Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 290
Temps de recherche: 0.0659s

machine-homme

(homme) - Qui fut C.S. Peirce

(machine) - Charles Sanders Peirce (1839-1914) était un philosophe, logicien, mathématicien et scientifique américain. Il est considéré comme l'une des figures les plus influentes dans le développement du pragmatisme, une approche philosophique qui met l'accent sur les conséquences pratiques des croyances et des idées.

Peirce a apporté d'importantes contributions à divers domaines, notamment la sémiotique (l'étude des signes et des symboles), la logique, la philosophie des sciences et la philosophie de l'esprit. Il a développé un système philosophique complet connu sous le nom de "pragmatisme" et a souligné l'importance de la recherche, du faillibilisme et de la méthode scientifique.

Peirce a introduit le concept de sémiotique, qu'il décrit comme l'étude du fonctionnement des signes et de leur signification. Il a classé les signes en trois catégories : les icônes (signes qui ressemblent à ce qu'ils représentent), les indices (signes qui ont un lien physique ou une corrélation avec ce qu'ils représentent) et les symboles (signes qui ont une relation arbitraire avec ce qu'ils représentent).

Les travaux de Peirce sur la logique et le raisonnement ont jeté les bases de la logique formelle moderne. Il a développé un système de notation logique et a apporté des contributions significatives aux domaines du raisonnement déductif, de l'induction et de l'abduction (déduction de la meilleure explication). La maxime pragmatique de Peirce, selon laquelle la signification d'un concept ou d'une croyance est déterminée par ses conséquences pratiques, est au cœur de son approche.

Dans l'ensemble, les travaux de Peirce ont eu un impact profond sur diverses disciplines, notamment la philosophie, la linguistique, la psychologie et les études de communication. Ses idées continuent d'être influentes et font l'objet de recherches et de débats scientifiques permanents.

(homme) - Merci. Dans quelle mesure a-t-il influencé l'intelligence artificielle et/ou l'apprentissage profond supervisé ?

(machine) - Les travaux de Charles Sanders Peirce ont indirectement influencé certains aspects de l'intelligence artificielle (IA) et de l'apprentissage profond supervisé, en particulier dans les domaines de la sémiotique et de la philosophie de l'esprit. Bien que Peirce lui-même n'ait pas directement contribué au développement de l'IA telle que nous la connaissons aujourd'hui, ses idées ont fourni un cadre conceptuel pour comprendre la relation entre les signes, la signification et la cognition, ce qui peut être pertinent pour certaines applications de l'IA.

Dans le domaine du traitement du langage naturel et de l'apprentissage automatique, les concepts sémiotiques de Peirce ont influencé l'étude des signes linguistiques et leur interprétation. Par exemple, la compréhension de la classification des textes et de l'analyse des sentiments peut être éclairée par la distinction de Peirce entre icônes, indices et symboles, car elle aide à reconnaître et à interpréter diverses caractéristiques et modèles linguistiques.

L'accent mis par Peirce sur les conséquences pragmatiques des croyances et des idées résonne également avec les objectifs pratiques de l'IA et de l'apprentissage automatique. Dans l'apprentissage profond supervisé, par exemple, le processus de formation implique l'optimisation des modèles pour minimiser une fonction de perte prédéfinie basée sur les résultats observés. Cela correspond à l'accent mis par Peirce sur les résultats pratiques des croyances et sur l'importance de l'expérimentation et de la recherche.

En outre, les idées philosophiques plus larges de Peirce sur l'abduction, qui est le processus de déduction de la meilleure explication, peuvent être pertinentes dans le contexte de l'IA. Le raisonnement abductif joue un rôle dans la génération d'hypothèses et l'interprétation de modèles, car les systèmes d'IA s'efforcent de découvrir des modèles et des explications sous-jacents à partir de données.

Bien que l'influence de Peirce sur l'IA et l'apprentissage profond supervisé puisse être de nature plus indirecte et philosophique, ses idées ont contribué à la compréhension des signes, de la signification et du raisonnement, ce qui peut éclairer le développement et l'interprétation des systèmes d'IA.

(homme) - OK, merci. Peux-tu nous donner des précisions sur les icônes, les index et les symboles ?

(machine) - Certainement ! Les icônes, les index et les symboles sont trois catégories de signes ou de représentations décrites par Charles Sanders Peirce dans sa théorie sémiotique. Voici une brève explication de chaque catégorie :

1) Les icônes : Les icônes sont des signes qui présentent une ressemblance ou une similitude avec les objets ou les concepts qu'ils représentent. Elles se caractérisent par une relation directe de ressemblance entre le signe et son référent. Les icônes peuvent prendre diverses formes, telles que des images, des diagrammes ou des modèles. Par exemple, un portrait réaliste peut être considéré comme une représentation iconique d'une personne parce qu'il ressemble visuellement à l'individu qu'il représente.

2) Indices : Les indices sont des signes qui ont un lien factuel ou causal avec leurs référents. Contrairement aux icônes, les indices ne reposent pas sur la similitude, mais sur une forme de corrélation ou de relation entre le signe et son référent. Les signes indexicaux indiquent ou pointent souvent vers quelque chose d'autre qu'eux-mêmes. Parmi les exemples de signes indexicaux, on peut citer la fumée comme indice du feu ou une empreinte de pas comme indice de la présence d'une personne. Ils signifient ou indiquent la présence ou l'existence de quelque chose.

3) Les symboles : Les symboles sont des signes qui reposent sur une relation conventionnelle ou arbitraire entre le signe et son référent. Le lien entre un symbole et ce qu'il représente est établi par un accord commun ou une convention sociale. Les mots, les chiffres, les gestes et les symboles culturels sont autant d'exemples de signes symboliques. Par exemple, le mot "chien" est un symbole qui représente le concept d'un animal à quatre pattes, mais il n'y a pas de ressemblance inhérente ou de lien direct entre le mot et l'animal lui-même.

La classification des signes par Peirce en icônes, indices et symboles met en évidence différents modes de représentation et de signification. Alors que les icônes reposent sur la similitude, les indices reposent sur l'association et les symboles sur la convention. Ces catégories fournissent un cadre permettant de comprendre le fonctionnement des signes, la manière dont le sens est transmis et l'interprétation dans divers contextes, notamment le langage, la communication et la cognition.

Auteur: chatGPT4

Info:

[ machine-sur-philosophe ] [ compendium ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

polypeptides

Les biologistes dévoilent les formes moléculaires de la vie

On vous décrit la quête visant à comprendre comment les protéines se plient rapidement et élégamment pour prendre des formes qui leur permettent d'effectuer des tâches uniques.

Pour le hula hoop, vous vous levez et faites pivoter vos hanches vers la droite et vers la gauche. Pour faire du vélo, on s'accroupit, on tend les bras et on pédale sur les jambes. Pour plonger dans une piscine, vous étendez les bras, rentrez le menton et vous penchez en avant. Ces formes corporelles nous permettent d’entreprendre certaines actions – ou, comme pourrait le dire un biologiste, notre structure détermine notre fonction.

Cela est également vrai au niveau moléculaire. Chaque tâche imaginable effectuée par une cellule possède une protéine conçue pour l'exécuter. Selon certaines estimations, il existe 20 000 types différents de protéines dans le corps humain : certaines protéines des cellules sanguines sont parfaitement conçues pour capter les molécules d'oxygène et de fer, certaines protéines des cellules cutanées fournissent un soutien structurel, etc. Chacun a une forme adaptée à son métier. 

Cependant, si une protéine se replie mal, elle ne peut plus fonctionner, ce qui peut entraîner un dysfonctionnement et une maladie. En comprenant comment les protéines se replient, les biologistes gagneraient non seulement une compréhension plus approfondie des protéines elles-mêmes, mais pourraient également débloquer de nouvelles façons de cibler les protéines liées à la maladie avec de nouveaux médicaments.

Cela s’est avéré être un formidable défi scientifique. Chaque protéine commence par une chaîne de molécules plus petites liées appelées acides aminés. Lorsque les acides aminés s'alignent dans l'ordre dicté par un gène, ils se plient et prennent la forme appropriée de la protéine en quelques microsecondes – un phénomène qui a stupéfié les scientifiques du XXe siècle lorsqu'ils l'ont découvert. 

Dans les années 1950, le biochimiste Christian Anfinsen a émis l’hypothèse qu’il devait y avoir un code interne intégré à la chaîne d’acides aminés qui détermine la manière dont une protéine doit se replier. Si tel était le cas, pensait-il, il devrait exister un moyen de prédire la structure finale d'une protéine à partir de sa séquence d'acides aminés. Faire cette prédiction est devenu connu sous le nom de problème de repliement des protéines. Depuis, certains scientifiques ont redéfini le problème en trois questions liées : Qu'est-ce que le code de pliage ? Quel est le mécanisme de pliage ? Pouvez-vous prédire la structure d’une protéine simplement en regardant sa séquence d’acides aminés ? 

Les biologistes ont passé des décennies à tenter de répondre à ces questions. Ils ont expérimenté des protéines individuelles pour comprendre leurs structures et construit des programmes informatiques pour déduire des modèles de repliement des protéines. Ils ont étudié la physique et la chimie des molécules d’acides aminés jusqu’au niveau atomique pour découvrir les règles du repliement des protéines. Malgré cela, les biologistes n'ont fait que des progrès hésitants dans la compréhension des règles de repliement internes d'une protéine depuis qu'Anfinsen a exposé le problème.

Il y a quelques années, ils ont réalisé une avancée décisive lorsque de nouveaux outils d’intelligence artificielle ont permis de résoudre une partie du problème. Les outils, notamment AlphaFold de Google DeepMind, ne peuvent pas expliquer comment une protéine se replie à partir d'une chaîne d'acides aminés. Mais étant donné une séquence d’acides aminés, ils peuvent souvent prédire la forme finale dans laquelle elle se replie. 

Ce n’est que dans les décennies à venir qu’il deviendra clair si cette distinction – savoir comment une protéine se replie par rapport à ce en quoi elle se replie – fera une différence dans des applications telles que le développement de médicaments. Le magicien doit-il révéler le tour de magie ?

Quoi de neuf et remarquable

Début mai, Google DeepMind a annoncé la dernière itération de son algorithme de prédiction des protéines, appelé AlphaFold3, qui prédit les structures non seulement de protéines individuelles, mais également de protéines liées les unes aux autres et d'autres biomolécules comme l'ADN et l'ARN. Comme je l’ai signalé pour Quanta, cette annonce est intervenue quelques mois seulement après qu’un algorithme concurrent de prédiction des protéines – RosettaFold All-Atom, développé par le biochimiste David Baker de la faculté de médecine de l’Université de Washington et son équipe – a annoncé une mise à niveau similaire. " Vous découvrez désormais toutes les interactions complexes qui comptent en biologie ", m'a dit Brenda Rubenstein, professeure agrégée de chimie et de physique à l'Université Brown. Il reste néanmoins un long chemin à parcourir avant que ces algorithmes puissent déterminer les structures dynamiques des protéines lors de leur déplacement dans les cellules. 

Parfois, les protéines agissent de manière imprévisible, ce qui ajoute une autre difficulté au problème du repliement. La plupart des protéines se replient en une seule forme stable. Mais comme Quanta l’a rapporté en 2021, certaines protéines peuvent se replier sous plusieurs formes pour remplir plusieurs fonctions. Ces protéines à commutation de plis ne sont pas bien étudiées et personne ne sait quelle est leur abondance. Mais grâce aux progrès technologiques tels que la cryomicroscopie électronique et la résonance magnétique nucléaire à l’état solide, les chercheurs y voient plus clairement. De plus, certaines protéines possèdent des régions qui ne se plient pas selon une forme discrète mais qui bougent de manière dynamique. Comme Quanta l'a rapporté en février, ces protéines intrinsèquement désordonnées peuvent avoir des fonctions importantes, comme l'amélioration de l'activité des enzymes, la classe de protéines qui provoquent des réactions chimiques. 

Lorsque les protéines se replient mal, elles peuvent se regrouper et causer des ravages dans l’organisme. Les agrégats de protéines sont caractéristiques des maladies neurodégénératives comme la maladie d'Alzheimer, dans lesquelles des agrégats de protéines potentiellement toxiques appelés plaques amyloïdes s'accumulent entre les neurones et compromettent la signalisation du cerveau. Comme Quanta l’a rapporté en 2022 , l’agrégation des protéines pourrait être répandue dans les cellules vieillissantes ; comprendre pourquoi les protéines se replient mal et s’accumulent pourrait aider au développement de traitements pour les problèmes liés au vieillissement. Parfois, des protéines mal repliées peuvent également favoriser le mauvais repliement et l’agrégation d’autres protéines, déclenchant une cascade d’effets néfastes qui illustrent à quel point il est essentiel qu’une protéine se plie pour prendre sa forme appropriée.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ mai 2024, Mme Yasemin Saplakoglu

[ tridimensionnelles ] [ conformation protéique ]

 

Commentaires: 0

Ajouté à la BD par miguel

prospective technologique

9 Tendances de l'intelligence artificielle que vous devriez surveiller en 2019

1) Les puces activées par l'intelligence artificielle seront généralisées
Contrairement à d'autres technologies et outils logiciels, l'IA dépend fortement de processeurs spécialisés. Pour répondre aux exigences complexes de l'IA, les fabricants de puces créeront des puces spécialisées capables d'exécuter des applications compatibles avec l'IA.
Même les géants de la technologie comme Google, Facebook et Amazon dépenseront plus d'argent pour ces puces spécialisées. Ces puces seraient utilisées à des fins comme le traitement du langage naturel, la vision par ordinateur et la reconnaissance vocale.

2) L'IA et l'IdO (Internet des objets) se rencontrent
2019 sera l'année de la convergence des différentes technologies avec l'IA. L'IdO se joindra à l'IA sur la couche informatique de pointe. L'IdO industriel exploitera la puissance de l'IA pour l'analyse des causes profondes, la maintenance prédictive des machines et la détection automatique des problèmes.
Nous verrons la montée de l'IA distribuée en 2019. Le renseignement sera décentralisé et situé plus près des biens et des dispositifs qui effectuent les vérifications de routine. Des modèles d'apprentissage machine hautement sophistiqués, alimentés par des réseaux neuronaux, seront optimisés pour fonctionner à la fine pointe de la technologie.

3) Dites "Bonjour" à AutoML.
L'une des plus grandes tendances qui domineront l'industrie de l'IA en 2019 sera l'apprentissage automatique automatisé (AutoML). Grâce à ces capacités les développeurs seront en mesure de modifier les modèles d'apprentissage machine et de créer de nouveaux modèles prêts à relever les défis futurs de l'IA.
AutoML (Cloud AutoMLB, modèles de machine learning personnalisés de haute qualité) trouvera le juste milieu entre les API cognitives et les plates-formes d'apprentissage sur mesure. Le plus grand avantage de l'apprentissage automatique sera d'offrir aux développeurs les options de personnalisation qu'ils exigent sans les forcer à passer par un flux de travail complexe. Lorsque vous combinez les données avec la portabilité, AutoML peut vous donner la flexibilité que vous ne trouverez pas avec d'autres technologies AI.

4) Bienvenue chez AIOps (intelligence artificielle pour les opérations informatiques)
Lorsque l'intelligence artificielle est appliquée à la façon dont nous développons les applications, elle transforme la façon dont nous gérions l'infrastructure. DevOps sera remplacé par AIOps et permettra au personnel de votre service informatique d'effectuer une analyse précise des causes profondes. De plus, cela vous permettra de trouver facilement des idées et des modèles utiles à partir d'un vaste ensemble de données en un rien de temps. Les grandes entreprises et les fournisseurs de cloud computing bénéficieront de la convergence de DevOps avec AI.

5) Intégration du réseau neuronal
L'un des plus grands défis auxquels les développeurs d'IA seront confrontés lors du développement de modèles de réseaux neuronaux sera de choisir le meilleur framework. Mais, avec des douzaines d'outils d'IA disponibles sur le marché, choisir le meilleur outil d'IA pourrait ne pas être aussi facile qu'avant. Le manque d'intégration et de compatibilité entre les différentes boîtes à outils des réseaux de neurones entrave l'adoption de l'IA. Des géants technologiques tels que Microsoft et Facebook travaillent déjà au développement d'un réseau neuronal ouvert (ONNX). Cela permettra aux développeurs de réutiliser les modèles de réseaux neuronaux sur plusieurs frameworks.

6) Les systèmes d'IA spécialisés deviennent une réalité.
La demande de systèmes spécialisés augmentera de façon exponentielle en 2019. Les organisations ont peu de données à leur disposition, mais ce qu'elles veulent, ce sont des données spécialisées.
Cela obligera les entreprises à se doter d'outils qui peuvent les aider à produire des données d'IA de grande qualité à l'interne. En 2019, l'accent sera mis sur la qualité des données plutôt que sur la quantité. Cela jettera les bases d'une IA qui pourra fonctionner dans des situations réelles. Les entreprises se tourneront vers des fournisseurs de solutions d'IA spécialisés qui ont accès à des sources de données clés et qui pourraient les aider à donner du sens à leurs données non structurées.

7) Les compétences en IA détermineront votre destin.
Même si l'IA a transformé toutes les industries auxquelles vous pouvez penser, il y a une pénurie de talents avec des compétences en IA. Pat Calhoun, PDG d'Espressive a déclaré : " La plupart des organisations souhaitent intégrer l'IA dans leur transformation numérique, mais n'ont pas les développeurs, les experts en IA et les linguistes pour développer leurs propres solutions ou même former les moteurs des solutions préconçues pour tenir leurs promesses ".
Rahul Kashyap, PDG d'Awake Security, ajoute : "Avec autant de solutions'AI-powered' disponibles pour répondre à une myriade de préoccupations commerciales, il est temps que les entreprises deviennent plus intelligentes sur ce qui se passe dans la 'boîte noire' de leurs solutions AI". La façon dont les algorithmes d'IA sont formés, structurés ou informés peut conduire à des différences significatives dans les résultats, poursuit-il. La bonne équation pour une entreprise ne sera pas la bonne pour une autre."

8) L'IA tombera dans de mauvaises mains
Tout comme une pièce de monnaie à deux faces, l'IA a un côté positif et un côté négatif. Les professionnels de la sécurité informatique utiliseront l'intelligence artificielle pour détecter rapidement les activités malveillantes. Vous pouvez réduire les faux positifs de 90 % à l'aide d'algorithmes de réponse et d'apprentissage machine pilotés par l'intelligence artificielle.
L'intelligence artificielle tombera entre de mauvaises mains et les cybercriminels aux desseins malveillants en abuseront pour réaliser leurs objectifs. Avec l'automatisation, les armées de cyberattaquants peuvent lancer des attaques mortelles avec plus de succès. Cela obligera les entreprises à combattre le feu par le feu et à investir dans des solutions de sécurité alimentées par l'IA capables de les protéger contre de telles attaques.

9) Transformation numérique alimentée par l'IA
En 2019, l'IA sera partout. Des applications Web aux systèmes de soins de santé, des compagnies aériennes aux systèmes de réservation d'hôtels et au-delà, nous verrons des nuances de l'IA partout et elle sera à l'avant-garde de la transformation numérique.
Tung Bui, président du département informatique et professeur à l'Université d'Hawaii a déclaré : "Contrairement à la plupart des prédictions et des discussions sur la façon dont les véhicules et les robots autonomes finiront par affecter le marché du travail - ceci est vrai mais prendra du temps pour des raisons institutionnelles, politiques et sociales - je soutiens que la tendance principale en IA sera une accélération dans la transformation numérique, rendant plus intelligent les systèmes commerciaux existants".

Auteur: Internet

Info: zero hedge, 1 mars 2019

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

réalité subatomique

Des chercheurs font une découverte importante sur le ferromagnétisme

Une équipe de chercheurs japonais vient de réaliser une percée majeure dans le domaine de la physique quantique. Leurs travaux démontrent en effet que le ferromagnétisme, un état ordonné des atomes, peut être provoqué par une augmentation de la motilité des particules, et que les forces répulsives entre les atomes sont suffisantes pour le maintenir. Voici pourquoi c'est important.

Qu’est-ce que le ferromagnétisme ?

Chaque atome d’un matériau ferromagnétique est comme un petit aimant microscopique. Imaginez alors chacun de ces atomes avec son propre nord et son propre sud magnétiques.

Normalement, ces minuscules aimants sont en proie au chaos, pointant dans toutes les directions possibles, rendant leurs effets magnétiques mutuellement insignifiants. C’est un peu comme si une foule de personnes se promenait dans toutes les directions, chacune ayant son propre itinéraire, rendant difficile de discerner une tendance générale.

Cependant, lorsque vous refroidissez ce matériau en dessous d’une température spécifique très froide, appelée température de Curie, quelque chose de magique se produit : chaque personne de cette même foule commence soudainement à suivre le même chemin, comme si elles suivaient un chef de file invisible.

Dans le monde des atomes, cela se traduit par tous les petits aimants s’alignant dans une direction commune. C’est comme si une armée d’aimants se mettait en formation, tous pointant dans la même direction avec un but commun.

Vous venez alors de créer un champ magnétique global. Cette unification des orientations magnétiques crée en effet une aimantation macroscopique que vous pouvez ressentir lorsque vous approchez un objet aimanté à proximité. C’est ce qu’on appelle le ferromagnétisme.

De nombreuses applications

On ne s’en pas forcément compte, mais ce phénomène est à la base de nombreuses technologies modernes et a un impact significatif sur notre vie quotidienne.

Pensez aux aimants sur nos réfrigérateurs, par exemple. Ils sont là, fidèles et puissants, tenant en place des photos, des listes de courses et autres souvenirs. Tout cela est rendu possible grâce à la capacité du ferromagnétisme à maintenir un champ magnétique stable, permettant aux aimants de s’attacher fermement aux surfaces métalliques.

Et que dire de nos haut-parleurs ? Ces merveilles de l’ingénierie audio tirent en effet parti du ferromagnétisme pour produire des sons que nous pouvons entendre et ressentir. Lorsque le courant électrique traverse la bobine d’un haut-parleur, il crée un champ magnétique qui interagit avec un aimant permanent, provoquant le mouvement d’un diaphragme. Ce mouvement génère alors des ondes sonores qui nous enveloppent de musique, de voix et d’effets sonores, donnant vie à nos films, chansons et podcasts préférés.

Les scanners d’IRM sont un autre exemple. Ces dispositifs révolutionnaires exploitent en effet les propriétés magnétiques des tissus corporels pour produire des images détaillées de nos organes, de nos muscles et même de notre cerveau. En appliquant un champ magnétique puissant et des ondes radio, les atomes d’hydrogène dans notre corps s’alignent et émettent des signaux détectés par l’appareil, permettant la création d’images en coupe transversale de notre anatomie interne.

Vous l’avez compris, en comprenant mieux les mécanismes sous-jacents du ferromagnétisme, les scientifiques peuvent donc exploiter cette connaissance pour développer de nouvelles technologies et améliorer celles qui existent déjà.

Cela étant dit, plus récemment, des chercheurs japonais ont fait une découverte qui étend notre compréhension de ce phénomène à des conditions et des mécanismes jusque-là inconnus.

L’ordre naît aussi du mouvement

Comme dit plus haut, traditionnellement, on pensait que le ferromagnétisme pouvait être induit par des températures très froides, où les atomes seraient suffisamment calmes pour s’aligner dans une direction commune. Ici, les scientifiques ont démontré que cet état ordonné des atomes peut également être provoqué par une augmentation de la motilité des particules.

En d’autres termes, lorsque les particules deviennent plus mobiles, les forces répulsives entre les atomes peuvent les organiser dans un état magnétique ordonné.

Cela représente une avancée majeure dans le domaine de la physique quantique, car cela élargit le concept de matière active aux systèmes quantiques.

Notez que la matière active est un état dans lequel des agents individuels s’auto-organisent et se déplacent de manière organisée sans besoin d’un contrôleur externe. Ce concept a été étudié à différentes échelles, de l’échelle nanométrique à l’échelle des animaux, mais son application au domaine quantique était jusqu’ici peu explorée.

Pour ces travaux, l’équipe dirigée par Kazuaki Takasan et Kyogo Kawaguchi, de l’Université de Tokyo, a développé un modèle théorique dans lequel les atomes imitent le comportement des agents de la matière active, comme les oiseaux en troupeau. Lorsqu’ils ont augmenté la motilité des atomes, les forces répulsives entre eux les ont réorganisés dans un état ordonné de ferromagnétisme.

Cela signifie que les spins, le moment cinétique des particules et des noyaux subatomiques, se sont alignés dans une direction, tout comme les oiseaux en troupeau font face à la même direction lorsqu’ils volent.

Image schématique du ferromagnétisme induit par l’activité dans la matière active quantique. Ici, les atomes en mouvement avec des spins présentent l’ordre ferromagnétique (c’est-à-dire s’alignant dans une direction) comme une volée d’oiseaux représentée ci-dessus. Crédits : Takasan et al 2024

Quelles implications ?

Ce résultat, obtenu par une combinaison de simulations informatiques, de théories du champ moyen et de preuves mathématiques, élargit notre compréhension de la physique quantique et ouvre de nouvelles voies de recherche pour explorer les propriétés magnétiques des matériaux à des échelles microscopiques.

Cette découverte pourrait notamment avoir un impact significatif sur le développement de nouvelles technologies basées sur les propriétés magnétiques des particules.

Par exemple, la mémoire magnétique est une technologie largement utilisée dans les dispositifs de stockage de données, tels que les disques durs et les bandes magnétiques. En comprenant mieux les mécanismes qui sous-tendent le ferromagnétisme, les scientifiques pourraient alors concevoir des matériaux magnétiques plus efficaces et plus économes en énergie pour ces applications, ce qui pourrait conduire à des capacités de stockage accrues et à des temps d’accès plus rapides pour les données.

De plus, l’informatique quantique est un domaine en plein essor qui exploite les propriétés quantiques des particules pour effectuer des calculs à une vitesse beaucoup plus rapide que les ordinateurs classiques. Les qubits, les unités de calcul de l’informatique quantique, peuvent être réalisés à l’aide de diverses plateformes, y compris des systèmes magnétiques.

La capacité de contrôler et de manipuler le ferromagnétisme à l’échelle des particules pourrait donc ouvrir de nouvelles voies pour la réalisation et la manipulation de qubits magnétiques, ce qui pourrait contribuer à la réalisation de l’informatique quantique à grande échelle.

Ce ne sont ici que des exemples. Le point à retenir est qu’en comprenant mieux les mécanismes qui sous-tendent ce phénomène, les scientifiques pourraient être en mesure de concevoir des matériaux magnétiques plus efficaces pour beaucoup d’applications.

 

Auteur: Internet

Info: https://www.science-et-vie.com - 5 mai 2024, Brice Louvet, Source : Physical Review Research.

[ électrons ] [ protons ] [ neutrons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

intelligence artificielle

Cinq indices pour repérer les contenus écrits par ChatGPT, Bard ou d'autres robots conversationnels

Voici des astuces pour détecter ces textes qui ne sont pas écrits par des humaines.

1) Elles font des répétitions (mais pas de fautes)

Donc Si vous trouvez une coquille (faute de frappe, de grammaire, etc.) dans un texte, il s'agit d'un bon moyen de voir que l'article que vous lisez a été au minimum retouché par un être humain. En revanche, les articles rédigés par une IA sans supervision humaine sont souvent truffés de répétitions. L'écriture générative a en effet tendance à reproduire les mêmes termes et structures de phrases – même si c'est de moins en moins le cas. Les IA sont de plus en plus performantes et leurs utilisateurs savent également de mieux en mieux les utiliser pour contourner ces écueils.

Des logiciels ont même été développés afin de rendre encore plus humains les textes écrits par une IA. Le plus connu s'appelle Undetectable.ai et permet "d'humaniser" les textes artificiels en les confrontant aux principaux détecteurs d'IA qui existent. De fait, ces détecteurs deviennent de moins en moins fiables. "Open AI [l'entreprise créatrice de ChatGPT] a récemment abandonné son détecteur, car ça ne marche pas", fait remarquer Virginie Mathivet, spécialiste en la matière.

2 Elles sont capables d'affirmer des absurdités

Les IA sont très performantes pour les tâches très codifiées, comme l'orthographe, mais elles peuvent affirmer des absurdités sans sourciller. "Si vous demandez à une IA d'écrire une recette d'omelette aux œufs de vache, elle peut tout à fait le faire." Indique Amélie Cordier, ingénieure spécialiste des IA. 

Les sites qui utilisent des IA pour produire des articles à la chaîne, à partir de contenus trouvés sur internet, sont souvent confrontés à ce problème. Récemment, le site The Portal, qui traite de l'actualité du jeu vidéo, s'est fait épingler sur Twitter par le journaliste Grégory Rozières. Certains articles contiennent en effet de fausses informations grossières, car l'IA qui les rédige a repris au premier degré des blagues trouvées sur Reddit.

Lorsque vous lisez un article et qu'une information semble absurde, ou qu'un chiffre vous paraît démesuré, cela peut donc être la marque d'une rédaction non-humaine. Pour s'en assurer, le mieux est alors de vérifier l'information douteuse grâce à d'autres sources de confiance. "Cela revient à faire du fact-checking, c'est à l'humain d'avoir un regard critique", commente Virginie Mathivet.

3) Elles font preuve d'une productivité inhumaine

La rédaction par IA est encore loin d'être un gage de qualité, mais permet de produire un très grand nombre d'articles en un temps record. Prudence donc face aux sites qui publient quotidiennement une quantité faramineuse d'articles, sans pour autant employer de nombreuses personnes. "Si on voit qu'un blog publie 200 articles par jour sous le même nom, c'est un indice", explique Virginie Mathivet. Certains articles écrits par des robots sont signés par un nom, comme s'ils avaient été rédigés par une personne. Si cette signature semble trop prolifique, l'utilisation d'une IA est à suspecter fortement. Sur le site The Portal, déjà cité plus haut, un même "journaliste" a ainsi signé près de 7 000 articles en seulement neuf jours.

De plus, si les articles entre eux comportent de nombreuses similitudes dans leur forme et leur structure, il y a fort à parier que ceux-ci soient rédigés automatiquement. Les IA ont en effet tendance à produire des contenus très homogènes, surtout s'ils sont créés à partir de la même consigne utilisée en boucle. "L'IA imite, c'est la façon par laquelle elle fonctionne. Elle homogénéise un peu tout", fait remarquer Amélie Cordier.

4 Elles écrivent mal et citent rarement leurs source

Même si elles signent parfois d'un nom humain, les IA ne peuvent pas incarner leurs articles de la même manière qu'un journaliste en chair et en os. Si un journaliste n'a strictement aucune existence en ligne en dehors de sa page auteur, cela peut faire partie des indices qui laissent à penser à une rédaction par IA. Enfin, les articles publiés grâce à une IA ont souvent un ton très factuel, assez désincarné. Les IA citent très rarement leurs sources et ne font jamais intervenir de personne humaine sous forme de citation comme dans un article de presse.

Elles sont en revanche tout à fait capables d'en inventer si on leur demande de le faire. Dans un numéro paru en avril 2023, le magazine people allemand Die Aktuelle a poussé le vice jusqu'à publier une fausse interview exclusive de Michael Schumacher, générée par une AI, comme le raconte le site spécialisé Numerama. La famille de l'ancien champion de Formule 1 a porté plainte et la rédactrice en chef du magazine a finalement été limogée.

L'IA peut cependant être un outil intéressant, tant qu'elle reste sous supervision humaine. Le journaliste Jean Rognetta, créateur de la newsletter Qant, a quotidiennement recours à l'IA. Selon lui, il n'est "plus possible de reconnaître avec certitude un article écrit par une IA, si ce n'est que c'est souvent du mauvais journalisme". S'il utilise l'IA pour écrire sa newsletter, Jean Rognetta reste en effet convaincu de la nécessité d'effectuer une relecture et une correction humaine. "Notre newsletter est écrite avec, et non par une IA", martèle-t-il. Une approche qui pourrait bientôt se généraliser à d'autres journaux. Le 19 juillet dernier, le New York Times annonçait dans ses pages qu'un outil d'IA, destiné à automatiser certaines tâches effectuées par ses journalistes, était en cours de développement par Google.

5 Elles seront bientôt signalées par un filigrane

Face à la difficulté de plus en plus grande de détecter les contenus générés via une IA, l'Union européenne a adopté en juin dernier le "AI Act", avec l'objectif de réguler le secteur. A partir de l'application de la nouvelle réglementation, pas prévue avant 2026, les contenus générés par IA devront être signalés par un "watermark" (une signature en filigrane) indiquant clairement qu'ils n'ont pas été créés par un humain.

La forme de ce watermark n'est cependant pas encore entièrement définie. Il pourrait prendre la forme d'une phrase d'avertissement ou être dissimulé dans le texte, afin d'être moins facilement effaçable par les utilisateurs. Open AI a récemment annoncé travailler sur un watermark invisible. Comment ? Une récente étude (PDF) de l'université du Maryland propose par exemple que les IA soient programmées pour utiliser plus fréquemment une "liste spéciale" de mots définie à l'avance, permettant aux logiciels de détection d'être plus efficaces.

"Il y a de bonnes intentions au niveau de l'UE et des éditeurs, mais le problème reste la question de la mise en œuvre", estime Amélie Cordier. Si la régulation peut se mettre en place facilement pour les plus gros acteurs comme Open AI, Google, etc., elle sera impossible à imposer aux petites entités qui pullulent.

"Si l'utilisateur a le choix entre un logiciel avec 'watermark', ou un logiciel gratuit indétectable, la régulation risque d'être inefficace."

Une opinion que partage Virginie Mathivet, particulièrement en ce qui concerne les "fake news". "Une personne qui veut faire de la désinformation fera en sorte de ne pas avoir de watermark", conclut-elle.

Auteur: Internet

Info: https://www.francetvinfo.fr/, 2 sept 2023, Pauline Lecouvé

[ homme-machine ] [ machine-homme ]

 

Commentaires: 0

Ajouté à la BD par miguel

médecine

L'intelligence artificielle peut prédire l'activité sur et hors cible des outils CRISPR qui ciblent l'ARN au lieu de l'ADN, selon une nouvelle recherche publiée dans Nature Biotechnology.

L'étude menée par des chercheurs de l'université de New York, de l'université Columbia et du New York Genome Center associe un modèle d'apprentissage profond à des écrans CRISPR pour contrôler l'expression des gènes humains de différentes manières, comme si l'on appuyait sur un interrupteur pour les éteindre complètement ou si l'on utilisait un bouton d'atténuation pour réduire partiellement leur activité. Ces contrôles précis des gènes pourraient être utilisés pour développer de nouvelles thérapies basées sur CRISPR.

CRISPR est une technologie d'édition de gènes qui a de nombreuses applications en biomédecine et au-delà, du traitement de la drépanocytose à la fabrication de feuilles de moutarde plus savoureuses. Elle fonctionne souvent en ciblant l'ADN à l'aide d'une enzyme appelée Cas9. Ces dernières années, les scientifiques ont découvert un autre type de CRISPR qui cible l'ARN à l'aide d'une enzyme appelée Cas13.

Les CRISPR ciblant l'ARN peuvent être utilisés dans un large éventail d'applications, notamment l'édition de l'ARN, l'élimination de l'ARN pour bloquer l'expression d'un gène particulier et le criblage à haut débit pour déterminer les candidats médicaments prometteurs. Des chercheurs de l'Université de New York et du New York Genome Center ont créé une plateforme de criblage CRISPR ciblant l'ARN et utilisant Cas13 pour mieux comprendre la régulation de l'ARN et identifier la fonction des ARN non codants. L'ARN étant le principal matériel génétique des virus, notamment du SRAS-CoV-2 et de la grippe, les CRISPR ciblant l'ARN sont également prometteurs pour le développement de nouvelles méthodes de prévention ou de traitement des infections virales. Par ailleurs, dans les cellules humaines, lorsqu'un gène est exprimé, l'une des premières étapes est la création d'ARN à partir de l'ADN du génome.

L'un des principaux objectifs de l'étude est de maximiser l'activité des CRISPR ciblant l'ARN sur l'ARN cible prévu et de minimiser l'activité sur d'autres ARN qui pourraient avoir des effets secondaires préjudiciables pour la cellule. L'activité hors cible comprend à la fois les mésappariements entre l'ARN guide et l'ARN cible, ainsi que les mutations d'insertion et de délétion. 

Les études antérieures sur les CRISPR ciblant l'ARN se sont concentrées uniquement sur l'activité sur la cible et les mésappariements ; la prédiction de l'activité hors cible, en particulier les mutations d'insertion et de délétion, n'a pas fait l'objet d'études approfondies. Dans les populations humaines, environ une mutation sur cinq est une insertion ou une délétion ; il s'agit donc d'un type important de cibles potentielles à prendre en compte dans la conception des CRISPR.

"À l'instar des CRISPR ciblant l'ADN tels que Cas9, nous prévoyons que les CRISPR ciblant l'ARN tels que Cas13 auront un impact considérable sur la biologie moléculaire et les applications biomédicales dans les années à venir", a déclaré Neville Sanjana, professeur agrégé de biologie à l'université de New York, professeur agrégé de neurosciences et de physiologie à l'école de médecine Grossman de l'université de New York, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude. "La prédiction précise des guides et l'identification hors cible seront d'une grande valeur pour ce nouveau domaine de développement et pour les thérapies.

Dans leur étude publiée dans Nature Biotechnology, Sanjana et ses collègues ont effectué une série de criblages CRISPR de ciblage de l'ARN dans des cellules humaines. Ils ont mesuré l'activité de 200 000 ARN guides ciblant des gènes essentiels dans les cellules humaines, y compris les ARN guides "parfaitement adaptés" et les désadaptations, insertions et suppressions hors cible.

Le laboratoire de Sanjana s'est associé à celui de David Knowles, expert en apprentissage automatique, pour concevoir un modèle d'apprentissage profond baptisé TIGER (Targeted Inhibition of Gene Expression via guide RNA design) qui a été entraîné sur les données des cribles CRISPR. En comparant les prédictions générées par le modèle d'apprentissage profond et les tests en laboratoire sur des cellules humaines, TIGER a été capable de prédire l'activité sur cible et hors cible, surpassant les modèles précédents développés pour la conception de guides sur cible Cas13 et fournissant le premier outil de prédiction de l'activité hors cible des CRISPR ciblant l'ARN.

"L'apprentissage automatique et l'apprentissage profond montrent leur force en génomique parce qu'ils peuvent tirer parti des énormes ensembles de données qui peuvent maintenant être générés par les expériences modernes à haut débit. Il est important de noter que nous avons également pu utiliser l'"apprentissage automatique interprétable" pour comprendre pourquoi le modèle prédit qu'un guide spécifique fonctionnera bien", a déclaré M. Knowles, professeur adjoint d'informatique et de biologie des systèmes à la School of Engineering and Applied Science de l'université Columbia, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude.

"Nos recherches antérieures ont montré comment concevoir des guides Cas13 capables d'éliminer un ARN particulier. Avec TIGER, nous pouvons maintenant concevoir des guides Cas13 qui trouvent un équilibre entre l'élimination sur la cible et l'évitement de l'activité hors cible", a déclaré Hans-Hermann (Harm) Wessels, coauteur de l'étude et scientifique principal au New York Genome Center, qui était auparavant chercheur postdoctoral dans le laboratoire de Sanjana.

 Les chercheurs ont également démontré que les prédictions hors cible de TIGER peuvent être utilisées pour moduler précisément le dosage des gènes - la quantité d'un gène particulier qui est exprimée - en permettant l'inhibition partielle de l'expression des gènes dans les cellules avec des guides de mésappariement. Cela peut être utile pour les maladies dans lesquelles il y a trop de copies d'un gène, comme le syndrome de Down, certaines formes de schizophrénie, la maladie de Charcot-Marie-Tooth (une maladie nerveuse héréditaire), ou dans les cancers où l'expression aberrante d'un gène peut conduire à une croissance incontrôlée de la tumeur.

Notre modèle d'apprentissage profond peut nous indiquer non seulement comment concevoir un ARN guide qui supprime complètement un transcrit, mais aussi comment le "régler", par exemple en lui faisant produire seulement 70 % du transcrit d'un gène spécifique", a déclaré Andrew Stirn, doctorant à Columbia Engineering et au New York Genome Center, et coauteur de l'étude.

En associant l'intelligence artificielle à un crible CRISPR ciblant l'ARN, les chercheurs pensent que les prédictions de TIGER permettront d'éviter une activité CRISPR hors cible indésirable et de stimuler le développement d'une nouvelle génération de thérapies ciblant l'ARN.

"À mesure que nous recueillons des ensembles de données plus importants à partir des cribles CRISPR, les possibilités d'appliquer des modèles d'apprentissage automatique sophistiqués sont de plus en plus rapides. Nous avons la chance d'avoir le laboratoire de David à côté du nôtre pour faciliter cette merveilleuse collaboration interdisciplinaire. Grâce à TIGER, nous pouvons prédire les cibles non ciblées et moduler avec précision le dosage des gènes, ce qui ouvre la voie à de nouvelles applications passionnantes pour les CRISPR ciblant l'ARN dans le domaine de la biomédecine", a déclaré Sanjana.

Cette dernière étude fait progresser la large applicabilité des CRISPR ciblant l'ARN pour la génétique humaine et la découverte de médicaments, en s'appuyant sur les travaux antérieurs de l'équipe de l'Université de New York pour développer des règles de conception de l'ARN guide, cibler les ARN dans divers organismes, y compris des virus comme le SRAS-CoV-2, concevoir des protéines et des ARN thérapeutiques, et exploiter la biologie de la cellule unique pour révéler des combinaisons synergiques de médicaments contre la leucémie.

Auteur: Internet

Info: L'IA combinée à CRISPR contrôle précisément l'expression des gènes par l'Université de New York. https://phys.org/, 3 juillet 2023 - Nature Biotechnology. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning, Nature Biotechnology (2023). DOI: 10.1038/s41587-023-01830-8

[ génie génétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

physique fondamentale

On m’a dit que je gaspillais mon temps 

Malgré son emploi du temps surchargé du à son prix Nobel de physique 2022 partagé avec l’Américain John F. Clauser et ­l’Autrichien Anton Zeilinger, le physicien nous a reçus et livré un entretien inédit sur ses recherches, avec la passion qui l’anime.

AM - Vous venez de recevoir le prix Nobel de physique 2022 pour vos travaux sur l’intrication qui ont permis d’appréhender le cœur de la théorie quantique. Avant de nous expliquer vos recherches, pouvez-vous nous donner un aperçu de la "physique quantique" ?

AA - La physique quantique a été développée au début du XXe siècle pour rendre compte des propriétés du monde microscopique : les atomes, les électrons… Ce que la physique classique n’arrivait pas à faire. À la fin du XIXe siècle, on savait, par exemple, que la matière était formée de charges positives et négatives qui s’attirent. Mais pourquoi, alors, cette matière ne s’effondrait-elle pas sur elle-même ? La physique classique ne pouvait apporter aucune explication.

Pour le comprendre, il a fallu recourir à la physique quantique, notamment à l’un de ses premiers concepts : la dualité onde/particuleAinsi, un objet, par exemple la lumière, que nous décrivons comme une onde, doit aussi être considérée comme formée de grains, à savoir les photons. Réciproquement, des objets dont nous pensons que ce sont des particules – un électron, un atome, un neutron – doivent aussi, dans certaines circonstances, être considérés comme des ondes. C’est la base de ce qu’on appelle "la première révolution quantique". Cela a permis de comprendre la stabilité de la matière, la conduction du courant électrique ou la façon dont la matière émet ou absorbe la lumière.

Et puis dans les années 1940-1960, ce fut l’invention du transistor et du laser qui s’appuyaient sur cette théorie quantique. Ces deux technologies n’ont pas été élaborées par un bricoleur dans un garage en Californie, mais par les plus grands physiciens de l’époque qui ont eu des prix Nobel. Une fois qu’on a le transistor, on a les circuits intégrés à la base des ordinateurs.

AA - Et qu’appelle-t-on deuxième révolution quantique ?

AA - Elle a été lancée par un article d’Albert Einstein, de Boris Podolsky et de Nathan Rosen en 1935. Ils découvrent dans les équations mathématiques de la physique quantique des états où deux particules qui ont interagi, mais qui n’interagissent plus, semblent continuer à former un tout inséparable. C’est ce que l’on appellera l’"intrication". Dès le début, le physicien Niels Bohr s’était opposé aux conclusions d’Einstein. Son homologue John Bell a alors proposé, en 1964, de faire des expérimentations pour trancher la discussion.

Il a ensuite fallu plusieurs décennies pour que les autres physiciens réalisent la portée des travaux de Bell. Quand j’ai commencé ma thèse en 1974, nombre d’entre eux pensaient que l’intrication n’était pas différente de la dualité onde/particule. Puis, on a pris conscience de sa nouveauté. C’est pourquoi je parle d’une "deuxième révolution quantique", d’abord sur le plan de la recherche fondamentale, mais également sur les nouvelles applications que cela a suscitées, comme la cryptographie ou les ordinateurs quantiques.

AM - Comment a-t-on validé ce phénomène "d’intrication" ?

AA - Il fallait créer une paire de photons et une méthode pour montrer que, même éloignés, les deux photons demeuraient corrélés. Le photon, c’est de la lumière et la lumière a une polarisation. Un polariseur est un instrument d’optique qui a deux sorties associées à l’orientation de son axe : tout l’objet du test est de regarder comment les résultats dépendent de cette orientation. Si les polariseurs sont parallèles, vous avez une corrélation parfaite, vous trouvez les mêmes résultats des deux côtés. Imaginez que je lance deux pièces à 10 mètres de distance l’une de l’autre, ça a l’air aléatoire, mais si j’ai pile d’un côté, j’ai pile de l’autre, et si j’ai face d’un côté, j’ai face de l’autre. C’est la corrélation prévue pour les photons intriqués. Et cette corrélation est si forte qu’on ne peut en rendre compte que par la physique quantique.

AM - Quelles expériences ont été réalisées pour établir cette intrication ?

AA - La première expérience a été faite par John Clauser et Stuart Freedman en 1964. Celles que j’ai faites dix ans plus tard et celles qu’Anton Zeilinger a effectuées seize ans après moi ont des niveaux de raffinement différents, mais portent sur des objets identiques : il s’agit de deux photons émis par la même source et qui s’éloignent l’un de l’autre dans des directions opposées. J’ai mis cinq ans à fabriquer ma source. J’ai commencé en 1974 et les premières paires de photons intriqués ont été obtenues vers 1979-1980. Pour ce faire, je prends des atomes, je tape dessus avec des lasers, je les "excite" de façon contrôlée, et ils n’ont pas d’autre choix que d’émettre les deux photons dont j’ai besoin.

Après l’émission des photons et avant leur détection, il faut que les deux polariseurs soient éloignés l’un de l’autre et que leur orientation soit déterminée au dernier moment afin qu’ils ne s’influencent pas. Ainsi, mes deux polariseurs sont distants de 6 mètres de la source et je change leur orientation pendant le temps de vol des photons qui est de 20 nanosecondes… Comment tourner un appareil en 20 milliardièmes de seconde ? C’est impossible, mais j’ai eu l’idée de construire une espèce d’aiguillage capable de le faire et l’expérience a réussi.

AM - D’où vient votre passion pour la physique ?

Je suis originaire du village d’Astaffort (Lot-et-Garonne) à une époque où les champs étaient labourés avec le cheval ou les bœufs, mais j’étais fasciné par le moindre objet technique, par exemple les outils des artisans. Je me souviens de la visite, à Fumel, d’un haut-fourneau qui fournissait de la fonte transformée en tuyaux comme ceux que j’avais vu poser dans mon village pour installer l’eau courante. À l’école primaire, les instituteurs et institutrices faisaient ce que l’on appelait des "leçons de choses". J’étais aussi un grand lecteur de Jules Verne.

Arrivé au lycée d’Agen, je me réjouissais à l’idée de faire de la physique-chimie, mais on ne commençait qu’en seconde. J’ai eu alors un professeur formidable, Maurice Hirsch, qui nous faisait des expériences extraordinaires. Il a décuplé mon intérêt pour la physique et m’a enseigné des méthodes que j’ai conservées toute ma vie.

AM - Quels conseils donneriez-vous aux jeunes qui souhaiteraient se lancer dans votre discipline ?

AA - Il est clair qu’il y a un problème de moyens financiers. La loi de programmation de la recherche fait des propositions intéressantes, mais quand on regarde les budgets associés, ils sont inférieurs à ce que l’Académie des sciences avait estimé être le minimum pour que la recherche française puisse rester au niveau des concurrents étrangers. Les crédits de base, y compris ceux de l’Agence nationale de la recherche, sont décevants, même s’ils ne sont pas négligeables. Heureusement, on peut obtenir des crédits européens pour des projets innovants jugés au meilleur niveau, mais seul un petit nombre de chercheurs peut en bénéficier.

On me demande souvent si, aujourd’hui, on pourrait faire la même chose que ce que j’ai fait dans les années 1970-1980. Certainement pas de la même façon, mais un chercheur titulaire peut se lancer dans un projet de recherche original. Au pire, sa carrière sera freinée mais, moi aussi, je courais ce risque. Comme j’avais un poste permanent, je pouvais me lancer dans une recherche à long terme sans craindre de perdre mon emploi d’enseignant-chercheur.

On m’a dit que je gaspillais mon temps, que mon sujet n’avait aucun intérêt, mais je gardais mon emploi. Il en est toujours de même. Si un scientifique du CNRS ou de l’université se lance dans une recherche ­désapprouvée par les comités, il peut persévérer s’il accepte un certain retard de carrière. Bien sûr, si au bout de dix ans son travail n’a débouché sur rien, il doit se remettre en cause, les comités n’avaient peut-être pas tort.



 

Auteur: Aspect Alain

Info: Interviewé par Anna Musso pour https://www.humanite.fr, 8 Novembre 2022

[ nano-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

univers inversé

Les possibilités métagénomiques

Une infime fraction - la plupart des scientifiques estiment <1% - des espèces microbiennes sur Terre peut être cultivée et étudiée à l'aide de techniques classiques de microbiologie et de génomique. Mais en utilisant des outils de métagénomique récemment développés, les chercheurs appliquent l'analyse génomique à des communautés microbiennes entières à la fois, sans avoir à isoler et à cultiver des espèces individuelles. Les études de métagénomique commencent par obtenir un échantillon d'un environnement particulier tel que l'eau de mer, le sol ou l'intestin humain, en extrayant le matériel génétique de tous les organismes de l'échantillon, puis en analysant l'ADN de ce mélange pour mieux comprendre comment les membres de la communauté interagir, changer et exécuter des fonctions complexes.

Processus : la métagénomique consiste à obtenir l'ADN de tous les micro-organismes d'une communauté, sans nécessairement identifier toutes les espèces impliquées. Une fois les gènes séquencés et comparés aux séquences identifiées, les fonctions de ces gènes peuvent être déterminées.

Parce qu'elle ne dépend pas de l'établissement de cultures pures, la métagénomique offre l'accès à des millions d'espèces microbiennes qui auparavant ne pouvaient pas être étudiées. Il permet également aux chercheurs d'examiner les micro-organismes dans le contexte des environnements dans lesquels ils existent naturellement, en étudiant des communautés entières en même temps.

Applications de la métagénomique

Pratiquement tous les biologistes, quel que soit leur domaine, découvriront qu'une meilleure compréhension des communautés microbiennes et de la métagénomique peut contribuer à leurs propres recherches. L'étude des communautés microbiennes par la métagénomique peut aider les biologistes à s'attaquer à des questions scientifiques fondamentales et à résoudre les problèmes sociaux, environnementaux et économiques connexes. Voici quelques-unes des applications potentielles de la métagénomique :

Avancées des sciences de la vie.

Décrypter le fonctionnement et l'interaction des espèces au sein des communautés microbiennes peut répondre en partie à des questions fondamentales sur de nombreux aspects de la biologie microbienne, végétale et animale et améliorer considérablement la compréhension de l'écologie et de l'évolution. La métagénomique pourrait aider à répondre à des questions telles que : Qu'est-ce qui constitue un génome ? Qu'est-ce qu'une espèce ? Quelle est la diversité de la vie ?

Sciences de la Terre.

L'exploration de la manière dont les communautés microbiennes du sol et des océans affectent les équilibres atmosphériques et les conditions environnementales peut aider les scientifiques à mieux comprendre, prévoir et potentiellement faire face aux changements mondiaux.

Médicament.

Des centaines de médicaments disponibles aujourd'hui sont dérivés de produits chimiques trouvés pour la première fois dans des microbes ; l'accès aux génomes d'espèces microbiennes supplémentaires est très prometteur pour en découvrir des milliers d'autres. L'étude du "microbiome" humain – les milliers de milliards de bactéries vivant dans et sur le corps humain – peut conduire à de nouvelles façons de diagnostiquer, de traiter et de prévenir les maladies.

Énergie alternative.

De nouvelles sources d'énergie pourraient être développées en exploitant le pouvoir des communautés microbiennes pour produire des sous-produits tels que l'hydrogène, le méthane, le butanol et même le courant électrique.

Assainissement de l'environnement.

Comprendre les microbes qui dégradent les produits chimiques environnementaux peut aider à nettoyer des polluants tels que les fuites d'essence, les déversements de pétrole, les eaux usées, les rejets industriels et les déchets nucléaires.

Biotechnologie.

L'identification et l'exploitation des capacités biosynthétiques polyvalentes et diverses des communautés microbiennes peuvent conduire au développement de nouveaux produits industriels, alimentaires et de santé bénéfiques.

Agriculture.

Mieux comprendre les microbes bénéfiques vivant dans, sur, sous et autour des plantes et des animaux domestiques peut contribuer à améliorer les méthodes de détection des agents pathogènes dans les cultures, le bétail et les produits alimentaires et peut faciliter le développement de pratiques agricoles qui tirent parti des les alliances naturelles entre les microbes, les plantes et les animaux.

Biodéfense et médecine légale microbienne.

L'étude de l'ADN et des empreintes biochimiques des communautés microbiennes aide les spécialistes à surveiller les agents pathogènes connus et potentiels, à créer des vaccins et des traitements plus efficaces contre les agents bioterroristes potentiels et à reconstruire les événements dans lesquels les microbes ont joué un rôle.

Valeur de la métagénomique pour l'enseignement de la biologie

La citation de Muir a également une pertinence importante pour l'enseignement des sciences. Qu'est-ce qui sépare la chimie, la génétique, la biologie moléculaire, l'évolution, l'écologie et d'autres disciplines ? Où se croisent-elles et comment se construisent-elles les unes sur les autres ?

La métagénomique aide à combler le fossé entre la génétique et l'écologie, démontrant que les gènes d'un seul organisme sont connectés aux gènes des autres et à l'ensemble de la communauté. En fait, les processus de la métagénomique démontrent qu'il est important d'étudier les gènes et les organismes en contexte et d'apprécier toute la diversité de la vie, même dans un seul cadre. Ces messages ont une pertinence importante dans l'ensemble de la biologie et seraient des ajouts précieux à n'importe quel cours de biologie, peut-être en particulier ceux du niveau d'introduction.

Parce que la métagénomique s'inspire d'un large éventail de domaines et les affecte, c'est un outil précieux pour enseigner des thèmes et des concepts qui sont tissés tout au long de l'enseignement de la biologie. En effet, l'enseignement et l'apprentissage de la métagénomique pourraient clairement intégrer les types de changements dans l'enseignement des sciences de la maternelle à la 12e année et du premier cycle que de nombreux rapports ont demandé au cours de la dernière décennie.

Certains professeurs estiment qu'ils doivent utiliser des cours d'introduction pour fournir aux étudiants pratiquement toutes les connaissances qu'ils utiliseront pour comprendre les concepts de base d'une discipline. Certains considèrent également les cours d'introduction comme un moyen d'aider les étudiants à apprendre à interpréter les nouvelles et autres informations sur la science afin qu'ils puissent prendre des décisions plus éclairées à la maison, chez le médecin et dans l'isoloir. Trop souvent, cependant, de tels cours ne parviennent pas à transmettre la beauté complexe du monde vivant et les innombrables façons dont la biologie a un impact sur la "vraie vie". L'apprentissage de la métagénomique au niveau introductif - en mettant l'accent sur ses applications potentielles dans le monde réel - pourrait servir à éclairer les principes de base d'une grande variété de domaines, les liens entre eux et la pertinence plus large des avancées scientifiques pour les problèmes du monde réel. Si les étudiants peuvent voir qu'il y a vraiment des questions non résolues intéressantes auxquelles ils peuvent jouer un rôle pour répondre, le recrutement de jeunes talentueux pour les carrières scientifiques peut être facilité. De cette façon, les élèves rencontreront une science dynamique plutôt que statique.

LES BÉNÉFICES DE L'INTÉGRATION DE L'ÉDUCATION ET DE LA RECHERCHE

Les avantages de l'intégration précoce de la métagénomique et d'autres sciences nouvelles dans l'enseignement de la biologie profiteraient non seulement aux étudiants en biologie, mais aussi aux scientifiques et à leurs projets de recherche. L'expérience montre que lorsque les chercheurs enseignent, leur propre compréhension s'approfondit, menant à de nouvelles questions et pistes de recherche souvent inattendues qui sont posées par les étudiants, ainsi qu'à contribuer au développement d'approches créatives des problèmes. Si la communauté de la biologie peut intégrer l'enseignement de la métagénomique aux progrès de la recherche dès le départ, les étudiants pourraient devenir des participants actifs au développement du domaine.

Enseigner un domaine nouveau ou émergent est un moyen idéal d'engager profondément les étudiants dans l'exploration de questions fondamentales qui sont au cœur de la poursuite scientifique et de les encourager à poser leurs propres questions. En effet, dans le cas du domaine émergent de la métagénomique, les questions les plus fondamentales peuvent être les plus profondes. Répondre à ces questions inspire à son tour les jeunes esprits et les chercheurs actifs, et la science est bénéfique. 

D'autres ont vu l'intérêt d'intégrer la science émergente à l'éducation. Un certain nombre d'efforts sont actuellement en cours pour intégrer la recherche et l'enseignement en génomique.

Auteur: Internet

Info: https://www.ncbi.nlm.nih.gov/ Metagenomics: A Call for Bringing a New Science into the Classroom (While It's Still New) Anne Jurkowski,* Ann H. Reid,† and Jay B. Labovcorresponding author

[ sciences ] [ nano-monde ] [ ouverture ] [ matrice gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

 

Commentaires: 0

Ajouté à la BD par miguel

pouvoir sémantique

La bataille pour le contrôle de votre esprit

Dans son roman dystopique classique 1984, George Orwell a écrit : "Si vous voulez une image du futur, imaginez une botte piétinant un visage humain - pour toujours." Cette image frappante a servi de symbole puissant pour le totalitarisme au 20e siècle. Mais comme l'a récemment observé Caylan Ford, avec l'émergence des passeports de santé numériques dans l'État de sécurité biomédicale, le nouveau symbole de la répression totalitaire n'est "pas une botte, mais un algorithme : sans émotion, imperméable à tout appel, façonnant silencieusement la biomasse.

Ces nouveaux mécanismes de surveillance et de contrôle numériques ne seront pas moins oppressifs parce que plus virtuels que physiques. Les applications de traçage des contacts, par exemple, ont proliféré avec au moins 120 applications diverses utilisées dans 71 États différents, et 60 autres mesures numériques de traçage des contacts ont été utilisées dans 38 pays. Rien ne prouve actuellement que les applications de recherche des contacts ou autres méthodes de surveillance numérique ont contribué à ralentir la propagation du covid ; mais comme pour beaucoup de nos politiques de lutte contre les pandémies, cela ne semble pas avoir dissuadé leur utilisation.

D'autres technologies de pointe ont été déployées dans le cadre de ce qu'un écrivain a appelé, avec un clin d'œil à Orwell, "réflexe de la piétaille", pour décrire la propension des gouvernements à abuser des pouvoirs d'urgence. Vingt-deux pays ont utilisé des drones de surveillance pour repérer les contrevenants aux règles du covid, d'autres ont déployé des technologies de reconnaissance faciale, vingt-huit pays ont eu recours à la censure d'Internet et treize pays ont eu recours à la coupure d'Internet pour gérer les populations pendant le covid. Au total, trente-deux pays ont eu recours à l'armée ou à des engins militaires pour faire respecter les règles, ce qui a entraîné des pertes humaines. En Angola, par exemple, la police a tiré et tué plusieurs citoyens alors qu'elle imposait un confinement.

Orwell a exploré le pouvoir que le langage a de façonner notre pensée, et notamment la capacité d'un langage négligé ou dégradé à la déformer. Il a exprimé ces préoccupations non seulement dans ses romans Animal Farm et 1984, mais aussi dans son essai classique, "Politics and the English Language", où il affirme que "si la pensée corrompt le langage, le langage peut aussi corrompre la pensée".

Le régime totalitaire décrit dans 1984 exige des citoyens qu'ils communiquent en Newspeak, une langue soigneusement contrôlée, à la grammaire simplifiée et au vocabulaire restreint, conçue pour limiter la capacité de l'individu à penser ou à exprimer des concepts subversifs tels que l'identité personnelle, l'expression personnelle et le libre arbitre. Avec cette abâtardissement du langage, des pensées complètes sont réduites à des termes simples ne véhiculant qu'un sens simpliste.  

Cette novlangue (newspeak)  élimine la possibilité de nuance, rendant impossible la considération et la communication des nuances de sens. Le Parti a également l'intention, avec les mots courts du Newspeak, de rendre le discours physiquement automatique et donc de rendre le discours largement inconscient, ce qui diminue encore la possibilité d'une pensée véritablement critique. Dans le  roman, le personnage Syme évoque son travail de rédaction de la dernière édition du dictionnaire du Newspeak :

"D'ici 2050 - probablement plus tôt - toute connaissance réelle de l'Oldspeak [anglais standard] aura disparu. Toute la littérature du passé aura été détruite. Chaucer, Shakespeare, Milton, Byron - n'existeront plus que dans des versions en novlangue, pas seulement transformées en quelque chose de différent, mais en réalité contradictoires avec ce qu'ils étaient. Même la littérature du Parti changera. Même les slogans changeront. Comment peut-on avoir un slogan comme "La liberté, c'est de l'esclavage" alors que le concept de liberté a été aboli ? Tout le climat de la pensée en sera différent. En fait, il n'y aura pas de pensée, telle que nous l'entendons aujourd'hui. L'orthodoxie signifie ne pas penser - ne pas avoir besoin de penser. L'orthodoxie, c'est l'inconscience."

Plusieurs termes dénigrants ont été déployés de manière répétée pendant la pandémie, des phrases dont la seule fonction était d'empêcher toute possibilité de pensée critique. Il s'agit, entre autres, des mots "négationniste du virus", "anti-vax" et "théoricien de la conspiration". Certains commentateurs vont sans doute déformer ce livre, et en particulier ce chapitre, en utilisant ces termes et d'autres similaires - des raccourcis tout faits qui évitent aux critiques la peine de lire le livre ou d'examiner de manière critique mes preuves ou mes arguments. Un bref commentaire sur chacun de ces termes peut être utile pour illustrer leur fonctionnement.

Le premier terme, "négationniste du covidien", nécessite peu d'attention. Ceux qui lancent cette accusation à toute personne critiquant notre réponse à la pandémie assimilent imprudemment le covid à l'Holocauste, ce qui suggère que l'antisémitisme continue d'infecter le discours à droite comme à gauche. Nous n'avons pas besoin de nous attarder sur cette phrase.

L'épithète " anti-vax ", déployé pour caractériser toute personne qui soulève des questions sur la campagne de vaccination de masse ou sur la sécurité et l'efficacité des vaccins covidés, fonctionne de la même manière comme un frein à la conversation plutôt que comme une étiquette descriptive précise. Lorsque les gens me demandent si je suis anti-vax parce que je conteste le mandat de vaccination, je ne peux que répondre que la question a autant de sens pour moi que la question "Dr. Kheriaty, êtes-vous 'pro-médication' ou 'anti-médication' ?". La réponse est évidemment contingente et nuancée : quel médicament, pour quel patient ou population de patients, dans quelles circonstances et pour quelles indications ? Il n'existe clairement pas de médicament, ni de vaccin d'ailleurs, qui soit toujours bon pour tout le monde, en toute circonstance et tout le temps.

En ce qui concerne le terme "conspirationniste", Agamben note que son utilisation sans discernement "témoigne d'une surprenante ignorance historique". Car quiconque est familier avec l'histoire sait que les récits des historiens retracent et reconstruisent les actions d'individus, de groupes et de factions travaillant dans un but commun pour atteindre leurs objectifs en utilisant tous les moyens disponibles. Il cite trois exemples parmi les milliers que compte l'histoire.

En 415 avant J.-C., Alcibiade déploya son influence et son argent pour convaincre les Athéniens de se lancer dans une expédition en Sicile, entreprise qui se révéla désastreuse et marqua la fin de la suprématie athénienne. En représailles, les ennemis d'Alcibiade engagent de faux témoins et conspirent contre lui pour le condamner à mort. 

En 1799, Napoléon Bonaparte viole son serment de fidélité à la Constitution de la République, renverse le directoire par un coup d'État, s'arroge les pleins pouvoirs et met fin à la Révolution. Quelques jours auparavant, il avait rencontré ses co-conspirateurs pour affiner leur stratégie contre l'opposition anticipée du Conseil des Cinq-Cents.

Plus près de nous, il mentionne la marche sur Rome de 25 000 fascistes italiens en octobre 1922. On sait que Mussolini prépara la marche avec trois collaborateurs, qu'il prit contact avec le Premier ministre et des personnalités puissantes du monde des affaires (certains affirment même que Mussolini rencontra secrètement le roi pour explorer d'éventuelles allégeances). Les fascistes avaient d’ailleurs répété leur occupation de Rome par une occupation militaire d'Ancône deux mois auparavant. 

D'innombrables autres exemples, du meurtre de Jules César à la révolution bolchévique, viendront à l'esprit de tout étudiant en histoire. Dans tous ces cas, des individus se réunissent en groupes ou en partis pour élaborer des stratégies et des tactiques, anticiper les obstacles, puis agir résolument pour atteindre leurs objectifs. Agamben reconnaît que cela ne signifie pas qu'il soit toujours nécessaire de recourir aux "conspirations" pour expliquer les événements historiques. "Mais quiconque qualifierait de "théoricien de la conspiration" un historien qui tenterait de reconstituer en détail les complots qui ont déclenché de tels événements ferait très certainement preuve de sa propre ignorance, voire de son idiotie."

Quiconque mentionnant "The Great Reset" en 2019 était accusé d'adhérer à une théorie du complot - du moins jusqu'à ce que le fondateur et président exécutif du Forum économique mondial, Klaus Schwab, publie en 2020 un livre exposant l'agenda du WEF avec le titre utile, Covid-19 : The Great Reset. Après de nouvelles révélations sur l'hypothèse de la fuite dans un laboratoire, le financement par les États-Unis de la recherche sur le principe du gain de fonction à l'Institut de virologie de Wuhan, les questions de sécurité des vaccins volontairement supprimés, et la censure coordonnée des médias et les campagnes de diffamation du gouvernement contre les voix dissidentes, il semble que la seule différence entre une théorie du complot et une nouvelle crédible aura été d'environ six mois.

Auteur: Kheriaty Aaron

Info: The Brownstone Institute, mai 2022

[ propagande numérique ] [ complotisme ]

 

Commentaires: 0

Ajouté à la BD par miguel