Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 24
Temps de recherche: 0.0396s

machine-homme

Le début d’un gros problème: Google hallucine sur les… hallucinations de ChatGPT

Le moteur de recherche s’est basé sur une information inventée par ChatGPT pour fournir une réponse erronée. Selon un expert, ce genre de fausses informations risquent de se multiplier

(photo) Image créée le 4 octobre 2023 par le générateur de Bing de Microsoft, avec la requête "an egg melting slowly in an oven, very realistic photograph".

Observez bien l’image illustrant cet article: elle est impossible à reproduire dans la vie réelle. Et pour cause, il s’agit d’une image créée avec le générateur d’illustrations de Bing, appartenant à Microsoft. L’auteur de ces lignes a écrit la commande, en anglais, "un œuf fondant lentement dans un four, photographie très réaliste". Et Bing a ensuite affiché un résultat convaincant et de qualité. Un peu comme on lui demande de dessiner un tyrannosaure rose nageant dans le lac Léman. Dopés à l’intelligence artificielle (IA), les générateurs d’images peuvent absolument tout faire.

Mais lorsqu’il s’agit de répondre factuellement à des questions concrètes, l’IA se doit d’être irréprochable. Or ce n’est pas toujours le cas. Pire encore, des systèmes d’intelligence artificielle peuvent se nourrir entre eux d’erreurs, aboutissant à des "hallucinations" – noms courants pour les informations inventées de toutes pièces par des agents conversationnels – qui en créent de nouvelles.

Un œuf qui fond

Récemment, un internaute américain, Tyler Glaiel, en a fait l’éclatante démonstration. Le développeur informatique a d’abord effectué une simple requête sur Google, "can you melt eggs", soit "peut-on faire fondre des œufs". Réponse du moteur de recherche: "Oui, un œuf peut être fondu. La façon la plus courante de faire fondre un œuf est de le chauffer à l’aide d’une cuisinière ou d’un four à micro-ondes". Google a affiché cette réponse loufoque (un œuf durcit, il ne fond pas, évidemment) dans ce qu’on appelle un "snippet", soit une réponse extraite d’un site web, affichée juste en dessous de la requête. Google montre depuis des années des "snippets", grâce auxquels l’internaute n’a pas à cliquer sur la source de l’information, et reste ainsi dans l’univers du moteur de recherche.

Quelle était la source de cette fausse information? Le célèbre site Quora.com, apprécié de nombreux internautes, car chacun peut y poser des questions sur tous les sujets, n’importe qui pouvant répondre aux questions posées. N’importe qui, dont des agents conversationnels. Quora utilise ainsi des systèmes d’IA pour apporter certaines réponses. Dans le cas présent, le site web indique que c’est ChatGPT qui a rédigé cette "hallucination" sur les œufs. Google s’est donc fait avoir par Quora, qui lui-même s’est fait avoir par ChatGPT… Ou plus précisément par l’une de ses anciennes versions. "Quora utilise l’API GPT-3 text-davinci-003, qui est connue pour présenter fréquemment de fausses informations par rapport aux modèles de langage plus récents d’OpenAI", explique le site spécialisé Ars Technica. Expérience faite, aujourd’hui, cette grosse erreur sur l’œuf ne peut pas être reproduite sur ChatGPT.

Risque en hausse

Mais avec de plus en plus de contenu produit par l’IA et publié ensuite sur le web, la menace existe que des "hallucinations" se nourrissent entre elles et se multiplient ainsi dans le domaine du texte – il n’y a pas encore eu de cas concernant des images. "Il est certain que le risque d’ hallucination va augmenter si les utilisateurs ne demandent pas à l’IA de s’appuyer sur des sources via la recherche internet. Beaucoup de contenu en ligne est déjà, et va être généré par des machines, et une proportion sera incorrecte en raison d’individus et contributeurs soit mal intentionnés, soit n’ayant pas les bonnes pratiques de vérification des sources ou de relecture des informations", estime Rémi Sabonnadiere, directeur de la société Effixis, basée à Saint-Sulpice (VD), spécialisée dans les modèles de langage et l’IA générative.

Est-ce à dire que Google pourrait devenir moins fiable? "Difficile à dire, cela dépendra surtout de l’utilisation que nous en faisons, poursuit l’expert. Il y a déjà beaucoup de contenu faux en ligne de nos jours quand nous sommes sur Google, mais avec une bonne recherche et un esprit critique, nous ne tombons pas dans les pièges. Il en va de même avec l’utilisation de l’intelligence artificielle. Avec l’IA générative, les contenus erronés, biaisés et tendancieux vont être de grande qualité en termes de forme, convaincants et bien écrits, rendant l’identification difficile."

Modèles spécialisés

Mais des efforts sont réalisés pour minimiser ces risques. Selon Rémi Sabonnadiere, l’industrie investit énormément dans la recherche et le développement pour minimiser ces problèmes. "Les créateurs de LLM [grands modèles de langage] cherchent à améliorer la précision et la fiabilité des informations générées. Parallèlement, l’émergence de modèles spécialisés dans des domaines comme la médecine, le droit, ou la finance est une tendance encourageante, car ils sont souvent mieux armés pour fournir des informations précises et fiables."

Reste que la fusion entre moteurs de recherche et agents conversationnels – que ce soit Bard pour Google ou Bing pour Microsoft – va compliquer la situation. On avait déjà vu Bard afficher une grossière erreur, lors de son lancement, concernant le télescope James Webb. Les géants de la tech tentent de réduire ces erreurs. Mais les utilisateurs doivent se former en conséquence, affirme Rémi Sabonnadiere, et mieux maîtriser les "prompts", soit les commandes texte: "Maîtriser les prompts est une compétence essentielle pour naviguer dans l’ère de l’information générée par l’IA. Une formation adéquate en ingénierie de prompt peut aider à prévenir les risques liés aux hallucinations de l’IA et aux informations erronées". A noter qu’Effixis a créé à ce propos une formation pour répondre à des besoins spécifiques sur les "prompts".

Auteur: Internet

Info: Le Temps.ch, 5 octobre 2023, par Anouch Seydtaghia

[ machine-homme ] [ sémantique hors-sol ] [ invite de commande langagière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

intelligence artificielle

Les capacités imprévisibles des grands modèles d'IA

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles. (...)

Au-delà de l'imitation

En 2020, Dyer et d’autres de Google Research ont prédit que les LLM auraient des effets transformateurs – mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et diverses afin de tracer les limites extérieures de ce qu'un LLM pouvait faire. Cet effort a été appelé projet Beyond the Imitation Game Benchmark (BIG-bench), inspiré du nom du " jeu d'imitation " d'Alan Turing, un test permettant de déterminer si un ordinateur peut répondre aux questions d'une manière humaine et convaincante. (Ceci deviendra plus tard connu sous le nom de test de Turing.) Le groupe s'est particulièrement intéressé aux exemples dans lesquels les LLM ont soudainement atteint de nouvelles capacités qui étaient complètement absentes auparavant.

"La façon dont nous comprenons ces transitions brusques est une grande question de recherche", a déclaré Dyer.

Comme on pouvait s'y attendre, sur certaines tâches, les performances d'un modèle se sont améliorées de manière fluide et prévisible à mesure que la complexité augmentait. Et sur d’autres tâches, l’augmentation du nombre de paramètres n’a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont découvert ce qu’ils ont appelé des " percées " : des progrès rapides et spectaculaires dans les performances à une certaine échelle seuil. Ce seuil variait en fonction de la tâche et du modèle.

Par exemple, les modèles avec relativement peu de paramètres (quelques millions seulement) ne pouvaient pas résoudre avec succès les problèmes d’addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a augmenté dans certains modèles. Des sauts similaires se sont produits pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le déchiffrement des lettres d'un mot, l'identification du contenu offensant dans les paragraphes de Hinglish (une combinaison d'hindi et d'anglais) et la génération d'un équivalent anglais similaire des proverbes kiswahili.

Mais les chercheurs se sont vite rendu compte que la complexité d’un modèle n’était pas le seul facteur déterminant. Certaines capacités inattendues pourraient être extraites de modèles plus petits avec moins de paramètres – ou entraînées sur des ensembles de données plus petits – si les données étaient de qualité suffisamment élevée. De plus, la façon dont une requête était formulée influençait l’exactitude de la réponse du modèle. Lorsque Dyer et ses collègues l'ont fait avec la tâche des emoji de film via un format à choix multiples, par exemple, l'amélioration de la précision était moins un saut soudain qu'une augmentation progressive avec plus de complexité. Et l'année dernière, dans un article présenté à NeurIPS , la réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (une capacité appelée raisonnement en chaîne de pensée) pouvait résoudre correctement un problème de mots mathématiques, alors que le même le modèle sans cette invite ne pourrait pas.

Yi Tay, un scientifique de Google Brain qui a travaillé sur l'enquête systématique sur les percées, souligne des travaux récents suggérant que l'incitation à la chaîne de pensée modifie les courbes d'échelle et donc le point où l'émergence se produit. Dans leur article NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites de chaîne de pensée pouvait susciter des comportements émergents non identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d’expliquer son raisonnement, pourraient aider les chercheurs à commencer à étudier les raisons pour lesquelles l’émergence se produit.

Des découvertes récentes comme celles-ci suggèrent au moins deux possibilités pour expliquer pourquoi l'émergence se produit, a déclaré Ellie Pavlick, une informaticienne à l'Université Brown qui étudie les modèles informatiques du langage. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les modèles plus grands acquièrent effectivement spontanément de nouvelles capacités. "Il se peut très bien que le mannequin ait appris quelque chose de fondamentalement nouveau et différent qu'il n'aurait pas pu apprendre dans une taille plus petite", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'un changement fondamental se produit lorsque les modèles sont étendus."

L’autre possibilité, moins sensationnelle, dit-elle, est que ce qui semble émerger pourrait plutôt être le point culminant d’un processus interne, axé sur les statistiques, qui fonctionne selon un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement apprendre des heuristiques hors de portée pour ceux qui disposent de moins de paramètres ou de données de moindre qualité.

Mais, a-t-elle déclaré, déterminer laquelle de ces explications est la plus probable dépend d’une meilleure compréhension du fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit."

Pouvoirs et pièges imprévisibles

Il y a un problème évident à demander à ces modèles de s’expliquer : ce sont des menteurs notoires. " Nous comptons de plus en plus sur ces modèles pour effectuer le travail de base ", a déclaré Ganguli, « mais je ne me contente pas de leur faire confiance. Je vérifie leur travail. Comme exemple parmi de nombreux exemples amusants, Google a présenté en février son chatbot IA, Bard. Le billet de blog annonçant le nouvel outil montre que Bard fait une erreur factuelle .

L’émergence conduit à l’imprévisibilité, et l’imprévisibilité – qui semble augmenter avec l’échelle – rend difficile pour les chercheurs d’anticiper les conséquences d’une utilisation généralisée.

" Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés ", a déclaré Ganguli. "Et pour étudier des phénomènes émergents, vous devez avoir un cas en tête, et vous ne saurez pas avant d'avoir étudié l'influence de l'échelle quelles capacités ou limitations pourraient survenir."

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont examiné si les modèles montreraient certains types de préjugés raciaux ou sociaux, un peu comme ceux précédemment rapportés dans les algorithmes non basés sur LLM utilisés pour prédire quels anciens criminels sont susceptibles d'en commettre un autre. crime. Cette étude a été inspirée par un paradoxe apparent directement lié à l’émergence : à mesure que les modèles améliorent leurs performances lors de leur mise à l’échelle, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des dommages.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", a déclaré Ganguli. Il cite une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. " Les modèles plus grands deviennent brusquement plus biaisés. " Ne pas prendre en compte ce risque, a-t-il ajouté, pourrait mettre en péril les sujets de ces modèles.

Mais il propose un contrepoint : lorsque les chercheurs ont simplement dit au modèle de ne pas s’appuyer sur des stéréotypes ou des préjugés sociaux – littéralement en tapant ces instructions – le modèle était moins biaisé dans ses prédictions et ses réponses. Cela suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a fait état d'un nouveau mode " d'autocorrection morale ", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

L’émergence, a déclaré Ganguli, révèle à la fois un potentiel surprenant et des risques imprévisibles. Les applications de ces grands LLM prolifèrent déjà, donc une meilleure compréhension de cette interaction aidera à exploiter la diversité des capacités des modèles linguistiques.

"Nous étudions comment les gens utilisent réellement ces systèmes", a déclaré Ganguli. Mais ces utilisateurs bricolent aussi constamment. "Nous passons beaucoup de temps à discuter avec nos modèles", a-t-il déclaré, "et c'est en fait là que vous commencez à avoir une bonne intuition sur la confiance – ou son absence."

Auteur: Internet

Info: Quanta Magazine, Stephen Ornes, 16 mars 2023 - Les capacités imprévisibles des grands modèles d'IA Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

[ dépassement ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

Un nouvel opus magnum postule l'existence d'un lien mathématique caché, semblable à la connexion entre l'électricité et le magnétisme.

En 2018, alors qu'il s'apprêtait à recevoir la médaille Fields, la plus haute distinction en mathématiques, Akshay Venkatesh avait un morceau de papier dans sa poche. Il y avait inscrit un tableau d'expressions mathématiques qui, depuis des siècles, jouent un rôle clé dans la théorie des nombres.

Bien que ces expressions aient occupé une place prépondérante dans les recherches de Venkatesh au cours de la dernière décennie, il les gardait sur lui non pas comme un souvenir de ce qu'il avait accompli, mais comme un rappel de quelque chose qu'il ne comprenait toujours pas.

Les colonnes du tableau étaient remplies d'expressions mathématiques à l'allure énigmatique : À l'extrême gauche se trouvaient des objets appelés périodes, et à droite, des objets appelés fonctions L, qui pourraient être la clé pour répondre à certaines des questions les plus importantes des mathématiques modernes. Le tableau suggérait une sorte de relation entre les deux. Dans un livre publié en 2012 avec Yiannis Sakellaridis, de l'université Johns Hopkins, Venkatesh avait trouvé un sens à cette relation : Si on leur donne une période, ils peuvent déterminer s'il existe une fonction L associée.

Mais ils ne pouvaient pas encore comprendre la relation inverse. Il était impossible de prédire si une fonction L donnée avait une période correspondante. Lorsqu'ils ont examiné les fonctions L, ils ont surtout constaté un certain désordre.

C'est pourquoi Venkatesh a gardé le papier dans sa poche. Il espérait que s'il fixait la liste suffisamment longtemps, les traits communs de cette collection apparemment aléatoire de fonctions L lui apparaîtraient clairement. Au bout d'un an, ce n'était pas le cas.

"Je n'arrivais pas à comprendre le principe qui sous-tendait ce tableau", a-t-il déclaré.

2018 fut une année importante pour Venkatesh à plus d'un titre. En plus de recevoir la médaille Fields, il a également quitté l'université de Stanford, où il se trouvait depuis une dizaine d'années, pour rejoindre l'Institute for Advanced Study à Princeton, dans le New Jersey.

Sakellaridis et lui ont également commencé à discuter avec David Ben-Zvi, un mathématicien de l'université du Texas, à Austin, qui passait le semestre à l'institut. Ben-Zvi avait construit sa carrière dans un domaine parallèle des mathématiques, en étudiant le même type de questions sur les nombres que Sakellaridis et Venkatesh, mais d'un point de vue géométrique. Lorsqu'il a entendu Venkatesh parler de cette table mystérieuse qu'il emportait partout avec lui, Ben-Zvi a presque immédiatement commencé à voir une nouvelle façon de faire communiquer les périodes et les fonctions L entre elles.

Ce moment de reconnaissance a été à l'origine d'une collaboration de plusieurs années qui s'est concrétisée en juillet dernier, lorsque Ben-Zvi, Sakellaridis et Venkatesh ont publié un manuscrit de 451 pages. L'article crée une traduction dans les deux sens entre les périodes et les fonctions L en refondant les périodes et les fonctions L en termes d'une paire d'espaces géométriques utilisés pour étudier des questions fondamentales en physique.

Ce faisant, il réalise un rêve de longue date dans le cadre d'une vaste initiative de recherche en mathématiques appelée "programme Langlands". Les mathématiciens qui travaillent sur des questions dans le cadre de ce programme cherchent à jeter des ponts entre des domaines disparates pour montrer comment des formes avancées de calcul (d'où proviennent les périodes) peuvent être utilisées pour répondre à des questions ouvertes fondamentales en théorie des nombres (d'où proviennent les fonctions L), ou comment la géométrie peut être utilisée pour répondre à des questions fondamentales en arithmétique.

Ils espèrent qu'une fois ces ponts établis, les techniques pourront être portées d'un domaine mathématique à un autre afin de répondre à des questions importantes qui semblent insolubles dans leur propre domaine.

Le nouvel article est l'un des premiers à relier les aspects géométriques et arithmétiques du programme, qui, pendant des décennies, ont progressé de manière largement isolée. En créant ce lien et en élargissant effectivement le champ d'application du programme Langlands tel qu'il a été conçu à l'origine, le nouvel article fournit un cadre conceptuel unique pour une multitude de connexions mathématiques.

"Il unifie un grand nombre de phénomènes disparates, ce qui réjouit toujours les mathématiciens", a déclaré Minhyong Kim, directeur du Centre international des sciences mathématiques d'Édimbourg, en Écosse.

Connecter eulement  

Le programme Langlands a été lancé par Robert Langlands, aujourd'hui professeur émérite à l'Institute for Advanced Study. Il a débuté en 1967 par une lettre manuscrite de 17 pages adressée par Langlands, alors jeune professeur à l'université de Princeton, à Andre Weil, l'un des mathématiciens les plus connus au monde. Langlands proposait d'associer des objets importants du calcul, appelés formes automorphes, à des objets de l'algèbre, appelés groupes de Galois. Les formes automorphes sont une généralisation des fonctions périodiques telles que le sinus en trigonométrie, dont les sorties se répètent à l'infini lorsque les entrées augmentent. Les groupes de Galois sont des objets mathématiques qui décrivent comment des entités appelées champs (comme les nombres réels ou rationnels) changent lorsqu'on leur ajoute de nouveaux éléments.

Les paires comme celle entre les formes automorphes et les groupes de Galois sont appelées dualités. Elles suggèrent que différentes classes d'objets se reflètent l'une l'autre, ce qui permet aux mathématiciens d'étudier l'une en fonction de l'autre.

Des générations de mathématiciens se sont efforcées de prouver l'existence de la dualité supposée de Langlands. Bien qu'ils n'aient réussi à l'établir que pour des cas limités, même ces cas limités ont souvent donné des résultats spectaculaires. Par exemple, en 1994, lorsque Andrew Wiles a démontré que la dualité proposée par Langlands était valable pour une classe particulière d'exemples, il a prouvé le dernier théorème de Fermat, l'un des résultats les plus célèbres de l'histoire des mathématiques.

En poursuivant le programme de Langlands, les mathématiciens l'ont également élargi dans de nombreuses directions.

L'une de ces directions a été l'étude de dualités entre des objets arithmétiques apparentés, mais distincts, de ceux qui intéressaient Langlands. Dans leur livre de 2012, Sakellaridis et Venkatesh ont étudié une dualité entre les périodes, qui sont étroitement liées aux formes automorphes, et les fonctions L, qui sont des sommes infinies attachées aux groupes de Galois. D'un point de vue mathématique, les périodes et les L-fonctions sont des objets d'espèces totalement différentes, sans traits communs évidents.

Les périodes sont devenues des objets d'intérêt mathématique dans les travaux d'Erich Hecke dans les années 1930.

Les fonctions L sont des sommes infinies utilisées depuis les travaux de Leonhard Euler au milieu du 18e siècle pour étudier des questions fondamentales sur les nombres. La fonction L la plus célèbre, la fonction zêta de Riemann, est au cœur de l'hypothèse de Riemann, qui peut être considérée comme une prédiction sur la répartition des nombres premiers. L'hypothèse de Riemann est sans doute le plus important problème non résolu en mathématiques.

Langlands était conscient des liens possibles entre les fonctions L et les périodes, mais il les considérait comme une question secondaire dans son projet de relier différents domaines des mathématiques.

"Dans un article, [Langlands] considérait que l'étude des périodes et des fonctions L ne valait pas la peine d'être étudiée", a déclaré M. Sakellaridis.

Bienvenue dans la machine

Bien que Robert Langlands n'ait pas insisté sur le lien entre les périodes et les fonctions L, Sakellaridis et Venkatesh les considéraient comme essentiels pour élargir et approfondir les liens entre des domaines mathématiques apparemment éloignés, comme l'avait proposé Langlands.

Dans leur livre de 2012, ils ont développé une sorte de machine qui prend une période en entrée, effectue un long calcul et produit une fonction L. Cependant, toutes les périodes ne produisent pas des L-fonctions correspondantes, et la principale avancée théorique de leur livre était de comprendre lesquelles le font. (Ce travail s'appuie sur des travaux antérieurs d'Atsushi Ichino et de Tamotsu Ikeda à l'université de Kyoto).

Mais leur approche avait deux limites. Premièrement, elle n'explique pas pourquoi une période donnée produit une fonction L donnée. La machine qui transforme l'une en l'autre était une boîte noire. C'était comme s'ils avaient construit un distributeur automatique qui produisait souvent de manière fiable quelque chose à manger chaque fois que vous mettiez de l'argent, sauf qu'il était impossible de savoir ce que ce serait à l'avance, ou si la machine mangerait l'argent sans distribuer d'en-cas.

Dans tous les cas, vous deviez déposer votre argent - votre période - puis "faire un long calcul et voir quelle fonction L vous obteniez parmi un zoo de fonctions", a déclaré M. Venkatesh.

La deuxième chose qu'ils n'ont pas réussi à faire dans leur livre, c'est de comprendre quelles fonctions L ont des périodes associées. Certaines en ont. D'autres non. Ils n'ont pas réussi à comprendre pourquoi.

Ils ont continué à travailler après la publication du livre, en essayant de comprendre pourquoi la connexion fonctionnait et comment faire fonctionner la machine dans les deux sens - non seulement en obtenant une fonction L à partir d'une période, mais aussi dans l'autre sens.

En d'autres termes, ils voulaient savoir que s'ils mettaient 1,50 $ dans le distributeur automatique, cela signifiait qu'ils allaient recevoir un sachet de Cheetos. De plus, ils voulaient pouvoir dire que s'ils tenaient un sachet de Cheetos, cela signifiait qu'ils avaient mis 1,50 $ dans le distributeur automatique.

Parce qu'elles relient des objets qui, à première vue, n'ont rien en commun, les dualités sont puissantes. Vous pourriez fixer un alignement d'objets mathématiques pendant une éternité sans percevoir la correspondance entre les fonctions L et les périodes.

"La manière dont elles sont définies et données, cette période et cette fonction L, n'a rien d'évident", explique Wee Teck Gan, de l'université nationale de Singapour.

Pour traduire des choses superficiellement incommensurables, il faut trouver un terrain d'entente. L'un des moyens d'y parvenir pour des objets tels que les fonctions L et les périodes, qui trouvent leur origine dans la théorie des nombres, est de les associer à des objets géométriques.

Pour prendre un exemple ludique, imaginez que vous avez un triangle. Mesurez la longueur de chaque côté et vous obtiendrez un ensemble de nombres qui vous indiquera comment écrire une fonction L. Prenez un autre triangle et, au lieu de mesurer les longueurs, regardez les trois angles intérieurs - vous pouvez utiliser ces angles pour définir une période. Ainsi, au lieu de comparer directement les fonctions L et les périodes, vous pouvez comparer les triangles qui leur sont associés. On peut dire que les triangles "indexent" les L-fonctions et les périodes - si une période correspond à un triangle avec certains angles, alors les longueurs de ce triangle correspondent à une L-fonction correspondante.

Si une période correspond à un triangle avec certains angles, les longueurs de ce triangle correspondent à une fonction L. "Cette période et cette fonction L, il n'y a pas de relation évidente dans la façon dont elles vous sont données. L'idée était donc que si vous pouviez comprendre chacune d'entre elles d'une autre manière, d'une manière différente, vous pourriez découvrir qu'elles sont très comparables", a déclaré M. Gan.

Dans leur ouvrage de 2012, Sakellaridis et Venkatesh ont réalisé une partie de cette traduction. Ils ont trouvé un moyen satisfaisant d'indexer des périodes en utilisant un certain type d'objet géométrique. Mais ils n'ont pas pu trouver une façon similaire de penser aux fonctions L.

Ben-Zvi pensait pouvoir le faire.

Le double marteau de Maxwell

Alors que les travaux de Sakellaridis et Venkatesh se situaient légèrement à côté de la vision de Langlands, Ben-Zvi travaillait dans un domaine des mathématiques qui se situait dans un univers totalement différent - une version géométrique du programme de Langlands.

Le programme géométrique de Langlands a débuté au début des années 1980, lorsque Vladimir Drinfeld et Alexander Beilinson ont suggéré une sorte de dualité de second ordre. Drinfeld et Beilinson ont proposé que la dualité de Langlands entre les groupes de Galois et les formes automorphes puisse être interprétée comme une dualité analogue entre deux types d'objets géométriques. Mais lorsque Ben-Zvi a commencé à travailler dans le programme géométrique de Langlands en tant qu'étudiant diplômé à l'université de Harvard dans les années 1990, le lien entre le programme géométrique et le programme original de Langlands était quelque peu ambitieux.

"Lorsque le programme géométrique de Langlands a été introduit pour la première fois, il s'agissait d'une séquence d'étapes psychologiques pour passer du programme original de Langlands à cet énoncé géométrique qui semblait être un tout autre genre d'animal", a déclaré M. Ben-Zvi.

En 2018, lorsque M. Ben-Zvi a passé une année sabbatique à l'Institute for Advanced Study, les deux parties se sont rapprochées, notamment dans les travaux publiés la même année par Vincent Lafforgue, chercheur à l'Institut Fourier de Grenoble. Pourtant, M. Ben-Zvi prévoyait d'utiliser son séjour sabbatique de 2018 à l'IAS pour effectuer des recherches sur l'aspect géométrique du programme Langlands. Son plan a été perturbé lorsqu'il est allé écouter un exposé de Venkatesh.

"Mon fils et la fille d'Akshay étaient des camarades de jeu, et nous étions amis sur le plan social, et j'ai pensé que je devrais assister à certaines des conférences qu'Akshay a données au début du semestre", a déclaré Ben-Zvi.

Lors de l'une de ces premières conférences, Venkatesh a expliqué qu'il fallait trouver un type d'objet géométrique capable d'indexer à la fois les périodes et les fonctions L, et il a décrit certains de ses récents progrès dans cette direction. Il s'agissait d'essayer d'utiliser des espaces géométriques issus d'un domaine des mathématiques appelé géométrie symplectique, que Ben-Zvi connaissait bien pour avoir travaillé dans le cadre du programme géométrique de Langlands.

"Akshay et Yiannis ont poussé dans une direction où ils ont commencé à voir des choses dans la géométrie symplectique, et cela m'a fait penser à plusieurs choses", a déclaré M. Ben-Zvi.

L'étape suivante est venue de la physique.

Pendant des décennies, les physiciens et les mathématiciens ont utilisé les dualités pour trouver de nouvelles descriptions du fonctionnement des forces de la nature. Le premier exemple, et le plus célèbre, est celui des équations de Maxwell, écrites pour la première fois à la fin du XIXe siècle, qui relient les champs électriques et magnétiques. Ces équations décrivent comment un champ électrique changeant crée un champ magnétique, et comment un champ magnétique changeant crée à son tour un champ électrique. Ils peuvent être décrits conjointement comme un champ électromagnétique unique. Dans le vide, "ces équations présentent une merveilleuse symétrie", a déclaré M. Ben-Zvi. Mathématiquement, l'électricité et le magnétisme peuvent changer de place sans modifier le comportement du champ électromagnétique commun.

Parfois, les chercheurs s'inspirent de la physique pour prouver des résultats purement mathématiques. Par exemple, dans un article de 2008, les physiciens Davide Gaiotto et Edward Witten ont montré comment les espaces géométriques liés aux théories quantiques des champs de l'électromagnétisme s'intègrent dans le programme géométrique de Langlands. Ces espaces sont présentés par paires, une pour chaque côté de la dualité électromagnétique : les espaces G hamiltoniens et leur dual : Les espaces Ğ hamiltoniens (prononcés espaces G-hat).

Ben-Zvi avait pris connaissance de l'article de Gaiotto-Witten lors de sa publication, et il avait utilisé le cadre physique qu'il fournissait pour réfléchir à des questions relatives à la géométrie de Langlands. Mais ce travail - sans parler de l'article de physique qui l'a motivé - n'avait aucun lien avec le programme original de Langlands.

Jusqu'à ce que Ben-Zvi se retrouve dans le public de l'IAS en train d'écouter Venkatesh. Il a entendu Venkatesh expliquer qu'à la suite de leur livre de 2012, lui et Sakellaridis en étaient venus à penser que la bonne façon géométrique d'envisager les périodes était en termes d'espaces Hamiltoniens G. Mais Venkatesh a admis qu'ils ne savaient pas quel type d'objet géométrique associer aux L-fonctions. 

Cela a mis la puce à l'oreille de Ben-Zvi. Une fois que Sakellaridis et Venkatesh ont relié les périodes aux espaces G hamiltoniens, les objets géométriques duaux des fonctions L sont devenus immédiatement clairs : les espaces Ğ dont Gaiotto et Witten avaient dit qu'ils étaient les duaux des espaces G. Pour Ben-Zvi, toutes ces dualités, entre l'arithmétique, la géométrie et la physique, semblaient converger. Même s'il ne comprenait pas toute la théorie des nombres, il était convaincu que tout cela faisait partie d'une "grande et belle image".

To G or Not to Ğ

Au printemps 2018, Ben-Zvi, Sakellaridis et Venkatesh se sont rencontrés régulièrement au restaurant du campus de l'Institute for Advanced Study ; pendant quelques mois, ils ont cherché à savoir comment interpréter les données extraites des L-fonctions comme une recette pour construire des Ğ-espaces hamiltoniens. Dans l'image qu'ils ont établie, la dualité entre les périodes et les fonctions L se traduit par une dualité géométrique qui prend tout son sens dans le programme géométrique de Langlands et trouve son origine dans la dualité entre l'électricité et le magnétisme. La physique et l'arithmétique deviennent des échos l'une de l'autre, d'une manière qui se répercute sur l'ensemble du programme de Langlands.

"On pourrait dire que le cadre original de Langlands est maintenant un cas particulier de ce nouveau cadre", a déclaré M. Gan.

En unifiant des phénomènes disparates, les trois mathématiciens ont apporté une partie de l'ordre intrinsèque à la relation entre l'électricité et le magnétisme à la relation entre les périodes et les fonctions L.

"L'interprétation physique de la correspondance géométrique de Langlands la rend beaucoup plus naturelle ; elle s'inscrit dans cette image générale des dualités", a déclaré Kim. "D'une certaine manière, ce que [ce nouveau travail] fait est un moyen d'interpréter la correspondance arithmétique en utilisant le même type de langage.

Le travail a ses limites. Les trois mathématiciens prouvent en particulier  la dualité entre les périodes et les fonctions L sur des systèmes de nombres qui apparaissent en géométrie, appelés champs de fonctions, plutôt que sur des champs de nombres - comme les nombres réels - qui sont le véritable domaine d'application du programme de Langlands.

"L'image de base est censée s'appliquer aux corps de nombres. Je pense que tout cela sera finalement développé pour les corps de nombres", a déclaré M. Venkatesh.

Même sur les champs de fonctions, le travail met de l'ordre dans la relation entre les périodes et les fonctions L. Pendant les mois où Venkatesh a transporté un imprimé dans sa poche, lui et Sakellaridis n'avaient aucune idée de la raison pour laquelle ces fonctions L devraient être celles qui sont associées aux périodes. Aujourd'hui, la relation est logique dans les deux sens. Ils peuvent la traduire librement en utilisant un langage commun.

"J'ai connu toutes ces périodes et j'ai soudain appris que je pouvais retourner chacune d'entre elles et qu'elle se transformait en une autre que je connaissais également. C'est une prise de conscience très choquante", a déclaré M. Venkatesh.



 

Auteur: Internet

Info: https://www.quantamagazine.org. Kevin Hartnett, contributing Writer, October 12, 2023 https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/?mc_cid=cc4eb576af&mc_eid=78bedba296

[ fonction L p-adique ] [ fonction périodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Notre cerveau à l’heure des nouvelles lectures

Maryanne Wolf, directrice du Centre de recherche sur la lecture et le langage de l’université Tufts est l’auteur de Proust et le Calmar (en référence à la façon dont ces animaux développent leurs réseaux de neurones, que nous avions déjà évoqué en 2009). Sur la scène des Entretiens du Nouveau Monde industriel au Centre Pompidou, la spécialiste dans le développement de l’enfant est venue évoquer "la modification de notre cerveau-lecteur au 21e siècle"

Comment lisons-nous ?

"Le cerveau humain n’était pas programmé pour être capable de lire. Il était fait pour sentir, parler, entendre, regarder… Mais nous n’étions pas programmés génétiquement pour apprendre à lire". Comme l’explique le neuroscientifique français Stanislas Dehaene (Wikipédia) dans son livre Les neurones de la lecture, nous avons utilisé notre cerveau pour identifier des modèles. C’est l’invention culturelle qui a transformé notre cerveau, qui a relié et connecté nos neurones entre eux, qui leur a appris à travailler en groupes de neurones spécialisés, notamment pour déchiffrer la reconnaissance de formes. La reconnaissance des formes et des modèles a permis la naissance des premiers symboles logographiques, permettant de symboliser ce qu’on voyait qui nous mènera des peintures rupestres aux premières tablettes sumériennes. Avec l’invention de l’alphabet, l’homme inventera le principe que chaque mot est un son et que chaque son peut-être signifié par un symbole. Le cerveau lecteur consiste donc à la fois à être capable de "voir", décoder des informations, des motifs et à les traiter pour pouvoir penser et avoir une réflexion.

Pour autant, le circuit de la lecture n’est pas homogène. Quand on observe à l’imagerie cérébrale un anglais qui lit de l’anglais, un chinois qui lit du chinois ou le Kanji, un Japonais qui lit le Kana japonais, on se rend compte que ces lectures activent des zones sensiblement différentes selon les formes d’écritures. Ce qui signifie qu’il y a plusieurs circuits de lecture dans notre cerveau. Le cerveau est plastique et il se réarrange de multiples façons pour lire, dépendant à la fois du système d’écriture et du médium utilisé. "Nous sommes ce que nous lisons et ce que nous lisons nous façonne" Ce qui explique aussi que chaque enfant qui apprend à lire doit développer son propre circuit de lecture.

Ce qui stimule le plus notre cerveau, selon l’imagerie médicale, c’est d’abord jouer une pièce au piano puis lire un poème très difficile, explique Maryanne Wolf. Car la lecture profonde nécessite une forme de concentration experte. Comme le souligne Proust dans Sur la lecture : "Nous sentons très bien que notre sagesse commence où celle de l’auteur finit, et nous voudrions qu’il nous donnât des réponses, quand tout ce qu’il peut faire est de nous donner des désirs. Et ces désirs, il ne peut les éveiller en nous qu’en nous faisant contempler la beauté suprême à laquelle le dernier effort de son art lui a permis d’atteindre. Mais par une loi singulière et d’ailleurs providentielle de l’optique des esprits (loi qui signifie peut-être que nous ne pouvons recevoir la vérité de personne, et que nous devons la créer nous-mêmes), ce qui est le terme de leur sagesse ne nous apparaît que comme le commencement de la nôtre, de sorte que c’est au moment où ils nous ont dit tout ce qu’ils pouvaient nous dire qu’ils font naître en nous le sentiment qu’ils ne nous ont encore rien dit."

La lenteur, la concentration et le processus cognitif encouragent le cerveau lecteur. La déduction, la pensée analogique, l’analyse critique, la délibération, la perspicacité, l’épiphanie (c’est-à-dire la compréhension soudaine de l’essence et de la signification de quelque chose) et la contemplation sont quelques-unes des merveilleuses conséquences de notre capacité à lire la pensée d’un autre.

Pourquoi la lecture numérique est-elle différente ?

Est-ce que ce que nous savons de notre cerveau lecteur éclaire ce que nous ne savons pas de la lecture à l’heure de la culture numérique ? Quelles sont les implications profondes sur la plasticité de nos circuits de lecture à mesure que nous utilisons des médiums dominés par le numérique ?

En 2008, dans une interview pour Wired, quelques mois avant d’écrire son célèbre article, "Est-ce que Google nous rend idiot ?", Nicholas Carr expliquait : "La chose la plus effrayante dans la vision de Stanley Kubrick n’était pas que les ordinateurs commencent à agir comme les gens, mais que les gens commencent à agir comme des ordinateurs. Nous commençons à traiter l’information comme si nous étions des noeuds, tout est question de vitesse de localisation et de lecture de données. Nous transférons notre intelligence dans la machine, et la machine transfère sa façon de penser en nous."

Les caractéristiques cognitives de la lecture en ligne ne sont pas les mêmes que celle de la lecture profonde, estime Maryanne Wolf. Avec le numérique, notre attention et notre concentration sont partielles, moins soutenues. Notre capacité de lecture se fixe sur l’immédiateté et la vitesse de traitement. Nous privilégions une forme de lecture qui nous permet de faire plusieurs tâches en même temps dans des larges ensembles d’information. Les supports numériques ont tendance à rendre notre lecture physique (tactile, interactions sensorielles…) tandis que le lire nous plonge plutôt dans un processus cognitif profond. Pour la spécialiste, il semble impossible de s’immerger dans l’hypertexte. Reprenant les propos de Carr, "l’écrémage est la nouvelle normalité", assène-t-elle. "Avec le numérique, on scanne, on navigue, on rebondit, on repère. Nous avons tendance à bouger, à cliquer et cela réduit notre attention profonde, notre capacité à avoir une lecture concentrée. Nous avons tendance à porter plus d’attention à l’image. Nous avons tendance à moins internaliser la connaissance et à plus dépendre de sources extérieures."

Les travaux d’imagerie cérébrale sur les effets cognitifs du multitâche montrent que même si on peut apprendre en étant distraits cela modifie notre façon d’apprendre rendant l’apprentissage moins efficace et utile estime le professeur de psychologie et neurobiologie Russ Poldrack. Les facteurs tactiles et matériels ont aussi une importance. On ne peut s’immerger dans l’hypertexte de la même façon qu’on pouvait se perdre dans un livre, estime la spécialiste de la lecture Anne Mangen du Centre sur la lecture de l’université de Stavanger. Plusieurs études ont montré que notre niveau de compréhension entre l’écran et l’imprimé se faisait toujours au détriment du numérique, rappelle Maryanne Wolf. Mais peut-être faudrait-il nuancer les propos de Maryanne Wolf et souligner, comme nous l’avions déjà rappelé lors de la publication de la charge de Nicholas Carr que les les protocoles d’expérimentation des neuroscientifiques défendent souvent des thèses. La science et l’imagerie médicale semblent convoquées pour apporter des preuves. Alors que les différences de protocoles entre une étude l’autre, la petitesse des populations étudiées, nécessiterait beaucoup de prudence dans les conclusions.

Reste que pour comprendre cette différence entre papier et électronique, estime Maryanne Wolf, il nous faut comprendre comment se forme notre capacité de lecture profonde. Est-ce que la lecture superficielle et notre attente continue d’informations externes seront les nouvelles menaces des lectures numériques ? Ces deux risques vont-ils court-circuiter notre "cerveau lecteur" ? Est-ce que la construction de l’imaginaire de l’enfance va être remplacée par celle, externe, que tous les nouveaux supports offrent ? …

"Nous ne reviendrons pas en arrière, nous ne reviendrons pas à un temps prénumérique", insiste Maryanne Wolf. "Ce n’est ni envisageable, ni enviable, ni faisable."

"Mais nous ne devrions pas accepter une embardée vers l’avant sans comprendre ce que le "répertoire cognitif" de notre espèce risque de perdre ou de gagner."
 "Ce serait une honte si la technologie la plus brillante que nous ayons développée devait finir par menacer le genre d’intelligence qui l’a produite", estime l’historien des technologies Edward Tenner. Et Maryanne Wolf de nous montrer trois enfants assis dans un canapé, avec chacun son ordinateur sur ses genoux. C’est l’image même qui inspire notre peur de demain. Celle-là même qu’évoquait l’anthropologue Stefana Broadbent à Lift 2012. Sauf que l’anthropologue, elle, nous montrait qu’on était là confronté là à une représentation sociale… une interrogation totalement absente du discours alarmiste de Maryanne Wolf, qui compare l’activité cognitive de cerveaux habitués à la lecture traditionnelle, avec celle de cerveaux qui découvrent les modalités du numérique.

Le numérique a bien un défaut majeur, celui d’introduire dans notre rapport culturel même des modalités de distraction infinies. Comme nous le confiait déjà Laurent Cohen en 2009, l’écran ou le papier ne changent rien à la capacité de lecture. Mais c’est le réseau qui pose problème et ce d’autant plus quand il apporte une distraction permanente, permettant toujours de faire autre chose que ce que l’on compte faire.

Si la lecture profonde peut se faire tout autant sur papier qu’à travers le réseau, le principal problème qu’induit le numérique, c’est la possibilité de distraction induite par l’outil lui-même, qui demande, pour y faire face, un contrôle de soi plus exigeant.

Notre avenir cognitif en sursis ?

Alors, comment résoudre ce paradoxe, se demande Maryanne Wolf. Comment pouvons-nous éviter de "court-circuiter" notre capacité à lire en profondeur, tout en acquérant les nouvelles compétences nécessaires pour le 21e siècle ?

Un premier pas peut-être fait en ayant conscience de nos limites, estime Maryanne Wolf. Rappelons-nous que notre cerveau n’a jamais été programmé génétiquement pour lire. Que chaque lecteur doit construire ses propres circuits de lecture. Que nos circuits de lecture sont plastiques et influencés par les médiums et les systèmes d’écriture que nous utilisons. Notre cerveau-lecteur est capable à la fois des plus superficielles et des plus profondes formes de lecture, de ressenti et de pensées.

Nous pouvons deviner que l’accès à l’information ne va cesser d’augmenter. Mais nous ne savons pas si l’accès immédiat à de vastes quantités d’informations va transformer la nature du processus de lecture interne, à savoir la compréhension profonde et l’internalisation de la connaissance.

Pour le dire autrement, notre cerveau est d’une plasticité totale, mais cela ne veut pas dire que nous allons perdre telle ou telle capacité d’attention, alors que celles-ci ont plus que jamais une importance sociale. Pour l’instant, pourrions-nous répondre à Maryanne Wolf, ce que le cerveau lecteur nous a le plus fait perdre, c’est certainement notre capacité à lire les détails du monde naturel que comprenait le chasseur-cueilleur.

Nous ne savons pas si l’accès immédiat à cette quantité croissante d’information externe va nous éloigner du processus de lecture profonde ou au contraire va nous inciter à explorer la signification des choses plus en profondeur, estime Wolf en reconnaissant tout de même, après bien des alertes, l’ignorance des neuroscientifiques en la matière. Bref, nous ne savons pas si les changements qui s’annoncent dans l’intériorisation des connaissances vont se traduire par une altération de nos capacités cognitives, ni dans quel sens ira cette altération.

Si nous ne savons pas tout de notre avenir cognitif, estime Wolf, peut-être pouvons-nous conserver certains objectifs en vue. Que pouvons-nous espérer ? La technologie va bouleverser l’apprentissage, estime Maryanne Wolf en évoquant l’expérimentation qu’elle mène avec le MIT sur le prêt de tablettes auprès d’enfants éthiopiens qui n’ont jamais été alphabétisés et qui montre des jeunes filles capables de retenir l’alphabet qu’elles n’avaient jamais appris. Comment peut-on créer les conditions pour que les nouveaux lecteurs développent une double capacité… savoir à la fois quand il leur faut écrémer l’information et quand il leur faut se concentrer profondément ?

En semblant à la fois croire dans l’apprentissage par les robots, comme le montre l’expérience OLPC en Ethiopie de laquelle elle participe visiblement avec un certain enthousiasme (alors que certains spécialistes de l’éducation ont montré que l’essentielle des applications d’apprentissage de la lecture ne permettaient pas de dépasser le niveau de l’apprentissage de l’alphabet, en tout cas n’étaient pas suffisantes pour apprendre à lire seul) et en n’ayant de cesse de nous mettre en garde sur les risques que le numérique fait porter à la lecture profonde, Maryanne Wolf semble avoir fait un grand écart qui ne nous a pas aidés à y voir plus clair.

Après la langue et le langage : la cognition

Pour l’ingénieur et philosophe Christian Fauré, membre de l’association Ars Industrialis. "l’organologie générale" telle que définit par Ars Industrialis et le philosophe Bernard Stiegler, organisateur de ces rencontres, vise à décrire et analyser une relation entre 3 types d' "organes" qui nous définissent en tant qu’humain : les organes physiologiques (et psychologiques), les organes techniques et les organes sociaux.

"Nos organes physiologiques n’évoluent pas indépendamment de nos organes techniques et sociaux", rappelle Christian Fauré. Dans cette configuration entre 3 organes qui se surdéterminent les uns les autres, le processus d’hominisation semble de plus en plus porté, "transporté" par l’organe technique. Car dans un contexte d’innovation permanente, le processus d’hominisation, ce qui nous transforme en hommes, est de plus en plus indexé par l’évolution de nos organes techniques. La question est de savoir comment nos organes sociaux, psychologiques et physiologiques vont suivre le rythme de cette évolution. A l’époque de l’invention des premiers trains, les gens avaient peur d’y grimper, rappelle le philosophe. On pensait que le corps humain n’était pas fait pour aller à plus de 30 km à l’heure.

L’évolution que nous connaissons se produit via des interfaces entre les différents organes et c’est celles-ci que nous devons comprendre, estime Christian Fauré. Quel est le rôle des organes techniques et quels sont leurs effets sur nos organes sociaux et physiologiques ?L’écriture a longtemps été notre principal organe technique. Parce qu’elle est mnémotechnique, elle garde et conserve la mémoire. Par son statut, par les interfaces de publication, elle rend public pour nous-mêmes et les autres et distingue le domaine privé et le domaine public. Or l’évolution actuelle des interfaces d’écriture réagence sans arrêt la frontière entre le privé et le public. Avec le numérique, les interfaces de lecture et d’écriture ne cessent de générer de la confusion entre destinataire et destinateur, entre ce qui est privé et ce qui est public, une distinction qui est pourtant le fondement même de la démocratie, via l’écriture publique de la loi. Avec le numérique, on ne sait plus précisément qui voit ce que je publie… ni pourquoi on voit les messages d’autrui.

La question qui écrit à qui est devenue abyssale, car, avec le numérique, nous sommes passés de l’écriture avec les machines à l’écriture pour les machines. L’industrie numérique est devenue une industrie de la langue, comme le soulignait Frédéric Kaplan. Et cette industrialisation se fait non plus via des interfaces homme-machine mais via de nouvelles interfaces, produites par et pour les machines, dont la principale est l’API, l’interface de programmation, qui permet aux logiciels de s’interfacer avec d’autres logiciels.

Le nombre d’API publiée entre 2005 et 2012 a connu une croissance exponentielle, comme l’explique ProgrammableWeb qui en tient le décompte. Désormais, plus de 8000 entreprises ont un modèle d’affaire qui passe par les API. "Le web des machines émerge du web des humains. On passe d’un internet des humains opéré par les machines à un internet pour les machines opéré par les machines. L’API est la nouvelle membrane de nos organes techniques qui permet d’opérer automatiquement et industriellement sur les réseaux."

Ecrire directement avec le cerveau

Le monde industriel va déjà plus loin que le langage, rappelle Christian Fauré sur la scène des Entretiens du Nouveau Monde industriel. "Nous n’écrivons plus. Nous écrivons sans écrire, comme le montre Facebook qui informe nos profils et nos réseaux sociaux sans que nous n’ayons plus à écrire sur nos murs. Nos organes numériques nous permettent d’écrire automatiquement, sans nécessiter plus aucune compétence particulière. Et c’est encore plus vrai à l’heure de la captation de données comportementales et corporelles. Nos profils sont renseignés par des cookies que nos appareils techniques écrivent à notre place. Nous nous appareillons de capteurs et d’API "qui font parler nos organes". Les interfaces digitales auxquelles nous nous connectons ne sont plus des claviers ou des écrans tactiles… mais des capteurs et des données." Les appareillages du Quantified Self sont désormais disponibles pour le grand public. La captation des éléments physiologique s’adresse à nos cerveaux, comme l’explique Martin Lindstrom dans Buy.Ology. "Nous n’avons même plus besoin de renseigner quoi que ce soit. Les capteurs le font à notre place. Pire, le neuromarketing semble se désespérer du langage. On nous demande de nous taire. On ne veut pas écouter ce que l’on peut dire ou penser, les données que produisent nos capteurs et nos profils suffisent." A l’image des séries américaines comme Lie to Me ou the Mentalist où les enquêteurs ne s’intéressent plus à ce que vous dites. Ils ne font qu’observer les gens, ils lisent le corps, le cerveau. "L’écriture de soi n’est plus celle de Foucault, les échanges entre lettrés. On peut désormais s’écrire sans savoir écrire. Nous entrons dans une époque d’écriture automatique, qui ne nécessite aucune compétence. Nous n’avons même plus besoin du langage. L’appareillage suffit à réactualiser le connais-toi toi-même  !"

Google et Intel notamment investissent le champ des API neuronales et cherchent à créer un interfaçage direct entre le cerveau et le serveur. Le document n’est plus l’interface. Nous sommes l’interface !

"Que deviennent la démocratie et la Res Publica quand les données s’écrivent automatiquement, sans passer par le langage ? Quand la distinction entre le public et le privé disparaît ? Alors que jusqu’à présent, la compétence technique de la lecture et de l’écriture était la condition de la citoyenneté", interroge Christian Fauré.

Les capteurs et les interfaces de programmation ne font pas que nous quantifier, ils nous permettent également d’agir sur notre monde, comme le proposent les premiers jouets basés sur un casque électroencéphalographique (comme Mindflex et Star Wars Science The Force Trainer), casques qui utilisent l’activité électrique du cerveau du joueur pour jouer. Ces jouets sont-ils en train de court-circuiter notre organe physiologique ?

Mais, comme l’a exprimé et écrit Marianne Wolf, nous n’étions pas destinés à écrire. Cela ne nous a pas empêchés de l’apprendre. Nous sommes encore moins nés pour agir sur le réel sans utiliser nos organes et nos membres comme nous le proposent les casques neuronaux.

Quand on regarde les cartographies du cortex somatosensoriel on nous présente généralement une représentation de nous-mêmes selon l’organisation neuronale. Celle-ci déforme notre anatomie pour mettre en évidence les parties de celle-ci les plus sensibles, les plus connectés à notre cerveau. Cette représentation de nous est la même que celle que propose la logique des capteurs. Or, elle nous ressemble bien peu.

(Image extraite de la présentation de Christian Fauré : ressemblons à notre cortex somatosensoriel ?)

Que se passera-t-il demain si nous agissons dans le réel via des casques neuronaux ? La Science Fiction a bien sûr anticipé cela. Dans Planète interdite, le sous-sol de la planète est un vaste data center interfacé avec le cerveau des habitants de la planète qui ne donne sa pleine puissance que pendant le sommeil des habitants. "Ce que nous rappelle toujours la SF c’est que nos pires cauchemars se réalisent quand on interface l’inconscient à la machine, sans passer par la médiation de l’écriture ou du langage. Si la puissance du digital est interfacée et connectée directement aux organes physiologiques sans la médiation de l’écriture et du langage, on imagine alors à quel point les questions technologiques ne sont rien d’autre que des questions éthiques", conclut le philosophe.

Si on ne peut qu’être d’accord avec cette crainte de la modification du cerveau et de la façon même dont on pense via le numérique comme c’était le cas dans nombre d’interventions à cette édition des Entretiens du Nouveau Monde industriel, peut-être est-il plus difficile d’en rester à une dénonciation, comme l’a montré l’ambiguïté du discours de Maryanne Wolf. Si nous avons de tout temps utilisé des organes techniques, c’est dans l’espoir qu’ils nous libèrent, qu’ils nous transforment, qu’ils nous distinguent des autres individus de notre espèce et des autres espèces. Pour répondre à Christian Fauré, on peut remarquer que la SF est riche d’oeuvres qui montrent ou démontrent que l’augmentation de nos capacités par la technique était aussi un moyen pour faire autre chose, pour devenir autre chose, pour avoir plus de puissance sur le monde et sur soi. Il me semble pour ma part qu’il est important de regarder ce que les interfaces neuronales et les capteurs libèrent, permettent. Dans the Mentalist, pour reprendre la référence de Christian Fauré, ce sont les capacités médiumniques extraordinaires de l’enquêteur qui transforme son rapport au monde et aux autres. Si l’interfaçage direct des organes physiologique via des capteurs et des données produit de nouvelles formes de pouvoir, alors il est certain que nous nous en emparerons, pour le meilleur ou pour le pire. On peut légitimement le redouter ou s’en inquiéter, mais ça ne suffira pas à nous en détourner.

Qu’allons-nous apprendre en jouant de l’activité électrique de nos cerveaux ? On peut légitimement se demander ce que cela va détruire… Mais si on ne regarde pas ce que cela peut libérer, on en restera à une dénonciation sans effets.



 

Auteur: Guillaud Hubert

Info: https://www.lemonde.fr/blog/internetactu/2013/01/11/notre-cerveau-a-lheure-des-nouvelles-lectures/

[ communication ] [ réflexivité ] [ métalangage ] [ secondéités intégrées ] [ prospective ] [ niveaux de lecture ] [ citation s'appliquant à ce logiciel ] [ inversion ] [ triade ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel