Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 25
Temps de recherche: 0.0406s

ultraviolence

J'avais vraiment envie de tuer quelqu'un, mais je ne voulais pas faire de taule. Il a fallu que j'élabore un plan. Ça devait être de la légitime défense. J'ai réfléchi à mes options. [...]

Un soir où je me promenais pas loin de Sunset, près d'Echo Park, j'ai entrevu un début de réponse. Une école d'arts martiaux.

-Vous apprenez comment tuer quelqu'un à mains nues ? j'ai demandé.

-Oui, m'a assuré le professeur. Mais surtout, on vous apprend comment ne pas avoir à le faire.

-Bien entendu, j'ai répondu.

J'ai su que c'était le bon endroit.

Je suis très rapidement devenu excellent. Ceinture jaune, ceinture marron puis noire. En soixante jours. C’était inné chez moi, disait le prof. Bien sûr, je ne lui ai pas dit que j’avais appris les bases à l’armée. Mon passé était secret ; je vivais grâce à ma pension. Je faisais ça dix heures par jour. Sept jours par semaine. Quand l’école était fermée le dimanche, je m’entraînais chez moi.

Bon. J’étais devenu un expert. Une ceinture noire, plusieurs dan. Ça devait largement faire l’affaire. Mais comment s’y prendre ? Je ne pouvais pas sortir dans la rue et frapper un type sur la nuque pendant ma promenade. J’en avais encore envie. Toutes ces heures de méditation n’avaient pas émoussé mon envie de sang.

C’est alors que j’ai eu une idée géniale. J’ai acheté un fauteuil roulant. J’ai simulé un accident. Je me suis directement rendu dans un quartier réputé pour son fort taux de criminalité. J’avais carrément le choix. J’ai porté mon dévolu sur Pico-Union. Il était un peu plus de deux heures du matin. Les bars se vidaient. Les gens chahutaient. Il y avait toutes les chances pour que je me fasse accoster. J’allais trouver des raisons de me justifier.

Le premier soir, il ne s’est rien passé. Deux Salvadoriens m’ont donné des pièces. Ils ont cru que j’étais SDF.

Le lendemain, je suis allé à Compton. Je ne savais pas trop où aller et je me suis retrouvé assis au milieu d’entrepôts. Je n’ai pas vu âme qui vive. J’ai dû prendre un taxi pour rentrer. Je n’ai pas trouvé d’arrêt de bus. Je ne prenais pas ma voiture. Si on retrouvait mon véhicule à proximité du lieu du crime, ça soulèverait quelques questions qui porteraient atteinte à ma crédibilité. J’avais toujours prévu de dire que je m’étais perdu dans les transports en commun. Que je prenais le bus parce que je ne pouvais pas conduire. Que je ne pouvais pas conduire à cause de ma blessure. Voilà comment ça devait se dérouler.

Le troisième soir, je suis allé à Boyle Heights. Rien. J’étais frustré par mon incapacité à attirer les emmerdes. Ça faisait dix ans que les journaux nous rebattaient les oreilles d’histoires de meurtres. Je n’arrivais même pas à provoquer une simple agression.

Le quatrième soir, j’ai décidé de prendre ma soirée. Je suis allé me faire une toile. A Berverly Hills. Une projection spéciale. Un film français. Godard. Nan, pas A bout de souffle. Je continuais à prendre le bus. Je ne voulais pas changer ma routine.

Après la séance, j’ai sorti mon portefeuille. Ce n’était pas prémédité, je le jure. J’avais été assis dessus toute la soirée, et le film étant plutôt long, comme le sont les films européens, ça avait été assez inconfortable. C’était ma seule motivation. Evidemment, on m’a sauté dessus par-derrière. Instinctivement, j’ai bondi de mon fauteuil roulant et j’ai commencé à défoncer le type. Il n’a jamais su ce qui l’avait frappé. En deux mouvements, je lui avais cassé le cou. A la quatrième prise, je lui faisais passer le nez au travers du cerveau et il en crevait net. Pas dans l’ambulance sur le chemin de l’hôpital. Pas aux urgences. Mais là, sur place. Pas besoin d’un médecin ou d’un type du SAMU pour confirmer que le gars était mort.

Auteur: Fondation Larry

Info: Dans "Effets indésirables", trad. de Romain Guillou, éditions Tusitala, 2016, pages 40-42

[ handicapé appât ] [ mascarade ] [ gratuit ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

panspermie

Origine de la vie: la pièce manquante détectée dans une "comète artificielle"
Pour la première fois, des chercheurs montrent que le ribose, un sucre à la base du matériel génétique des organismes vivants, a pu se former dans les glaces cométaires. Pour parvenir à ce résultat, des scientifiques de l'Institut de chimie de Nice (CNRS/Université Nice Sophia Antipolis) ont analysé très précisément une comète artificielle créée par leurs collègues de l'Institut d'astrophysique spatiale (CNRS/Université Paris-Sud). Ils présentent ainsi, en collaboration avec d'autres équipes dont une du synchrotron SOLEIL, le premier scénario réaliste de formation de ce composé essentiel, encore jamais détecté dans des météorites ou dans des glaces cométaires. Étape importante dans la compréhension de l'émergence de la vie sur Terre, ces résultats sont publiés dans la revue Science le 8 avril 2016.
Le traitement ultraviolet des glaces pré-cométaires (à gauche) reproduit l'évolution naturelle des glaces interstellaires observées dans un nuage moléculaire (à droite, les piliers de la création), conduisant à la formation de molécules de sucre.Image de gauche © Louis Le Sergeant d'Hendecourt (CNRS).Image de droite © NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
Tous les organismes vivants sur Terre, ainsi que les virus, ont un patrimoine génétique fait d'acides nucléiques - ADN ou ARN. L'ARN, considéré comme plus primitif, aurait été l'une des premières molécules caractéristiques de la vie à apparaitre sur Terre. Les scientifiques s'interrogent depuis longtemps sur l'origine de ces molécules biologiques. Selon certains, la Terre aurait été "ensemencée" par des comètes ou astéroïdes contenant les briques de base nécessaires à leur construction. Et effectivement, plusieurs acides aminés (constituants des protéines) et bases azotées (l'un des constituants des acides nucléiques) ont déjà été trouvés dans des météorites, ainsi que dans des comètes artificielles, reproduites en laboratoire. Mais le ribose, l'autre constituant-clé de l'ARN, n'avait encore jamais été détecté dans du matériel extraterrestre, ni produit en laboratoire dans des conditions "astrophysiques". En simulant l'évolution de la glace interstellaire composant les comètes, des équipes de recherche françaises ont réussi à former du ribose - étape importante pour comprendre l'origine de l'ARN et donc les origines de la vie.
Le ribose (et des molécules de sucres apparentées, comme l'arabinose, le lyxose et le xylose) ont été détectés dans des analogues de glaces pré-cométaires grâce à la chromatographie multidimensionnelle en phase gazeuse. Le ribose forme le "squelette" de l'acide ribonucléique (ARN), considéré comme le matériel génétique des premiers organismes vivants.© Cornelia Meinert (CNRS)
Dans un premier temps, une "comète artificielle" a été produite à l'Institut d'astrophysique spatiale: en plaçant dans une chambre à vide et à ? 200 °C un mélange représentatif d'eau (H2O), de méthanol (CH3OH) et d'ammoniac (NH3), les astrophysiciens ont simulé la formation de grains de poussières enrobés de glaces, la matière première des comètes. Ce matériau a été irradié par des UV - comme dans les nébuleuses où se forment ces grains. Puis, l'échantillon a été porté à température ambiante - comme lorsque les comètes s'approchent du Soleil. Sa composition a ensuite été analysée à l'Institut de chimie de Nice grâce à l'optimisation d'une technique très sensible et très précise (la chromatographie multidimensionnelle en phase gazeuse, couplée à la spectrométrie de masse à temps de vol). Plusieurs sucres ont été détectés, parmi lesquels le ribose. Leur diversité et leurs abondances relatives suggèrent qu'ils ont été formés à partir de formaldéhyde (une molécule présente dans l'espace et sur les comètes, qui se forme en grande quantité à partir de méthanol et d'eau).
Le ribose se forme dans le manteau de glace des grains de poussière, à partir de molécules précurseurs simples (eau, méthanol et ammoniac) et sous l'effet de radiations intenses.© Cornelia Meinert (CNRS) & Andy Christie (Slimfilms.com)
S'il reste à confirmer l'existence de ribose dans les comètes réelles, cette découverte complète la liste des "briques moléculaires" de la vie qui peuvent être formées dans la glace interstellaire. Elle apporte un argument supplémentaire à la théorie des comètes comme source de molécules organiques qui ont rendu la vie possible sur Terre... et peut-être ailleurs dans l'Univers.
Ces travaux ont bénéficié du soutien financier de l'Agence nationale de la recherche et du CNES.

Auteur: Internet

Info: http://www.techno-science.net, 9 04 2016

[ extraterrestre ]

 

Commentaires: 0

Co-vid 2019

Dans les 2 premières partie de La secte covidienne, j'ai caractérisé la soi-disant "nouvelle normalité" comme un "mouvement idéologique totalitaire mondial". Depuis que j'ai publié ces essais, de plus en plus de gens en sont venus à la considérer pour ce qu'elle est, non pas comme une "folie" ou une "réaction excessive", mais, de fait, comme une nouvelle forme de totalitarisme,  mondialisée, pathologisée, dépolitisée, systématiquement mise en œuvre sous le couvert de la "protection de la santé publique".

Afin de s'opposer à cette nouvelle forme de totalitarisme, nous devons comprendre en quoi elle ressemble et diffère des systèmes totalitaires antérieurs. Les similitudes sont assez évidentes - suspension des droits constitutionnels, gouvernements qui gouvernent par décret, la propagande officielle, les rituels de loyauté publique, la mise hors la loi de l'opposition, la censure, la ségrégation sociale, les escadrons d'élite qui terrorisent le public, etc.

Alors que le totalitarisme du XXe siècle (c'est-à-dire la forme que la plupart des gens connaissent généralement) était plus ou moins national et ouvertement politique, le totalitarisme de la nouvelle normalité est supranational et son idéologie est beaucoup plus subtile. La nouvelle normalité n'est pas le nazisme ou le stalinisme. C'est le totalitarisme capitaliste mondial, et le capitalisme mondial n'a pas d'idéologie, techniquement, ou, plutôt, son idéologie est la "réalité". Lorsque vous êtes un hégémon idéologique mondial sans égal, comme l'est le capitalisme mondial depuis une trentaine d'années, votre idéologie devient automatiquement la "réalité", car il n'y a pas d'idéologies concurrentes. En fait, il n'y a pas d'idéologie du tout... il n'y a que la "réalité" et l'"irréalité", la "normalité" et les "déviations de la norme".

Oui, je sais, la réalité est la réalité ... c'est pourquoi je mets tous ces termes entre guillemets, alors, s'il vous plaît, épargnez-moi les longs emails prouvant de manière concluante la réalité de la réalité et essayez de comprendre comment cela fonctionne.

Il y a la réalité (quelle que soit la croyance que vous en avez), et il y a la "réalité", qui dicte le fonctionnement de nos sociétés. La "réalité" est construite (c'est-à-dire simulée), collectivement, selon l'idéologie du système qui contrôle la société. Dans le passé, la "réalité" était ouvertement idéologique, quelle que soit la "réalité" dans laquelle vous viviez, car il existait d'autres "réalités" concurrentes. Il n'y en a plus aujourd'hui. Il n'y a qu'une seule "réalité", parce que la planète entière - oui, y compris la Chine, la Russie, la Corée du Nord et d'autres pays - est contrôlée par un système hégémonique mondial.

Un système hégémonique mondial n'a pas besoin d'idéologie, parce qu'il n'a pas à entrer en compétition avec des idéologies rivales. Il efface donc l'idéologie et la remplace par la "réalité". La réalité (peu importe ce que vous croyez personnellement qu'elle est, ce qui est bien sûr ce qu'elle est réellement) n'est pas réellement effacée. Cela n'a simplement pas d'importance, car vous n'avez pas le droit de dicter la "réalité". Le capitalisme mondial a le droit de dicter la "réalité" ou, plus précisément, il simule la "réalité" et, ce faisant, il simule le contraire de la "réalité", ce qui est tout aussi important, sinon plus. 

Cette "réalité" fabriquée par le capitalisme mondial est une "réalité" dépolitisée et a-historique, qui forme une frontière idéologique invisible établissant les limites de ce qui est "réel". De cette façon, le capitalisme mondial (a) dissimule sa nature idéologique, et (b) rend automatiquement toute opposition idéologique illégitime, ou, plus exactement, inexistante. L'idéologie telle que nous la connaissions disparaît. Les arguments politiques, éthiques et moraux sont réduits à la question de ce qui est "réel" ou "factuel", que dictent les "experts" et les "vérificateurs" de GloboCap.

Par exemple, la "guerre mondiale contre le terrorisme", qui était la "réalité" officielle de 2001 jusqu'à son annulation à l'été 2016, lorsque la "guerre contre le populisme" fut officiellement lancée.  Nous avons désormais remplacé cette dernière par la "Nouvelle Normalité", depuis le printemps 2020. Chacune de ces nouvelles simulations de la "réalité" se déployant brutalement, maladroitement même, comme cette scène de 1984 où le Parti change d'ennemi officiel en plein milieu d'un discours de la Semaine de la haine.

Sérieusement, pensez à où nous en sommes actuellement, 18 mois après le début de notre nouvelle "réalité", puis revenez en arrière et examinez comment GloboCap a déployé de manière flagrante la cette nouvelle Normalité au printemps 2020… et la majorité des masses n'a même pas cillé. Ils sont passés de manière transparente à la nouvelle "réalité" dans laquelle un virus, plutôt que des "suprémacistes blancs", ou des "agents russes" ou des "terroristes islamiques", est devenu le nouvel ennemi officiel. Ils ont rangé les scripts  récités textuellement au cours des quatre années précédentes, et les scripts récités au cours des 15 années précédentes, et ont commencé à baragouiner frénétiquement le discours culte de Covid comme s'ils auditionnaient pour une parodie d'Orwell "over the top".

Ce qui nous amène au problème du culte covidien... comment les atteindre, ce que, ne vous y trompez pas, nous devons faire, d'une manière ou d'une autre, sinon le New Normal deviendra notre "réalité" permanente.

J'ai appelé cette nouvelle normalité "secte covidienne", non pas pour les insulter ou les railler gratuitement, mais parce que c'est ce qu'est le totalitarisme... une secte à grande échelle, à l'échelle de la société. Quiconque a essayé de leur parler peut confirmer l'exactitude de cette analogie. Vous pouvez leur montrer les faits jusqu'à devenir vert. Cela ne fera pas la moindre différence. Vous pensez avoir un débat sur les faits, mais ce n'est pas le cas. Vous menacez leur nouvelle "réalité". Vous pensez  vous efforcer de les amener à penser rationnellement. Vous ne le faites pas. Vous êtes un hérétique, un agent des forces démoniaques, un ennemi de tout ce qui est "réel" et "vrai".

Les scientologues vous qualifieraient de "personne suppressive". Les Nouveaux Normaux vous appellent un "théoricien de la conspiration", "anti-vaxxer" ou "négateur de virus". Les épithètes spécifiques n'ont pas vraiment d'importance. Ce ne sont que des étiquettes que les membres des sectes et les totalitaires utilisent pour diaboliser ceux qu'ils perçoivent comme des "ennemis"... toute personne qui conteste la "réalité" de la secte ou la "réalité" du système totalitaire.

Le fait est qu'il est impossible de faire sortir les gens d'une secte et de les faire sortir du totalitarisme. Habituellement, ce qu'on fait, dans le cas d'une secte, c'est de sortir la personne de la secte, de l'enlever et l'emmener dans un lieu sûr, et l'entourer d'un grand nombre de personnes qui ne font pas partie de la secte et vous la déprogrammez progressivement sur plusieurs jours. Vous faites cela parce que, tant qu'elle est dans la secte, vous ne pouvez pas lui parler. Elle ne peut pas vous entendre. Une secte est une "réalité" collective et autonome. Son pouvoir découle de l'organisme social composé des dirigeants et des autres membres de la secte. Vous ne pouvez pas "parler" de ce pouvoir. Vous devez physiquement en retirer la personne avant de pouvoir commencer à la raisonner.

Malheureusement, nous n'avons pas cette possibilité. La nouvelle normalité est un système totalitaire mondial. Il n'y a pas d'"extérieur" du système où se retirer. Nous ne pouvons pas kidnapper tout le monde et les emmener en Suède. Comme je l'ai remarqué dans la première partie de cette série, le paradigme secte/société a été inversé. La secte est devenue la société dominante, et ceux d'entre nous qui n'ont pas été convertis sont devenus une multitude d'îles isolées, non pas à l'extérieur, mais au sein de la secte.

Bref il faut maintenant faire en sorte que GloboCap (et ses sbires) devienne ouvertement totalitaire… car il ne le peut pas. S'il le pouvait, il l'aurait déjà fait. Le capitalisme mondial ne peut fonctionner ainsi. Devenir ouvertement totalitaire le fera imploser… non pas le capitalisme mondial lui-même, mais cette version totalitaire de celui-ci. En fait, cela commence déjà à se produire.

Il a besoin de la simulation de la "réalité", de la "démocratie" et de la "normalité" pour garder les masses dociles. Nous devons donc attaquer cette simulation. Nous devons le répéter sans cesse jusqu'à ce qu'il craque et que le monstre qui s'y cache apparaisse.

Voilà la faiblesse du système… le totalitarisme New Normal ne fonctionnera pas si les masses le perçoivent comme un totalitarisme, comme un programme politique/idéologique, plutôt que comme "la  réponse à une pandémie mortelle". Nous devons donc le rendre visible en tant que totalitarisme. A le voir tel qu'il est. Je ne veux pas dire que nous devons l'expliquer à ceux qui en sont les bras agissants. Ils sont hors de portée des explications. Je veux dire qu'il faut leur faire voir, ressentir, de manière tangible, inéluctable, jusqu'à ce qu'ils reconnaissent ce avec quoi ils collaborent.

Arrêtez de vous disputer avec eux à leurs conditions et attaquez plutôt directement leur "réalité". Quand ils commencent à bavarder sur le virus, les variants, les "vaccins" et autres discours cultes de Covid qui aspirent leur récit. Ne répondez pas comme s'ils étaient rationnels. Répondez comme s'ils parlaient de "Xenu", de "body thétans scientologues", de "Helter Skelter confus" ou de tout autre non-sens cultoïde, parce que c'est exactement ce que c'est. Il en va de même pour leurs règles et restrictions, les "masques", la "distanciation sociale", etc. Arrêtez de plaider que leurs arguments sont faux. Bien sûr qu'ils le sont, mais là n'est pas la question (et argumenter de cette façon vous aspire dans leur "réalité"). Opposez-vous à eux à cause de ce qu'ils sont, une collection de rituels de conformité bizarres exécutés pour cimenter l'allégeance au culte et créer une atmosphère générale de "pandémie mortelle".

Il existe de nombreuses façons de procéder, c'est-à-dire de générer des conflits internes. Je l'ai fait à ma façon, les autres le font à la leur. Si vous êtes l'un d'entre eux, merci. Si vous ne l'êtes pas, commencez. Faites-le partout où vous le pouvez. Faites en sorte que les Nouveaux Normaux se confrontent au monstre, le monstre qu'ils nourrissent… le monstre qu'ils sont devenus.

Auteur: Hopkins Christopher J

Info: The consent factory, 2 septembre 2021

[ globalisation ] [ dictature sanitaire ] [ nouvelle normalité ] [ subversion ]

 
Commentaires: 1
Ajouté à la BD par miguel

univers protonique

À l’intérieur du Proton, " la chose la plus complexe qu'on puisse imaginer "

La particule chargée positivement au cœur de l’atome est un objet d’une complexité indescriptible, qui change d’apparence en fonction de la manière dont elle est sondée. Nous avons tenté de relier les nombreuses faces du proton pour former l'image la plus complète à ce jour.

(image : Des chercheurs ont récemment découvert que le proton comprend parfois un quark charmé et un antiquark charmé, particules colossales puisqeu chacune est plus lourde que le proton lui-même.)

Plus d’un siècle après qu’Ernest Rutherford ait découvert la particule chargée positivement au cœur de chaque atome, les physiciens ont encore du mal à comprendre pleinement le proton.

Les professeurs de physique des lycées les décrivent comme des boules sans relief contenant chacune une unité de charge électrique positive – des feuilles parfaites pour les électrons chargés négativement qui bourdonnent autour d’elles. Les étudiants apprennent que la boule est en réalité un ensemble de trois particules élémentaires appelées quarks. Mais des décennies de recherche ont révélé une vérité plus profonde, trop bizarre pour être pleinement saisie avec des mots ou des images.

"C'est la chose la plus compliquée que l'on puisse imaginer", a déclaré Mike Williams, physicien au Massachusetts Institute of Technology. "En fait, on ne peut même pas imaginer à quel point c'est compliqué."

Le proton est un objet de mécanique quantique qui existe sous la forme d’un brouillard de probabilités jusqu’à ce qu’une expérience l’oblige à prendre une forme concrète. Et ses formes diffèrent radicalement selon la manière dont les chercheurs mettent en place leur expérience. Relier les nombreux visages de la particule a été l’œuvre de plusieurs générations. "Nous commençons tout juste à comprendre ce système de manière complète", a déclaré Richard Milner , physicien nucléaire au MIT.

Alors que la poursuite se poursuit, les secrets du proton ne cessent de se dévoiler. Plus récemment, une analyse monumentale de données publiée en août a révélé que le proton contient des traces de particules appelées quarks charmés, plus lourdes que le proton lui-même.

Le proton " a été une leçon d’humilité pour les humains ", a déclaré Williams. " Chaque fois qu'on pense pouvoir maîtriser le sujet, il nous envoie des balles à trajectoires courbées (en référence aux Pitchers du baseball)

Récemment, Milner, en collaboration avec Rolf Ent du Jefferson Lab, les cinéastes du MIT Chris Boebel et Joe McMaster et l'animateur James LaPlante, ont entrepris de transformer un ensemble d'intrigues obscures qui compilent les résultats de centaines d'expériences en une série d'animations de la forme -changement de proton. Nous avons intégré leurs animations dans notre propre tentative de dévoiler ses secrets.

Ouvrir le proton

La preuve que le proton contient de telles multitudes est venue du Stanford Linear Accelerator Center (SLAC) en 1967. Dans des expériences antérieures, les chercheurs l'avaient bombardé d'électrons et les avaient regardés ricocher comme des boules de billard. Mais le SLAC pouvait projeter des électrons avec plus de force, et les chercheurs ont constaté qu'ils rebondissaient différemment. Les électrons frappaient le proton assez fort pour le briser – un processus appelé diffusion inélastique profonde – et rebondissaient sur des fragments ponctuels du proton appelés quarks. "Ce fut la première preuve de l'existence réelle des quarks", a déclaré Xiaochao Zheng , physicien à l'Université de Virginie.

Après la découverte du SLAC, qui remporta le prix Nobel de physique en 1990, l'examen minutieux du proton s'est intensifié. Les physiciens ont réalisé à ce jour des centaines d’expériences de diffusion. Ils déduisent divers aspects de l'intérieur de l'objet en ajustant la force avec laquelle ils le bombardent et en choisissant les particules dispersées qu'ils collectent par la suite.

En utilisant des électrons de plus haute énergie, les physiciens peuvent découvrir des caractéristiques plus fines du proton cible. De cette manière, l’énergie électronique définit le pouvoir de résolution maximal d’une expérience de diffusion profondément inélastique. Des collisionneurs de particules plus puissants offrent une vision plus nette du proton.

Les collisionneurs à plus haute énergie produisent également un plus large éventail de résultats de collision, permettant aux chercheurs de choisir différents sous-ensembles d'électrons sortants à analyser. Cette flexibilité s'est avérée essentielle pour comprendre les quarks, qui se déplacent à l'intérieur du proton avec différentes impulsions.

En mesurant l'énergie et la trajectoire de chaque électron diffusé, les chercheurs peuvent déterminer s'il a heurté un quark transportant une grande partie de l'impulsion totale du proton ou juste une infime partie. Grâce à des collisions répétées, ils peuvent effectuer quelque chose comme un recensement, déterminant si l'impulsion du proton est principalement liée à quelques quarks ou répartie sur plusieurs.

(Illustration qui montre les apparences du proton en fonction des types de collisions)

Même les collisions de division de protons du SLAC étaient douces par rapport aux normes actuelles. Lors de ces événements de diffusion, les électrons jaillissaient souvent d'une manière suggérant qu'ils s'étaient écrasés sur des quarks transportant un tiers de l'impulsion totale du proton. Cette découverte correspond à une théorie de Murray Gell-Mann et George Zweig, qui affirmaient en 1964 qu'un proton était constitué de trois quarks.

Le " modèle des quarks " de Gell-Mann et Zweig reste une façon élégante d'imaginer le proton. Il possède deux quarks " up " avec des charges électriques de +2/3 chacun et un quark " down " avec une charge de −1/3, pour une charge totale de protons de +1.

(Image mobile : Trois quarks sont présents dans cette animation basée sur les données.)

Mais le modèle avec des quarks est une simplification excessive qui présente de sérieuses lacunes.

Qui échoue, par exemple, lorsqu'il s'agit du spin d'un proton, une propriété quantique analogue au moment cinétique. Le proton possède une demi-unité de spin, tout comme chacun de ses quarks up et down. Les physiciens ont initialement supposé que — dans un calcul faisant écho à la simple arithmétique de charge — les demi-unités des deux quarks up moins celle du quark down devaient être égales à une demi-unité pour le proton dans son ensemble. Mais en 1988, la Collaboration européenne sur les muons a rapporté que la somme des spins des quarks était bien inférieure à la moitié. De même, les masses de deux quarks up et d’un quark down ne représentent qu’environ 1 % de la masse totale du proton. Ces déficits ont fait ressortir un point que les physiciens commençaient déjà à comprendre : le proton est bien plus que trois quarks.

Beaucoup plus que trois quarks

L'accélérateur annulaire de hadrons et d'électrons (HERA), qui a fonctionné à Hambourg, en Allemagne, de 1992 à 2007, a projeté des électrons sur des protons avec une force environ mille fois supérieure à celle du SLAC. Dans les expériences HERA, les physiciens ont pu sélectionner les électrons qui avaient rebondi sur des quarks à impulsion extrêmement faible, y compris ceux transportant aussi peu que 0,005 % de l'impulsion totale du proton. Et ils les ont détectés : Les électrons d'HERA ont rebondi sur un maelström de quarks à faible dynamique et de leurs contreparties d'antimatière, les antiquarks.

(Photo image animée : De nombreux quarks et antiquarks bouillonnent dans une " mer " de particules bouillonnantes."

Les résultats ont confirmé une théorie sophistiquée et farfelue qui avait alors remplacé le modèle des quarks de Gell-Mann et Zweig. Développée dans les années 1970, il s’agissait d’une théorie quantique de la " force forte " qui agit entre les quarks. La théorie décrit les quarks comme étant liés par des particules porteuses de force appelées gluons. Chaque quark et chaque gluon possède l'un des trois types de charges "colorées ", étiquetées rouge, verte et bleue ; ces particules chargées de couleur se tirent naturellement les unes sur les autres et forment un groupe – tel qu’un proton – dont les couleurs s’additionnent pour former un blanc neutre. La théorie colorée est devenue connue sous le nom de chromodynamique quantique, ou QCD.

Selon cette QCD, les gluons peuvent capter des pics d’énergie momentanés. Avec cette énergie, un gluon se divise en un quark et un antiquark – chacun portant juste un tout petit peu d’impulsion – avant que la paire ne s’annihile et ne disparaisse. C'est cette " mer " de gluons, de quarks et d'antiquarks transitoires qu'HERA, avec sa plus grande sensibilité aux particules de faible impulsion, a détecté de première main.

HERA a également recueilli des indices sur ce à quoi ressemblerait le proton dans des collisionneurs plus puissants. Alors que les physiciens ajustaient HERA pour rechercher des quarks à faible impulsion, ces quarks – qui proviennent des gluons – sont apparus en nombre de plus en plus grand. Les résultats suggèrent que dans des collisions à énergie encore plus élevée, le proton apparaîtrait comme un nuage composé presque entièrement de gluons. (Image)

Les gluons abondent sous une forme semblable à un nuage.

Ce pissenlit de gluon est exactement ce que prédit la QCD. "Les données HERA sont une preuve expérimentale directe que la QCD décrit la nature", a déclaré Milner.

Mais la victoire de la jeune théorie s'est accompagnée d'une pilule amère : alors que la QCD décrivait magnifiquement la danse des quarks et des gluons à durée de vie courte révélée par les collisions extrêmes d'HERA, la théorie est inutile pour comprendre les trois quarks à longue durée de vie observés suite à un plus léger bombardement du SLAC.

Les prédictions de QCD ne sont faciles à comprendre que lorsque la force forte est relativement faible. Et la force forte ne s'affaiblit que lorsque les quarks sont extrêmement proches les uns des autres, comme c'est le cas dans les paires quark-antiquark de courte durée. Frank Wilczek, David Gross et David Politzer ont identifié cette caractéristique déterminante de la QCD en 1973, remportant le prix Nobel 31 ans plus tard.

Mais pour des collisions plus douces comme celle du SLAC, où le proton agit comme trois quarks qui gardent mutuellement leurs distances, ces quarks s'attirent suffisamment fortement les uns les autres pour que les calculs de QCD deviennent impossibles. Ainsi, la tâche de démystifier plus loin une vision du proton à trois quarks incombe en grande partie aux expérimentateurs. (Les chercheurs qui mènent des " expériences numériques ", dans lesquelles les prédictions QCD sont simulées sur des superordinateurs, ont également apporté des contributions clés .) Et c'est dans ce genre d' images à basse résolution que les physiciens continuent de trouver des surprises.

Une charmante nouvelle approche

Récemment, une équipe dirigée par Juan Rojo de l'Institut national de physique subatomique des Pays-Bas et de l'Université VU d'Amsterdam a analysé plus de 5 000 instantanés de protons pris au cours des 50 dernières années, en utilisant l'apprentissage automatique pour déduire les mouvements des quarks et des gluons à l'intérieur du proton via une procédure qui évite les conjectures théoriques.

Ce nouvel examen a détecté un flou en arrière-plan dans les images qui avait échappé aux chercheurs antérieurs. Dans des collisions relativement douces, juste capables d'ouvrir à peine le proton, la majeure partie de l'impulsion était enfermée dans les trois quarks habituels : deux ups et un down. Mais une petite quantité d’impulsion semble provenir d’un quark " charmé " et d’un antiquark charmé – particules élémentaires colossales dont chacune dépasse de plus d’un tiers le proton entier.

(Image mobie : Le proton agit parfois comme une " molécule " de cinq quarks.)

Ces charmés de courte durée apparaissent fréquemment dans le panorama " mer des quarks " du proton (les gluons peuvent se diviser en six types de quarks différents s'ils ont suffisamment d'énergie). Mais les résultats de Rojo et de ses collègues suggèrent que les charmés ont une présence plus permanente, ce qui les rend détectables lors de collisions plus douces. Dans ces collisions, le proton apparaît comme un mélange quantique, ou superposition, d'états multiples : un électron rencontre généralement les trois quarks légers. Mais il rencontrera occasionnellement une " molécule " plus rare de cinq quarks, comme un quark up, down et charmé regroupés d'un côté et un quark up et un antiquark charmé de l'autre.

Des détails aussi subtils sur la composition du proton pourraient avoir des conséquences. Au Grand collisionneur de hadrons, les physiciens recherchent de nouvelles particules élémentaires en frappant ensemble des protons à grande vitesse et en observant ce qui en ressort ; Pour comprendre les résultats, les chercheurs doivent commencer par savoir ce que contient un proton. L’apparition occasionnelle de quarks charmés géants rendrait impossible la production de particules plus exotiques.

Et lorsque des protons appelés rayons cosmiques déferlent ici depuis l'espace et percutent les protons de l'atmosphère terrestre, des quarks charmés apparaissant au bon moment inonderaient la Terre de neutrinos extra-énergétiques, ont calculé les chercheurs en 2021. Cela pourrait dérouter les observateurs à la recherche de neutrinos à haute énergie provenant de tout le cosmos.

La collaboration de Rojo prévoit de poursuivre l'exploration du proton en recherchant un déséquilibre entre les quarks charmés et les antiquarks. Et des constituants plus lourds, comme le quark top, pourraient faire des apparitions encore plus rares et plus difficiles à détecter.

Les expériences de nouvelle génération rechercheront des fonctionnalités encore plus inconnues. Les physiciens du Laboratoire national de Brookhaven espèrent lancer le collisionneur électron-ion dans les années 2030 et reprendre là où HERA s'est arrêté, en prenant des instantanés à plus haute résolution qui permettront les premières reconstructions 3D du proton. L'EIC utilisera également des électrons en rotation pour créer des cartes détaillées des spins des quarks et des gluons internes, tout comme le SLAC et HERA ont cartographié leurs impulsions. Cela devrait aider les chercheurs à enfin déterminer l'origine du spin du proton et à répondre à d'autres questions fondamentales concernant cette particule déroutante qui constitue l'essentiel de notre monde quotidien.

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Bois, 19 octobre 2022

[ univers subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier cognitif

Des physiciens observent une transition de phase quantique "inobservable"

Mesure et l'intrication ont toutes deux une saveur non locale "étrange". Aujourd'hui, les physiciens exploitent cette nonlocalité pour sonder la diffusion de l'information quantique et la contrôler.

La mesure est l'ennemi de l'intrication. Alors que l'intrication se propage à travers une grille de particules quantiques - comme le montre cette simulation - que se passerait-il si l'on mesurait certaines des particules ici et là ? Quel phénomène triompherait ?

En 1935, Albert Einstein et Erwin Schrödinger, deux des physiciens les plus éminents de l'époque, se disputent sur la nature de la réalité.

Einstein avait fait des calculs et savait que l'univers devait être local, c'est-à-dire qu'aucun événement survenant à un endroit donné ne pouvait affecter instantanément un endroit éloigné. Mais Schrödinger avait fait ses propres calculs et savait qu'au cœur de la mécanique quantique se trouvait une étrange connexion qu'il baptisa "intrication" et qui semblait remettre en cause l'hypothèse de localité d'Einstein.

Lorsque deux particules sont intriquées, ce qui peut se produire lors d'une collision, leurs destins sont liés. En mesurant l'orientation d'une particule, par exemple, on peut apprendre que sa partenaire intriquée (si et quand elle est mesurée) pointe dans la direction opposée, quel que soit l'endroit où elle se trouve. Ainsi, une mesure effectuée à Pékin pourrait sembler affecter instantanément une expérience menée à Brooklyn, violant apparemment l'édit d'Einstein selon lequel aucune influence ne peut voyager plus vite que la lumière.

Einstein n'appréciait pas la portée de l'intrication (qu'il qualifiera plus tard d'"étrange") et critiqua la théorie de la mécanique quantique, alors naissante, comme étant nécessairement incomplète. Schrödinger défendit à son tour la théorie, dont il avait été l'un des pionniers. Mais il comprenait le dégoût d'Einstein pour l'intrication. Il admit que la façon dont elle semble permettre à un expérimentateur de "piloter" une expérience autrement inaccessible est "plutôt gênante".

Depuis, les physiciens se sont largement débarrassés de cette gêne. Ils comprennent aujourd'hui ce qu'Einstein, et peut-être Schrödinger lui-même, avaient négligé : l'intrication n'a pas d'influence à distance. Elle n'a pas le pouvoir de provoquer un résultat spécifique à distance ; elle ne peut distribuer que la connaissance de ce résultat. Les expériences sur l'intrication, telles que celles qui ont remporté le prix Nobel en 2022, sont maintenant devenues monnaie courante.

Au cours des dernières années, une multitude de recherches théoriques et expérimentales ont permis de découvrir une nouvelle facette du phénomène, qui se manifeste non pas par paires, mais par constellations de particules. L'intrication se propage naturellement dans un groupe de particules, établissant un réseau complexe de contingences. Mais si l'on mesure les particules suffisamment souvent, en détruisant l'intrication au passage, il est possible d'empêcher la formation du réseau. En 2018, trois groupes de théoriciens ont montré que ces deux états - réseau ou absence de réseau - rappellent des états familiers de la matière tels que le liquide et le solide. Mais au lieu de marquer une transition entre différentes structures de la matière, le passage entre la toile et l'absence de toile indique un changement dans la structure de l'information.

"Il s'agit d'une transition de phase dans l'information", explique Brian Skinner, de l'université de l'État de l'Ohio, l'un des physiciens qui a identifié le phénomène en premier. "Les propriétés de l'information, c'est-à-dire la manière dont l'information est partagée entre les choses, subissent un changement très brutal.

Plus récemment, un autre trio d'équipes a tenté d'observer cette transition de phase en action. Elles ont réalisé une série de méta-expériences pour mesurer comment les mesures elles-mêmes affectent le flux d'informations. Dans ces expériences, ils ont utilisé des ordinateurs quantiques pour confirmer qu'il est possible d'atteindre un équilibre délicat entre les effets concurrents de l'intrication et de la mesure. La découverte de la transition a lancé une vague de recherches sur ce qui pourrait être possible lorsque l'intrication et la mesure entrent en collision.

L'intrication "peut avoir de nombreuses propriétés différentes, bien au-delà de ce que nous avions imaginé", a déclaré Jedediah Pixley, théoricien de la matière condensée à l'université Rutgers, qui a étudié les variations de la transition.

Un dessert enchevêtré

L'une des collaborations qui a permis de découvrir la transition d'intrication est née autour d'un pudding au caramel collant dans un restaurant d'Oxford, en Angleterre. En avril 2018, Skinner rendait visite à son ami Adam Nahum, un physicien qui travaille actuellement à l'École normale supérieure de Paris. Au fil d'une conversation tentaculaire, ils se sont retrouvés à débattre d'une question fondamentale concernant l'enchevêtrement et l'information.

Tout d'abord, un petit retour en arrière. Pour comprendre le lien entre l'intrication et l'information, imaginons une paire de particules, A et B, chacune dotée d'un spin qui peut être mesuré comme pointant vers le haut ou vers le bas. Chaque particule commence dans une superposition quantique de haut et de bas, ce qui signifie qu'une mesure produit un résultat aléatoire - soit vers le haut, soit vers le bas. Si les particules ne sont pas intriquées, les mesurer revient à jouer à pile ou face : Le fait d'obtenir pile ou face avec l'une ne vous dit rien sur ce qui se passera avec l'autre.

Mais si les particules sont intriquées, les deux résultats seront liés. Si vous trouvez que B pointe vers le haut, par exemple, une mesure de A indiquera qu'il pointe vers le bas. La paire partage une "opposition" qui ne réside pas dans l'un ou l'autre membre, mais entre eux - un soupçon de la non-localité qui a troublé Einstein et Schrödinger. L'une des conséquences de cette opposition est qu'en mesurant une seule particule, on en apprend plus sur l'autre. "La mesure de B m'a d'abord permis d'obtenir des informations sur A", a expliqué M. Skinner. "Cela réduit mon ignorance sur l'état de A."

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, tu mesurais certains spins ici et là ? Si tu les mesurais tous en permanence, l'intrication disparaîtrait de façon ennuyeuse. Mais si tu les mesures sporadiquement, par quelques spins seulement, quel phénomène sortira vainqueur ? L'intrication ou la mesure ?

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, on mesurait certains spins ici et là ? Les mesurer tous en permanence ferait disparaître toute l'intrication d'une manière ennuyeuse. Mais si on en mesure sporadiquement quelques spins seulement, quel phénomène sortirait vainqueur ? L'intrication ou la mesure ?

Skinner, répondit qu'il pensait que la mesure écraserait l'intrication. L'intrication se propage de manière léthargique d'un voisin à l'autre, de sorte qu'elle ne croît que de quelques particules à la fois. Mais une série de mesures pourrait toucher simultanément de nombreuses particules tout au long de la longue chaîne, étouffant ainsi l'intrication sur une multitude de sites. S'ils avaient envisagé cet étrange scénario, de nombreux physiciens auraient probablement convenu que l'intrication ne pouvait pas résister aux mesures.

"Selon Ehud Altman, physicien spécialiste de la matière condensée à l'université de Californie à Berkeley, "il y avait une sorte de folklore selon lequel les états très intriqués sont très fragiles".

Mais Nahum, qui réfléchit à cette question depuis l'année précédente, n'est pas de cet avis. Il imaginait que la chaîne s'étendait dans le futur, instant après instant, pour former une sorte de clôture à mailles losangées. Les nœuds étaient les particules, et les connexions entre elles représentaient les liens à travers lesquels l'enchevêtrement pouvait se former. Les mesures coupant les liens à des endroits aléatoires. Si l'on coupe suffisamment de maillons, la clôture s'écroule. L'intrication ne peut pas se propager. Mais jusque là, selon Nahum, même une clôture en lambeaux devrait permettre à l'intrication de se propager largement.

Nahum a réussi à transformer un problème concernant une occurrence quantique éphémère en une question concrète concernant une clôture à mailles losangées. Il se trouve qu'il s'agit d'un problème bien étudié dans certains cercles - la "grille de résistance vandalisée" - et que Skinner avait étudié lors de son premier cours de physique de premier cycle, lorsque son professeur l'avait présenté au cours d'une digression.

"C'est à ce moment-là que j'ai été vraiment enthousiasmé", a déclaré M. Skinner. "Il n'y a pas d'autre moyen de rendre un physicien plus heureux que de montrer qu'un problème qui semble difficile est en fait équivalent à un problème que l'on sait déjà résoudre."

Suivre l'enchevêtrement

Mais leurs plaisanteries au dessert n'étaient rien d'autre que des plaisanteries. Pour tester et développer rigoureusement ces idées, Skinner et Nahum ont joint leurs forces à celles d'un troisième collaborateur, Jonathan Ruhman, de l'université Bar-Ilan en Israël. L'équipe a simulé numériquement les effets de la coupe de maillons à différentes vitesses dans des clôtures à mailles losangées. Ils ont ensuite comparé ces simulations de réseaux classiques avec des simulations plus précises mais plus difficiles de particules quantiques réelles, afin de s'assurer que l'analogie était valable. Ils ont progressé lentement mais sûrement.

Puis, au cours de l'été 2018, ils ont appris qu'ils n'étaient pas les seuls à réfléchir aux mesures et à l'intrication.

Matthew Fisher, éminent physicien de la matière condensée à l'université de Californie à Santa Barbara, s'était demandé si l'intrication entre les molécules dans le cerveau pouvait jouer un rôle dans notre façon de penser. Dans le modèle que lui et ses collaborateurs étaient en train de développer, certaines molécules se lient occasionnellement d'une manière qui agit comme une mesure et tue l'intrication. Ensuite, les molécules liées changent de forme d'une manière qui pourrait créer un enchevêtrement. Fisher voulait savoir si l'intrication pouvait se développer sous la pression de mesures intermittentes - la même question que Nahum s'était posée.

"C'était nouveau", a déclaré M. Fisher. "Personne ne s'était penché sur cette question avant 2018.

Dans le cadre d'une coopération universitaire, les deux groupes ont coordonné leurs publications de recherche l'un avec l'autre et avec une troisième équipe étudiant le même problème, dirigée par Graeme Smith de l'université du Colorado, à Boulder.

"Nous avons tous travaillé en parallèle pour publier nos articles en même temps", a déclaré M. Skinner.

En août, les trois groupes ont dévoilé leurs résultats. L'équipe de Smith était initialement en désaccord avec les deux autres, qui soutenaient tous deux le raisonnement de Nahum inspiré de la clôture : Dans un premier temps, l'intrication a dépassé les taux de mesure modestes pour se répandre dans une chaîne de particules, ce qui a entraîné une entropie d'intrication élevée. Puis, lorsque les chercheurs ont augmenté les mesures au-delà d'un taux "critique", l'intrication s'est arrêtée - l'entropie d'intrication a chuté.

La transition semblait exister, mais il n'était pas évident pour tout le monde de comprendre où l'argument intuitif - selon lequel l'intrication de voisin à voisin devait être anéantie par les éclairs généralisés de la mesure - s'était trompé.

Dans les mois qui ont suivi, Altman et ses collaborateurs à Berkeley ont découvert une faille subtile dans le raisonnement. "On ne tient pas compte de la diffusion (spread) de l'information", a déclaré M. Altman.

Le groupe d'Altman a souligné que toutes les mesures ne sont pas très informatives, et donc très efficaces pour détruire l'intrication. En effet, les interactions aléatoires entre les particules de la chaîne ne se limitent pas à l'enchevêtrement. Elles compliquent également considérablement l'état de la chaîne au fil du temps, diffusant effectivement ses informations "comme un nuage", a déclaré M. Altman. Au bout du compte, chaque particule connaît l'ensemble de la chaîne, mais la quantité d'informations dont elle dispose est minuscule. C'est pourquoi, a-t-il ajouté, "la quantité d'intrication que l'on peut détruire [à chaque mesure] est ridiculement faible".

En mars 2019, le groupe d'Altman a publié une prépublication détaillant comment la chaîne cachait efficacement les informations des mesures et permettait à une grande partie de l'intrication de la chaîne d'échapper à la destruction. À peu près au même moment, le groupe de Smith a mis à jour ses conclusions, mettant les quatre groupes d'accord.

La réponse à la question de Nahum était claire. Une "transition de phase induite par la mesure" était théoriquement possible. Mais contrairement à une transition de phase tangible, telle que le durcissement de l'eau en glace, il s'agissait d'une transition entre des phases d'information - une phase où l'information reste répartie en toute sécurité entre les particules et une phase où elle est détruite par des mesures répétées.

C'est en quelque sorte ce que l'on rêve de faire dans la matière condensée, a déclaré M. Skinner, à savoir trouver une transition entre différents états. "Maintenant, on se demande comment on le voit", a-t-il poursuivi.

 Au cours des quatre années suivantes, trois groupes d'expérimentateurs ont détecté des signes du flux distinct d'informations.

Trois façons de voir l'invisible

Même l'expérience la plus simple permettant de détecter la transition intangible est extrêmement difficile. "D'un point de vue pratique, cela semble impossible", a déclaré M. Altman.

L'objectif est de définir un certain taux de mesure (rare, moyen ou fréquent), de laisser ces mesures se battre avec l'intrication pendant un certain temps et de voir quelle quantité d'entropie d'intrication vous obtenez dans l'état final. Ensuite, rincez et répétez avec d'autres taux de mesure et voyez comment la quantité d'intrication change. C'est un peu comme si l'on augmentait la température pour voir comment la structure d'un glaçon change.

Mais les mathématiques punitives de la prolifération exponentielle des possibilités rendent cette expérience presque impensablement difficile à réaliser.

L'entropie d'intrication n'est pas, à proprement parler, quelque chose que l'on peut observer. C'est un nombre que l'on déduit par la répétition, de la même manière que l'on peut éventuellement déterminer la pondération d'un dé chargé. Lancer un seul 3 ne vous apprend rien. Mais après avoir lancé le dé des centaines de fois, vous pouvez connaître la probabilité d'obtenir chaque chiffre. De même, le fait qu'une particule pointe vers le haut et une autre vers le bas ne signifie pas qu'elles sont intriquées. Il faudrait obtenir le résultat inverse plusieurs fois pour en être sûr.

Il est beaucoup plus difficile de déduire l'entropie d'intrication d'une chaîne de particules mesurées. L'état final de la chaîne dépend de son histoire expérimentale, c'est-à-dire du fait que chaque mesure intermédiaire a abouti à une rotation vers le haut ou vers le bas. Pour accumuler plusieurs copies du même état, l'expérimentateur doit donc répéter l'expérience encore et encore jusqu'à ce qu'il obtienne la même séquence de mesures intermédiaires, un peu comme s'il jouait à pile ou face jusqu'à ce qu'il obtienne une série de "têtes" d'affilée. Chaque mesure supplémentaire rend l'effort deux fois plus difficile. Si vous effectuez 10 mesures lors de la préparation d'une chaîne de particules, par exemple, vous devrez effectuer 210 ou 1 024 expériences supplémentaires pour obtenir le même état final une deuxième fois (et vous pourriez avoir besoin de 1 000 copies supplémentaires de cet état pour déterminer son entropie d'enchevêtrement). Il faudra ensuite modifier le taux de mesure et recommencer.

L'extrême difficulté à détecter la transition de phase a amené certains physiciens à se demander si elle était réellement réelle.

"Vous vous fiez à quelque chose d'exponentiellement improbable pour le voir", a déclaré Crystal Noel, physicienne à l'université Duke. "Cela soulève donc la question de savoir ce que cela signifie physiquement."

Noel a passé près de deux ans à réfléchir aux phases induites par les mesures. Elle faisait partie d'une équipe travaillant sur un nouvel ordinateur quantique à ions piégés à l'université du Maryland. Le processeur contenait des qubits, des objets quantiques qui agissent comme des particules. Ils peuvent être programmés pour créer un enchevêtrement par le biais d'interactions aléatoires. Et l'appareil pouvait mesurer ses qubits.

Le groupe a également eu recours à une deuxième astuce pour réduire le nombre de répétitions - une procédure technique qui revient à simuler numériquement l'expérience parallèlement à sa réalisation. Ils savaient ainsi à quoi s'attendre. C'était comme si on leur disait à l'avance comment le dé chargé était pondéré, et cela a permis de réduire le nombre de répétitions nécessaires pour mettre au point la structure invisible de l'enchevêtrement.

Grâce à ces deux astuces, ils ont pu détecter la transition d'intrication dans des chaînes de 13 qubits et ont publié leurs résultats à l'été 2021.

"Nous avons été stupéfaits", a déclaré M. Nahum. "Je ne pensais pas que cela se produirait aussi rapidement."

À l'insu de Nahum et de Noel, une exécution complète de la version originale de l'expérience, exponentiellement plus difficile, était déjà en cours.

À la même époque, IBM venait de mettre à niveau ses ordinateurs quantiques, ce qui leur permettait d'effectuer des mesures relativement rapides et fiables des qubits à la volée. Jin Ming Koh, étudiant de premier cycle à l'Institut de technologie de Californie, avait fait une présentation interne aux chercheurs d'IBM et les avait convaincus de participer à un projet visant à repousser les limites de cette nouvelle fonctionnalité. Sous la supervision d'Austin Minnich, physicien appliqué au Caltech, l'équipe a entrepris de détecter directement la transition de phase dans un effort que Skinner qualifie d'"héroïque".

 Après avoir demandé conseil à l'équipe de Noel, le groupe a simplement lancé les dés métaphoriques un nombre suffisant de fois pour déterminer la structure d'intrication de chaque historique de mesure possible pour des chaînes comptant jusqu'à 14 qubits. Ils ont constaté que lorsque les mesures étaient rares, l'entropie d'intrication doublait lorsqu'ils doublaient le nombre de qubits - une signature claire de l'intrication qui remplit la chaîne. Les chaînes les plus longues (qui impliquaient davantage de mesures) ont nécessité plus de 1,5 million d'exécutions sur les appareils d'IBM et, au total, les processeurs de l'entreprise ont fonctionné pendant sept mois. Il s'agit de l'une des tâches les plus intensives en termes de calcul jamais réalisées à l'aide d'ordinateurs quantiques.

Le groupe de M. Minnich a publié sa réalisation des deux phases en mars 2022, ce qui a permis de dissiper tous les doutes qui subsistaient quant à la possibilité de mesurer le phénomène.

"Ils ont vraiment procédé par force brute", a déclaré M. Noel, et ont prouvé que "pour les systèmes de petite taille, c'est faisable".

Récemment, une équipe de physiciens a collaboré avec Google pour aller encore plus loin, en étudiant l'équivalent d'une chaîne presque deux fois plus longue que les deux précédentes. Vedika Khemani, de l'université de Stanford, et Matteo Ippoliti, aujourd'hui à l'université du Texas à Austin, avaient déjà utilisé le processeur quantique de Google en 2021 pour créer un cristal de temps, qui, comme les phases de propagation de l'intrication, est une phase exotique existant dans un système changeant.

En collaboration avec une vaste équipe de chercheurs, le duo a repris les deux astuces mises au point par le groupe de Noel et y a ajouté un nouvel ingrédient : le temps. L'équation de Schrödinger relie le passé d'une particule à son avenir, mais la mesure rompt ce lien. Ou, comme le dit Khemani, "une fois que l'on introduit des mesures dans un système, cette flèche du temps est complètement détruite".

Sans flèche du temps claire, le groupe a pu réorienter la clôture à mailles losangiques de Nahum pour accéder à différents qubits à différents moments, ce qu'ils ont utilisé de manière avantageuse. Ils ont notamment découvert une transition de phase dans un système équivalent à une chaîne d'environ 24 qubits, qu'ils ont décrite dans un article publié en mars.

Puissance de la mesure

Le débat de Skinner et Nahum sur le pudding, ainsi que les travaux de Fisher et Smith, ont donné naissance à un nouveau sous-domaine parmi les physiciens qui s'intéressent à la mesure, à l'information et à l'enchevêtrement. Au cœur de ces différentes lignes de recherche se trouve une prise de conscience croissante du fait que les mesures ne se contentent pas de recueillir des informations. Ce sont des événements physiques qui peuvent générer des phénomènes véritablement nouveaux.

"Les mesures ne sont pas un sujet auquel les physiciens de la matière condensée ont pensé historiquement", a déclaré M. Fisher. Nous effectuons des mesures pour recueillir des informations à la fin d'une expérience, a-t-il poursuivi, mais pas pour manipuler un système.

En particulier, les mesures peuvent produire des résultats inhabituels parce qu'elles peuvent avoir le même type de saveur "partout-tout-enmême-temps" qui a autrefois troublé Einstein. Au moment de la mesure, les possibilités alternatives contenues dans l'état quantique s'évanouissent, pour ne jamais se réaliser, y compris celles qui concernent des endroits très éloignés dans l'univers. Si la non-localité de la mécanique quantique ne permet pas des transmissions plus rapides que la lumière comme le craignait Einstein, elle permet d'autres exploits surprenants.

"Les gens sont intrigués par le type de nouveaux phénomènes collectifs qui peuvent être induits par ces effets non locaux des mesures", a déclaré M. Altman.

L'enchevêtrement d'une collection de nombreuses particules, par exemple, a longtemps été considéré comme nécessitant au moins autant d'étapes que le nombre de particules que l'on souhaitait enchevêtrer. Mais l'hiver dernier, des théoriciens ont décrit un moyen d'y parvenir en beaucoup moins d'étapes grâce à des mesures judicieuses. Au début de l'année, le même groupe a mis l'idée en pratique et façonné une tapisserie d'enchevêtrement abritant des particules légendaires qui se souviennent de leur passé. D'autres équipes étudient d'autres façons d'utiliser les mesures pour renforcer les états intriqués de la matière quantique.

Cette explosion d'intérêt a complètement surpris Skinner, qui s'est récemment rendu à Pékin pour recevoir un prix pour ses travaux dans le Grand Hall du Peuple sur la place Tiananmen. (Skinner avait d'abord cru que la question de Nahum n'était qu'un exercice mental, mais aujourd'hui, il n'est plus très sûr de la direction que tout cela prend.)

"Je pensais qu'il s'agissait d'un jeu amusant auquel nous jouions, mais je ne suis plus prêt à parier sur l'idée qu'il n'est pas utile."

Auteur: Internet

Info: Quanta Magazine, Paul Chaikin, sept 2023

[ passage inversant ] [ esprit-matière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste