Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 31
Temps de recherche: 0.0349s

culture nippone

C’est ici qu’il faut dire un mot de l’origine du manga : il est une réaction, autant industrielle (production à bas prix et à grande échelle, dessins en noir et blanc) qu’artistique (héritage de l’estampe), au foudroiement nucléaire et à ce qui s’ensuivit : la mise au pas, la mise sous tutelle, la mise sous la coupe des Américains. De tout cela naît le sentiment d’avoir vécu la table rase : il ne reste plus rien de deux villes rayées de la carte, les enfants ont perdu leurs parents et vice-versa, le rattachement à la culture ancestrale est interdit au nom de la modernisation du pays, etc. Bref, l’éclair atomique constitue l’expérience originelle du manga ; et ce n’est donc pas un hasard si tous les mangas, sans exception, mettent en scène, comme point de départ incontournable, un déficit des origines, ce que j’appelle une "faille généalogique" : perte des parents, parents absents (Olive et Tom), adoption (Jeanne et Serge), orphelinat (Les chevaliers du zodiaque), bombardement de Tokyo (dans Akira), planète dévastée (Ken le survivant) ou détruite (Dragon Ball), etc. L’intrigue tourne par conséquent à chaque reprise autour de la question directrice suivante : comment surmonter la faille généalogique ? Comment continuer à vivre après l’apocalypse ? Différentes réponses se font jour, qui permettent alors de segmenter les mangas et d’en proposer une typologie : certains (comme Astro le petit robot et Goldorak) font le pari de la technologie, d’autres misent sur les valeurs collectives (qu’on retrouve principalement dans les mangas consacrés au sport, dans lesquels l’équipe est en réalité une synecdoque de l’Archipel), les derniers, enfin, font appel à la tradition.

Auteur: Baptiste Rappin

Info: https://linactuelle.fr/index.php/2020/02/03/ken-le-survivant-confucius-japon-baptiste-rappin/

[ philosophie ] [ inspiration ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

anecdote

Origine du malheur familial des Schmidt.
Heinrich Schmidt et son fils avaient un ressentiment encore plus fort et plus profond envers le margrave déchu que les autres habitants de Hof. Cela remontait au lundi 16 octobre 1553, trois jours après le retour d'Albrecht-Alcibiades et de sa suite dans Hof dévastée. Comme d'autres villes allemandes de sa taille, Hof ne pouvait avoir son propre bourreau à plein temps. Mais quand Albrecht, haï de tous, arrêta trois armuriers locaux censés avoir comploté pour le tuer, plutôt que de prendre un professionnel itinérant pour les exécuter, le margrave têtu invoqua une coutume ancienne : il ordonna à un spectateur de les exécuter sur le champ. L'homme à qui échut cet honneur affreux était Heinrich Schmidt. Etant un citoyen respectable de Hof, Schmidt protesta avec véhémence contre son seigneur, disant que cet acte mettrait l'infamie sur lui et ses descendants, mais en vain. Franz Schmidt raconta, à soixante-dix ans, "Si [mon père] n'obéissait pas, il [le margrave] menaça de le pendre, lui et les deux hommes à côté de lui."
(...)
Comme Heinrich Schmidt l'avait prévu, du moment où il exécuta l'ordre d'Albrecht, lui et sa famille furent exclus de la société honorable, sans pitié et pour toujours, par leurs voisins et anciens amis, avilis à la fois par leur association avec un métier odieux et (avec) un tyran détesté. Déshonoré, Heinrich Schmidt aurait pu tenter d'échapper à l'ignominie en commençant une nouvelle vie avec sa famille dans une ville éloignée. Il choisit au contraire de rester dans sa maison ancestrale et de gagner sa vie dans le seul métier qui lui restait. Ainsi naquit une nouvelle dynastie de bourreaux...

Auteur: Harrington Joel F.

Info: L'honneur du bourreau, p. 47-48

[ de père en fils ] [ adaptation ] [ résignation ]

 

Commentaires: 0

Ajouté à la BD par miguel

réalisation métaphysique

Si Abdallah, converti à l’Islam et sanscrisant, me fait lire les livres de René Guénon. Que serait-il advenu de moi si j’avais rencontré ceux-ci aux temps de ma jeunesse, alors que je plongeais dans la Méthode pour arriver à la vie bienheureuse et écoutais les leçons de Fichte, du plus docile que je pouvais ? Mais, en ce temps, les livres de Guénon n’étaient pas encore écrits. A présent, il est trop tard ; “les jeux sont faits, rien ne va plus”. Mon esprit sclérosé se plie aussi difficilement aux préceptes de cette sagesse ancestrale, que mon corps à la position dite “confortable” que préconisent les yogis, la seule qui leur paraisse convenir à la méditation parfaite; et, à vrai dire, je ne puis même parvenir à souhaiter vraiment celle-ci, cette résorption qu’ils cherchent de l’individu dans l’Être éternel. Je tiens éperdument à mes limites et répugne à l’évanouissement des contours que toute mon éducation prit à tâche de préciser. Aussi bien le plus clair profit que je retire de ma lecture, c’est le sentiment plus net et précis de mon occidentalité ; en quoi, pourquoi et par quoi je m’oppose. N’importe ! Ces livres de Guénon sont remarquables et m’ont beaucoup instruit, fût-ce par réaction. J’admets volontiers les méfaits de l’inquiétude occidentale, dont la guerre même reste un sous-produit; mais la périlleuse aventure où nous nous sommes imprudemment lancés valait la peine qu’elle nous coûte, valait la peine d’être courue. A présent, du reste, il est trop tard pour reculer; nous devons la mener plus avant, la mener jusqu’au bout. Et ce “bout”, cette extrémité, je tâche de me persuader que c’est Dieu, fût-il atteint par notre ruine. Il faudrait sans doute la “position confortable” pour mener à maturité cette pensée. En attendant, je persévère dans mon erreur; et je ne puis envier une sagesse qui consiste à se retirer du jeu. Je veux “en être” et dût-il m’en coûter.

Auteur: Gide André

Info: 1943

[ évitement ] [ justifications ] [ force de l'habitude ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

chiroptères

Une mutation génétique clé, nocive pour l'homme, semble avoir ouvert le ciel aux chauves-souris.

Les chauves-souris ont réalisé quelque chose qu'aucun autre mammifère n'a jamais fait : ces bêtes aux ailes de cuir ont évolué vers le vol motorisé grâce à des membranes spécialisées appelées patagia qui relient leurs membres et leurs doigts au reste de leur corps. Une nouvelle étude sur les embryons de chauve-souris publiée dans BMC Biology révèle une étape cruciale dans l'évolution de ces animaux autrefois terrestres vers le vol, qui pourrait impliquer un gène connu pour ses mutations néfastes chez l'homme.

Les paléontologues n'ont pas encore découvert de fossiles montrant une transition vers les premières chauves-souris volantes. L'aile de la chauve-souris est un amalgame fou d'éléments anatomiques dérivés et nouveaux", explique Karen Sears, biologiste à l'université de Californie à Los Angeles, auteur de l'étude. Le plagiopatagium, un patagium spécifique qui relie le côté du corps aux bras et aux jambes, en est l'un des éléments les plus importants. Ce tissu prend des formes variées selon les espèces de chauves-souris : il a tendance à être plus large chez les espèces frugivores et plus étroit chez celles qui chassent les insectes volants. Pour déterminer si ces formes proviennent d'une aile de chauve-souris ancestrale ou si elles ont évolué indépendamment, Mme Sears et ses collègues ont étudié l'embryologie de différentes espèces de chauves-souris et les gènes responsables du développement du tissu.

Les chercheurs ont constaté qu'au cours du développement, le plagiopatagium se développe sur le côté du corps du fœtus et fusionne avec ses membres. Ce schéma se retrouve chez toutes les espèces étudiées, ce qui indique l'existence d'une aile ancestrale. Une mutation dans un gène particulier appelé Ripk4 pourrait avoir permis ce changement.

L'évolution est imprévisible et le développement est souvent modifié d'une manière que nous ne pouvons pas anticiper ou que nous n'anticipons pas", explique M. Sears. Chez l'homme et la souris de laboratoire, les mutations de Ripk4 peuvent altérer la peau et créer, entre autres, des structures semblables au patagium et des fentes labiales. Environ la moitié des espèces de chauves-souris vivantes présentent des fentes palatines, une caractéristique qui pourrait être liée à l'écholocalisation des chauves-souris.

Selon Charles Feigin, biologiste à l'université de Melbourne, qui n'a pas participé à la nouvelle étude, ces résultats apportent une preuve importante de la manière dont les couches de peau fusionnent pour former la membrane de vol essentielle des chauves-souris. Cette fusion rend les ailes suffisamment résistantes pour permettre le vol motorisé, explique Feigin ; les membranes similaires, plus faibles, des autres mammifères aériens les limitent au vol plané. Une mutation fortuite pourrait avoir été la clé qui a ouvert le ciel aux chauves-souris.

Auteur: Internet

Info: https://www.scientificamerican.com, "Flight Secrets", octobre 2023, Riley Black

[ palier évolutif ] [ hasard ]

 

Commentaires: 0

Ajouté à la BD par miguel

être humain

Études de l'ADN : la séparation humain-chimpanzé est un peu brouillée
En analysant environ 800 fois plus d'ADN que les études précédentes sur la séparation humain-chimpanzé, les chercheurs du MIT à Harvard ont été capable non seulement de se renseigner quand mais aussi sur la façon dont ces espèces soeurs ont surgi.
"Pour la première fois nous avons pu voir les détails écrits dans l'ADN," dit Eric Lander, directeur fondateur du Broad Institute. Ce que ça indique : au moins que la spéciation humaine - chimpanzé fut très particulière."
Les chercheurs spéculent que les espèces ancestrales de singes se sont séparées en deux populations isolées il y a environ 10 millions d'années, puis sont revenues ensemble plus tard. À ce moment-là les deux groupes, bien que légèrement génétiquement différents, se seraient accouplés pour former une troisième race hybride. Et cette nouvelle population se serait croisée avec une - ou toutes les deux - de ses population parente. Puis, il y a 6.3 millions d'années, deux lignes distinctes ont surgi.
Quelques experts en matière d'évolution humaine sont sceptiques sur ce scénario précis, mais néanmoins impressionnés par cette étude.
"Cette analyse est extrêmement intelligente" dit Daniel Lieberman, professeur d'anthropologie biologique à Harvard." Mon problème est d'imaginer un bipède hominidé voyant un chimpanzé comme compagnons appropriés, ou inversément, pour ne pas le mettre trop crûment."
Les anciennes études qui ont comparé l'ADN humain et chimpanzé pouvaient seulement offrir une évaluation sur quand les deux espèces se sont dédoublées, faisant la moyenne de la quantité de divergence dans leurs gènes. Généralement, ces études fournissent une figure pour il y a d'environ 7 millions d'années.
Mais depuis qu'on a complété le génome du chimpanzé en septembre il est possible de regarder comment les sections spécifiques du code génétique ont évolué. La grande étude du Broad Institute, qui sera éditée dans une future issue du journal, Nature est une de la première à faire cela. "iI y a beaucoup de surprises ici," dit Lander.
D'abord les nouvelles données suggèrent que la séparation humain-chimpanzé est beaucoup plus proche du présent que les 7 millions d'années donnés par les fossiles et les études précédentes - certainement pas plus tôt que 6.3 millions et de plus probablement dans le voisinage de 5.4 millions.
Les données prouvent également que le dédoublement humain-chimpanzé a probablement pris des millions d'années. Ceci parce que dans certaines parties de la séquence ADN la différence génétique entre les humains et les chimpanzés est si grande que ces gènes doivent avoir été isolés les uns des autres il y a 10 millions d'années. Mais dans d'autres endroits les lignes des humain et des chimpanzés sont si proches qu'elles semblent avoir encore échangé du matériel génétique au moins jusqu'il y a à 6.3 millions d'années. Un des secteurs intriguant est celui du chromosome X. "Les gènes qui sont une barrière pour une spéciation tendent à être sur le chromosome X" dit David Reich, auteur principal de l'étude.

Auteur: Internet

Info: Fortean times 17 mai 2006

[ primate ] [ chaînon manquant ]

 

Commentaires: 0

nanomatériau

Ne l'appelez pas graphène, appelez-le "goldène" : il s'agit du nouveau matériau obtenu grâce à une technique de forge japonaise particulière

Un nouveau matériau, baptisé "goldène", vient d'être créé par des chercheurs suédois. Combinant la structure du graphène avec de l'or, cette découverte fortuite, issue d'une technique ancestrale de forge japonaise, ouvre de nouvelles perspectives dans divers domaines tels que l'environnement et l'énergie.

Le goldène, découverte fortuite grâce à une technique de forge japonaise

Le graphène, longtemps présenté comme le matériau du futur, n'a pas encore tenu toutes ses promesses. Malgré des applications prometteuses, notamment dans le domaine des haut-parleurs, son potentiel semble s'être quelque peu érodé. Mais le principe de base reste intéressant, et des chercheurs de l'Université de Linköping , en Suède, ont réussi à combiner la structure du graphène avec de l'or, donnant naissance à un nouveau matériau : le goldène.

Le goldène, contraction des mots anglais "gold" (or) et "graphene" (graphène), partage une structure similaire à celle du graphène, cette substance composée de fines couches d'atomes de carbone pur disposées en hexagones. Réputé pour sa résistance, sa flexibilité, sa transparence et sa légèreté, le graphène trouve un écho doré dans le goldène, où les atomes de carbone sont remplacés par des atomes d'or.

L'obtention du goldène est le fruit d'une coïncidence. Les chercheurs suédois travaillaient initialement sur un matériau tridimensionnel où l'or était incrusté entre des couches de titane et de carbone, destiné à d'autres applications. En exposant ce matériau à de hautes températures, ils ont constaté que la couche de silicium était remplacée par de l'or au sein du matériau de base, un phénomène appelé intercalation.

L'étape suivante consistait à extraire cette fine couche d'or. Pour cela, les chercheurs ont fait appel à une technique ancestrale de la forge japonaise : le réactif de Murakami. Ce composant, utilisé depuis des siècles pour éliminer les résidus de carbone et modifier la couleur de l'acier, a permis de graver le matériau et d'isoler la couche d'or.

Un procédé délicat et prometteur

Le processus de gravure, réalisé dans l'obscurité pour éviter la dissolution de l'or, a nécessité de nombreux ajustements. Les chercheurs ont dû jouer sur la concentration du réactif et la durée du processus pour obtenir des résultats satisfaisants. L'ajout d'un tensioactif a ensuite permis de stabiliser les fines couches d'or obtenues, formant une solution comparable à des flocons de maïs dans du lait.

Les applications potentielles du goldène sont multiples. Sa structure atomique unique pourrait être exploitée dans la conversion du dioxyde de carbone, la catalyse de l'hydrogène et la purification de l'eau. De plus, le goldène pourrait permettre de réduire la quantité d'or nécessaire dans les applications actuelles, un avantage non négligeable compte tenu du coût élevé de ce métal précieux.

Bien que les recherches soient encore à un stade précoce, le goldène ouvre de nouvelles perspectives dans le domaine des matériaux. Ses propriétés uniques pourraient révolutionner des secteurs aussi variés que l'environnement, l'énergie ou l'électronique. Reste à voir si le goldène saura, à l'instar de son cousin le graphène, susciter l'engouement et transformer les promesses en réalités concrètes.

Auteur: Internet

Info: https://www.jeuxvideo.com/ - nicoln, 21 05 2024

[ aurum ]

 

Commentaires: 0

Ajouté à la BD par miguel

biogenèse

La durée des réponses épigénétiques qui sous-tendent l'héritage transgénérationnel est déterminée par un mécanisme actif reposant sur la production de petits ARN et la modulation de facteurs ARNi, dictant si les réponses ARNi* ancestrales seroent mémorisées ou oubliées.

Selon l'épigénétique - l'étude des changements héritables dans l'expression des gènes qui ne sont pas directement codés dans notre ADN - nos expériences de vie peuvent être transmises à nos enfants et aux enfants de nos enfants. Des études menées sur des survivants d'événements traumatiques suggèrent que l'exposition au stress peut effectivement avoir des effets durables sur les générations suivantes.

Mais comment exactement ces "souvenirs" génétiques sont-ils transmis ?

Une nouvelle étude de l'université de Tel Aviv (TAU), publiée la semaine dernière dans Cell, met en évidence le mécanisme précis qui permet d'activer ou de désactiver la transmission de ces influences environnementales.

Jusqu'à présent, on supposait qu'une dilution ou une décroissance passive régissait l'héritage des réponses épigénétiques", a déclaré Oded Rechavi, PhD, de la Faculté des sciences de la vie et de l'École de neurosciences Sagol de l'UAT. "Mais nous avons montré qu'il existe un processus actif qui régule l'héritage épigénétique au fil des générations".

Les scientifiques ont découvert que des gènes spécifiques, qu'ils ont nommés "MOTEK" (Modified Transgenerational Epigenetic Kinetics), étaient impliqués dans l'activation et la désactivation des transmissions épigénétiques.

"Nous avons découvert comment manipuler la durée transgénérationnelle de l'héritage épigénétique chez les vers en activant et désactivant les petits ARN que les vers utilisent pour réguler ces gènes", a déclaré Rechavi*.

Ces commutateurs sont contrôlés par une interaction en retour entre les petits ARN régulateurs de gènes, qui sont héritables, et les gènes MOTEK qui sont nécessaires pour produire et transmettre ces petits ARN à travers les générations.

Cette rétroaction détermine si la mémoire épigénétique se transmet ou non à la descendance, et combien de temps dure chaque réponse épigénétique.

Les chercheurs prévoient maintenant d'étudier les gènes MOTEK pour savoir exactement comment ces gènes affectent la durée des effets épigénétiques, et si des mécanismes similaires existent chez l'homme.

 Rechavi et son équipe avaient précédemment identifié un mécanisme d'"héritage de petits ARN" par lequel des molécules d'ARN produisaient une réponse aux besoins de cellules spécifiques et comment elles étaient régulées entre les générations.

"Nous avons précédemment montré que les vers héritaient de petits ARN suite à la famine et aux infections virales de leurs parents. Ces petits ARN aidaient à préparer leur progéniture à des épreuves similaires", a déclaré le Dr Rechavi. "Nous avons également identifié un mécanisme qui amplifiait les petits ARN héréditaires à travers les générations, afin que la réponse ne soit pas diluée. Nous avons découvert que des enzymes appelées RdRPs sont nécessaires pour recréer de nouveaux petits ARN afin de maintenir la réponse dans les générations suivantes."

On a constaté que la plupart des réponses épigénétiques héritables chez les vers C.elegans ne persistaient que pendant quelques générations. Cela a donné lieu à l'hypothèse que les effets épigénétiques s'effaçaient simplement au fil du temps, par un processus de dilution ou de désintégration.

"Mais cette hypothèse ne tenait pas compte de la possibilité que ce processus ne s'éteigne pas tout bonnement, mais qu'il soit au contraire régulé", a déclaré Rechavi, qui, dans cette étude, a traité des vers C.elegans avec de petits ARN qui ciblent la GFP (protéine fluorescente verte), un gène rapporteur couramment utilisé dans les expériences. "En suivant les petits ARN héréditaires qui régulaient la GFP - qui "réduisaient au silence" son expression - nous avons révélé un mécanisme d'héritage actif et réglable qui peut être activé ou désactivé."

Auteur: Internet

Info: https://www.kurzweilai.net/onoff-button-for-passing-along-epigenetic-memories-to-our-children-discovered. 29 mars 2016. *ARN interférant

[ bio-machine ] [ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

aqua simplex

Pour un esprit, venu d'ailleurs, qui tomberait sur cette Terre et qui en ignorerait tout, l'eau serait un objet de stupeur presque autant que le temps. L'eau est une matière si souple, si mobile, si proche de l'évanouissement et de l'inexistence qu'elle ressemble à une idée ou à un sentiment. Elle ressemble aussi au temps, qu'elle a longtemps servi à mesurer, au même titre que l'ombre et le sable. Le cadran solaire, le sablier, la clepsydre jettent un pont entre le temps et la matière impalpable de l'ombre, du sable et de l'eau. Plus solide que l'ombre, plus subtile que le sable, l'eau n'a ni odeur, ni saveur, ni couleur, ni forme. Elle n'a pas de taille. Elle n'a pas de goût. Elle a toujours tendance à s'en aller ailleurs que là où elle est. Elle est de la matière déjà en route vers le néant. Elle n'est pas ce qu'on peut imaginer de plus proche du néant: l'ombre, bien sûr, mais aussi l'air sont plus si l'on ose dire - inexistants que l'eau.
Ce qu'il y a de merveilleux dans l'eau, c'est elle est un peu là, et même beaucoup, mais avec une délicatesse de sentiment assez rare, avec une exquise discrétion. Un peu à la façon de l'intelligence chez les hommes, elle s'adapte à tout et à n'importe quoi. Elle prend la forme que vous voulez : elle est carrée dans un bassin, elle est oblongue dans un canal, elle est ronde dans un puits ou dans une casserole. Elle est bleue, verte ou noire, ou parfois turquoise ou moirée, ou tout à fait transparente et déjà presque absente. Elle est chaude ou froide, à la température du corps, ou bouillante jusqu'à s'évaporer, ou déjà sur le point de geler et de se changer en glace. Tantôt vous l'avalez et l'eau est dans votre corps; et tantôt vous vous plongez en elle et c'est votre corps qui est dans l'eau. Elle dort, elle bouge, elle change, elle court avec les ruisseaux, elle gronde dans les torrents, elle s'étale dans les lacs ou dans les océans et des vagues la font frémir, la tempête la bouleverse, des courants la parcourent, elle rugit et se calme. Elle est à l'image des sentiments et des passions de l'âme.
Ce serait une erreur que de prêter à l'eau, à cause de sa finesse et de sa transparence, une fragilité dont elle est loin. Rien de plus résistant que cette eau si docile et toujours si prête à s'évanouir. Là où les outils les plus puissants ne parviennent pas à atteindre, elle pénètre sans difficulté. Elle use les roches les plus dures. Elle creuse les vallées, elle isole les pierres témoins, elle transforme en îles des châteaux et des régions entières.
Elle est douce, fraîche, légère, lustrale, bénite, quotidienne, de vie, de rose, de fleur d'oranger, de cour, de toilette ou de table, thermale ou minérale, de Cologne ou de Seltz. Elle peut aussi être lourde, saumâtre, meurtrière et cruelle. Sa puissance est redoutable. Ses colères sont célèbres. Elle porte les navires qui n'existent que par elle, et elle leur inflige des naufrages qui font verser des larmes aux veuves de marins.
Lorsqu'elle se présente sous forme de mur, lorsqu'elle s'avance, selon la formule des poètes et des rescapés, à la vitesse d'un cheval au galop, lorsqu'elle s'abat sur les côtes et sur les villes, elle fait surgir du passé les vieilles terreurs ancestrales.
Aussi vieille que la terre, ou plus vieille, plus largement répandue à la surface de la planète, complice des algues, des nénuphars, du plancton et du sel, fière de ses origines, consciente des services qu'elle a rendus à l'homme dont elle a longtemps abrité et nourri les ancêtres, puisque durant trois milliards et demi d'années tout ce qui vit est sous l'eau, elle considère toute matière autre qu'elle-même avec une sorte de dédain. Comme la lumière, elle est nécessaire à la vie. Supprimez l'eau, c'est le désert, la ruine, la fin de tout, la mort. II n'y a pas d'eau sur la Lune. Aussi peut-on assurer que ses paysages sont lunaires.

Auteur: Ormesson Jean d’

Info: Presque rien sur presque tout

[ littérature ]

 

Commentaires: 0

strates biologiques

Les chemins aléatoires de l'évolution mènent à un même endroit

Une étude statistique massive suggère que le résultat final de l’évolution – la forme physique – est prévisible.

(Photo  : Différentes souches de levure cultivées dans des conditions identiques développent des mutations différentes, mais parviennent finalement à des limites évolutives similaires.)

Dans son laboratoire du quatrième étage de l'Université Harvard, Michael Desai a créé des centaines de mondes identiques afin d'observer l'évolution à l'œuvre. Chacun de ses environnements méticuleusement contrôlés abrite une souche distincte de levure de boulangerie. Toutes les 12 heures, les assistants robots de Desai arrachent la levure à la croissance la plus rapide de chaque monde – sélectionnant celle qui est la plus apte à vivre – et jettent le reste. Desai surveille ensuite les souches à mesure qu'elles évoluent au cours de 500 générations. Son expérience, que d'autres scientifiques considèrent comme d'une ampleur sans précédent, cherche à mieux comprendre une question qui préoccupe depuis longtemps les biologistes : si nous pouvions recommencer le monde, la vie évoluerait-elle de la même manière ?

De nombreux biologistes affirment que ce ne serait pas le cas et que des mutations fortuites au début du parcours évolutif d’une espèce influenceraient profondément son destin. "Si vous rejouez le déroulement du vivant, vous pourriez avoir une mutation initiale qui vous emmènera dans une direction totalement différente", a déclaré Desai, paraphrasant une idée avancée pour la première fois par le biologiste Stephen Jay Gould dans les années 1980.

Les cellules de levure de Desai remettent en question cette croyance. Selon les résultats publiés dans Science en juin, toutes les variétés de levures de Desai ont atteint à peu près le même point final d'évolution (tel que mesuré par leur capacité à se développer dans des conditions de laboratoire spécifiques), quel que soit le chemin génétique précis emprunté par chaque souche. C'est comme si 100 taxis de la ville de New York acceptaient d'emprunter des autoroutes distinctes dans une course vers l'océan Pacifique et que 50 heures plus tard, ils convergeaient tous vers la jetée de Santa Monica.

Les résultats suggèrent également un décalage entre l’évolution au niveau génétique et au niveau de l’organisme dans son ensemble. Les mutations génétiques se produisent pour la plupart de manière aléatoire, mais la somme de ces changements sans but crée d’une manière ou d’une autre un modèle prévisible. Cette distinction pourrait s’avérer précieuse, dans la mesure où de nombreuses recherches en génétique se sont concentrées sur l’impact des mutations dans des gènes individuels. Par exemple, les chercheurs se demandent souvent comment une seule mutation pourrait affecter la tolérance d’un microbe aux toxines ou le risque de maladie d’un humain. Mais si les découvertes de Desai s'avèrent valables pour d'autres organismes, elles pourraient suggérer qu'il est tout aussi important d'examiner comment un grand nombre de changements génétiques individuels fonctionnent de concert au fil du temps.

"En biologie évolutive, il existe une sorte de tension entre penser à chaque gène individuellement et la possibilité pour l'évolution de modifier l'organisme dans son ensemble", a déclaré Michael Travisano, biologiste à l'université du Minnesota. "Toute la biologie s'est concentrée sur l'importance des gènes individuels au cours des 30 dernières années, mais le grand message à retenir de cette étude est que ce n'est pas nécessairement important". 

La principale force de l’expérience de Desai réside dans sa taille sans précédent, qui a été qualifiée d’« audacieuse » par d’autres spécialistes du domaine. La conception de l'expérience est ancrée dans le parcours de son créateur ; Desai a suivi une formation de physicien et, depuis qu'il a lancé son laboratoire il y a quatre ans, il a appliqué une perspective statistique à la biologie. Il a imaginé des moyens d'utiliser des robots pour manipuler avec précision des centaines de lignées de levure afin de pouvoir mener des expériences évolutives à grande échelle de manière quantitative. Les scientifiques étudient depuis longtemps l’évolution génétique des microbes, mais jusqu’à récemment, il n’était possible d’examiner que quelques souches à la fois. L'équipe de Desai, en revanche, a analysé 640 lignées de levure qui avaient toutes évolué à partir d'une seule cellule parent. L'approche a permis à l'équipe d'analyser statistiquement l'évolution.

"C'est l'approche physicienne de l'évolution, réduisant tout aux conditions les plus simples possibles", a déclaré Joshua Plotkin, biologiste évolutionniste à l'Université de Pennsylvanie qui n'a pas participé à la recherche mais a travaillé avec l'un des auteurs. "Ce qui pourrait permettre de définir la part du hasard dans l'évolution, quelle est la part du point de départ et la part du bruit de mesure."

Le plan de Desai était de suivre les souches de levure à mesure qu'elles se développaient dans des conditions identiques, puis de comparer leurs niveaux de condition physique finaux, déterminés par la rapidité avec laquelle elles se développaient par rapport à leur souche ancestrale d'origine. L’équipe a utilisé des bras robotisés spécialement conçus pour transférer les colonies de levure vers une nouvelle maison toutes les 12 heures. Les colonies qui s’étaient le plus développées au cours de cette période passèrent au cycle suivant et le processus se répéta pendant 500 générations. Sergey Kryazhimskiy , chercheur postdoctoral dans le laboratoire de Desai, passait parfois la nuit dans le laboratoire, analysant l'aptitude de chacune des 640 souches à trois moments différents. Les chercheurs ont ensuite pu comparer la variation de la condition physique entre les souches et découvrir si les capacités initiales d'une souche affectaient sa position finale. Ils ont également séquencé les génomes de 104 souches pour déterminer si les mutations précoces modifiaient les performances finales.

Des études antérieures ont indiqué que de petits changements au début du parcours évolutif peuvent conduire à de grandes différences plus tard, une idée connue sous le nom de contingence historique. Des études d'évolution à long terme sur la bactérie E. coli, par exemple, ont montré que les microbes peuvent parfois évoluer pour manger un nouveau type d'aliment, mais que des changements aussi importants ne se produisent que lorsque certaines mutations habilitantes se produisent en premier. Ces mutations précoces n’ont pas d’effet important en elles-mêmes, mais elles jettent les bases nécessaires pour des mutations ultérieures qui en auront.

Mais en raison de la petite échelle de ces études, Desai ne savait pas clairement si ces cas constituaient l'exception ou la règle. "Obtenez-vous généralement de grandes différences dans le potentiel évolutif qui surviennent au cours du cours naturel de l'évolution, ou l'évolution est-elle en grande partie prévisible?" il répond "Pour répondre à cette question, nous avions besoin de la grande échelle de notre expérience."

Comme dans les études précédentes, Desai a constaté que les mutations précoces influencent l'évolution future, en façonnant le chemin que prend la levure. Mais dans cette expérience, ce chemin n'a pas eu d'incidence sur la destination finale. "Ce type particulier de contingence rend en fait l'évolution de la forme physique  plus prévisible, et pas moins prévisible", a déclaré M. Desai.

Desai a montré que, tout comme une seule visite à la salle de sport profite plus à un amateur flappi par la TV qu'à un athlète, les microbes qui commençent par croître lentement tirent bien plus parti des mutations bénéfiques que leurs homologues plus en forme qui démarrent sur les chapeaux de roue. " Si vous êtes à la traîne au début à cause de la malchance, vous aurez tendance à aller mieux dans le futur ", a déclaré Desai. Il compare ce phénomène au principe économique des rendements décroissants - après un certain point, chaque unité d'effort supplémentaire aide de moins en moins.

Les scientifiques ne savent pas pourquoi toutes les voies génétiques chez la levure semblent arriver au même point final, une question que Desai et d'autres acteurs du domaine trouvent particulièrement intrigante. La levure a développé des mutations dans de nombreux gènes différents, et les scientifiques n'ont trouvé aucun lien évident entre eux. On ne sait donc pas exactement comment ces gènes interagissent dans la cellule, voire pas du tout. "Il existe peut-être une autre couche du métabolisme que personne ne maîtrise", a déclaré Vaughn Cooper, biologiste à l'Université du New Hampshire qui n'a pas participé à l'étude.

Il n’est pas non plus clair si les résultats soigneusement contrôlés de Desai sont applicables à des organismes plus complexes ou au monde réel chaotique, où l’organisme et son environnement changent constamment. "Dans le monde réel, les organismes réussissent dans différentes choses, en divisant l'environnement", a déclaré Travisano. Il prédit que les populations situées au sein de ces niches écologiques seraient toujours soumises à des rendements décroissants, en particulier à mesure qu'elles s'adaptent. Mais cela reste une question ouverte, a-t-il ajouté.

Cependant, certains éléments suggèrent que les organismes complexes peuvent également évoluer rapidement pour se ressembler davantage. Une étude publiée en mai a analysé des groupes de drosophiles génétiquement distinctes alors qu'elles s'adaptaient à un nouvel environnement. Malgré des trajectoires évolutives différentes, les groupes ont développé des similitudes dans des attributs tels que la fécondité et la taille du corps après seulement 22 générations. " Ainsi beaucoup de gens pensent à un gène pour un trait, une façon déterministe de résoudre des problèmes par l'évolution ", a déclaré David Reznick, biologiste à l'Université de Californie à Riverside. " Cela montre que ce n'est pas vrai ; on peut évoluer pour être mieux adapté à l'environnement de nombreuses façons. "





 

Auteur: Internet

Info: Quanta Magazine, Emily Singer, September 11, 2014

[ bio-mathématiques ] [ individu-collectif ] [ équilibre grégaire ] [ compensation mutationnelle ]

 
Commentaires: 1
Ajouté à la BD par miguel

protérozoïque

Des molécules fossilisées révèlent un monde perdu de vie ancienne

Une nouvelle analyse de sédiments vieux d’un milliard d’années comble une lacune dans les archives fossiles, révélant une dynastie de premiers eucaryotes qui pourraient avoir façonné l’histoire de la vie sur Terre.

Un arbre a quelque chose en commun avec les mauvaises herbes et les champignons qui poussent autour de ses racines, les écureuils qui grimpent sur son tronc, les oiseaux perchés sur ses branches et le photographe qui prend des photos de la scène. Ils ont tous un génome et une machinerie cellulaire soigneusement emballés dans des compartiments reliés par des membranes, un système organisationnel qui les place dans un groupe de formes de vie extrêmement performantes appelés eucaryotes.

Les débuts de l’histoire des eucaryotes fascinent depuis longtemps les scientifiques qui aspirent à comprendre quand la vie moderne a commencé et comment elle a évolué. Mais retracer les premiers eucaryotes à travers l’histoire de la Terre a été difficile. Des données fossiles limitées montrent que leur premier ancêtre est apparu il y a au moins 1,6 milliard d’années. Pourtant, d’autres preuves révélatrices de leur existence manquent. Les eucaryotes devraient produire et laisser derrière eux certaines molécules distinctives, mais les versions fossilisées de ces molécules n'apparaissent dans les archives rocheuses qu'il y a 800 millions d'années. Cet écart inexpliqué de 800 millions d'années dans l'histoire des premiers eucaryotes, période cruciale au cours de laquelle le dernier ancêtre commun de toute la vie complexe d'aujourd'hui est apparu, a enveloppé de mystère l'histoire des débuts de la vie.

"Il existe un énorme écart temporel entre les archives fossiles de ce que nous pensons être les premiers eucaryotes et les premiers biomarqueurs des eucaryotes", a déclaré Galen Halverson , professeur à l'Université McGill de Montréal.

Il existe de nombreuses explications possibles à cet écart paradoxal. Peut-être que les eucaryotes étaient trop rares à cette époque pour laisser derrière eux des preuves de fossiles moléculaires. Ou peut-être étaient-ils abondants, mais leurs fossiles moléculaires n’ont pas survécu aux dures conditions géologiques.

Une étude récente publiée dans Nature propose une explication alternative : les scientifiques ont peut-être recherché les mauvaises molécules fossilisées pendant tout ce temps. Lorsque les auteurs de l’étude ont recherché des versions plus primitives des produits chimiques recherchés par d’autres, ils les ont découverts en abondance – révélant ce qu’ils ont décrit comme " un monde perdu " d’eucaryotes qui vivaient il y a 800 millions à au moins 1,6 milliard d’années.

"Ces molécules ont toujours été là", a déclaré Jochen Brocks , géochimiste à l'Université nationale australienne de Canberra, qui a codirigé l'étude avec Benjamin Nettersheim, alors étudiant diplômé . "Nous ne pouvions pas les trouver parce que nous ne savions pas à quoi elles ressemblaient."

Les résultats apportent une nouvelle clarté à la dynamique de la vie eucaryote précoce. L'abondance de ces fossiles moléculaires suggère que les organismes primitifs ont prospéré dans les océans pendant des centaines de millions d'années avant que les ancêtres des eucaryotes modernes ne prennent le relais, semant des formes de vie qui évolueraient un jour vers les animaux, les plantes, les champignons et les protistes que nous voyons. aujourd'hui.

"C'est une hypothèse élégante qui semble réconcilier ces enregistrements très disparates", a déclaré Halverson, qui n'a pas participé à l'étude. " Cela donne un sens à tout."

Ces découvertes ont été une bonne nouvelle pour des paléontologues comme Phoebe Cohen , présidente de géosciences au Williams College dans le Massachusetts, qui a longtemps pensé qu'il manquait quelque chose dans le dossier des biomarqueurs. "Il existe une histoire riche et dynamique de la vie avant l'évolution des animaux, qui est plus difficile à comprendre car nous ne pouvons pas la voir", a déclaré Cohen. "Mais c'est extrêmement important car cela prépare le terrain pour le monde que nous avons aujourd'hui."

Le casse-tête des protostéroïdes

Lorsque les archives fossiles sont décevantes, les scientifiques disposent d’autres moyens pour estimer le moment où différentes espèces se sont dérivées les unes des autres dans l’arbre évolutif. Parmi ces outils figurent principalement les horloges moléculaires : des fragments d’ADN qui mutent à un rythme constant, permettant aux scientifiques d’estimer le passage du temps. Selon les horloges moléculaires, le dernier ancêtre commun des eucaryotes modernes, qui appartenait à un ensemble diversifié d’organismes appelé groupe couronne, est apparu pour la première fois il y a au moins 1,2 milliard d’années.

Mais l’histoire des eucaryotes ne commence pas là. D’autres eucaryotes primitifs, connus sous le nom de groupe souche, ont vécu des centaines de millions d’années avant l’évolution de notre premier ancêtre commun. Les chercheurs en savent peu sur eux, au-delà du fait qu’ils ont existé. La petite poignée d’anciens fossiles d’eucaryotes découverts sont trop ambigus pour être identifiés comme une tige ou une couronne.

En l’absence de fossiles corporels convaincants, les chercheurs recherchent des fossiles moléculaires. Les fossiles moléculaires, qui se conservent séparément des fossiles corporels, peuvent être difficiles à cerner pour les scientifiques. Ils doivent d’abord identifier quelles molécules auraient pu être produites uniquement par les organismes qu’ils souhaitent étudier. Ensuite, ils doivent composer avec le fait que toutes ces molécules ne se fossilisent pas bien.

La matière organique se désintègre à des rythmes différents et certaines parties des eucaryotes se conservent mieux que d’autres dans la roche. Les tissus se dissolvent en premier. L’ADN peut rester plus longtemps, mais pas trop longtemps : l’ADN le plus ancien jamais découvert a environ 2 millions d’années. Les molécules de graisse, cependant, peuvent potentiellement survivre pendant des milliards d’années.

Les eucaryotes créent de grandes quantités de molécules de graisse appelées stérols, un type de stéroïde qui constitue un composant essentiel des membranes cellulaires. Étant donné que la présence d’une membrane cellulaire est révélatrice des eucaryotes et que les molécules de graisse ont tendance à persister dans la roche, les stérols sont devenus le fossile moléculaire de référence pour ce groupe.

Les eucaryotes modernes fonctionnent avec trois grandes familles de stérols : le cholestérol chez les animaux, les phytostérols chez les plantes et l'ergostérol chez les champignons et certains protistes. Leur synthèse commence par une molécule linéaire, que la cellule façonne en quatre anneaux afin que la forme résultante s'intègre parfaitement dans une membrane, a déclaré Brocks. Ce processus comporte de nombreuses étapes : il faut huit étapes enzymatiques supplémentaires aux cellules animales pour fabriquer du cholestérol, tandis que les cellules végétales nécessitent 11 étapes enzymatiques supplémentaires pour fabriquer un phytostérol.

En route pour fabriquer son stérol avancé, une cellule crée une série de molécules plus simples à chaque étape du processus. Lorsqu’ils sont branchés sur une membrane artificielle, même ces stérols intermédiaires offrent la perméabilité et la rigidité dont une cellule a besoin pour fonctionner comme elle le devrait. Le biochimiste Konrad Bloch, qui a reçu le prix Nobel en 1964 en partie pour avoir découvert les étapes cellulaires de fabrication du cholestérol , "en a été perplexe", a déclaré Brocks. Pourquoi une cellule déploierait-elle des efforts supplémentaires pour fabriquer un stérol plus complexe alors qu’une molécule plus simple ferait le travail ?

En 1994, Bloch a écrit un livre dans lequel il prédisait que chacun de ces stérols intermédiaires avait été autrefois le produit final utilisé dans la membrane d'une cellule eucaryote ancestrale. Chaque étape supplémentaire a peut-être nécessité plus d'énergie de la cellule, mais la molécule résultante constituait une légère amélioration par rapport à la précédente – une amélioration suffisante pour surpasser le précurseur et s'imposer dans l'histoire de l'évolution.

Si cela était vrai, cela expliquerait pourquoi personne n’avait pu trouver de fossiles moléculaires de stérols avant l’expansion rapide des eucaryotes modernes, il y a environ 800 millions d’années. Les chercheurs recherchaient des cholestérols et d’autres structures modernes dans les archives rocheuses. Ils ne se rendaient pas compte que les anciennes voies biochimiques étaient plus courtes et que les organismes des groupes souches ne produisaient pas de stérols modernes : ils  faisaient des protostérols.

Mouture de café moléculaire

En 2005, environ cinq ans après la mort de Bloch, Brocks et ses collègues ont rapporté dans Nature les premiers indices de l'existence de telles molécules intermédiaires. Dans d'anciens sédiments, ils avaient trouvé des stéroïdes de structure inhabituelle qu'ils ne reconnaissaient pas. Mais à l’époque, Brocks ne pensait pas qu’un eucaryote aurait pu les créer. " À l’époque, j’étais assez convaincu qu’ils étaient bactériens ", a-t-il déclaré. "Personne ne pensait du tout à la possibilité d'avoir des eucaryotes du groupe souche."

Il a continué à échantillonner des roches anciennes et à rechercher ces curieuses molécules. Environ une décennie après le début de leurs travaux, Nettersheim et lui ont réalisé que de nombreuses structures moléculaires dans les échantillons de roche semblaient " primitives " et ne ressemblaient pas à celles que fabriquent généralement les bactéries, a déclaré Brocks. Serait-ce les stérols intermédiaires de Bloch ?

(Photo : De rares fossiles microscopiques de la vie ancienne fournissent des horodatages sur l’évolution des eucaryotes.  Satka favosa  (à gauche) et  Valeria lophostriata  datent d'il y a 1,6 milliard d'années. On ne sait pas si les organismes, probablement des protistes, appartiennent au groupe tige ou couronne. )

Il leur fallait davantage de preuves. Au cours de la décennie qui a suivi, Brocks et Nettersheim ont contacté des sociétés pétrolières et minières pour demander des échantillons de tout sédiment ancien qu'elles avaient accidentellement découvert lors d'expéditions de forage.

"La plupart des gens auraient trouvé deux exemples et publiés", a déclaré Andrew Knoll , professeur d'histoire naturelle à l'Université Harvard qui n'a pas participé à l'étude. (Il était le conseiller postdoctoral de Brocks il y a des années.) " Jochen a passé la majeure partie de la décennie à étudier les roches du Protérozoïque du monde entier. "

Pendant ce temps, les chercheurs ont créé un modèle de recherche pour identifier les molécules présentes dans les sédiments. Ils ont converti les molécules intermédiaires modernes fabriquées lors de la synthèse des stérols en équivalents géologiques plausibles des stéroïdes. (Le cholestérol, par exemple, se fossilise sous forme de cholestane.) " Si vous ne savez pas à quoi ressemble la molécule, vous ne la verrez pas 2, a déclaré Brocks.

En laboratoire, ils ont extrait des molécules fossiles des échantillons de sédiments en utilisant un processus qui " ressemble un peu à la préparation du café ", a déclaré Nettersheim. Après avoir broyé les roches, ils ont ajouté des solvants organiques pour en extraire les molécules – tout comme l’eau chaude est utilisée pour extraire le café des grains torréfiés et moulus.

(Photo :Benjamin Nettersheim, géochimiste à l'Université de Brême, examine les cartes moléculaires d'anciens sédiments rocheux à la recherche de biomarqueurs de la vie ancienne.)

Pour analyser leurs échantillons et les comparer à leurs références, ils ont utilisé la spectrométrie de masse, qui détermine le poids des molécules, et la chromatographie, qui révèle leur composition atomique.

Le processus est ardu. "Vous analysez des centaines de roches et ne trouvez rien", a déclaré Brocks. Lorsque l’on trouve quelque chose, il s’agit souvent d’une contamination récente. Mais plus ils analysaient d’échantillons, plus ils trouvaient de fossiles.

Certains échantillons étaient remplis à ras bord de protostéroïdes. Ils ont découvert ces molécules dans des roches datant d'il y a 800 millions à 1,6 milliard d'années. Il semblait que non seulement les eucaryotes anciens étaient présents depuis environ 800 millions d’années avant le décollage des eucaryotes modernes, mais qu’ils étaient également abondants.

Les chercheurs ont même pu reconnaître le processus évolutif des eucaryotes à mesure que leurs stéroïdes devenaient plus complexes. Par exemple, dans des roches vieilles de 1,3 milliard d’années, ils ont découvert une molécule intermédiaire plus avancée que les protostéroïdes vieux de 1,6 milliard d’années, mais pas aussi avancée que les stéroïdes modernes.

"C'était une façon très intelligente de traiter les archives manquantes de fossiles moléculaires", a déclaré David Gold , géobiologiste à l'Université de Californie à Davis, qui n'a pas participé à l'étude. Leur découverte a immédiatement comblé une lacune de 800 millions d’années dans l’histoire de la naissance de la vie moderne.

Un monde perdu

Les découvertes moléculaires, combinées aux données génétiques et fossiles, révèlent l'image la plus claire à ce jour de la dynamique eucaryote précoce d'il y a environ 1 milliard d'années, au cours de la mystérieuse ère médiane du Protérozoïque, ont déclaré les experts. D'après les preuves de Brocks et Nettersheim, les eucaryotes des groupes tige et couronne (stem and crown)  ont probablement vécu ensemble pendant des centaines de millions d'années et se sont probablement fait concurrence pendant une période que les géologues appellent le milliard ennuyeux en raison de sa lente évolution biologique.

L'absence de stéroïdes plus modernes à cette époque suggère que le groupe couronne n'a pas immédiatement pris le dessus. Au contraire, les organismes liés à la membrane ont commencé petit à mesure qu'ils trouvaient des niches dans l'ancien écosystème, a déclaré Gold. " Il faut beaucoup de temps pour que les [eucaryotes] deviennent écologiquement dominants ", a-t-il déclaré.

(Photo : Ces anciens microfossiles partagent un ancêtre avec tous les eucaryotes vivant aujourd’hui. Vieille d’un milliard d’années, l’algue benthique  Proterocladus antiquus  (au centre) est le plus ancien fossile de couronne connu. Il y a 750 millions d'années, les eucaryotes du groupe couronne tels que l'amibozoaire Bonniea dacruchares  (à gauche) et le rhizarien  Melicerion poikilon  (à droite) étaient courants.)

De gauche à droite : Susannah Porter ; Avec l'aimable autorisation de Virginia Tech ; Susannah Porter

Au début, le groupe souche avait peut-être un avantage. Les niveaux d’oxygène dans l’atmosphère étaient nettement inférieurs à ce qu’ils sont aujourd’hui. Étant donné que la construction de protostérols nécessite moins d’oxygène et d’énergie que les stérols modernes, les eucaryotes du groupe souche étaient probablement plus efficaces et plus abondants.

Leur influence déclina lorsque le monde traversa une transition critique connue sous le nom de période tonienne. Il y a entre 1 milliard et 720 millions d’années, l’oxygène, les nutriments et autres matières premières cellulaires ont augmenté dans les océans. Des fossiles d'eucaryotes modernes, comme des algues et des champignons, commencent à apparaître dans les archives rocheuses, et les stéroïdes modernes commencent à dépasser en nombre les protostéroïdes dans les biomarqueurs fossilisés – des preuves qui suggèrent que les eucaryotes du groupe couronne avaient commencé à prospérer, à augmenter en nombre et à se diversifier.

Pourquoi les stérols deviendraient-ils plus compliqués avec le temps ? Les auteurs suggèrent que les stérols les plus complexes confèrent à leurs propriétaires un certain avantage évolutif, peut-être lié à la dynamique des membranes cellulaires des créatures. Quelle que soit la raison, le changement de stérol était significatif sur le plan évolutif. La composition des stérols modernes a probablement donné aux eucaryotes du groupe couronne un avantage par rapport au groupe souche. Finalement, " ce monde perdu d’anciens eucaryotes a été remplacé par les eucaryotes modernes ", a déclaré Brocks.

Une ride bactérienne

L’histoire évolutive des chercheurs sur les stérols est convaincante, mais elle n’est pas solide comme le roc.

"Je ne serais pas surpris" si leur interprétation est correcte, a déclaré Gold. Cependant, il existe une autre possibilité. Bien que les scientifiques aient tendance à associer les stérols aux eucaryotes, certaines bactéries peuvent également les fabriquer. Les fossiles moléculaires de l’étude auraient-ils pu être laissés par des bactéries ?Gordon Love , géochimiste à l'Université de Californie à Riverside, pense que le scénario bactérien est plus logique. "Ces protostéroïdes se retrouvent dans les roches de tous âges", a-t-il déclaré. "Ils ne disparaissent pas tout simplement, ce qui signifie que quelque chose d'autre que les eucaryotes souches est capable de les fabriquer." Il a fait valoir que les bactéries, qui dominaient la mer à cette époque, auraient pu facilement produire des protostéroïdes.

Les auteurs ne peuvent pas exclure cette possibilité. En fait, ils soupçonnent que certaines de leurs molécules fossiles ont été fabriquées par des bactéries. Mais la possibilité que leur vaste collection de protostéroïdes fossilisés, s'étendant sur des centaines de millions d'années, ait été entièrement constituée de bactéries semble peu probable, a déclaré Brocks.


" Si vous regardez l'écologie de ces bactéries aujourd'hui et leur abondance, il n'y a tout simplement aucune raison de croire qu'elles pourraient devenir si abondantes qu'elles auraient pu produire toutes ces molécules", a-t-il déclaré. Dans le monde moderne, les bactéries produisent des protostérols uniquement dans des environnements de niche tels que les sources hydrothermales ou les suintements de méthane.

Cohen, paléontologue du Williams College, est d'accord avec Brocks. L’interprétation selon laquelle ces molécules ont été faites par des eucaryotes " est cohérente avec toutes les autres sources de preuves ", a-t-elle déclaré – des archives fossiles aux analyses de l’horloge moléculaire. " Je ne suis pas aussi inquiète 2 quant à cette possibilité, a-t-elle déclaré.

L’une ou l’autre interprétation présente plus de questions que de réponses. "Les deux histoires seraient absolument folles et bizarres", a déclaré Brocks. Ce sont " des visions différentes de notre monde ", a-t-il ajouté, et il serait bien de savoir laquelle est la vraie.

Faute de machine à remonter le temps, les chercheurs recherchent davantage de preuves pour améliorer leur certitude dans un sens ou dans l’autre. Mais il n’existe qu’un nombre limité de façons de reconstruire ou de percevoir la vie ancienne – et même les meilleures suppositions des scientifiques ne peuvent jamais combler complètement cette lacune. "La plupart des formes de vie n'ont laissé aucune trace sur Terre", a déclaré Nettersheim. " Le bilan que nous voyons est limité. … Pendant la majeure partie de l’histoire de la Terre, la vie aurait pu être très différente. "


Auteur: Internet

Info: Quanta Magazine, Yasemin Saplakoglu, 23 octobre 2023

[ unicité ] [ microbiote ] [ palier évolutif ] [ précambrien ] [ protérozoïque ]

 

Commentaires: 0

Ajouté à la BD par miguel