? Si les électrons doivent avoir un spin, mais ne peuvent pas tourner, alors d'où vient ce moment angulaire ? La réponse standard est que ce moment est simplement inhérent aux particules subatomiques et ne correspond à aucune notion macroscopique de rotation.

Pourtant, cette réponse n'est pas satisfaisante pour tout le monde. "Je n'ai jamais aimé l'explication du spin donnée dans un cours de mécanique quantique", déclare Charles Sebens, philosophe de la physique à l'Institut de technologie de Californie. On vous le présente et vous vous dites : "C'est étrange. Ils agissent comme s'ils tournaient, mais ils ne tournent pas vraiment ? Je suppose que je peux apprendre à travailler avec ça". Mais c'est étrange."

Récemment, cependant, Sebens a eu une idée. "Dans le cadre de la mécanique quantique, il semble que l'électron ne tourne pas", dit-il. Mais, ajoute-t-il, "la mécanique quantique n'est pas notre meilleure théorie de la nature. La théorie des champs quantiques est une théorie plus profonde et plus précise."

La théorie quantique des champs est l'endroit où le monde quantique des particules subatomiques rencontre l'équation la plus célèbre du monde : E = mc2, qui résume la découverte d'Einstein selon laquelle la matière peut se transformer en énergie et vice versa. (La théorie quantique des champs est également à l'origine du théorème de la statistique du spin). C'est à partir de cette propriété que lorsque des particules subatomiques interagissent, de nouvelles particules sont souvent créées à partir de leur énergie, et les particules existantes peuvent se désintégrer en quelque chose d'autre. La théorie quantique des champs traite ce phénomène en décrivant les particules comme provenant de champs qui imprègnent tout l'espace-temps, même l'espace vide. Ces champs permettent aux particules d'apparaître et de disparaître, conformément aux règles strictes de la relativité restreinte d'Einstein et aux lois probabilistes du monde quantique.

Et ce sont ces champs, selon Sebens, qui pourraient contenir la solution à l'énigme du spin. "L'électron est habituellement considéré comme une particule", explique-t-il. "Mais dans la théorie quantique des champs, pour chaque particule, il existe une façon de la considérer comme un champ." En particulier, l'électron peut être considéré comme une excitation dans un champ quantique connu sous le nom de champ de Dirac, et ce champ pourrait être ce qui porte le spin de l'électron. "Il y a une véritable rotation de l'énergie et de la charge dans le champ de Dirac", dit Sebens. Si c'est là que réside le moment angulaire, le problème d'un électron tournant plus vite que la vitesse de la lumière disparaît ; la région du champ portant le spin de l'électron est bien plus grande que l'électron supposé ponctuel lui-même. Ainsi, selon Sebens, d'une certaine manière, Pauli et Lorentz avaient à moitié raison : il n'y a pas de particule qui tourne. Il y a un champ tournant, et c'est ce champ qui donne naissance aux particules.

UNE QUESTION SANS RÉPONSE ?

Jusqu'à présent, l'idée de Sebens a produit quelques remous, mais pas de vagues. Pour ce qui est de savoir si les électrons tournent, "je ne pense pas qu'il s'agisse d'une question à laquelle on puisse répondre", déclare Mark Srednicki, physicien à l'université de Californie à Santa Barbara. "Nous prenons un concept qui trouve son origine dans le monde ordinaire et nous essayons de l'appliquer à un endroit où il ne s'applique plus vraiment. Je pense donc que ce n'est vraiment qu'une question de choix, de définition ou de goût pour dire que l'électron tourne vraiment." Hans Ohanian, physicien à l'université du Vermont qui a réalisé d'autres travaux sur le spin des électrons, souligne que la version originale de l'idée de Sebens ne fonctionne pas pour l'antimatière.

Mais tous les physiciens ne sont pas aussi dédaigneux. Selon Sean Carroll, physicien à l'université Johns Hopkins et à l'Institut Santa Fe, "la formulation conventionnelle de notre réflexion sur le spin laisse de côté un élément potentiellement important". "Sebens est tout à fait sur la bonne voie, ou du moins fait quelque chose de très, très utile dans le sens où il prend très au sérieux l'aspect champ de la théorie quantique des champs." Mais, souligne Carroll, "les physiciens sont, au fond, des pragmatiques..... Si Sebens a raison à 100 %, les physiciens vous diront : "D'accord, mais qu'est-ce que cela m'apporte ?"

Doreen Fraser, philosophe de la théorie des champs quantiques à l'université de Waterloo, au Canada, se fait l'écho de ce point de vue. "Je suis ouverte à ce projet que Sebens a de vouloir forer plus profondément pour avoir une sorte d'intuition physique pour aller avec le spin", dit-elle. "Vous avez cette belle représentation mathématique ; vous voulez avoir une image physique intuitive pour l'accompagner." En outre, une image physique pourrait également déboucher sur de nouvelles théories ou expériences qui n'ont jamais été réalisées auparavant. "Pour moi, ce serait le test pour savoir si c'est une bonne idée."

Il est trop tôt pour dire si les travaux de M. Sebens porteront ce genre de fruits. Et bien qu'il ait rédigé un article sur la manière de résoudre la préoccupation d'Ohanian concernant l'antimatière, d'autres questions connexes restent en suspens. "Il y a beaucoup de raisons d'aimer" l'idée du champ, dit Sebens. "Je prends cela plus comme un défi que comme un argument massue contre elle."

Auteur: Becker Adam

Info: Scientific American, November 22, 2022

[ approfondissement ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Le processus d’encéphalisation
Parmi l’ensemble des animaux non-humains, les dauphins sont dotés du quotient encéphalique le plus élevé au monde, soit à peu près celui de l’être humain.
A ce petit jeu, d’ailleurs, le cachalot nous dépasse tous largement !
Une telle augmentation du volume cérébral, bien au-delà des simples besoins de la motricité ou de la sensorialité, est qualifiée "d’encéphalisation structurelle".
Ce phénomène n’est pas rare. Il semble que dès le Jurassique, des dinosauriens bipèdes de taille moyenne aient commencé à augmenter de manière encore timide leurs capacités cérébrales.
Au Tertiaire, les ancêtres des éléphants et des cétacés se sont lancés à leur tour dans la course au gros cerveau mais ce n’est qu’au Quaternaire, il y a de cela de trois à six millions d’années, que certains primates hominoïdes développent une boîte crânienne de type néoténique à fontanelles non suturées durant les premiers temps de l’enfance, afin de permettre une croissance ultérieure de l’un des cerveaux les plus puissants du monde.
Ce processus d’encéphalisation apparaît également chez certains oiseaux – corvidés, psittacidés – à peu près vers la même époque. A chaque fois, bien sûr, des comportements très élaborés sont toujours associés à un accroissement spectaculaire du tissu cérébral.
Une si curieuse convergence de formes, la survenance simultanée ou successive de tous ces "grands fronts", pose bien évidemment question en termes darwiniens.
Le ptérodactyle, la mouche, le colibri, la chauve-souris ont des ailes pour voler, la truite, l’ichtyosaure, le marsouin ont un corps fait pour nager, le grillon fouisseur et la taupe ont des pattes en forme de pelles pour creuser, etc.
Mais à quoi rime dès lors un vaste crâne et à quelle fonction est-il dévolu ?
Essentiellement à comprendre le monde et ceux qui le composent, en ce compris les membres de sa propre espèce, avec lesquels il faut sans cesse gérer une relation équilibrée.
Même les gros cerveaux les plus solitaires vivent en fait en société : tigres, baleines bleues, panthères, orangs-outans gardent des liens étroits, bien que distants ou différés, avec leur fratrie et leurs partenaires.
L’intelligence est à coup sûr l’arme suprême contre les aléas du monde, ses mutations incessantes, puisqu’elle permet notamment de gérer un groupe comme un seul corps mais aussi de pénétrer les lois subtiles qui sont à la base du mouvement des choses.
En augmentant d’un degré supérieur ces facultés par le moyen du langage, lequel conserve le savoir des générations mortes, l’homme et le cétacé ont sans doute franchi un nouveau pas vers une plus grande adaptabilité.
Le problème de l’humain, mais nous n’y reviendrons pas davantage, c’est qu’il ne s’est servi jusqu’à ce jour que d’une partie de son intelligence et qu’il se laisse ensevelir vivants dans ses propres déchets, et avec lui les reste du monde, pour n’avoir pas su contrôler sa propre reproduction ni la saine gestion de son environnement.
Intelligents ou non ? (Le point de vue de Ken Levasseur)
Dans un courrier CFN posté en avril 2003 relatif à l’utilisation de dauphins militaires en Irak, Ken Levasseur, l’un des meilleurs spécialistes actuels de cette question, a tenu à faire le point à propos de l’intelligence réelle ou supposée de ces mammifères marins. Aux questions que lui avait adressées un étudiant sur ce thème, Ken répond ici de manière définitive, sur la base de de son expérience et de ses intimes convictions.
Eu égard aux remarquables recherches menées par Ken depuis des années et au fait qu’il a travaillé longtemps aux côtés du professeur Louis Hermann, son point de vue n’est évidemment pas négligeable ni ses opinions sans fondements. On lira d’ailleurs sur ce site même son article en anglais relatif au cerveau du dauphin
Inutile de dire que le gestionnaire de ce site partage totalement le point de vue de Ken Levasseur, dont les travaux l’inspirent depuis de nombreuses années, au même titre que ceux de Wade Doak ou de Jim Nollman : tous ont en commun d’affirmer que les dauphins ne sont pas des animaux au sens strict mais bien l’équivalent marin de l’humanité terrestre.
Q- A quel niveau d’intelligence réelle les dauphins se situent-ils ? A celui du chien ? Du grand singe ? D’un être humain ?
R- Mon meilleur pronostic est qu’un jour prochain, nous pourrons prouver que la plupart des espèces de cétacés disposent d’une intelligence équivalente ou supérieure à celle d’un humain adulte.
Q- Quelles sont les preuves nous permettant d’affirmer que les dauphins sont intelligents ?
R- Il a été démontré depuis longtemps que les dauphins peuvent développer des capacités cognitives qui équivalent ou excèdent les possibilités mentales de l’être humain. Aujourd’hui, nous sommes à même de définir exactement en quoi consiste l’intelligence humaine. Une fois que nous parviendrons à définir l’intelligence d’une manière strictement objective et valable pour toutes les autres espèces, on permettra enfin aux cétacés de faire la preuve de la leur.
Q- Quelles preuves avons-nous que les dauphins ne sont PAS intelligents ?
R- Il n’y a aucune preuve scientifique qui tendrait à prouver que l’intelligence du dauphin serait située entre celle du chien et celle du chimpanzé (comme l’affirment les delphinariums et la marine américaine) .
Q- Est-ce que les dauphins possèdent un langage propre ?
R- La définition d’une "langue", comme celle de l’intelligence, repose sur des bases subjectives définies pour et par les humains. Une fois que nous pourrons disposer d’une définition plus objective de ce qu’est un langage, et que les recherches sur la communication des dauphins ne seront plus "classifiée" par les américains, il est fort probable que les chercheurs puissent enfin conduire les recherches appropriées et qu’ils reconnaissent que les dauphins disposent de langages naturels.
Q- Est-ce leur capacité à apprendre et à exécuter des tours complexes qui les rend plus intelligents ou non ?
R- La capacité du dauphin à apprendre à exécuter des tours complexes est surtout une indication de l’existence d’un niveau élevé des capacités mentales, interprétées comme synonymes d’une intelligence élevée.
Q- Jusqu’à quel point ont été menées les recherches sur les dauphins et leur intelligence ? Que savent vraiment les scientifiques à leur propos ?
R- La US Navy a "classifié" ses recherches sur les dauphins en 1967, au moment où l’acousticien Wayne Batteau est parvenu à développer des moyens efficaces pour communiquer avec des dauphins dressés. La communication et l’intelligence des dauphins constituent donc désormais des données militaires secrètes, qui ne peuvent plus être divulguées au public.
Q- Est-ce que les dauphins disposent d’un langage propre ? Y a t-il des recherches qui le prouvent ?
R- Vladimir Markov et V. M. Ostrovskaya en ont fourni la preuve en 1990 en utilisant la "théorie des jeux" pour analyser la communication des dauphins dans un environnement contrôlé et à l’aide de moyens efficaces. Il est donc très probable que les dauphins aient une langue naturelle.
Q- Les capacités tout à fait spéciales des dauphins en matière d’écholocation ont-elles quelque chose à voir avec leurs modes de communication?
R- A mon sens, les recherches futures fourniront la preuve que le langage naturel des cétacés est fondé sur les propriétés physiques de l’écholocation, de la même manière que les langues humaines se basent sur des bruits et des représentations.
Q- Quelle est VOTRE opinion à propos de l’intelligence des dauphins ?
R- Pendant deux ans, j’ai vécu à quinze pieds (1 Pied : 30 cm 48) d’un dauphin et à trente-cinq pieds d’un autre. À mon avis, les dauphins possèdent une intelligence équivalente à celle d’un être humain. Ils devraient bénéficier dès lors de droits similaires aux Droits de l’Homme et se trouver protégé des incursions humaines dans son cadre de vie.
Q- La ressemblance entre les humains et les dauphins a-t-elle quelque chose à voir avec leur intelligence commune ?
R- Les dauphins sont très éloignés des humains à de nombreux niveaux mais les ressemblances que nous pouvons noter sont en effet fondées sur le fait que les dauphins possèdent des capacités mentales plus élevées (que la plupart des autres animaux) et sont à ce titre interprétés en tant qu’intelligence de type humain.
Q- La grande taille de leur cerveau, relativement à celle de leur corps, est-elle un indicateur de leur haute intelligence ?
R- Le volume absolu d’un cerveau ne constitue pas une preuve d’intelligence élevée. Le coefficient encéphalique (taille du cerveau par rapport à la taille de corps) n’en est pas une non plus. Néanmoins, on pourrait dire que la taille absolue du cerveau d’une espèce donnée par rapport au volume global du corps constitue un bon indicateur pour comparer les capacités mentales de différentes espèces. Souvenons-nous par ailleurs que les cétacés ne pèsent rien dans l’eau, puisqu’ils flottent et qu’une grande part de leur masse se compose simplement de la graisse. Cette masse de graisse ne devrait pas être incluse dans l’équation entre le poids du cerveau et le poids du corps car cette graisse n’est traversée par aucun nerf ni muscle et n’a donc aucune relation de cause à effet avec le volume du cerveau.
Q- Est-ce que la capacité des dauphins à traiter des clics écholocatoires à une vitesse inouïe nous laisse-t-elle à penser qu’ils sont extrêmement intelligents ?
R- On a pu montrer que les dauphins disposaient, et de loin, des cerveaux les plus rapides du monde. Lorsqu’ils les observent, les humains leur semblent se mouvoir avec une extrême lenteur en émettant des sons extrêmement bas. Un cerveau rapide ne peut forcément disposer que de capacités mentales très avancées.
Q- Pensez-vous des scientifiques comprendront un jour complètement les dauphins?
R- Est-ce que nos scientifiques comprennent bien les humains? Si tout va bien, à l’avenir, les dauphins devraient être compris comme les humains se comprennent entre eux.
Q- Le fait que les dauphins possèdent une signature sifflée est-elle une preuve de l’existence de leur langage ?
R- Non. Cette notion de signature sifflée est actuellement mal comprise et son existence même est sujette à caution.
Q- Les dauphins font plein de choses très intelligentes et nous ressemblent fort. Est-ce parce qu’ils sont vraiment intelligents ou simplement très attractifs ?
R- La réponse à votre question est une question d’expérience et d’opinion. Ce n’est une question qui appelle une réponse scientifique, chacun a son opinion personnelle sur ce point.
Q- Pouvons-nous vraiment émettre des conclusions au sujet de l’intelligence des dauphins, alors que nous savons si peu à leur propos et qu’ils vivent dans un environnement si différent du nôtre ?
R- Jusqu’à présent, ce genre de difficultés n’a jamais arrêté personne. Chacun tire ses propres conclusions. Les scientifiques ne se prononcent que sur la base de ce qu’ils savent vrai en fonction des données expérimentales qu’ils recueillent.
Q- Est-ce que nous pourrons-nous jamais communiquer avec les dauphins ou même converser avec eux ?
R- Oui, si tout va bien, et ce seront des conversations d’adulte à adulte, rien de moins.
II. DAUPHIN : CERVEAU ET MONDE MENTAL
"Parmi l’ensemble des animaux non-humains, les dauphins disposent d’un cerveau de grande taille très bien développé, dont le coefficient encéphalique, le volume du néocortex, les zones dites silencieuses (non motrices et non sensorielles) et d’autres indices d’intelligence sont extrêmement proches de ceux du cerveau humain" déclare d’emblée le chercheur russe Vladimir Markov.
Lorsque l’on compare le cerveau des cétacés avec celui des grands primates et de l’homme en particulier, on constate en effet de nombreux points communs mais également des différences importantes :
– Le poids moyen d’un cerveau de Tursiops est de 1587 grammes.
Son coefficient encéphalique est de l’ordre de 5.0, soit à peu près le double de celui de n’importe quel singe. Chez les cachalots et les orques, ce même coefficient est de cinq fois supérieur à celui de l’homme.
– Les circonvolutions du cortex cervical sont plus nombreuses que celles d’un être humain. L’indice de "pliure" (index of folding) est ainsi de 2.86 pour l’homme et de 4.47 pour un cerveau de dauphin de taille globalement similaire.
Selon Sam Ridgway, chercheur "réductionniste de la vieille école", l’épaisseur de ce même cortex est de 2.9 mm en moyenne chez l’homme et de 1.60 à 1.76 mm chez le dauphin. En conséquence, continue-t-il, on peut conclure que le volume moyen du cortex delphinien (560cc) se situe à peu près à 80 % du volume cortical humain. Ce calcul est évidemment contestable puisqu’il ne tient pas compte de l’organisation très particulière du cerveau delphinien, mieux intégré, plus homogène et moins segmenté en zones historiquement distinctes que le nôtre.
Le fait que les cétacés possèdent la plus large surface corticale et le plus haut indice de circonvolution cérébral au monde joue également, comme on s’en doute, un rôle majeur dans le développement de leurs capacités cérébrales.
D’autres scientifiques, décidément troublés par le coefficient cérébral du dauphin, tentent aujourd’hui de prouver qu’un tel développement n’aurait pas d’autre usage que d’assurer l’écholocation. Voici ce que leur répond le neurologue H. Jerison : "La chauve-souris dispose à peu de choses près des mêmes capacités que le dauphin en matière d’écholocation, mais son cerveau est gros comme une noisette. L’outillage écholocatoire en tant que tel ne pèse en effet pas lourd. En revanche, le TRAITEMENT de cette même information "sonar" par les zones associatives prolongeant les zones auditives, voilà qui pourrait expliquer le formidable développement de cette masse cérébrale. Les poissons et tous les autres êtres vivants qui vivent dans l’océan, cétacés mis à part, se passent très bien d’un gros cerveau pour survivre et même le plus gros d’entre eux, le requin-baleine, ne dépasse pas l’intelligence d’une souris…"
La croissance du cerveau d’un cétacé est plus rapide et la maturité est atteinte plus rapidement que chez l’homme.
Un delphineau de trois ans se comporte, toutes proportions gardées, comme un enfant humain de huit ans. Cette caractéristique apparemment "primitive" est paradoxalement contredite par une enfance extrêmement longue, toute dévolue à l’apprentissage. Trente années chez le cachalot, vingt chez l’homme, douze à quinze chez le dauphin et environ cinq ans chez le chimpanzé.
Les temps de vie sont du même ordre : 200 ans en moyenne chez la baleine franche, 100 ans chez le cachalot, 80 chez l’orque, 78 ans chez l’homme, 60 chez le dauphin, sous réserve bien sûr des variations favorables ou défavorables de l’environnement.
Pourquoi un gros cerveau ?
"Nous devons nous souvenir que le monde mental du dauphin est élaboré par l’un des systèmes de traitement de l’information parmi les plus vastes qui ait jamais existé parmi les mammifères" déclare H.Jerison, insistant sur le fait que "développer un gros cerveau est extrêmement coûteux en énergie et en oxygène. Cet investissement a donc une raison d’être en terme d’évolution darwinienne. Nous devons dès lors considérer la manière dont ces masses importantes de tissu cérébral ont été investies dans le contrôle du comportement et de l’expérimentation du monde, ceci en comparaison avec l’usage qu’en font les petites masses cérébrales".
Un cerveau est par essence un organe chargé de traiter l’information en provenance du monde extérieur.
Les grands cerveaux exécutent cette tâche en tant qu’ensemble élaborés de systèmes de traitement, alors que le cerveau de la grenouille ou de l’insecte, par exemple, se contente de modules moins nombreux, dont la finesse d’analyse est comparativement plus simple.
Cela ne nous empêche pas cependant de retrouver des structures neuronales étonnamment semblables d’un animal à l’autre : lorsqu’un promeneur tombe nez à nez avec un crotale, c’est le même plancher sub-thalamique dévolue à la peur qui s’allume chez l’une et l’autre des ces créatures. Quant un chien ou un humain se voient soulagés de leurs angoisses par le même produit tranquillisant, ce sont évidemment les mêmes neuromédiateurs qui agissent sur les mêmes récepteurs neuronaux qui sont la cause du phénomène.
A un très haut niveau de cette hiérarchie, le traitement en question prend la forme d’une représentation ou d’un modèle du monde (Craik, 1943, 1967, Jerison, 1973) et l’activité neuronale se concentre en "paquets d’informations" (chunks) à propos du temps et de l’espace et à propos d’objets, en ce compris les autres individus et soi-même.
" Puisque le modèle du monde qui est construit de la sorte" insiste H.Jerison, "se trouve fondé sur des variables physiquement définies issues directement du monde externe et puisque ces informations sont traitées par des cellules nerveuses et des réseaux neuronaux structurellement semblables chez tous les mammifères supérieurs, les modèles du monde construits par différents individus d’une même espèce ou même chez des individus d’espèces différentes, ont de bonnes chances d’être également similaires".
Et à tout le moins compréhensibles l’un pour l’autre.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

Gaule 2023

Marianne : Comment avez-vous perçu le mouvement social de contestation à la réforme des retraites ?

E.T. :
 Je suis allé en manifestation. Du mouvement de contestation, j'ai constaté la masse, l’énergie, la jeunesse. Je tiens à dire ce que je pense de la responsabilité des uns et des autres concernant le désordre actuel, tout d'abord. Pour moi – je dis bien pour moi – mais ça sera aux juristes de trancher, il est clair qu'en faisant passer une réforme des retraites en loi de finances rectificative et par l'article 49.3, Emmanuel Macron et Élisabeth Borne sont sortis de la Constitution, du moins de l'esprit de la Constitution. Ce sera au Conseil constitutionnel de le dire. Mais il n'est pas certain que j'accepte l'avis du Conseil constitutionnel, s’il valide Macron-Borne.

J'ai vu les commentaires, le soir, sur BFM TV, LCI et d'autres, où l’on parlait de feux de poubelle. Pour moi, 100 % de la responsabilité de ces feux de poubelle incombe au président de la République française et la question de savoir si ce sont plus les black blocks ou les manifestants qui les ont allumés ne m'intéresse pas.

Pourquoi Emmanuel Macron entretiendrait-il ce désordre ?

Ce qui m'étonne le plus, moi, c'est que c'est un désordre qui ne sert à rien. En général, quand on gouverne par le désordre pour faire se lever le parti de l’ordre, c’est qu’on veut consolider un pouvoir fragile, ou bien pour reprendre le pouvoir. Mais Macron avait le pouvoir. La vérité de ce projet de réforme des retraites, en dehors du fait qu’il est injuste et incohérent, c’est qu’il est insignifiant et inutile par rapport aux problèmes réels de la société française.

Il y en a deux : la désindustrialisation et la chute du niveau de vie, liée à l’inflation. La question qui se pose et ce qu’il faut analyser vraiment, c’est la raison de cette mise en désordre de la France par son président, pour rien. Était-ce pour mener à bien un projet néolibéral, appelé "réformateur" ? Ou est-ce que c’est un problème lié à la personnalité de Macron lui-même ?

Commençons par l’hypothèse d’une réforme pensée comme juste par Macron. Vous la jugez néolibérale ?

La réalité du monde occidental, qui entre en guerre, c’est que le néolibéralisme, en tant qu’idéologie économiste active transformant la planète, est en train de mourir parce que ses effets ultimes se révèlent. La mortalité augmente aux États-Unis, et donc, logiquement, l’espérance de vie baisse. Les États-Unis ont perdu leur base industrielle, comme l’Angleterre. Le contexte historique général en ce moment, dans le monde américain, est plutôt aux réflexions sur le retour de l’État entrepreneur.

Macron avait pourtant engagé un tournant néo-protectionniste avec le Covid…

Non ! Je pense que Macron est néolibéral archaïque, et donc en grand état de déficit cognitif. Quand il parle de protectionnisme, il n’est même pas capable de dire s’il s’agit de protectionnisme national ou européen. Mais si tu ne fixes pas d’échelle, tu ne parles de rien. Quand il parle de réindustrialisation, il n’est pas capable de voir que la réindustrialisation implique deux actions simultanées. D’abord, l’investissement direct de l’État dans l’économie. C’est ça qui serait important actuellement, pas la réforme des retraites. Et puis des mesures de protection des secteurs qu’on refonde, par exemple dans les médicaments, dans la fabrication de tel ou tel bien essentiel à la sécurité informatique, alimentaire et énergétique de la France.

C’est d’ailleurs l’une des choses stupéfiantes dans ce débat sur les retraites : les politiques légifèrent – croient-ils – sur des perspectives à long terme d’équilibre. Ils spéculent sur des années de travail qui vont couvrir des décennies pour la plupart des gens, sans se poser la question de ce qui restera, non pas comme argent, comme signes monétaires, mais comme bien réels produits pour servir ces retraites en 2050 ou 2070.

Les retraites sont menacées, c’est vrai, mais par la désindustrialisation. Quel que soit le système comptable, si la France ne produit plus rien le niveau des retraites réelles de tout le monde va baisser. En dehors du fait qu'il a déjà commencé à baisser avec l'inflation.

Notre élite économique fait, selon vous, une fois de plus fausse route.

Notre président et les gens autour de lui, une sorte de pseudo-intelligentsia economico-politique, sont hors du monde. À une époque, on savait que pour faire la guerre, il fallait des biens industriels, des ingénieurs, des ouvriers. On redécouvre aujourd’hui à Washington et à Londres que tout ça n’existe plus assez ! Les faucons néoconservateurs croyaient qu’on pouvait faire la guerre à la Russie avec des soldats ukrainiens et à la Chine en prime, grâce au travail d’ouvriers… chinois ! La réalité du néolibéralisme, c'est qu’il a tout détruit au cœur même de son Empire. Le vrai nom du néolibéralisme, c'est "nihilisme économique". Je me souviens de phrases prophétiques de Margaret Thatcher disant "There is no such thing as society ", ou "There is no alternative" (TINA). Ces idioties ne sortent pas du libéralisme britannique, de John Locke ou d'Adam Smith, mais bien plutôt du nihilisme russe du XIXe siècle.

Cette réforme des retraites à contretemps est guidée par un phénomène d'inertie, au nom d’une idéologie qui est en train de mourir. Le discours néolibéral est un discours de la rationalité économique, un discours de la rationalité des marchés qui va permettre de produire, en théorie, plus d'efficacité. Je vais vous dire l’état de mes recherches sur le nihilisme néolibéral : cette passion de détruire les cadres de sécurité établis au cours des siècles par les religions, les États et les partis de gauche. Le nihilisme néolibéral détruit la fécondité du monde avancé, la possibilité même d’un futur. Et vous allez être fier de cette France dont les néolibéraux rient.

Vous faites partie de ceux qui voient dans les indices de fécondité l'avenir de l'Occident…

La vérité historique fondamentale actuelle, c’est que la rationalité individualiste pure détruit la capacité des populations à se reproduire et des sociétés à survivre. Pour faire des enfants, particulièrement dans les classes moyennes qui veulent pour eux des études longues, il faut l’aide de la collectivité, il faut se projeter dans un avenir qui ne peut apparaître suffisamment sûr que grâce à l’État. Il faut donc sortir de la rationalité économique à court terme. Sans oublier que décider d’avoir un enfant, ce n’est être ni rationnel, ni parfois même raisonnable, mais vivant. Je sais qu'il y a des gens qui s'inquiètent de l'augmentation de la population mondiale, mais moi, je suis inquiet de la sous-fécondité de toutes les régions "avancées". Même les États-Unis, même l'Angleterre, sont tombés à 1,6 enfant par femme. L’Allemagne est à 1,5, le Japon est à 1,3. La Corée, chouchou des majorettes intellectuelles du succès économique, le pays de Samsung et d'une globalisation économique assumée, est à 0,8. … Le plus efficace économiquement est le plus suicidaire.

C'est là que la France redevient vraiment intéressante. Elle a deux caractéristiques. C'est d’abord le pays qui fait le moins bien ses "réformes", qui refuse le plus le discours de la rationalité économique. Dont l'État n'est jamais dégrossi comme le rêvent les idéologues du marché. Mais c'est aussi le seul pays avancé qui garde une fécondité de 1,8. C'est le pays qui, en ne voulant pas toutes ces réformes, a refusé la destruction de certaines des structures de protection des individus et des familles qui permettent aux gens de se projeter dans le futur et d'avoir des enfants. Une retraite jeune, ce sont aussi des grands-pères et des grands-mères utilisables pour des gardes d’enfants ! Désolé d’apparaître en être humain plutôt qu’en économiste ! La grandeur de la France, c'est son refus de la rationalité économique, son refus de la réforme. Ce qui fait de la France un pays génial, c'est son irrationalité économique. On saura si Macron a réussi s'il arrive à faire baisser la natalité française au niveau anglo-américain, au-delà de son cas personnel de non-reproduction.

Comment ce dernier peut-il alors imposer une telle réforme si c'est contre l'intérêt du pays ?

Pourquoi un président de la République en si grand état de déficit cognitif peut-il imposer cette réforme injuste, inutile et incohérente par un coup de force institutionnel ou même un coup d’État ? Parce qu’il agit dans un système sociopolitique détraqué que je qualifierais même de pathologique. Il y avait une organisation de la République qui reposait sur une opposition de la droite et de la gauche, permise par un mode de scrutin adapté : le scrutin uninominal majoritaire à deux tours. Il faisait qu’au premier tour, on choisissait son parti de droite préféré, son parti de gauche préféré. Au deuxième tour, les deux camps se regroupaient et on avait une très belle élection.

Tout a été dévasté par la nouvelle stratification éducative de la France. La montée de l’éducation supérieure a produit une première division en deux de la société entre les gens qui ont fait des études et ceux qui n’en ont pas fait. C’est le modèle qui s’impose partout dans le monde développé. Mais il y a une autre dimension qui, il faut l’avouer, n’a pas grand-chose à voir : le vieillissement de la population et l’apparition d’une masse électorale âgée, qui établissent un troisième pôle, les vieux, dont je suis. Cette société stratifiée et vieillie a accouché de trois pôles politiques qui structurent le système. Je simplifie jusqu’à la caricature : 1) les éduqués supérieurs mal payés, plutôt jeunes ou actifs, se sont dirigés vers Mélenchon ou la Nupes ; 2) les moins éduqués mal payés, plutôt jeunes et actifs, vers le RN ; 3) les vieux, derrière Macron.

Ils sont les seuls à soutenir la réforme des retraites, d’ailleurs…

Ce système est dysfonctionnel, "détraqué", à cause de l’opposition viscérale entre les électorats contestataires de gauche et de droite, Nupes et RN. Ces deux électorats ont en commun leur niveau de vie, leur structure d’âge, mais sont séparés par l’éducation et par la question de la nation et de l’immigration. Cette fracture conduit à une incapacité des uns et des autres à se considérer comme mutuellement légitimes. Leur opposition permet à Macron et aux vieux de régner. Les retraités peuvent donc imposer une réforme des retraites qui ne les touche pas. Le problème, c’est qu’une démocratie ne peut fonctionner que si les gens opposés se considèrent comme certes différents, mais mutuellement légitimes.

La France vire-t-elle à la gérontocratie ?

On a enfermé les jeunes pour sauver les gens de ma génération. Comment la démocratie est-elle possible avec un corps électoral qui vieillit sans cesse ? Mais dénoncer un système gérontocratique ne suffit pas, d’un point de vue anthropologique en tout cas. Ce qu’il faut dénoncer, c’est une société qui ne peut survivre. Une société humaine ne peut pas se projeter dans l’avenir si on part du principe que les ressources doivent remonter vers les vieux plutôt que descendre vers les jeunes.

La question institutionnelle fondamentale, ce n’est pas tant le pouvoir disproportionné du président dans la conception de la Ve République, mais un système électoral inadapté dans un contexte où les deux forces d’opposition refusent d’exister l’une pour l’autre. Il y a deux solutions : la première est le passage au mode de scrutin proportionnel. Mais cela ne se produira pas car la gérontocratie en place a trop intérêt à ce que le système dysfonctionne. L’autre solution, c’est de trouver une voie politique qui permette le sauvetage de la démocratie : je propose un contrat à durée limitée réconciliant les électorats du Rassemblement national et de la Nupes pour établir le scrutin proportionnel.

Mais comment les réconcilier ?

Je considère vraiment que ce qui se passe est inquiétant. J’ai un peu de mal à imaginer que cela ne se termine pas mal. Il y a un élément d’urgence, et la simple menace de désistement implicite ou explicite entre les deux forces d’opposition calmerait beaucoup le jeu. Il ferait tomber le sentiment d’impunité de la bureaucratie qui nous gouverne.

Le problème fondamental n’est pas un problème entre appareils. Le problème fondamental est un problème de rejet pluriel. 1) L’électorat du Rassemblement national est installé dans son rejet de l’immigration, un concept qui mélange l’immigration réelle qui passe aujourd’hui la frontière et la descendance de l’immigration ancienne, les gosses d’origine maghrébine qui sont maintenant une fraction substantielle de la population française. 2) L’électorat de LFI et de la Nupes croit seulement exprimer un refus du racisme du RN mais il exprime aussi, à l’insu de son plein gré, un rejet culturel de l’électorat du RN. Il vit un désir à la Bourdieu de distinction. Simplifions, soyons brutal, il s’agit de sauver la République : il y a d’un côté une xénophobie ethnique et de l’autre une xénophobie sociale.

J’ai un peu de mal à imaginer que le sauvetage à court terme de la démocratie par l’établissement de la proportionnelle, via un accord à durée limitée entre Nupes et RN, puisse se passer d’un minimum de négociation sur la question du rapport à l’étranger. La seule négociation possible, la seule chose raisonnable d’ailleurs du point de vue de l’avenir du pays, c’est que les électeurs de la Nupes admettent que le contrôle des frontières est absolument légitime et que les gens du Rassemblement national admettent que les gens d’origine maghrébine en France sont des Français comme les autres. Sur cette base, à la fois très précise et qui admet du flou, on peut s’entendre.

Le contexte actuel reproduit-il celui de l’époque des Gilets jaunes ?

"La police tape pour Macron, mais vote pour Le Pen", disais-je en 2018 au moment des Gilets jaunes… Je m’inquiétais de la possibilité d’une collusion entre les forces de ce que j’appelais à l’époque l’aristocratie stato-financière et l’autoritarisme implicitement associé à la notion d’extrême droite. J’avançais le concept de macrolepénisme. Le Rassemblement national aujourd’hui est confronté à une ambivalence qu’il doit lever. Le contexte actuel reproduit le contexte de l’époque des Gilets jaunes, en effet : d’un côté le Rassemblement national passe des motions de censure contre la politique gouvernementale sur les retraites (et je trouve tout à fait immoral que LFI refuse de voter les motions du Rassemblement national sur ces questions), mais, d’un autre côté, c’est, comme d’habitude, la police qui cogne sur les manifestants, qui est utilisée par Macron, qui continue de voter à plus de 50 % pour le Rassemblement national ! J’ajoute que le choix par Marine Le Pen de l’opposition à la grève des éboueurs n’est pas de bon augure.

Le Rassemblement national ne peut pas rester dans cette ambiguïté : il suffirait d’un petit mot de modération de Marine Le Pen pour que le comportement de la police change. Ce que je dis est grave : en mode démocratique normal, une police doit obéir au ministre de l’Intérieur. Mais je ne vois pas pourquoi une police appliquerait aveuglément les consignes de violence d’un président qui est sorti de la Constitution. Nous avons besoin d’une réflexion approfondie des juristes. Il s’agit de protéger les institutions dans un contexte extrêmement bizarre. Le conflit entre jeunes manifestants et jeunes policiers nous ramène d’ailleurs à la question du rejet mutuel Nupes/RN. L’hostilité qu’encourage le gouvernement entre la police et les jeunes manifestants est une menace pour l’équilibre du pays. On ne peut pas vivre dans un pays avec deux jeunesses qui se tapent dessus. Il y a dans le style policier violent Macron-Borne-Darmanin quelque chose de pensé et de pervers.

Vous dites que la première raison de l’obstination du gouvernement pourrait venir de l’esprit de Macron directement…

J’ai parlé de système électoral, j’ai parlé de néolibéralisme. J’ai parlé du déficit cognitif néolibéral de Macron. Une autre chose doit être évoquée, non systémique, accidentelle, dont je n’aime pas parler mais dont on doit parler : une autre raison de la préférence de Macron pour le désordre et la violence est sans doute un problème de personnalité, un problème psychologique grave. Son rapport au réel n’est pas clair. On lui reproche de mépriser les gens ordinaires. Je le soupçonne de haïr les gens normaux. Son rapport à son enfance n’est pas clair. Parfois, il me fait penser à ces enfants excités qui cherchent la limite, qui attendent d’un adulte qu’il les arrête. Ce qui serait bien, ce serait que le peuple français devienne adulte et arrête l’enfant Macron.

La situation est extrêmement dangereuse parce que nous avons peut-être un président hors contrôle dans un système sociopolitique qui est devenu pathologique. Au-delà de toutes les théories, sophistiquées ou non, j’en appelle à tous les gens pacifiques, moraux et raisonnables, quel que soit leur niveau éducatif, leur richesse, leur âge, à tous les députés quel que soit leur parti, Renaissance compris, j’en appelle au Medef, aux pauvres, aux inspecteurs des finances, aux vieillards et aux oligarques de bonne volonté, pour qu’ils se donnent la main et remettent ce président sous contrôle. La France vaut mieux que ce bordel. 



 

Auteur: Todd Emmanuel

Info: Marianne.net, 5 mars 2023, Interview Par Etienne Campion

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste