Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 27
Temps de recherche: 0.0545s

polyglottes

Comment le cerveau des bilingues bascule d'une langue à une autre. Une nouvelle étude scientifique met en évidence la facilité déconcertante avec laquelle ce processus s'opère.

Le bilinguisme, soit l'utilisation régulière, au quotidien, de deux langues, n'est pas un phénomène marginal dans le monde. Même si les estimations varient, plusieurs sources démontrent que près de la moitié de la population mondiale serait bilingue. Cette compétence, qui offre selon certains scientifiques un avantage cognitif, a été étudiée dernièrement par Sarah Frances Phillips, linguiste et étudiante diplômée à l'université de New York, et sa conseillère Liina Pylkkänen. Elles se sont plus spécifiquement intéressées au cerveau des personnes bilingues pour comprendre les mécanismes qui s'opéraient lorsqu'elles passaient d'une langue à une autre. 

L'étude met en évidence à quel point le changement de langue, aussi appelé "commutation de code", est normal et naturel pour le cerveau des multilingues. L'organe ne fait face à aucune difficulté et utilise les mêmes schémas neurologiques que le cerveau des personnes monolingues.

Sarah Frances Phillips, qui a elle-même grandi dans une famille bilingue, détaille son travail. Elle explique que le bilinguisme n'est bien compris "ni d'un point de vue linguistique, ni d'un point de vue neurobiologique". Un champ libre s'ouvrait donc à elle. Pour mener son étude, elle a recueilli les données d'une vingtaine de participants bilingues anglais-coréen. Tous étaient capables de lire, écrire, parler et écouter les deux langues.

Plus de 700 essais ont été réalisés afin d'observer les changements qui s'opèrent dans le cerveau. La technique appelée magnétoencéphalographie (MEG) a été utilisée pour suivre l'activité cérébrale. "Nous avons présenté aux participants un sujet et un verbe intransitif", explique la linguiste. Des mots comme "glaçons" et "fondre" ont par exemple été proposés, puis "glaçons" et "sauter". 

Dans le premier cas, les cerveaux des monolingues et des bilingues entraient en forte activité (dans le lobe temporal antérieur gauche). Mais lorsque les mots n'avaient pas de lien, ce pic n'était pas observé. "Nous avons trouvé cela à la fois dans le changement de langue [entre l'anglais et le coréen] et dans l'orthographe [avec des caractères romains et coréens]. Nous manipulons donc le langage, mais aussi la représentation de ces mots", commente Sarah Frances Phillips. 

Le fait que le lobe temporal antérieur gauche soit capable de combiner ces concepts de manière significative sans ralentir, sans être affecté par l'origine des concepts ou la façon dont ils nous sont présentés, nous dit que notre cerveau est capable de faire ce genre de processus naturellement, détaille la linguiste.

"En bref le changement de code est très naturel pour les personnes bilingues", conclut-elle. Seule ombre au tableau pour les bilingues: lorsqu'ils doivent se contenter d'utiliser une seule langue, leur cerveau doit fournir davantage d'effort pour supprimer l'autre langue de sa base de données.

Auteur: Internet

Info: Scientific American, 3 décembre 2021 à 6h30, via Slate.fr

[ diglossie ] [ transposition ] [ traduction ]

 

Commentaires: 0

Ajouté à la BD par miguel

imagination

Quelle structure cérébrale est impliquée dans la compréhension visuelle de la causalité ? Aucune: c'est notre système visuel et non un mécanisme cognitif complexe qui nous permet de comprendre qu'un objet bouge à cause d'un autre objet (par exemple lorsqu'une boule de billard se déplace parce qu'une autre boule de billard l'a poussée). C'est ce que vient de découvrir une équipe internationale de chercheurs. A tout moment, nous réalisons des jugements visuels rapides de causalité - une balle renverse un verre sur une table -, de reconnaissance (entre par exemple une chose inerte ou vivante), ou de compréhension des intentions d'autrui. Ces raisonnements sont complexes, c'est pourquoi la plupart des scientifiques pensent que des structures cognitives importantes sont nécessaires pour les réaliser. D'un autre côté, ils se font tellement rapidement et sans effort, qu'ils pourraient finalement être "intuitifs". Les équipes de Patrick Cavanagh (Université Paris Descartes, CNRS), Rolfs, (Université Humboldt de Berlin), Michael Dambacher (Université de Constance) ont mis fin à cette question: la causalité peut être interprétée seulement par le système visuel. "Nous avons démontré que nos yeux peuvent évaluer rapidement une situation de cause à effet sans l'aide de notre système cognitif", explique Patrick Cavanagh, professeur dans le laboratoire de psychologie de la perception (Université Paris Descartes, CNRS, ENS). Deux composantes sont nécessaires pour définir une situation de causalité, par exemple une boule de billard en touche une autre qui se déplace ensuite. Les événements doivent se succéder rapidement et nécessitent généralement un contact. De plus, ils doivent être perçus comme un seul événement: plutôt que de voir un objet bouger puis s'arrêter et un autre objet se déplacer par lui-même, il y a une continuité du mouvement qui est transféré du premier objet au second. Pour tester comment le cerveau détermine la causalité, les scientifiques ont utilisé un procédé dit d'adaptation, souvent utilisé dans les études du mécanisme neuronal impliqué dans les facultés visuelles. Une expérience optique de ce type est bien connue: en fixant une tâche rouge, pendant quelques secondes, puis un mur blanc, on voit une tâche verte, l'oeil s'est "adapté" à la tâche rouge. Les chercheurs ont constaté qu'après une exposition répétée à des événements de causalité - ici collisions de deux objets - les épreuves test apparaissent comme ayant moins de lien de causalité. A l'inverse, l'adaptation avec des événements non-causals a eu peu d'effet. Cela indique que certains jugements de causalité seraient déterminés par le système visuel et ne feraient pas appel à des mécanismes cognitifs complexes. De plus, le test bouge quand les yeux bougent, exactement comme pour la tâche verte qui apparaît suite à l'exposition à une tâche rouge. Seul le processus visuel et non un mécanisme cognitif peut expliquer cette spécificité. "Il reste à distinguer les types de jugements qui demandent un processus cognitif particulier de ceux qui ne font appel qu'au système visuel" précise Martin Rolfs, professeur à l'Université Humboldt de Berlin.

Auteur: Dambacher Michael

Info: Visual Adaptation of the Perception of Causality, current Biology, 10 January 2013. Ecrit avec Martin Rolfs et Patrick Cavanagh

[ réflexion ] [ penser ] [ sciences ]

 

Commentaires: 0

psycho-sociologie

Comment le cerveau résout-il le "dilemme du volontaire" ?

Un problème important en sciences sociales est de savoir quand il faut ou non se sacrifier pour le groupe. Lors de décisions collectives, les individus décident souvent de contribuer ou non de leurs ressources à un bien public qui est effectivement implémenté si et seulement si un certain niveau de contribution est atteint.

Cependant, leur contribution est gaspillée s'il y a trop de volontaires, et le projet public échoue si pas assez de volontaires y contribuent. Ce dilemme social s'appelle le dilemme du volontaire. Un exemple classique de ce dilemme est le comportement adopté par les voisins de Kitty Genovese, une jeune femme assassinée en bas de son immeuble sans qu'aucun voisin n'intervienne alors qu'ils avaient entendu ses appels au secours (chacun pensant que d'autres contribueraient à la secourir).

Dans le dilemme du volontaire, l'utilité de la décision de l'un dépend de la décision des autres. Lorsque de telles décisions collectives sont prises à plusieurs reprises au sein d'un même groupe, il est donc crucial d'actualiser sa croyance relative à la décision des autres après chaque interaction. En particulier, le cerveau doit calculer non seulement le bénéfice supplémentaire attendu de l'interaction immédiate, mais également le bénéfice potentiel que le groupe peut tirer des récompenses collectives des interactions sociales restantes après l'interaction en cours. Le cerveau pondère ensuite ces utilités individuelles et collectives pour choisir la stratégie optimale afin de maximiser les bénéfices totaux lors d'interactions sociales.

Ici, les chercheurs ont utilisé l'imagerie cérébrale et le jeu du dilemme du volontaire dans lequel les participants prenaient des décisions avec les mêmes membres d'un groupe à plusieurs reprises lors d'interactions sociales répétées. Le groupe n'obtenait des récompenses que lorsque qu'un certain nombre spécifique de membres consacraient leurs ressources. Une telle règle incitait les individus à prendre des décisions sur le moment où ils devaient ou non engager leurs ressources. Chaque membre du groupe assignait donc des probabilités spécifiques à des stratégies de contribuer ou pas, et la décision optimale variait de manière dynamique en fonction de sa croyance en la décision potentielle des autres.

Malgré l'omniprésence de la prise de décision collective dans la société, la façon dont le cerveau calcule ces utilités individuelles et de groupe reste peu comprise. Les résultats de cette recherche montrent que le cerveau calcule les utilités individuelles et collectives de contribuer ou non dans des régions cérébrales distinctes. Une région antérieure du cerveau, le cortex préfrontal ventromédial calcule l'utilité individuelle tandis que le cortex frontopolaire calcule l'utilité collective. De cette façon, la valeur de chaque état lors des interactions futures est mis à jour en fonction des changements de la croyance quant à la décision d'autres.

Ces résultats permettent de comprendre les mécanismes cérébraux sous-jacents aux décisions collectives stratégiques. Cette étude a permis d'identifier les mécanismes cérébraux engagés lors de décisions collectives de contribuer ou pas à un bien public.

Auteur: Internet

Info: traduit et publié par Adrien le 22/11/2019, Source: CNRS INSB. Source A : Neural computations underlying strategic social decision-making in groups. Park, S.A., Sestito, M., Boorman, E.D, Dreher, J.C.

[ PNL ] [ égoïsme ] [ altruisme ] [ éthologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

neuro psychologie

Pourquoi notre cerveau nous pousse à détruire la planète et comment l’en empêcher.
A l’instar de "Biologie du Pouvoir" et de "La Nouvelle Grille", "Le Bug Humain" a pour ambition de trouver dans le fonctionnement même de notre cerveau des mécanismes qui expliquent nos comportements et nos choix à l’échelle individuelle et sociale et en quoi ces mêmes mécanismes sont responsables de notre déni devant la catastrophe écologique qui arrive à grands pas.
Mais contrairement à ses deux prédécesseurs, Le Bug Humain ne s’avance pas jusqu’à proposer une solution politique claire. Une frilosité que l’on regrettera.

Le constat est édifiant : L’humanité vit largement au dessus de ses moyens et ne semble pas prendre la réelle mesure des conséquences d’une telle surconsommation. A qui la faute ? Au striatum. Cette partie de notre cerveau a pour rôle de récompenser en dopamine des comportements qui favorisent la survie et la diffusion du patrimoine génétique : Se nourrir, avoir des relations sexuelles, le goût du moindre effort, l’utilité ou rang social et l’information. Si ces fonctions du striatum ont permises à l’Homo Sapiens de survivre et de croitre dans un environnement hostile et de rareté, il n’est plus adapté à nos sociétés d’abondance sécurisées. Il devient même dangereux quand il est confronté à des technologies telles que les réseaux sociaux. Car lorsque l’on publie ses photos de vacance sur Facebook ou qu’on se fend d’une réplique cinglante sur Twitter, nous donnons de l’importance aux likes et autres retweets qui vont répondre à la fois à notre besoin de reconnaissance sociale et à notre attirance vers le moindre effort puisque nous n’avons plus besoin d’agir en société ou au travail mais à cliquer sur quelques icônes pour nous situer socialement :

"Si vous obtenez moins de likes que ce que vous attendiez après avoir modifié votre profil, votre striatum s’éteint et votre estime de soi chute; si vous obtenez plus de likes que vous ne le prévoyiez, ce même striatum produit de violentes décharges de dopamine qui vous apporte une bouffée de bien-être. Cela se traduit par une mise à jour de votre estime de soi au sien de vos archives personnelles, lesquelles sont tenues par une zone de votre cerveau localisée deux centimètres en retrait de votre front. Cette zone cérébrale appelée cortex préfrontal ventromédian va en tirer des conclusions sur ce que vous valez à vos propres yeux. Si vous venez d’obtenir une récompense, [il] fait monter d’un cran votre estime de soi. Si vous avez reçu une punition, il la revoit à la baisse. Tout part de ce principe interne de recherche d’approbation par le striatum, une partie de nous-même qui nous enjoint constamment de faire face au jugement d’autrui, en quête de reconnaissance."

Pour autant, Le Bug Humain ne nous livre pas un déterminisme simpliste qui ferait du striatum tel qu’il est décrit le seul facteur déterminant de tous nos comportements. En prenant l’exemple de la prédominance des comportements altruistes chez les femmes par rapport aux hommes, Bohler illustre le concept de "conditionnement opérant". Si les femmes voient leurs comportements altruistes mieux récompensés par leur striatum c’est parce qu’elles ont appris à être altruistes. On leur a signifié dès leur plus jeune âge que le partage était une bonne chose. Le conditionnement socioculturel peut donc, dans une certaine mesure, orienter le système de récompense de notre cerveau.

S’il manque de témérité politique, Le Bug Humain a tout de même le mérite de vulgariser efficacement certaines connaissances et de nous alerter sur des problèmes intrinsèquement liés aux réseaux sociaux, au pouvoir et sur notre capacité à prendre conscience des conséquences de notre activité sur Terre tout en évitant les travers des déterminismes simplistes, qu’ils soient uniquement génétiques ou uniquement socioculturels.

Auteur: Internet

Info: A propos de Le Bug Humain de Sébastien Bohler (2019), Posted https://refractairejournal.noblogs.org 27/02/2019 by REFRACTAIRE

[ humains virus terrestres ] [ récompense ] [ motivation ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Les dauphins ne dorment que d’un oeil
Les dauphins ont développé un remarquable mécanisme d’adaptation au milieu océanique qui leur permet de ne faire "dormir" qu’une moitié de leur cerveau à la fois.
"Chez le dauphin, la respiration est un acte volontaire, et non réflexe, comme chez l’homme (un dauphin anesthésié meurt).
Pour arriver ainsi à "dormir tout en restant éveillé", le dauphin "éteint" un de ses hémisphères cérébraux, tandis que l’autre moitié du cerveau assure le contrôle des fonctions vitales et, en premier lieu, la respiration, explique Jon Kershaw, responsable animalier au parc Marineland, à Antibes.
Durant ces périodes de sommeil dit "unihémisphérique", le métabolisme se ralentit et le cétacé ne bouge quasiment plus. les dauphins endormis peuvent ainsi être aperçus, flottants à la surface, un oeil ouvert et une nageoire qui dépasse de l’eau. Ensuite, ils changent de côté, "déconnectent" l’autre moitié de leur cerveau et ferment l’autre oeil.
Le "demi-cerveau" éveillé peut ainsi assurer la position idéale du corps pour se maintenir en surface et contrôler l’ouverture/fermeture de l’évent.
Ce "sommeil unilatéral" a pu être établi en laboratoire. Les chercheurs ont pu mesurer des ondes cérébrales lentes sur l’hémisphère "endormi", tandis que l’autre restait éveillé (ondes rapides). Vingt minutes plus tard, le schéma s’inversait.
Les dauphins dorment environ huit heures par jour de cette façon, par tranches de quelques minutes à deux heures. "En fait, on ne sait pas vraiment s’ils dorment ou s’ils se reposent tout simplement car dès qu’on arrive, les dauphins se réveillent d’un coup, pas comme les otaries qui émergent plus difficilement", souligne Jon Kershaw.
En captivité, les soigneurs du Marineland peuvent observer ces phases de demi-sommeil, notamment lors des périodes de surveillance de nuit lorsqu’un bébé est né chez les dauphins Tursiops du parc. "On les voit doucement dériver à la surface du bassin, surtout entre deux heures et cinq heures du matin", poursuit le responsable.
Une récente étude de neurobiologistes de l’université de Californie (UCLA) a montré que les jeunes dauphins, eux, restent éveillés 24 heures sur 24 durant leurs premières semaines. Les mères surveillent en continu les petits et ne dorment donc pas non plus. Un constat qui va à l’encontre des théories admises jusqu’à ce jour sur le sommeil et le développement des mammifères qui sont de gros dormeurs à la naissance.
Il faudra plusieurs mois pour que le bébé dauphin adopte le rythme de vie normal des cétacés, soit cinq à huit heures de sommeil par jour, et que la maman insomniaque puisse enfin s’accorder quelques moments de repos.
Cette adaptation écologique des mammifères marins est remarquable. L'évolution a dû choisir entre le dilemme de rester éveillé pour respirer ou de mourir en dormant. Chez la baleine globicéphale, certains dauphins d'eau douce ou de milieu marin et chez un sirénien (dugong), le sommeil est unilatéral. L'EEG d'un hémisphère présente des ondes lentes alors que l'oeil controlatéral est fermé, tandis que l'EEG de l'autre hémisphère présente une activité rapide caractéristique (et que l'oeil controlatéral est ouvert). En général, un épisode de sommeil unilatéral dure 20 à 30 minutes et vice versa. Ces animaux peuvent ainsi contrôler leur respiration avec l'hémisphère éveillé. Bien qu'ils présentent des signes de sommeil unilatéraux évidents au point de vue EEG, les dauphins peuvent continuer à nager et ils n'arrêtent jamais leurs mouvements.
Il n'a pas été possible de prouver l'existence de sommeil paradoxal chez les dauphins. Cependant, on peut se demander si des périodes de sommeil paradoxal unilatérales ne pourraient pas coexister avec un éveil controlatéral car les autres signes spécifiques du sommeil paradoxal pourraient ne pas apparaître chez ces animaux qui n'ont pas de mouvements oculaires. L'absence possible de sommeil paradoxal chez les cétacé représente une des énigmes les plus importantes de la phylogenèse du sommeil. Il ne semble pas que cela soit dû à la niche écologique où vit le dauphin puisque le sommeil paradoxal peut être présent chez certains phoques quand ils dorment, non seulement à terre mais aussi dans l'eau.

Auteur: Internet

Info:

[ assoupis ] [ songes ]

 

Commentaires: 0

thérapie

Musique du cerveau - chaque cerveau a une bande sonore, probablement plusieurs. Pouvons-nous la faire travailler pour nous ?
Chaque cerveau a une bande sonore. Son tempo et tonalité changent, selon l'humeur, l'armature de l'esprit et autres dispositifs du cerveau lui-même. Quand cette bande sonore est enregistrée et rejouée - avec les premiers secours, ou les pompiers - elle peut affiner leurs réflexes pendant une crise, et calmer leurs nerfs après.
Lors de la dernière décennie, l'influence de la musique sur le développement cognitif et les études, avec le bien-être émotif, est devenue un champ très couru d'étude scientifique. Pour explorer la pertinence potentielle de la musique avec ces réponses d'urgence, le Dept of Homeland Security's Science & Technology Directorate (S&T) a commencé une étude sous forme d'entrainement neurologique appelée "musique de cerveau" qui utilise de la musique créée à l'avance à partir des propres ondes cérébrales des auditeurs afin de les aider à traiter des maux comme l'insomnie, la fatigue, et les maux de tête provenant d'environnements stressants. Le concept de "musique de cerveau" est d'utiliser la fréquence, l'amplitude, et la durée de sons musicaux pour déplacer le cerveau d'un état impatient vers un état plus détendu.
"La tension vient d'une réponse d'urgence au travail, aussi nous sommes intéressés à trouver des moyens pour aider les ouvriers à rester au top de leur job au travail et d'obtenir un repos de qualité quand ils subissent la pression" dit le manager du S&T Program Robert Burns. "notre but est de trouver de nouveaux moyens pour aider les gens des premiers secours à exécuter leurs tâche au meilleur niveau possible, sans augmenter les tâches, la formation, ou leur niveaux de stress."
Si le cerveau "compose" la musique, le premier travail des scientifiques et d'"attraper" les notes, et c'est exactement ce que le Human Bionics LLC of Purcellville fait. Chaque enregistrement est converti en deux compositions musicales uniques, conçues pour déclencher les réponses naturelles du corps, par exemple en améliorant la productivité au travail, ou pour aider à s'ajuster à des horaires changeant constamment au travail.
Les compositions sont médicalement démontrées comme favorisant un de ces deux états mentaux chez chaque individu : la relaxation - pour réduire le stress et améliorer le sommeil ; et la vigilance - pour améliorer la concentration et la prise de décision. Chaque musique de 2-6 minutes est une composition exécutée sur un instrument simple, habituellement un piano. La musique de relaxation peut ressembler à "une sonate mélodique genre Chopin," tandis que la partie pour la vigilance peut avoir "plutôt le genre Mozart" dit Burns. (il semble donc qu'il y ait un génie classique - ou peut-être deux - en chacun de nous. Écouter une musique d'alerte instrumentale ici : www.dhs.gov/xlibrary/multimedia/snapshots/st_brain_music_active.mp3.
Après que leurs ondes cérébrales aient été mises en musique, on donne à chaque personne un programme d'écoute spécifique, personnalisé à son environnement et besoins de travail. Si elle est utilisée correctement, la musique peut amplifier la productivité et les forces, ou déclencher des réponses naturelles du corps à l'effort.
La musique créée par le Human Bionics LLCest testée comme partie du programme de S&T Readiness Optimization Program (ROP), est un programme de bien-être qui combine l'enseignement de la nutrition et l'entrainement cérébral afin d'évaluer une population de gens de premier secours, d'agents fédéraux, de la police, et des sapeurs-pompiers. Un groupe choisi de sapeurs-pompiers locaux sera le premier à participer au projet.
Ce composant de "musique de cerveau" ou dispositif de protection en cas de renversement, est dérivé d'une technologie brevetée et développée à l'université de Moscou pour employer les ondes cérébrales comme mécanisme de rétroaction afin de corriger certaines conditions physiologiques.
Dans les termes de John Locke, le philosophe britannique, la "musique de cerveau" apporterait une nouvelle signification à son expression célèbre :"un esprit sain dans un corps sain, constitue une courte, mais complète description, de l'état de bonheur en ce monde."
Reste alors Cervantes, qui a écrit : "Celui qui chante effraye et éloigne ses ennuis."

Auteur: Internet

Info:

 

Commentaires: 0

fin de vie

L'augmentation de l'activité cérébrale chez les mourants pourrait être un signe  mesurable d'expérience de mort imminente

Des chercheurs ont constaté que deux des quatre patients comateux avaient des ondes cérébrales qui s'apparentaient à la conscience après avoir été débranchés de leur respirateur artificiel.

(Photo d'un cerveau schématisé traversé par des ondes) En lisant les ondes cérébrales, les chercheurs ont confirmé l'idée selon laquelle les mourants peuvent voir leur vie défiler devant leurs yeux ou vivre des expériences extracorporelles. 

Certaines personnes ayant survécu à un arrêt cardiaque, issues de milieux culturels et religieux différents, ont fait état d'expériences de mort imminente. Il peut s'agir de la sensation de quitter son corps, d'une lumière vive au bout d'un tunnel ou de souvenirs d'événements passés. Aujourd'hui, les chercheurs avancent à grands pas vers une explication scientifique de ces événements.

Dans une étude publiée lundi dans les Proceedings of the National Academy of Sciences, des chercheurs rapportent que deux parmie quatre patients comateux en fin de vie ont connu une poussée d'activité cérébrale qui s'apparente à la conscience après avoir été débranchés de leur respirateur et que leur cœur e soit arrrêté.

Ces résultats indiquent que les scientifiques ont encore des choses à apprendre sur le comportement du cerveau au passage de la mort. L'étude "suggère que nous sommes en train d'identifier un marqueur de la conscience lucide". Tel l'explique Sam Parnia, pneumologue à l'université de New York, qui n'a pas participé à la recherche,.à Sara Reardon, de Science.

Les scientifiques ne savent pas vraiment pourquoi les expériences de mort imminente se produisent. Ces phénomènes mystérieux " représentent un paradoxe biologique qui remet en question notre compréhension fondamentale du cerveau mourant, dont on pense généralement qu’il ne fonctionne pas dans de telles conditions ", selon l’article.

Mais des travaux antérieurs ont également montré une activité cérébrale accrue en fin de vie. Dans une étude réalisée sur des rats en 2013, Jimo Borjigin, co-auteur de la nouvelle étude et neuroscientifique à l'Université du Michigan, a montré  que le cerveau des rongeurs produisait des poussées d'ondes gamma pendant 30 secondes après l'arrêt de leur cœur. Les ondes gamma sont des ondes cérébrales rapides associées à l'attention, à la mémoire de travail et à la mémoire à long terme. Elles indiquent donc, mais ne prouvent pas, que les rats auraient pu être conscients, écrit Stephanie Pappas  dans Live Science. De plus, une étude de 2022 a révélé qu’une personne décédée d’une crise cardiaque alors que son activité cérébrale était mesurée avait également une activité d’ondes gamma après son arrêt cardiaque.

La nouvelle recherche portait sur quatre patients décédés alors que leur activité cérébrale était surveillée par électroencéphalographie (EEG). Tous étaient dans le coma et étaient considérés comme ne pouvant bénéficier d’une assistance médicale, écrit  Hannah Devlin du Guardian. Leurs familles avaient donné la permission aux médecins de retirer les patients du système de réanimation.

Mais les mesures de l'activité cérébrale de deux des patients ont montré des augmentations des ondes gamma après coup. Les surtensions duraient quelques minutes et étaient parfois très fortes. "C'était incroyablement élevé", a déclaré Borjigin à  Clare Wilson du New Scientist .

Les chercheurs ont notamment observé des signaux intenses dans une zone du cerveau qui peut être active lorsque les personnes ont des expériences ou des rêves hors du corps. "Si cette partie du cerveau s'illumine, cela signifie que le patient voit quelque chose, peut entendre quelque chose et qu'il peut ressentir des sensations hors du corps", explique Borjigin à Issam Ahmed de l'Agence France-Presse (AFP).

Les résultats pourraient conduire à des investigations plus approfondies sur le cerveau mourant et sur la conscience lors d'un arrêt cardiaque, écrivent les auteurs.

"Cet article est vraiment important pour le domaine et pour le domaine de la conscience en général", a déclaré à Science Charlotte Martial, scientifique biomédicale qui étudie les expériences de mort imminente à l'Université de Liège en Belgique et qui n'a pas contribué à l'étude .

Il semble clair que cette activation des ondes gamma doit être confirmée chez davantage de patients.

"Plus nous aurons de résultats cohérents, plus il y aura de preuves qu'il s'agit probablement d'un mécanisme qui se produit au moment du décès", a déclaré à Live Science Ajmal Zemmar, neurochirurgien à l'Université de Louisville Health et co-auteur de l'étude de 2022. "Et si nous pouvons localiser cela à un seul endroit, ce sera encore mieux."

 

Auteur: Internet

Info: https://www.smithsonianmag.com/, Will Sullivan, May 5, 2023

[ e.m.i ] [ trépas ] [ pendant ] [ grand passage ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

Notre cerveau: un chaos bien organisé. Une équipe de l'UNIGE décrypte un des mécanismes de la conscience Déchiffrer le mystère de la conscience est le défi majeur des neurosciences actuelles. Dans ce contexte, l'équipe vient de mettre en lumière une caractéristique importante de la pensée consciente. Grâce aux technologies de pointe en neuroimagerie du Brain & Behaviour Laboratory (BBL) et à des méthodes d'analyses mathématiques, cette équipe a montré que la pensée consciente peut se décomposer en une succession de micro-états cérébraux ou "atomes de la pensée". La séquence temporelle de ces micro-états n'est ni aléatoire, ni déterminée, mais chaotique, ce qui signifie qu'elle a une structure, mais qui ne peut pas être anticipée. Cette organisation chaotique de l'activité cérébrale apparaît comme la clef permettant au cerveau de réagir rapidement à des événements inattendus. Cette étude, qui fait l'objet d'une publication dans la revue PNAS, constitue un pas en avant sur la piste de la compréhension de la conscience, ainsi que de certaines maladies mentales. Le fonctionnement de la conscience reste une question encore très mal comprise des scientifiques. Beaucoup ont essayé d'en saisir les fondements en élaborant des modèles théoriques, mais peu ont réellement tenté d'en comprendre l'organisation cérébrale à partir de mesures de l'activité neuronale. Les prof. Dimitri Van De Ville et Christoph Michel, de la Faculté de médecine et du Centre de neurosciences de l'UNIGE, en collaboration avec l'Institut de Bio-ingénierie de l'Ecole polytechnique fédérale de Lausanne (EPFL), ont mis en place une expérience pour mieux saisir comment la pensée spontanée et consciente s'organise. En effet, les chercheurs ont mesuré l'activité cérébrale de volontaires en utilisant simultanément deux méthodes de neuroimagerie du Brain & Behaviour Laboratory (BBL) de l'UNIGE: l'électro-encéphalographie (EEG), qui permet d'obtenir des mesures à des échelles de temps de l'ordre de la milliseconde, et l'imagerie par résonance magnétique fonctionnelle (IRMf), qui permet de suivre l'activité du cerveau sur des échelles de temps de l'ordre de la seconde. Durant les enregistrements, les volontaires devaient laisser libre cours à leurs pensées, sans se focaliser sur une idée particulière. Les signaux provenant de ces enregistrements ont été analysés à l'aide d'outils mathématiques. Les atomes de la pensée A la suite de ces expériences, les scientifiques ont d'abord remarqué que l'activité cérébrale s'organise en une succession de micro-états. Ces micro-états, considérés comme les "atomes de la pensée", sont les éléments constitutifs de la cognition, un peu comme des "morceaux" de pensée. Chaque micro-état correspond à une configuration particulière de l'activité des neurones dans le cerveau. Les chercheurs ont mis en évidence quatre micro-états distincts qui correspondent aux aspects visuels, auditifs, introspectifs et attentionnels de la pensée. Une pensée apparaît donc comme une alternance de composantes visuelles, auditives, introspectives et attentionnelles. Des fractales dans notre cerveau En outre, en appliquant une analyse mathématique avancée sur les mesures faites au moyen de l'EEG et de l'IRMf, les chercheurs ont fait une découverte surprenante: les atomes ou morceaux de pensée se succèdent avec une structure temporelle semblable aux deux échelles de temps. La même structure est ainsi observée tant à l'échelle de l'ordre du dixième de seconde (avec l'EEG) qu'à celle de l'ordre de la dizaine de secondes (avec IRMf). Cette propriété est la caractéristique principale des fractales dans la théorie du chaos. Un objet fractal présente le même motif lorsqu'il est regardé au microscope, à la loupe ou à l'oeil nu. Il semblerait que la durée des micro-états joue un rôle prédominant dans cette organisation fractale de la pensée. "Prenons l'analogie du livre dans lequel les lettres représentent les atomes de la pensée. Ceux-ci se combinent pour former des mots, qui eux-mêmes se combinent pour former des phrases ; les phrases se combinent en paragraphes, et ainsi de suite jusqu'à obtenir un livre, tout cela avec toujours les mêmes règles syntaxiques" explique Christoph Michel, un des auteurs de l'étude. "Ce que nous avons mis en évidence, c'est une syntaxe de la pensée". Fonctionnel grâce au chaos Ce serait donc grâce à cette organisation "chaotique" de la pensée que le cerveau peut se réorganiser et s'adapter très rapidement selon les besoins. Des perturbations dans les micro-états pourraient être à l'origine de certaines maladies mentales. Par exemple, on a observé chez les schizophrènes des micro-états de durée plus courte que la normale, suggérant la présence de pensées inabouties. Suite à cette découverte, les chercheurs vont maintenant pouvoir s'attacher à comprendre cette syntaxe neuronale chez des patients neurologiques et chez des sujets sains qui subissent un changement de l'état de conscience, comme pendant le sommeil.

Auteur: Internet

Info: Université de Genève 21 octobre 2010

[ réflexion ] [ hologramme ] [ désordre ] [ citation s'appliquant à ce logiciel ]

 

Commentaires: 0

extension

La conscience humaine pourrait être un effet de l’entropie 

Une nouvelle étude suggère que la conscience pourrait être une caractéristique émergente découlant de l’effet d’entropie, soit le mécanisme physique faisant que le désordre au sein de tout système ne peut faire qu’augmenter, et par le biais duquel le cerveau maximiserait les échanges d’informations. Cette conclusion a été déduite de l’analyse de l’activité cérébrale de patients épileptiques ou non, indiquant que les états d’éveil normaux (ou conscients) sont associés à des valeurs entropiques maximales.

En thermodynamique, l’entropie se traduit par le passage inéluctable d’un système d’un agencement ordonné à désordonné. La valeur entropique est le niveau de désorganisation de ce système. Les physiciens suggèrent qu’après le Big Bang, l’Univers est progressivement passé d’un état entropique faible à élevé et qu’à l’instar du temps, l’entropie ne peut qu’augmenter au sein d’un système. De leur côté, les neurobiologistes estiment que le principe est transposable à l’organisation de nos connexions neuronales.

La question est de savoir quel type d’organisation neuronale sous-tend les valeurs de synchronisation observées dans les états d’alerte normaux ou non. C’est ce que des chercheurs de l’Université de Toronto et de l’Université de Paris Descartes ont exploré. " Nous avons cherché à identifier les caractéristiques globales de l’organisation du cerveau qui sont optimales pour le traitement sensoriel et qui peuvent guider l’émergence de la conscience ", expliquent-ils dans leur étude, publiée dans la revue Physical Review E.

Les observations de l’activité cérébrale chez l’Homme ont montré qu’elle est sujette à une importante fluctuation au niveau des interactions cellulaires. Cette variabilité serait à la base d’un large éventail d’états, incluant la conscience. D’un autre côté, des travaux antérieurs traitant du fonctionnement cérébral ont suggéré que l’état conscient n’est pas nécessairement associé à des degrés élevés de synchronisation entre les neurones, mais davantage à des niveaux moyens. Les chercheurs de la nouvelle étude ont alors supposé que ce qui est maximisé au cours de cet état n’est pas la connectivité neuronale, mais le nombre de configurations par lesquelles un certain degré de connectivité peut être atteint.

État de conscience = entropie élevée ?

Dans le cadre de leur analyse, les scientifiques ont utilisé la mécanique statistique pour l’appliquer à la modélisation de réseaux neuronaux. Ainsi, cette méthode permet de calculer des caractéristiques thermodynamiques complexes. Parmi ces propriétés figure la manière dont l’activité électrique d’un ensemble de neurones oscille de façon synchronisée avec celle d’un autre ensemble. Cette évaluation permet de déterminer précisément de quelle façon les cellules cérébrales sont liées entre elles.

Selon les chercheurs, il existerait une multitude de façons d’organiser les connexions synaptiques en fonction de la taille de l’ensemble de neurones. Afin de tester leur hypothèse, des données d’émission de champs électriques et magnétiques provenant de 9 personnes distinctes ont été collectées. Parmi les participants, 7 souffraient d’épilepsie. Dans un premier temps, les modèles de connectivité ont été évalués et comparés lorsqu’une partie des volontaires était endormie ou éveillée. Dans un deuxième temps, la connectivité de 5 des patients épileptiques a été analysée, lorsqu’ils avaient des crises de convulsions ainsi que lorsqu’ils étaient en état d’alerte normal. Ces paramètres ont ensuite été rassemblés afin de calculer leurs niveaux d’entropie cérébrale. Le résultat est le même dans l’ensemble des cas : le cerveau affiche une entropie plus élevée lorsqu’il est dans un état de conscience.

Les chercheurs estiment qu’en maximisant l’entropie, le cerveau optimise l’échange d’informations entre les neurones. Cela nous permettrait de percevoir et d’interagir de manière optimale avec notre environnement. Quant à la conscience, ils en ont déduit qu’elle pourrait tout simplement être une caractéristique émergente découlant de cette entropie. Toutefois, ces conclusions sont encore hautement spéculatives en raison des limites que comporte l’étude, telles que le nombre restreint de participants à l’étude. Le terme " entropie " devrait même être considéré avec parcimonie dans ce cadre, selon l’auteur principal de l’étude, Ramon Guevarra Erra de l’Université de Paris Descartes.

De nouvelles expériences sur un échantillon plus large sont nécessaires afin de véritablement corroborer ces résultats. On pourrait aussi évaluer d’autres caractéristiques thermodynamiques par le biais de l’imagerie par résonance magnétique, qui peut être utilisée pour mesurer l’oxygénation — une propriété directement liée au métabolisme et donc à la génération de chaleur (et de ce fait d’augmentation de l’entropie). Des investigations menées en dehors de conditions d’hôpital seraient également intéressantes afin d’évaluer des états de conscience associés à des comportements cognitifs plus subtils. On pourrait par exemple analyser l’activité cérébrale de personnes exécutant une tâche spécifique, comme écouter ou jouer de la musique.

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano - 19 octobre 2023

[ complexification ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

syndrome cognitif

Dans un de ses cours consacrés aux mécanismes cérébraux impliqués dans la lecture, Stanislas Dehaene, professeur au Collège de France, citait cet extrait de Feu pâle, de Vladimir Nabokov : "Nous sommes absurdement accoutumés au miracle de quelques signes écrits capables de contenir une imagerie immortelle, des tours de pensée, des mondes nouveaux avec des personnes vivantes qui parlent, pleurent, rient. (…) Et si un jour nous allions nous réveiller, tous autant que nous sommes, et nous trouver dans l’impossibilité absolue de lire ?"

Comme c'est en général la règle dans les études de cas, on n'aura que ses initiales. Institutrice américaine de quarante ans, M. P. a eu la douleur de faire de l'hypothèse de Nabokov sa réalité. Racontée le 7 janvier dans la revue Neurology, son histoire commence un jeudi d'octobre 2012, en classe, devant ses jeunes élèves de maternelle. Comme tous les matins, l'enseignante doit faire l'appel. Mais à sa grande surprise, la liste de présence dont elle se sert tous les jours est couverte de signes mystérieux auxquels elle ne comprend goutte. Ainsi qu'elle se le rappelle, la feuille "aurait pu aussi bien être couverte de hiéroglyphes". Les notes qu'elle a préparées pour faire sa classe s'avèrent elles aussi incompréhensibles... M. P. rentre chez elle ce jeudi et, au cours des 48 heures qui suivent, elle éprouve de nouvelles difficultés : elle a du mal à trouver ses mots et sa réflexion est ralentie. Le samedi, sa mère l'emmène aux urgences.

C'est un accident vasculaire cérébral (AVC) qui a causé tout cela. M. P. ne s'est rendue compte de rien mais, dans son cerveau, une petite zone située dans la région occipito-temporale gauche s'est déconnectée et elle restera hors service toute sa vie. On la connaît sous le nom d'aire de la forme visuelle des mots (AFVM) et c'est elle qui est responsable de l'identification visuelle de l'écrit. Cette désactivation n'interrompt pas l'accès au reste des aires cérébrales impliquées dans le langage. M. P. comprend ce qu'on lui dit, parle normalement mais elle ne peut plus lire. En revanche, elle sait toujours écrire ! Les neuroscientifiques parlent d'alexie (incapacité à lire) sans agraphie (incapacité à écrire) ou bien d'alexie pure. Les cas sont très rares et le premier que la littérature scientifique recense est un cas français, décrit en 1892 par le neurologue Jules Dejerine.

M. P. croit d'abord que la zone lésée s'est juste remise à zéro et qu'avec les outils qu'elle connaît bien, elle va pouvoir réapprendre à lire. Et elle ne veut pas laisser sa passion pour les mots écrits s'envoler sans se battre. Mais la porte est fermée et pour de bon : M. P. ne peut pas faire du "b-a ba", tout simplement parce qu'elle ne "voit" ni les "b", ni les "a". Le message que ses yeux lui envoient à la vue des lettres arrive bien à son cerveau mais il ne passe pas la douane des mots. Toutefois, M. P. est tenace. Elle s'aperçoit qu'un autre sens que la vue peut venir à sa rescousse et c'est probablement ce qui fait la beauté de son cas, si l'on met de côté l'ironie cruelle qu'il y a à voir une spécialiste de l'apprentissage de la lecture frappée d'alexie.

Sa roue de secours, M. P. va la trouver dans... le geste. Ses yeux ne lui sont pas d'une grande aide mais sa main a encore la mémoire des lettres tracées. En voyant un mot, l'enseignante ne reconnaît pas la première de ses lettres. Alors, elle se met à dessiner avec le doigt toutes les lettres de l'alphabet, jusqu'à ce qu'elle arrive à celle dont elle voit la forme sans savoir le nom. L'exemple donné dans l'étude est celui du mot "mother" (mère en anglais). M. P. utilise son astuce pour les trois premières lettres, "m", "o" et "t", puis elle complète le mot d'elle-même. Les auteurs de l'article précisent d'ailleurs que, dans son travail de rééducation, M. P. a de vagues réminiscences à la vue de certains mots, des "émotions qui semblent appropriées". Ainsi, à la vue du mot "dessert", elle s'exclame : "Oh, j'aime ça !" En revanche, en voyant le mot "asperge", elle explique ne pas vouloir le déchiffrer car quelque chose en lui la dérange.

Malgré tous ses efforts, malgré la "béquille" qu'elle a trouvée pour déchiffrer, très laborieusement, quelques mots, M. P. ne relira plus jamais de manière automatique et fluide. Elle a dû abandonner son métier et travaille désormais à l'accueil d'un centre sportif. Lire une histoire aux enfants, comme elle le faisait dans sa classe, est la chose qui lui manque le plus, plus encore que dévorer un ouvrage pour elle-même. Et elle a l'intention d'écrire les mémoires d'une institutrice qui ne sait plus lire.

Auteur: Barthélémy Pierre

Info: 9 janvier 2014, sur son blog. Le cas décrit ici est très similaire à celui d'Howard Engel

[ altération mentale ]

 
Commentaires: 3
Ajouté à la BD par miguel