Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 294
Temps de recherche: 0.063s

solipsisme astral

Question : Bonjour à tous, quelqu'un a-t'il déjà rencontré son moi supérieur en SHC?

Denis Cottard
Sous toute réserve, ma compréhension de ce phénomène consiste à penser notre réalité comme un iceberg dont la partie émergée est le conscient. La partie immergée la plus conséquente est plongée dans le champ énergétique, mais à différents niveaux de celui-ci, ce qui fait qu'on peut se rencontrer à différents niveaux suivant le type d'accordage vibratoire qu'on opère et cet autre moi sera doté d'une apparence reconnaissable, d'une conscience, d'un savoir plus ou moins large et d'une capacité à l'exprimer différente. A certains de ces niveaux, notre moi participe à des réalités, disons, plus collectives et donc, peut être en possession d'informations et de compréhension que notre moi conscient ignore totalement. Durant le temps de la mise en présence, un partage ou une fusion momentanée des états de vie peut s'opérer ; mais à moins d'y être préparé et de s'organiser des mots clefs pour s'en souvenir lorsqu'on ne sera plus dans cet état, la mémoire s'en va comme s'en va la mémoire du rêve. Plus l'expérience se fera dans un niveau vibratoire éloigné du niveau conscient plus difficile en sera la mémorisation. Malgré tout, si on note tout de suite ces mots clefs, une partie de l'expérience peut être remémorée. Suffisamment en tout cas pour que l'expérience puisse être reproduite de plus en plus volontairement. C'est déconcertant de constater que notre moi puisse se prolonger à des niveaux insoupçonnés et même y agir sans que le conscient soit de la partie. Le fait de se rencontrer peut être considéré comme une invitation à participer davantage consciemment à ces niveaux d'implication.
(...)
Cette difficulté de mémorisation est liée au fait qu'en s'éloignant du niveau vibratoire de notre veille commune, le support de la pensée s'apparente de moins en moins au langage parce que de plus en plus en accès "direct" au réel. On ne se situe plus dans le concept ou dans l'interprétation du perçu, on est face au perçu lui-même, en toute évidence. Ce qui fait que où que se porte notre regard nous est renvoyé un potentiel signifiant quasi-infini puisque rien ne se cache, tout se lit à livre ouvert, c'est voir pour ce que c'est : voir c'est savoir. Cela nous amène à un niveau de compréhension qu'il n'est pas du tout évident de ramener à notre niveau de conscience habituel, pour le ranger dans notre stock de petites boîtes que sont tous ces concepts qu'on utilise couramment et qui nous maintiennent dans une perception pour le moins étriquée de l'existence.
(...)
Je reviens sur le caractère déconcertant - le mot est faible - de constater que notre moi puisse percevoir et agir à des niveaux dont le conscient n'a pas la moindre idée. Nous faisons de notre moi conscient, le nec plus ultra de nos outils, alors qu'il est en fait le plus primitif de tous et que son utilité première c'est de nous permettre de percevoir les dangers et nous permettre de courir plus vite pour y échapper. Tout ce qu'il échafaude peut se rapporter à cet instinct de survie. Tout ce qu'il conçoit fabrique, choisit... peut se rapporter à ce besoin de sécurité, et tant qu'il ne se sera pas découvert une autre dimension d'existence, l'homme continuera de se créer un monde toujours plus complexe mais toujours dominé par ceux qui lui semblent les plus forts, car c'est le réflexe (inconscient) du faible que de chercher la protection de plus fort que lui. Aujourd'hui, ces plus forts sont de toute évidence ceux qui semblent comprendre quelque chose à l'économie, quand l'écrasante majorité de la population qui n'a toujours pas compris ce qu'est l'argent demeure néanmoins pétrifiée par l'idée d'en manquer ou d'en vouloir plus.

Olivier Raimbault
@Denis Cottard : Ce que tu veux dire pourrait-il être résumé entre un moi qui serait celui de l'âme (ou du Soi) et un moi, le nôtre, celui qui écrit ces mots, qui est dans l'ego ou disons le mental ordinaire ? Donc il y a des ponts entre, ou il n'y en a pas. Il y a des transferts, ou il n'y en a pas. Il y a des imprégnations ou pas. Et les liaisons entre ces polarités créent ses états vibratoires, intermédiaires et nombreux, créent aussi nos singularités, nos coefficients de conscience.

Denis Cottard
@Olivier Raimbault : En fait dans ce genre d'expérience qui ressemble fort aux SHC, c'est ce mental ordinaire qui, se met à sortir de son contexte vibratoire habituel (Raoult parlerait d'eco-système), comme dans une bulle en fait et qui est amené à constater d'autres niveaux d'existence de lui-même qu'il ne soupçonnait pas. C'est juste le différentiel vibratoire qui provoque la théâtralisation sous la forme d'un autre soi. A mon sens, ce n'est pas de ponts dont il s'agit, puisqu'il n'y a toujours qu'un seul et même bonhomme, mais dont la réalité ne s'étend ni dans l'espace, ni dans le temps, mais dans la vibration. Le passage d'un état à l'autre est progressif, un peu comme au scanner, l'opérateur en jouant sur la fréquence de résonance parvient à mettre en évidence des tissus par degré de mollesse ou de dureté, mais il n'y a toujours qu'un seul bonhomme allongé dans l'appareil. Je prend un autre exemple : nous nous considérons généralement comme un système autonome , relativement fermé, capable de se mouvoir en toute liberté. Mais en adoptant le point de vue de l'air, on se rend compte qu'on est totalement ouvert puisque c'est même le rôle du sang que de véhiculer l'oxygène (de l'air) à chacune de nos cellules. Du point de vue des micro organismes, dès qu'on sort du corps de notre mère, nous sommes colonisés parce que nous ne sommes pas viables sans ces micro organismes. Tout cela, ce sont des points de vue qui sont plus ou moins étonnants, dérangeants, en fonction de notre culture, qui va sélectionner une infime poignée de point de vue pour fabriquer l'image que l'on a de soi. Notre conscience pensante, elle ne joue pas avec des signaux qui lui viennent de l'extérieur, elle joue avec l'infime poignée de points de vue qu'elle a sélectionnée. Contrairement à ce que nous croyons, nous ne sommes en prise directe qu'avec la façon dont nous nous représentons le monde. Donc, le transfert n'a pas lieu d'être puisque ça ne va pas d'un récipient A à un récipient B, il n'y a qu'un seul récipient, appelons-le, le Graal, si on veut (!), quand notre mental prend conscience de ces autres niveaux de réalités de lui-même, il va juste, soit oublier très vite parce qu'il ne sait rien en faire, ou au contraire, accepter qu'ils fassent partie de lui-même, et c'est là que des informations qui généralement font partie du lot des trucs qu'existent pas, deviennent des points de vue acceptés, donc utiles, et à ce titre ; ils font grandir notre compréhension des choses, élargissent le panel, la sélection. La plupart des gens ne tiennent compte que des informations qui leur viennent de leur sens, mais imagine que tu sois branché sur un niveau de toi qui perçois peu ou prou le champ d'énergie dans lequel on baigne : tu vas percevoir des choses avant qu'elles ne deviennent des faits. C'est intéressant à mon sens.

Olivier Raimbault
@Denis Cottard : je comprends très bien. C'est exactement ce que j'ai essayé de synthétiser. Le différentiel est tel qu'il peut donner l'impression d'un autre soi mais si le différentiel se réduit ou s'apprivoise par l'expérience et l'habitude, il n'y a plus d'autre soi. Il y a bien des échanges, transferts, équilibrages, quand bien même ça serait un seul moi vibrant différemment. Je pense que nous nous élaborons couramment dans une zone très restreinte de nous-mêmes, que nous pensons être le tout avant de découvrir, dans le meilleur des cas, qu'elle n'est qu'une zone, et petite.

Denis Cottard
@Olivier Raimbault : oui tout à fait !!!

Auteur: Cottard Denis

Info: Sur la groupe FB de Marc Auburn, explorateurs du réel, question du 24 juin 2020

[ incarnation ] [ point de singularité ] [ corps causal ] [ niveaux vibratoires ]

 

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Les progrès récents de l'intelligence artificielle (IA), notamment avec ChatGPT en novembre 2022, ont suscité interrogations, espoirs et craintes, menant à des auditions par le Congrès américain et l'adoption d'une réglementation par l'UE au printemps 2023. 

Dans les parlements comme sur les réseaux sociaux, les rapides progrès de l’IA animent les discussions. À l’avenir, à quels impacts faut-il s’attendre sur notre société ? Pour tenter de répondre à cette question de manière dépassionnée, nous proposons de regarder ce qui s’est passé dans un secteur qui a déjà connu l’arrivée et la victoire de l’IA sur les capacités humaines : les échecs. La machine y a en effet un niveau supérieur à celui des humains depuis maintenant plus d’un quart de siècle.

Pourquoi le jeu d’échecs comme indicateur ?

Depuis les débuts de l’informatique, les échecs ont été utilisés comme un indicateur des progrès logiciels et matériels. C’est un jeu intéressant à de multiples niveaux pour étudier les impacts des IA sur la société :

1 C’est une activité intellectuelle qui demande différentes compétences : visualisation spatiale, mémoire, calcul mental, créativité, capacité d’adaptation, etc., compétences sur lesquelles l’IA vient concurrencer l’esprit humain.

2 Le jeu n’a pas changé depuis des siècles. Les règles sont bien établies et cela donne une base stable pour étudier l’évolution des joueurs.

3  Il est possible de mesurer la force des machines de manière objective et de comparer ce niveau à celui des humains avec le classement Elo.

4 Le champ d’études est restreint : il est clair que les échecs ne sont qu’un tout petit aspect de la vie, mais c’est justement le but. Cette étroitesse du sujet permet de mieux cibler les impacts des IA sur la vie courante.

5  Les IA ont dépassé le niveau des meilleurs joueurs humains depuis plus de 20 ans. Il est donc possible de voir quels ont été les impacts concrets sur le jeu d’échecs et la vie de sa communauté, qui peut être vue comme un microcosme de la société. On peut également étudier ces impacts en regard de la progression des IA au cours du temps.

Explorons quelles ont été les évolutions dans le monde des échecs depuis que Gary Kasparov, alors champion du monde en titre, a perdu une partie contre Deep Blue en 1996, puis le match revanche joué en 1997. Nous allons passer en revue plusieurs thèmes qui reviennent dans la discussion sur les risques liés aux IA et voir ce qu’il en a été de ces spéculations dans le domaine particulier des échecs.

Les performances de l’IA vont-elles continuer à augmenter toujours plus vite ?

Il existe deux grandes écoles pour programmer un logiciel d’échecs : pendant longtemps, seule la force brute fonctionnait. Il s’agissait essentiellement de calculer le plus vite possible pour avoir un arbre de coups plus profonds, c’est-à-dire capable d’anticiper la partie plus loin dans le futur.

(Image : À partir d’une position initiale, l’ordinateur calcule un ensemble de possibilités, à une certaine profondeur, c’est-à-dire un nombre de coups futurs dans la partie.)

Aujourd’hui, la force brute est mise en concurrence avec des techniques d’IA issues des réseaux de neurones. En 2018, la filiale de Google DeepMind a produit AlphaZero, une IA d’apprentissage profond par réseau de neurones artificiels, qui a appris tout seul en jouant contre lui-même aux échecs. Parmi les logiciels les plus puissants de nos jours, il est remarquable que LC0, qui est une IA par réseau de neurones, et Stockfish, qui est essentiellement un logiciel de calcul par force brute, aient tous les deux des résultats similaires. Dans le dernier classement de l’Association suédoise des échecs sur  ordinateur (SSDF), ils ne sont séparés que de 4 points Elo : 3 582 pour LC0 contre 3 586 pour Stockfish. Ces deux manières totalement différentes d’implanter un moteur d’échecs sont virtuellement indistinguables en termes de force.

En termes de points Elo, la progression des machines a été linéaire. Le graphique suivant donne le niveau du meilleur logiciel chaque année selon le classement SSDF qui a commencé depuis le milieu des années 1980. Le meilleur logiciel actuel, LC0, en est à 3586, ce qui prolonge la figure comme on pourrait s’y attendre.

(Image : courbe du classement ELO )

Cette progression linéaire est en fait le reflet d’une progression assez lente des logiciels. En effet, le progrès en puissance de calcul est, lui, exponentiel. C’est la célèbre loi de Moore qui stipule que les puissances de calcul des ordinateurs doublent tous les dix-huit mois.

Cependant, Ken Thompson, informaticien américain ayant travaillé dans les années 80 sur Belle, à l’époque le meilleur programme d’échecs, avait expérimentalement constaté qu’une augmentation exponentielle de puissance de calcul conduisait à une augmentation linéaire de la force des logiciels, telle qu’elle a été observée ces dernières dizaines d’années. En effet, le fait d’ajouter un coup supplémentaire de profondeur de calcul implique de calculer bien plus de nouvelles positions. On voit ainsi que l’arbre des coups possibles est de plus en plus large à chaque étape.

Les progrès des IA en tant que tels semblent donc faibles : même si elles ne progressaient pas, on observerait quand même une progression de la force des logiciels du simple fait de l’amélioration de la puissance de calcul des machines. On ne peut donc pas accorder aux progrès de l’IA tout le crédit de l’amélioration constante des ordinateurs aux échecs.

La réception par la communauté de joueurs d’échecs

Avec l’arrivée de machines puissantes dans le monde de l'échiquier, la communauté a nécessairement évolué. Ce point est moins scientifique mais est peut-être le plus important. Observons quelles ont été ces évolutions.

" Pourquoi les gens continueraient-ils de jouer aux échecs ? " Cette question se posait réellement juste après la défaite de Kasparov, alors que le futur des échecs amateurs et professionnels paraissait sombre. Il se trouve que les humains préfèrent jouer contre d’autres humains et sont toujours intéressés par le spectacle de forts grands maîtres jouant entre eux, et ce même si les machines peuvent déceler leurs erreurs en temps réel. Le prestige des joueurs d’échecs de haut niveau n’a pas été diminué par le fait que les machines soient capables de les battre.

Le style de jeu a quant à lui été impacté à de nombreux niveaux. Essentiellement, les joueurs se sont rendu compte qu’il y avait beaucoup plus d’approches possibles du jeu qu’on le pensait. C’est l’académisme, les règles rigides, qui en ont pris un coup. Encore faut-il réussir à analyser les choix faits par les machines. Les IA sont par ailleurs très fortes pour pointer les erreurs tactiques, c’est-à-dire les erreurs de calcul sur de courtes séquences. En ligne, il est possible d’analyser les parties de manière quasi instantanée. C’est un peu l’équivalent d’avoir un professeur particulier à portée de main. Cela a sûrement contribué à une augmentation du niveau général des joueurs humains et à la démocratisation du jeu ces dernières années. Pour le moment, les IA n’arrivent pas à prodiguer de bons conseils en stratégie, c’est-à-dire des considérations à plus long terme dans la partie. Il est possible que cela change avec les modèles de langage, tel que ChatGPT.

Les IA ont aussi introduit la possibilité de tricher. Il y a eu de nombreux scandales à ce propos, et on se doit de reconnaître qu’il n’a pas à ce jour de " bonne solution " pour gérer ce problème, qui rejoint les interrogations des professeurs, qui ne savent plus qui, de ChatGPT ou des étudiants, leur rendent les devoirs.

Conclusions temporaires

Cette revue rapide semble indiquer qu’à l’heure actuelle, la plupart des peurs exprimées vis-à-vis des IA ne sont pas expérimentalement justifiées. Le jeu d’échecs est un précédent historique intéressant pour étudier les impacts de ces nouvelles technologies quand leurs capacités se mettent à dépasser celles des humains. Bien sûr, cet exemple est très limité, et il n’est pas possible de le généraliser à l’ensemble de la société sans précaution. En particulier, les modèles d’IA qui jouent aux échecs ne sont pas des IA génératives, comme ChatGPT, qui sont celles qui font le plus parler d’elles récemment. Néanmoins, les échecs sont un exemple concret qui peut être utile pour mettre en perspective les risques associés aux IA et à l’influence notable qu’elles promettent d’avoir sur la société.


Auteur: Internet

Info: https://www.science-et-vie.com/ - Article issu de The Conversation, écrit par Frédéric Prost Maître de conférences en informatique, INSA Lyon – Université de Lyon 14 avril 2024

[ ouverture ] [ conformisme limitant ]

 

Commentaires: 0

Ajouté à la BD par miguel

univers vibratoire

Les hippies avaient raison : Tout est vibrations, mec !

Pourquoi certaines choses sont-elles conscientes et d'autres apparemment pas ? Un oiseau est-il conscient ? Une batte ? Un cafard ? Une bactérie ? Un électron ?

Toutes ces questions sont autant d'aspects du récurrent problème sur l'âme et le corps, qui résiste depuis des milliers d'années à une conclusion généralement satisfaisante.

La problématique du corps et de l'esprit a fait l'objet d'un important changement de nom au cours des deux dernières décennies et est généralement reconnue aujourd'hui comme une "grande difficulté quand à la conscience", après que le philosophe David Chalmers de l'Université de New York ait travaillé sur ce concept dans un article devenu classique en 1995 et avec son ouvrage "The Conscious Mind : In Search of a Fundamental Theory", en 1996.

Posons-nous la question maintenant : Les hippies ont-ils vraiment résolu ce problème ? Mon collègue Jonathan Schooler de l'Université de Californie, Santa Barbara, et moi pensons que oui, avec cette intuition radicale qu'il s'agit bien de vibrations...

Au cours de la dernière décennie, nous avons développé une "théorie de la résonance de la conscience" qui suggère que la résonance, autrement dit les vibrations synchronisées, est au coeur non seulement de la conscience humaine mais aussi de la réalité physique en général.

Et les hippies là-dedans ? Eh bien, nous sommes d'accord que les vibrations, la résonance, représente le mécanisme clé derrière la conscience humaine, ainsi que la conscience animale plus généralement. Et, comme on le verra plus loin, c'est le mécanisme de base de toutes les interactions physiques.

Toutes les choses dans notre univers sont constamment en mouvement, vibrantes. Même les objets qui semblent stationnaires vibrent, oscillent, résonnent à différentes fréquences. La résonance est un type de mouvement, caractérisé par une oscillation entre deux états. Et en fin de compte, toute matière n'est qu'une vibration de divers domaines sous-jacents.

Un phénomène intéressant se produit lorsque différents objets/processus vibrants se rapprochent : ils commencent souvent, après un certain temps, à vibrer ensemble à la même fréquence. Ils se "synchronisent", parfois d'une manière qui peut sembler mystérieuse. C'est ce qu'on appelle aujourd'hui le phénomène d'auto-organisation spontanée. L'examen de ce phénomène conduit à une compréhension potentiellement profonde de la nature de la conscience et de l'univers en général.

TOUTES LES CHOSES RÉSONNENT À CERTAINES FRÉQUENCES

Stephen Strogatz donne divers exemples tirés de la physique, biologie, chimie et des neurosciences pour illustrer ce qu'il appelle la "synchronisation" dans son livre de 2003 également titré "Sync". Notamment :

- Les lucioles de certaines espèces se mettent à clignoter leurs petits feux en synchronisation lors de grands rassemblements de lucioles, d'une manière qui est être difficile à expliquer avec les approches traditionnelles.

- Les neurones "s'allument" à grande échelle dans le cerveau humain à des fréquences spécifiques, la conscience des mammifères étant généralement associée à divers types de synchronisation neuronale.

- Les lasers sont produits lorsque des photons de même puissance et de même fréquence sont émis ensemble.

- La rotation de la lune est exactement synchronisée avec son orbite autour de la Terre, de sorte que nous voyons toujours la même face. La résonance est un phénomène véritablement universel et au coeur de ce qui peut parfois sembler être des tendances mystérieuses vers l'auto-organisation.

Pascal Fries, neurophysiologiste allemand de l'Institut Ernst Strüngmann, a exploré dans ses travaux très cités au cours des deux dernières décennies la façon dont divers modèles électriques, en particulier les ondes gamma, thêta et bêta, travaillent ensemble dans le cerveau pour produire divers types de conscience humaine.

Ces noms font référence à la vitesse des oscillations électriques dans les différentes régions du cerveau, mesurée par des électrodes placées à l'extérieur du crâne. Les ondes gamma sont généralement définies comme étant d'environ 30 à 90 cycles par seconde (hertz), les thêta de 4 à 7 Hz et les bêta de 12,5 à 30 hz. Il ne s'agit pas de limites strictes - ce sont des règles empiriques - et elles varient quelque peu d'une espèce à l'autre.

Ainsi, thêta et bêta sont significativement plus lentes que les ondes gamma. Mais les trois travaillent ensemble pour produire, ou au moins faciliter (la relation exacte entre les schémas électriques du cerveau et la conscience est encore bien en débat), les différents types de conscience humaine.

Fries appelle son concept "communication par la cohérence" ou CTC. Pour Fries, c'est une question de synchronisation neuronale. La synchronisation, en termes de taux d'oscillation électrique partagés, permet une communication fluide entre les neurones et les groupes de neurones. Sans cohérence (synchronisation), les entrées arrivent à des phases aléatoires du cycle d'excitabilité des neurones et sont inefficaces, ou du moins beaucoup moins efficaces, pour communiquer.

Notre théorie de la résonance de la conscience s'appuie sur le travail de Fries et de beaucoup d'autres, dans une approche plus large qui peut aider à expliquer non seulement la conscience humaine et mammifère, mais aussi la conscience plus largement. Nous spéculons aussi métaphysiquement sur la nature de la conscience comme phénomène général pour toute matière.

EST-CE QUE TOUT EST AU MOINS UN PEU CONSCIENT ?

D'après le comportement observé des entités qui nous entourent, des électrons aux atomes en passant par les molécules, les bactéries, les paramécies, les souris, les chauves-souris, les rats, etc. Cela peut paraître étrange à première vue, mais le "panpsychisme" - l'idée que toute matière a une certaine conscience associée - est une position de plus en plus acceptée par rapport à la nature de la conscience.

Le panpsychiste soutient que la conscience (subjectivité) n'a pas émergé ; au contraire, elle est toujours associée à la matière, et vice versa (les deux faces d'une même médaille), mais l'esprit associé à la plupart de la matière dans notre univers est généralement très simple. Un électron ou un atome, par exemple, ne jouissent que d'une infime quantité de conscience. Mais comme la matière "se complexifie", l'esprit se complexifie, et vice versa.

Les organismes biologiques ont accéléré l'échange d'information par diverses voies biophysiques, y compris les voies électriques et électrochimiques. Ces flux d'information plus rapides permet d'atteindre des niveaux de conscience à l'échelle macroscopique plus élevés que ceux qui se produiraient dans des structures d'échelle similaire comme des blocs rocheux ou un tas de sable, simplement parce qu'il y a une connectivité beaucoup plus grande et donc plus "en action" dans les structures biologiques que dans un bloc ou un tas de sable. Roches et les tas de sable n'ont que des voies thermiques avec une bande passante très limitée.

Les blocs rocheux et les tas de sable sont de "simples agrégats" ou collections d'entités conscientes plus rudimentaires (probablement au niveau atomique ou moléculaire seulement), plutôt que des combinaisons d'entités micro-conscientes qui se combinent en une entité macro-consciente de niveau supérieur, ce qui est la marque de la vie biologique.

Par conséquent, le type de communication entre les structures résonnantes est essentiel pour que la conscience s'étende au-delà du type rudimentaire de conscience que nous nous attendons à trouver dans des structures physiques plus fondamentales.

La thèse centrale de notre approche est la suivante : les liens particuliers qui permettent à la macro-conscience de se produire résultent d'une résonance partagée entre de nombreux composants micro-conscients. La vitesse des ondes de résonance présentes est le facteur limitant qui détermine la taille de chaque entité consciente.

Au fur et à mesure qu'une résonance partagée s'étend à de plus en plus de constituants, l'entité consciente particulière devient plus grande et plus complexe. Ainsi, la résonance partagée dans un cerveau humain qui atteint la synchronisation gamma, par exemple, comprend un nombre beaucoup plus important de neurones et de connexions neuronales que ce n'est le cas pour les rythmes bêta ou thêta.

Des structures résonnantes qui résonnent de haut en bas.

Notre théorie de la résonance de la conscience tente de fournir un cadre unifié qui inclut la neuroscience et l'étude de la conscience humaine, mais aussi des questions plus fondamentales de neurobiologie et de biophysique. Elle va au cœur des différences qui comptent quand il s'agit de la conscience et de l'évolution des systèmes physiques.

C'est une question de vibrations, mais c'est aussi une question de type de vibrations et, surtout, de vibrations partagées.

Mets tout ça dans ta pipe. Et fume, mon pote.

Auteur: Tam Hunt

Info: https://blogs.scientificamerican.com, 5 décembre 2018

[ chair-esprit ] [ spéculation ]

 
Commentaires: 2
Ajouté à la BD par miguel

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel

recherche fondamentale

Pourquoi nous pouvons cesser de nous inquiéter et aimer les accélérateur de particules

En plongeant dans les mystères de l'Univers, les collisionneurs sont entrés dans l'air du temps et ont exploité  merveilles et  craintes de notre époque.

Le scénario semble être le début d'une mauvaise bande dessinée de Marvel, mais il se trouve qu'il éclaire nos intuitions sur les radiations, la vulnérabilité du corps humain et la nature même de la matière. Grâce aux accélérateurs de particules, les physiciens peuvent étudier les particules subatomiques en les accélérant dans de puissants champs magnétiques, puis en retraçant les interactions qui résultent des collisions. En plongeant dans les mystères de l'Univers, les collisionneurs se sont inscrits dans l'air du temps et ont nourris des émerveillements et des craintes de notre époque.

Dès 2008, le Grand collisionneur de hadrons (LHC), exploité par l'Organisation européenne pour la recherche nucléaire (CERN), a été chargé de créer des trous noirs microscopiques qui permettraient aux physiciens de détecter des dimensions supplémentaires. Pour beaucoup, cela ressemblait à l'intrigue d'un film catastrophe de science-fiction. Il n'est donc pas surprenant que deux personnes aient intenté une action en justice pour empêcher le LHC de fonctionner, de peur qu'il ne produise un trou noir suffisamment puissant pour détruire le monde. Mais les physiciens firent valoir que l'idée était absurde et la plainte fut rejetée.

Puis, en 2012, le LHC détecta le boson de Higgs tant recherché, une particule nécessaire pour expliquer comment les particules acquièrent une masse. Avec cette réalisation majeure, le LHC est entré dans la culture populaire ; il a figuré sur la pochette de l'album Super Collider (2013) du groupe de heavy metal Megadeth, et a été un élément de l'intrigue de la série télévisée américaine The Flash (2014-).

Pourtant, malgré ses réalisations et son prestige, le monde de la physique des particules est si abstrait que peu de gens en comprennent les implications, la signification ou l'utilisation. Contrairement à une sonde de la NASA envoyée sur Mars, les recherches du CERN ne produisent pas d'images étonnantes et tangibles. Au lieu de cela, l'étude de la physique des particules est mieux décrite par des équations au tableau noir et des lignes sinueuses appelées diagrammes de Feynman. Aage Bohr, lauréat du prix Nobel dont le père Niels a inventé le modèle Bohr de l'atome, et son collègue Ole Ulfbeck sont même allés jusqu'à nier l'existence physique des particules subatomiques, qui ne sont rien d'autre que des modèles mathématiques.

Ce qui nous ramène à notre question initiale : que se passe-t-il lorsqu'un faisceau de particules subatomiques se déplaçant à une vitesse proche de celle de la lumière rencontre la chair du corps humain ? Peut-être parce que les domaines de la physique des particules et de la biologie sont conceptuellement très éloignés, ce ne sont pas seulement les profanes qui manquent d'intuition pour répondre à cette question, mais aussi certains physiciens professionnels. Dans une interview réalisée en 2010 sur YouTube avec des membres de la faculté de physique et d'astronomie de l'université de Nottingham, plusieurs experts universitaires ont admis qu'ils n'avaient aucune idée de ce qui se passerait si l'on introduisait une main à l'intérieur du faisceau de protons du LHC. Le professeur Michael Merrifield l'exprima de manière succincte : "C'est une bonne question. Je ne connais pas la réponse. Ce serait probablement néfaste pour la santé". Le professeur Laurence Eaves se montra également prudent avant de tirer des conclusions. "À l'échelle de l'énergie que nous percevons, ce ne serait pas si perceptible que cela, déclara-t-il, sans doute avec un brin d'euphémisme britannique. Est-ce que je mettrais ma main dans le faisceau ? Je n'en suis pas sûr."

De telles expériences de pensée peuvent être des outils utiles pour explorer des situations qui ne peuvent pas être étudiées en laboratoire. Il arrive cependant que des accidents malencontreux donnent lieu à des études de cas : occasions pour les chercheurs d'étudier des scénarios qui ne peuvent pas être induits expérimentalement pour des raisons éthiques. Etude de cas ici avec un échantillon d'une personne et qui ne comporte pas de groupe de contrôle. Mais, comme l'a souligné en son temps le neuroscientifique V S Ramachandran dans Phantoms in the Brain (1998), il suffit d'un seul cochon qui parle pour prouver que les cochons peuvent parler. Le 13 septembre 1848, par exemple, une barre de fer transperça la tête de Phineas Gage, un cheminot américain, et modifia profondément sa personnalité, ce qui constitue une première preuve de l'existence d'une base biologique de la personnalité.

Et puis le 13 juillet 1978, un scientifique soviétique du nom d'Anatoli Bugorski plongea sa tête dans un accélérateur de particules. Ce jour-là, Bugorski vérifiait un équipement défectueux sur le synchrotron U-70 - le plus grand accélérateur de particules d'Union soviétique - lorsqu'un mécanisme de sécurité a lâché et qu'un faisceau de protons se déplaçant à une vitesse proche de celle de la lumière lui a traversé la tête, à la manière de Phineas Gage. Il est possible qu'à ce moment de l'histoire, aucun autre être humain n'ait jamais été confronté à un faisceau de rayonnement concentré à une énergie aussi élevée. Bien que la protonthérapie - un traitement du cancer utilisant des faisceaux de protons pour détruire les tumeurs - ait été mise au point avant l'accident de Bugorski, l'énergie de ces faisceaux ne dépasse généralement pas 250 millions d'électronvolts (une unité d'énergie utilisée pour les petites particules). Bugorski aurait pu subir de plein fouet les effets d'un faisceau d'une énergie plus de 300 fois supérieure, soit 76 milliards d'électrons-volts.

Le rayonnement de protons est en effet très rare. Les protons provenant du vent solaire et des rayons cosmiques sont stoppés par l'atmosphère terrestre, et le rayonnement de protons est si rare dans la désintégration radioactive qu'il n'a été observé qu'en 1970. Les menaces plus familières, telles que les photons ultraviolets et les particules alpha, ne pénètrent pas dans le corps au-delà de la peau, sauf en cas d'ingestion d'une substance radioactive. Le dissident russe Alexandre Litvinenko, par exemple, fut tué par des particules alpha qui ne pénètrent même pas le papier lorsqu'il ingéra à son insu du polonium-210 radioactif livré par un assassin. Mais lorsque les astronautes d'Apollo, protégés par des combinaisons spatiales, furent exposés à des rayons cosmiques contenant des protons et à des formes de rayonnement encore plus exotiques, ils signalèrent des éclairs de lumière visuelle, signe avant-coureur de ce qui allait arriver à Bugorski le jour fatidique de son accident. Selon une interview publiée dans le magazine Wired en 1997, Bugorski a immédiatement vu un flash lumineux intense, mais n'a ressenti aucune douleur. Le jeune scientifique fut transporté dans une clinique de Moscou, la moitié du visage gonflée, et les médecins s'attendaient au pire.

Les particules de rayonnement ionisant, telles que les protons, font des ravages dans l'organisme en brisant les liaisons chimiques de l'ADN. Cette atteinte à la programmation génétique d'une cellule peut tuer la cellule, l'empêcher de se diviser ou induire une mutation cancéreuse. Les cellules qui se divisent rapidement, comme les cellules souches de la moelle osseuse, sont les plus touchées. Les cellules sanguines étant produites dans la moelle osseuse, par exemple, de nombreux cas d'irradiation se traduisent par une infection et une anémie dues à la perte de globules blancs et de globules rouges, respectivement. Mais dans le cas particulier de Bugorski, les radiations étaient concentrées le long d'un faisceau étroit à travers la tête, au lieu d'être largement dispersées lors des retombées nucléaires, comme cela a été le cas pour de nombreuses victimes de la catastrophe de Tchernobyl ou du bombardement d'Hiroshima. Pour Bugorski, les tissus particulièrement vulnérables, tels que la moelle osseuse et le tractus gastro-intestinal, auraient pu être largement épargnés. Mais là où le faisceau a traversé la tête de Bugorski, il a déposé une quantité obscène d'énergie de rayonnement, des centaines de fois supérieure à une dose létale selon certaines estimations.

Et pourtant, Bugorski est toujours en vie aujourd'hui. La moitié de son visage est paralysée, ce qui donne à un hémisphère de sa tête une apparence étrangement jeune. Il serait sourd d'une oreille. Il a souffert d'au moins six crises tonico-cloniques généralisées. Communément appelées crises de grand mal, ce sont les crises les plus fréquemment représentées au cinéma et à la télévision, impliquant des convulsions et une perte de conscience. L'épilepsie de Bugorski est probablement le résultat de la cicatrisation des tissus cérébraux causée par le faisceau de protons. Il souffre également de crises de petit mal ou d'absence, des crises beaucoup moins spectaculaires au cours desquelles la conscience est brièvement interrompue. Aucun cancer n'a été diagnostiqué chez Bugorski, bien qu'il s'agisse souvent d'une conséquence à long terme de l'exposition aux rayonnements.

Bien que son cerveau ait été traversé par rien de moins qu'un faisceau d'accélérateur de particules, l'intellect de Bugorski est resté intact et il a passé son doctorat avec succès après l'accident.  

Auteur: Frohlich Joel

Info: https://bigthink.com/   23 juin  2020

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

chimiosynthèse

Les cellules souterraines produisent de l'« oxygène sombre » sans lumière

Dans certaines profondes nappes souterraines, les cellules disposent d’une astuce chimique pour produire de l’oxygène qui pourrait alimenter des écosystèmes souterrains entiers.

(Photo - Dans un monde ensoleillé, la photosynthèse fournit l’oxygène indispensable à la vie. Au fond des profondeurs, la vie trouve un autre chemin.)

Les scientifiques se sont rendu compte que le sol et les roches sous nos pieds abritent une vaste biosphère dont le volume global est près de deux fois supérieur à celui de tous les océans de la planète. On sait peu de choses sur ces organismes souterrains, qui représentent l’essentiel de la masse microbienne de la planète et dont la diversité pourrait dépasser celle des formes de vie vivant en surface. Leur existence s’accompagne d’une grande énigme : les chercheurs ont souvent supposé que bon nombre de ces royaumes souterrains étaient des zones mortes pauvres en oxygène, habitées uniquement par des microbes primitifs qui maintiennent leur métabolisme au ralenti et se débrouillent grâce aux traces de nutriments. À mesure que ces ressources s’épuisent, pensait-on, l’environnement souterrain devient sans vie à mesure que l’on s’enfonce.

Dans une nouvelle recherche publiée le mois dernier dans Nature Communications , les chercheurs ont présenté des preuves qui remettent en question ces hypothèses. Dans des réservoirs d'eau souterraine situés à 200 mètres sous les champs de combustibles fossiles de l'Alberta, au Canada, ils ont découvert des microbes abondants qui produisent des quantités étonnamment importantes d'oxygène, même en l'absence de lumière. Les microbes génèrent et libèrent tellement de ce que les chercheurs appellent " l'oxygène noir " que c'est comme découvrir " le même quantité d'oxygène que celle  issue de la photosynthèse dans la forêt amazonienne ", a déclaré Karen Lloyd , microbiologiste souterrain à l'Université du Tennessee qui n'était pas partie de l’étude. La quantité de gaz diffusé hors des cellules est si grande qu’elle semble créer des conditions favorables à une vie dépendante de l’oxygène dans les eaux souterraines et les strates environnantes.

"Il s'agit d'une étude historique", a déclaré Barbara Sherwood Lollar , géochimiste à l'Université de Toronto qui n'a pas participé aux travaux. Les recherches antérieures ont souvent porté sur les mécanismes susceptibles de produire de l'hydrogène et d'autres molécules vitales pour la vie souterraine, mais cette création de molécules contenant de l'oxygène a été largement négligée car ces molécules sont très rapidement consommées dans l'environnement souterrain. Jusqu’à présent, " aucune étude n’a rassemblé tout cela comme celle-ci ", a-t-elle déclaré.

La nouvelle étude a porté sur les aquifères profonds de la province canadienne de l’Alberta, qui possède des gisements souterrains si riches en goudron, en sables bitumineux et en hydrocarbures qu’elle a été surnommée " le Texas du Canada ". Parce que ses énormes industries d'élevage de bétail et d'agriculture dépendent fortement des eaux souterraines, le gouvernement provincial surveille activement l'acidité et la composition chimique de l'eau. Pourtant, personne n’avait étudié systématiquement la microbiologie des eaux souterraines.

Pour Emil Ruff , mener une telle enquête semblait être " une solution facile " en 2015 lorsqu'il a commencé son stage postdoctoral en microbiologie à l'Université de Calgary. Il ne savait pas que cette étude apparemment simple le mettrait à rude épreuve pendant les six prochaines années.

Profondeurs encombrées

Après avoir collecté l'eau souterraine de 95 puits à travers l'Alberta, Ruff et ses collègues ont commencé à faire de la microscopie de base : ils ont coloré des cellules microbiennes dans des échantillons d'eau souterraine avec un colorant à base d'acide nucléique et ont utilisé un microscope à fluorescence pour les compter. En radiodatant la matière organique présente dans les échantillons et en vérifiant les profondeurs auxquelles ils avaient été collectés, les chercheurs ont pu identifier l'âge des aquifères souterrains qu'ils exploitaient.

Une tendance dans les chiffres les intriguait. Habituellement, lors d'études sur les sédiments sous le fond marin, par exemple, les scientifiques constatent que le nombre de cellules microbiennes diminue avec la profondeur : les échantillons plus anciens et plus profonds ne peuvent pas abriter autant de vie car ils sont davantage privés des nutriments produits par les plantes photosynthétiques. et des algues près de la surface. Mais à la surprise de l'équipe de Ruff, les eaux souterraines plus anciennes et plus profondes contenaient plus de cellules que les eaux plus douces.

Les chercheurs ont ensuite commencé à identifier les microbes présents dans les échantillons, à l’aide d’outils moléculaires pour repérer leurs gènes marqueurs révélateurs. Beaucoup d’entre eux étaient des archées méthanogènes – des microbes simples et unicellulaires qui produisent du méthane après avoir consommé de l’hydrogène et du carbone suintant des roches ou de la matière organique en décomposition. De nombreuses bactéries se nourrissant du méthane ou des minéraux présents dans l’eau étaient également présentes.

Ce qui n'avait aucun sens, cependant, c'est que bon nombre de bactéries étaient des aérobies, des microbes qui ont besoin d'oxygène pour digérer le méthane et d'autres composés. Comment les aérobies pourraient-ils prospérer dans des eaux souterraines qui ne devraient pas contenir d’oxygène, puisque la photosynthèse est impossible ? Mais les analyses chimiques ont également révélé une grande quantité d’oxygène dissous dans les échantillons d’eau souterraine de 200 mètres de profondeur.

C'était du jamais vu. "On a sûrement foiré l'échantillon", fut la première réaction de Ruff.

Il a d’abord tenté de montrer que l’oxygène dissous dans les échantillons était le résultat d’une mauvaise manipulation. "C'est comme être Sherlock Holmes", a déclaré Ruff. " Vous essayez de trouver des preuves et des indications " pour réfuter vos hypothèses. Cependant, la teneur en oxygène dissous semblait constante sur des centaines d’échantillons. Une mauvaise manipulation ne pouvait pas l'expliquer.

Si l’oxygène dissous ne provenait pas d’une contamination, d’où venait-il ? Ruff s'est rendu compte qu'il près de quelque chose de grand, même si faire des affirmations controversées va à l'encontre de sa nature. Beaucoup de ses co-auteurs avaient également des doutes : cette découverte menaçait de briser les fondements de notre compréhension des écosystèmes souterrains.

Produire de l'oxygène pour tout le monde

En théorie, l’oxygène dissous dans les eaux souterraines pourrait provenir de plantes, de microbes ou de processus géologiques. Pour trouver la réponse, les chercheurs se sont tournés vers la spectrométrie de masse, une technique permettant de mesurer la masse des isotopes atomiques. En règle générale, les atomes d’oxygène provenant de sources géologiques sont plus lourds que l’oxygène provenant de sources biologiques. L’oxygène présent dans les eaux souterraines était léger, ce qui impliquait qu’il devait provenir d’une entité vivante. Les candidats les plus plausibles étaient les microbes.

Les chercheurs ont séquencé les génomes de l’ensemble de la communauté microbienne présente dans les eaux souterraines et ont repéré les voies et réactions biochimiques les plus susceptibles de produire de l’oxygène. Les réponses pointaient sans cesse vers une découverte faite il y a plus de dix ans par Marc Strous de l'Université de Calgary, auteur principal de la nouvelle étude et chef du laboratoire où travaillait Ruff.

Alors qu'il travaillait dans un laboratoire aux Pays-Bas à la fin des années 2000, Strous avait remarqué qu'un type de bactérie se nourrissant de méthane, souvent présente dans les sédiments des lacs et les boues d'épuration, avait un mode de vie étrange. Au lieu d'absorber l'oxygène de son environnement comme les autres aérobies, ces bactéries créent leur propre oxygène en utilisant des enzymes pour décomposer les composés solubles appelés nitrites (qui contiennent un groupe chimique composé d'azote et de deux atomes d'oxygène). Les bactéries utilisent l’oxygène auto-généré pour transformer le méthane en énergie.

Lorsque les microbes décomposent les composés de cette façon, on parle de dismutation. Jusqu’à présent, on pensait que cette méthode de production d’oxygène était rare dans la nature. Des expériences récentes en laboratoire impliquant des communautés microbiennes artificielles ont cependant révélé que l'oxygène produit par la dismutation peut s'échapper des cellules et se répandre dans le milieu environnant au profit d'autres organismes dépendants de l'oxygène, dans une sorte de processus symbiotique. Ruff pense que cela pourrait permettre à des communautés entières de microbes aérobies de prospérer dans les eaux souterraines, et potentiellement également dans les sols environnants.

Chimie pour la vie ailleurs

Cette découverte comble une lacune cruciale dans notre compréhension de l’évolution de l’immense biosphère souterraine et de la manière dont la dismutation contribue au cycle des composés se déplaçant dans l’environnement mondial. La simple possibilité que de l'oxygène soit présent dans les eaux souterraines " change notre compréhension du passé, du présent et de l'avenir du sous-sol ", a déclaré Ruff, qui est maintenant scientifique adjoint au Laboratoire de biologie marine de Woods Hole, Massachusetts.

Comprendre ce qui vit dans le sous-sol de notre planète est également " crucial pour transposer ces connaissances ailleurs ", a déclaré Sherwood Lollar. Le sol de Mars, par exemple, contient des composés perchlorates que certains microbes terrestres peuvent transformer en chlorure et en oxygène. Europe, la lune de Jupiter, possède un océan profond et gelé ; la lumière du soleil ne peut pas y pénétrer, mais l'oxygène pourrait potentiellement y être produit par dismutation microbienne au lieu de la photosynthèse. Les scientifiques ont observé des panaches de vapeur d’eau jaillissant de la surface d’Encelade, l’une des lunes de Saturne. Les panaches proviennent probablement d’un océan souterrain d’eau liquide. Si un jour nous trouvons de la vie sur d’autres mondes comme ceux-là, elle pourrait emprunter des voies de dismutation pour survivre.

Quelle que soit l'importance de la dismutation ailleurs dans l'univers, Lloyd est étonné de voir à quel point les nouvelles découvertes défient les idées préconçues sur les besoins de la vie et par l'ignorance scientifique qu'elles révèlent sur l'une des plus grandes biosphères de la planète. " C'est comme si nous avions toujours eu un œuf sur le visage ", a-t-elle déclaré.

Auteur: Internet

Info: https://www.quantamagazine.org/, Saugat Bolakhé, juillet 2023

[ perspectives extraterrestres ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

infobésité éparpillante

Comment notre cerveau compense les distractions numériques

Téléphone, mails, notifications... Opposé à toutes les sollicitations auxquelles nous sommes confrontés, le cerveau tente tant bien que mal de rester concentré. Voici comment.

Aujourd'hui, les écrans et les notifications dominent notre quotidien. Nous sommes tous familiers de ces distractions numériques qui nous tirent hors de nos pensées ou de notre activité. Entre le mail important d'un supérieur et l'appel de l'école qui oblige à partir du travail, remettant à plus tard la tâche en cours, les interruptions font partie intégrante de nos vies – et semblent destinées à s'imposer encore davantage avec la multiplication des objets connectés dans les futures " maisons intelligentes ".

Cependant, elles ne sont pas sans conséquences sur notre capacité à mener à bien des tâches, sur notre confiance en nous ou sur notre santé. Par exemple, les interruptions engendreraient une augmentation de 3% à 27% du temps d'exécution de l'activité en cours.

En tant que chercheuse en psychologie cognitive, j'étudie les coûts cognitifs de ces interruptions numériques: augmentation du niveau de stress, augmentation du sentiment d'épuisement moral et physique, niveau de fatigue, pouvant contribuer à l'émergence de risques psychosociaux voire du burn-out.

Dans mes travaux, je me suis appuyée sur des théories sur le fonctionnement du système cognitif humain qui permettent de mieux comprendre ces coûts cognitifs et leurs répercussions sur notre comportement. Ce type d'études souligne qu'il devient crucial de trouver un équilibre entre nos usages des technologies et notre capacité à nous concentrer, pour notre propre bien.

Pourquoi s'inquiéter des interruptions numériques?

L'intégration d'objets connectés dans nos vies peut offrir un contrôle accru sur divers aspects de notre environnement, pour gérer nos emplois du temps, se rappeler les anniversaires ou gérer notre chauffage à distance, par exemple. En 2021, les taux de pénétration des maisons connectées (c'est-à-dire, le nombre de foyers équipés d'au moins un dispositif domestique connecté, englobant également ceux qui possèdent uniquement une prise ou une ampoule connectée) étaient d'environ 13% dans l'Union européenne et de 17% en France (contre 10,7% en 2018).

Si la facilité d'utilisation et l'utilité perçue des objets connectés ont un impact sur l'acceptabilité de ces objets pour une grande partie de la population, les interruptions numériques qui y sont souvent attachées entravent notre cognition, c'est-à-dire l'ensemble des processus liés à la perception, l'attention, la mémoire, la compréhension, etc.

L'impact des interruptions numériques peut s'observer aussi bien dans la sphère privée que dans la sphère professionnelle. En effet, une personne met en moyenne plus d'une minute pour reprendre son travail après avoir consulté sa boîte mail. Les études mettent ainsi en évidence que les employés passent régulièrement plus de 1h30 par jour à récupérer des interruptions liées aux courriels. Cela entraîne une augmentation de la charge de travail perçue et du niveau de stress, ainsi qu'un sentiment de frustration, voire d'épuisement, associé à une sensation de perte de contrôle sur les événements.

On retrouve également des effets dans la sphère éducative. Ainsi, dans une étude de 2015 portant sur 349 étudiants, 60% déclaraient que les sons émis par les téléphones portables (clics, bips, sons des boutons, etc.) les distrayaient. Ainsi, les interruptions numériques ont des conséquences bien plus profondes que ce que l'on pourrait penser.

Mieux comprendre d'où vient le coût cognitif des interruptions numériques

Pour comprendre pourquoi les interruptions numériques perturbent tant le flux de nos pensées, il faut jeter un coup d'œil à la façon dont notre cerveau fonctionne. Lorsque nous réalisons une tâche, le cerveau réalise en permanence des prédictions sur ce qui va se produire. Cela permet d'adapter notre comportement et de réaliser l'action appropriée: le cerveau met en place des boucles prédictives et d'anticipation.

Ainsi, notre cerveau fonctionne comme une machine à prédire. Dans cette théorie, un concept très important pour comprendre les processus d'attention et de concentration émerge: celui de la fluence de traitement. Il s'agit de la facilité ou la difficulté avec laquelle nous traitons une information. Cette évaluation se fait inconsciemment et résulte en une expérience subjective et non consciente du déroulement du traitement de l'information.

Le concept de fluence formalise quelque chose que l'on comprend bien intuitivement: notre système cognitif fait tout pour que nos activités se déroulent au mieux, de la manière la plus fluide (fluent, en anglais) possible. Il est important de noter que notre cognition est " motivée " par une croyance qu'il formule a priori sur la facilité ou la difficulté d'une tâche et en la possibilité de réaliser de bonnes prédictions. Cela va lui permettre de s'adapter au mieux à son environnement et au bon déroulement de la tâche en cours.

Notre attention est attirée par les informations simples et attendues

Plus l'information semble facile à traiter, ou plus elle est évaluée comme telle par notre cerveau, plus elle attire notre attention. Par exemple, un mot facile à lire attire davantage notre regard qu'un mot difficile. Cette réaction est automatique, presque instinctive. Dans une expérience, des chercheurs ont mis en évidence que l'attention des individus pouvait être capturée involontairement par la présence de vrais mots par opposition à des pseudo-mots, des mots inventés par les scientifiques tels que " HENSION ", notamment lorsqu'on leur demandait de ne pas lire les mots présentés à l'écran.

Ainsi, une de nos études a montré que la fluence –la facilité perçue d'une tâche– guide l'attention des participants vers ce que leur cerveau prédit. L'étude consistait à comprendre comment la prévisibilité des mots allait influencer l'attention des participants. Les participants devaient lire des phrases incomplètes, puis identifier un mot cible entre un mot cohérent et un mot incohérent avec la phrase. Les résultats ont mis en évidence que les mots cohérents, prédictibles, attiraient plus l'attention des participants que les mots incohérents.

Il semblerait qu'un événement cohérent avec la situation en cours attire plus l'attention et, potentiellement, favorise la concentration. Notre étude est, à notre connaissance, l'une des premières à montrer que la fluence de traitement a un effet sur l'attention. D'autres études sont nécessaires pour confirmer nos conclusions. Ce travail a été lancé, mais n'a pas pu aboutir dans le contexte de la pandémie de Covid-19.

Comme nous l'avons vu, notre système cognitif réalise en permanence des prédictions sur les événements à venir. Si l'environnement n'est pas conforme à ce que notre cerveau avait prévu, nous devons d'une part adapter nos actions (souvent alors qu'on avait déjà tout mis en place pour agir conformément à notre prédiction), puis essayer de comprendre l'événement imprévu afin d'adapter notre modèle prédictif pour la prochaine fois.

Par exemple, imaginez que vous attrapiez votre tasse pour boire votre café. En la saisissant, vous vous attendez a priori à ce qu'elle soit rigide et peut-être un peu chaude. Votre cerveau fait donc une prédiction et ajuste vos actions en fonction (ouverture de la main, attraper la tasse plutôt vers le haut).

Imaginez maintenant que lorsque vous la saisissiez, ce ne soit pas une tasse rigide, mais un gobelet en plastique plus fragile. Vous allez être surpris et tenter d'adapter vos mouvements pour ne pas que votre café vous glisse entre les mains. Le fait que le gobelet plie entre vos doigts a créé un écart entre ce que votre système cognitif avait prédit et votre expérience réelle: on dit qu'il y a une rupture de fluence.

Les interruptions numériques perturbent notre système prédictif

Les interruptions, qu'elles soient numériques ou non, ne sont pas prévues par nature. Ainsi, un appel téléphonique impromptu provoque une rupture de fluence, c'est-à-dire qu'elle contredit ce que le cerveau avait envisagé et préparé.

L'interruption a des conséquences au niveau comportemental et cognitif: arrêt de l'activité principale, augmentation du niveau de stress, temps pour reprendre la tâche en cours, démobilisation de la concentration, etc.

À quel moment notre cerveau est-il le plus performant?

La rupture de fluence déclenche automatiquement la mise en place de stratégies d'adaptation. Nous déployons notre attention et, en fonction de la situation rencontrée, modifions notre action, mettons à jour nos connaissances, révisons nos croyances et ajustons notre prédiction.

La rupture de fluence remobilise l'attention et déclenche un processus de recherche de la cause de la rupture. Lors d'une interruption numérique, le caractère imprévisible de cette alerte ne permet pas au cerveau d'anticiper ni de minimiser le sentiment de surprise consécutif à la rupture de fluence: la (re)mobilisation attentionnelle est alors perturbée. On ne sait en effet pas d'où va provenir l'interruption (le téléphone dans sa poche ou la boîte mail sur l'ordinateur) ni ce que sera le contenu de l'information (l'école des enfants, un démarchage téléphonique, etc.).

Des stratégies vers une vie numérique plus saine

Trouver un équilibre entre les avantages de la technologie et notre capacité à maintenir notre concentration devient crucial. Il est possible de développer des stratégies afin de minimiser les interruptions numériques, d'utiliser les technologies de façon consciente et de préserver notre capacité à rester engagés dans nos tâches.

Cela pourrait impliquer la création de zones de travail sans interruption (par exemple, la réintroduction du bureau conventionnel individuel), la désactivation temporaire des notifications pendant une période de concentration intense (par exemple, le mode silencieux du téléphone ou le mode " focus " de logiciels de traitement de texte), ou même l'adoption de technologies intelligentes qui favorisent activement la concentration en minimisant les distractions dans l'environnement.

En fin de compte, l'évolution vers un environnement de plus en plus intelligent, ou du moins connecté, nécessite une réflexion approfondie sur la manière dont nous interagissons avec la technologie et comment celle-ci affecte nos processus cognitifs et nos comportements. Le passage de la maison traditionnelle à la maison connectée relève des problématiques du projet " Habitat urbain en transition " (HUT) pour lequel j'ai travaillé dans le cadre de mon postdoctorat.

De nombreux chercheurs (sciences de gestion, droit, architecture, sciences du mouvement, etc.) ont travaillé autour des questions de l'hyperconnexion des habitations, des usages et du bien-être, au sein d'un appartement-observatoire hyperconnecté. Cela nous a permis de déterminer ensemble les conditions idéales du logement du futur, mais aussi de déceler l'impact des technologies au sein d'un habitat connecté afin d'en prévenir les dérives. 

Auteur: Cases Anne-Sophie

Info: https://www.slate.fr/ - 18 avril 2024,  avec Sibylle Turo

[ déconcentration ]

 

Commentaires: 0

Ajouté à la BD par miguel

pouvoir oligarchique

Le véritable Big Brother

Jeff Bezos est le propriétaire du Washington Post, qui dirige les médias américains qui soutiennent et promeuvent le néoconservatisme, l'impérialisme américain et les guerres. Cela comprend des sanctions, des coups d'État et des invasions militaires contre des pays que les milliardaires américains veulent contrôler mais ne contrôlent pas encore - comme le Venezuela, la Syrie, l'Iran, la Russie, la Libye et la Chine.

Ce sont des guerres agressives contre des pays qui n'ont jamais agressé les États-Unis. Ils ne sont pas du tout sur la défensive, mais exactement le contraire. Ce n'est pas nécessairement une guerre sans fin (même Hitler n'avait pas prévu cela), mais une guerre jusqu'à ce que la planète entière soit passée sous le contrôle du gouvernement américain, un gouvernement qui est lui-même contrôlé par les milliardaires américains, les financeurs du néoconservatisme et de l'impérialisme - dans les deux principaux partis politiques américains, les think tanks, les journaux, les réseaux TV, etc.

Bezos a joué un rôle crucial dans le néoconservatisme, lors de la réunion Bilderberg du 6 au 9 juin 2013, il s'est arrangé avec Donald Graham, le propriétaire du Washington Post, pour acheter ce journal, pour 250 millions $. Bezos avait déjà négocié, en mars de la même année, avec le directeur néoconservateur de la CIA, John Brennan, un contrat de dix ans de 600 millions de dollars pour le cloud computing qui a transformé Amazon Corporation, qui était au départ une entreprise fiable et peu rentable, en une entreprise rentable et fiable.

La valeur nette de Bezos a donc augmenté encore plus Il est devenu le vendeur le plus influent non seulement pour les livres, mais aussi pour la CIA et pour des méga-corporations comme Lockheed Martin. L'impérialisme a gonflé sa richesse, mais il n'en est pas le seul responsable. Bezos est peut-être l'homme d'affaires le plus férocement doué de la planète.

Certains milliardaires américains ne se soucient pas autant que lui de la conquête internationale, mais tous acceptent le néoconservatisme ; aucun d'entre eux, par exemple, n'établit et ne donne de grosses sommes à des organisations anti-impérialistes ; aucun milliardaire américain n'est déterminé à mettre fin au règne du néoconservatisme, ni même à aider la lutte pour y mettre fin, ou du moins pour en finir avec sa prise sur le gouvernement américain. Aucune. Pas même un seul d'entre eux ne le fait.

Mais beaucoup d'entre eux créent et donnent des sommes importantes à des organisations néoconservatrices, ou dirigent des organes néoconservateurs comme le Washington Post. C'est comme ça que sont les milliardaires, du moins aux États-Unis. Tous sont impérialistes. Ils commanditent ; ils en font la promotion et embauchent des gens qui le font, et ils rétrogradent ou se débarrassent des gens qui ne le font pas. L'expansion d'un empire est extrêmement rentable pour ses aristocrates, et l'a toujours été, même avant l'Empire romain.

Bezos veut privatiser tout ce qui peut l'être partout dans le monde, comme l'éducation, les autoroutes, les soins de santé et les pensions. Plus les milliardaires contrôlent ces choses, moins tout le monde les contrôle ; et empêcher le public de les contrôler aide à protéger les milliardaires contre une démocratie qui augmenterait leurs impôts et contre une réglementation gouvernementale qui réduirait leurs profits en augmentant les dépenses de leurs sociétés. Ainsi, les milliardaires contrôlent le gouvernement afin d'augmenter leurs recettes publiques.

Avec l'aide de la promotion de guerre du Washington Post, Bezos est l'un des meilleurs vendeurs personnels au monde du complexe militaro-industriel américain. Il contrôle et est le plus grand investisseur d'Amazon corporation, dont la division Web Services fournit tous les services de cloud-computing au Pentagone, à la CIA et à la NSA. (Il mène la charge dans la technologie de reconnaissance faciale la plus avancée aussi.)

En avril, il y avait un gros titre, "CIA Considering Cloud Contract Worth'Tens of Billions'", qui pourrait faire grimper la richesse personnelle de Bezos bien plus haut dans la stratosphère).

Il domine également à l'échelle mondiale et augmente constamment son contrôle sur la promotion et la vente de livres et de films, parce que son Amazon est le plus grand détaillant au monde (et maintenant aussi l'un des plus grands éditeurs, producteurs et distributeurs.) Cela aussi peut avoir un impact énorme sur la politique et le gouvernement, indirectement, en favorisant les travaux les plus néocon contribuant à former le discours intellectuel (et les votes des électeurs) dans les pays.

Bezos écrase des millions de détaillants par sa capacité inégalée à contrôler un marché après l'autre en tant qu'Amazon ou en tant qu'intermédiaire essentiel pour - et souvent même en tant que contrôleur - les concurrents d'Amazon.

Il croit fermement au "libre marché", qu'il maîtrise peut-être mieux que quiconque. Cela signifie que Bezos soutient la capacité non régulée des milliardaires, par le biais de leur argent, de contrôler et éventuellement d'absorber tous ceux qui sont moins puissants qu'eux.

Parce qu'il est si doué pour amasser des richesses, il a réussi jusqu'à présent à se hisser au sommet mondial, comme un des individus les plus puissants du monde. Le plus riche de tous est le roi Salman d'Arabie saoudite, dont Aramco (la plus grande compagnie pétrolière du monde) vaut, à elle seule, plus d'un trillion de dollars. (Forbes et Bloomberg excluent les monarques de leur classement.)

En fait, Bloomberg est même tellement frauduleux à ce sujet qu'il a fait cette manchette le 10 août dernier, " Les 25 dynasties les plus riches de la planète contrôlent 1,4 billion de dollars " et a violé leur tradition en incluant sur leur liste un monarque, le roi Salman, qui est classé au quatrième rang des détenteurs de seulement 100 millions $, une estimation ridicule qui ne se borne pas à Aramco mais qui exclut sans vergogne la totalité de la fortune nette d'Arabie saoudite.

Bloomberg n'a même pas essayé de justifier leur méthodologie farfelue, mais a simplement présumé la crédulité du lecteur pour son acceptation. Ce roi est donc au moins sept fois plus riche que Bezos. Il est peut-être aussi puissant que Bezos. L'héritier suprême est beaucoup plus riche même que le milliardaire suprême, ou "entrepreneur".

Certes, les deux hommes sont parmi les géants qui dominent le monde à notre époque. Et les deux hommes sont des Libertariens - champions de la croyance que les droits de propriété (dont les milliardaires ont tant) sont la base de tous les droits, et ils croient donc que les personnes les plus riches possèdent le plus de droits, et que les plus pauvres en ont le moins, et que toutes celles dont la valeur nette est négative (ayant plus de dettes que de biens) ne possèdent aucun droit sauf les dons ou autres subventions de riches, par bienveillance ou autre (comme les liens familiaux).

C'est cela - la privatisation de tout - c'est ce qu'est le libertarianisme : la valeur d'une personne est sa "valeur nette" - rien d'autre. Cette croyance est du pur libertarianisme. C'est une croyance que beaucoup, sinon la plupart des milliardaires ont. Les milliardaires sont impérialistes parce qu'ils cherchent à maximiser la liberté des super-riches, qu'il s'agisse d'augmenter leurs recettes auprès de tous ceux qui ne sont pas super-riches ou de les appauvrir. Ils ont une idéologie cohérente. C'est basé sur la richesse. Du coup le public croit plutôt aux mythes que les milliardaires propagent.

Comme tout milliardaire, Bezos embauche et retient des employés et d'autres agents qui font ce qu'il/elle veut qu'ils fassent. C'est leur pouvoir direct. Mais les milliardaires possèdent aussi un pouvoir indirect énorme en raison de leurs interdépendances, car chaque grande société est liée par contrat à d'autres sociétés, surtout à de grandes sociétés comme la leur ; et, par conséquent, le pouvoir que possède un milliardaire donné est en fait un pouvoir partagé avec les autres. (Un exemple était l'accord conclu par Bezos avec Graham.)

Collectivement, ils travaillent en réseau, même avec ceux qu'ils n'auraient peut-être jamais rencontrés personnellement, mais seulement par l'intermédiaire de leurs représentants, et même avec leurs propres principaux concurrents économiques. Il s'agit d'un pouvoir collectif que les milliardaires possèdent en plus de leur pouvoir individuel en tant que payeurs d'employés et autres agents.

Alors que Winston Smith, dans le roman allégorique prophétique "1984", demandait à son supérieur et tortionnaire O'Brien : "Est-ce que Big Brother existe ?"

"Bien sûr qu'il existe. Le Parti existe. Big Brother est l'incarnation du Parti."

"Existe-t-il de la même façon que moi ?"

" Tu n'existes pas", dit O'Brien.

Ce pouvoir collectif est incarné par Bezos aussi bien que tout milliardaire. Quelques-uns des autres l'incarnent peut-être aussi, comme Bill Gates, Warren Buffett, Larry Ellison, Mark Zuckerberg, Charles Koch, Sergey Brin, Michael Bloomberg, George Soros et Jack Dorsey. Ils se font concurrence et ont donc des priorités différentes pour le gouvernement américain, mais ils sont tous d'accord bien plus qu'ils ne sont en désaccord sur ce que le gouvernement "devrait" faire (surtout que l'armée américaine devrait être renforcée - aux frais des contribuables, bien sûr, pas aux leurs).

Fondamentalement, ce Big Brother, dans le monde réel, est remarquablement cohérent et unifié - bien plus que le public - et c'est l'une des raisons pour lesquelles ils contrôlent le gouvernement, contournant le public.

Voici comment tout cela se passe, en termes de ce que les agents de Bezos ont accompli :

Son Amazon paie peu ou pas d'impôts fédéraux parce que le gouvernement fédéral a écrit les lois fiscales pour encourager les entreprises à faire le genre de choses que Bezos a toujours voulu qu'Amazon fasse.

Le gouvernement américain encourage donc les méga-sociétés, par le biais de taxes et de règlements, à écraser les petites entreprises en rendant leur croissance plus difficile. Cela verrouille quelque peu l'aristocratie existante pour qu'elle soit moins auto-construite (comme l'était Bezos lui-même, mais ses enfants ne le seront pas).

Les politiciens élus appuient massivement cette idée parce que la plupart des fonds de leur campagne électorale provient de ces personnes très riches, leurs employés et autres agents. C'est un système auto-renforçant. Le super-riche contrôle le gouvernement, qui (avec les super-riches et leurs sociétés) contrôle le public, ce qui réduit les possibilités économiques pour eux. Le résultat final est un renforcement institutionnel de l'extrême inégalité des richesses, qui devient de plus en plus extrême.

Les milliardaires sont les vrais Big Brother. Et Bezos est le plus grand de tous.

Auteur: Zuesse Eric

Info: https://consortiumnews.com, Août 2019

[ mondialisation ]

 

Commentaires: 0

Ajouté à la BD par miguel