Une partie de l' " ADN indésirable " sert un objectif
Si on étire tout l’ADN d’une seule cellule humaine, il mesurerait plus de 5 mètres de long. Mais seul un fragment de cet ADN produit des protéines, la machinerie biologique nécessaire à la vie. En 2003, le Human Genome Project a montré que seulement 1 à 2 % de notre ADN – environ 4 cm sur ces 5 mètres – code des gènes pour les protéines. Les séquences non codantes qui constituent les 98 % restants sont souvent appelées " ADN indésirable (junk dna) ", un terme inventé en 1972 par le généticien Susumu Ohno, qui a suggéré que, tout comme les archives fossiles regorgent d'espèces disparues, nos génomes sont remplis d'espèces disparues. gènes éteints ou mal copiés endommagés par des mutations.
Mais même si 98 % du génome est non codant, il ne s’agit pas précisément d’un poids mort. En 2012, un consortium de centaines de scientifiques a rapporté dans l'Encyclopédie des éléments de l'ADN qu'au moins 80 % du génome est " actif " au sens où une partie de l'ADN est traduite en ARN*, même si cet ARN est pas ensuite traduit en protéines. Il existe peu de preuves que la plupart de cet ARN provenant de gènes brisés ait un effet.
Cependant, certaines séquences non codantes, qui représentent environ 8 à 15 % de notre ADN, ne sont pas du tout indésirables. Elles remplissent des fonctions importantes, en régulant les gènes actifs des cellules et la quantité de protéines qu’ils produisent. Les chercheurs découvrent encore de nouvelles façons dont l'ADN non codant fait cela, mais il est clair que la biologie humaine est massivement influencée par les régions non codantes, qui ne codent pas directement pour les protéines mais façonnent quand même leur production. Les mutations dans ces régions, par exemple, ont été associées à des maladies ou à des troubles aussi variés que l'autisme, les tremblements et le dysfonctionnement hépatique.
De plus, en comparant les génomes humains à ceux des chimpanzés et d’autres animaux, les scientifiques ont appris que les régions non codantes peuvent jouer un rôle important dans ce qui nous rend uniques : il est possible que la régulation des gènes par l’ADN non codant différencie plus les espèces que les gènes et les protéines elles-mêmes.
Les chercheurs découvrent également que de nouvelles mutations peuvent parfois conférer de nouvelles capacités à des séquences non codantes, ce qui en fait une sorte de ressource pour une évolution future. En conséquence, ce qui mérite l’étiquette " ADN indésirable " reste à discuter. Les scientifiques ont clairement commencé à nettoyer ce tiroir à déchets depuis 1972 – mais ce qui reste dedans est encore à débattre.
Quoi de neuf et remarquable
Les scientifiques ont travaillé pour comprendre un type d’ADN non codant appelé " transposons** " ou " gènes sauteurs ". Ces bribes peuvent parcourir le génome, créant des copies d’elle-mêmes, qui sont parfois insérées dans des séquences d’ADN. Les transposons se révèlent de plus en plus essentiels au réglage de l'expression des gènes ou à la détermination des gènes codants activés pour être transcrits en protéines. C'est en partie pour cette raison qu'ils s'avèrent importants pour le développement et la survie d'un organisme . Lorsque les chercheurs ont conçu des souris dépourvues de transposons, la moitié des petits des animaux sont morts avant la naissance. Les transposons ont laissé des traces sur l'évolution de la vie. Quanta a rapporté qu'ils peuvent passer d'une espèce à l'autre - comme du hareng à l'éperlan et des serpents aux grenouilles - offrant parfois même certains avantages, comme protéger les poissons du gel dans les eaux glacées.
Les généticiens étudient également les " courts tandem répétés ", dans lesquels une séquence d’ADN longue d’une à six paires de bases seulement est fortement répétée, parfois des dizaines de fois de suite. Les scientifiques soupçonnaient qu'elles aidaient à réguler les gènes, car ces séquences, qui représentent environ 5 % du génome humain, ont été associées à des maladies telles que la maladie de Huntington et le cancer. Dans une étude couverte par Quanta en février, les chercheurs ont découvert une manière possible par laquelle de courtes répétitions en tandem pourraient réguler les gènes : en aidant à réunir des facteurs de transcription, qui aident ensuite à activer la machinerie de production de protéines.
Ensuite, il y a les " pseudogènes*** ", restes de gènes fonctionnels qui ont été dupliqués puis dégradés par des mutations ultérieures. Cependant, comme Quanta l’a rapporté en 2021, les scientifiques ont découvert que parfois les pseudogènes ne demeurent pas pseudo ou indésirables ; au lieu de cela, ils développent de nouvelles fonctions et deviennent des régulateurs génétiques – régulant même parfois le gène même à partir duquel ils ont été copiés.