Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 361
Temps de recherche: 0.0503s

nano-monde relatif

Une expérience quantique montre que la réalité objective n'existe pas

Les faits alternatifs se répandent comme un virus dans la société. Aujourd'hui, il semble qu'ils aient même infecté la science, du moins le domaine quantique. Ce qui peut sembler contre-intuitif. Après tout, la méthode scientifique est fondée sur les notions de fiabilité d'observation, de mesure et de répétabilité. Un fait, tel qu'établi par une mesure, devrait être objectif, de sorte que tous les observateurs puissent en convenir.

Mais dans un article récemment publié dans Science Advances, nous montrons que, dans le micro-monde des atomes et des particules régi par les règles étranges de la mécanique quantique, deux observateurs différents ont droit à leurs propres faits. En d'autres termes, selon nos  meilleures théories des éléments constitutifs de la nature elle-même, les faits peuvent en fait être subjectifs.

Les observateurs sont des acteurs puissants dans le monde quantique. Selon la théorie, les particules peuvent se trouver dans plusieurs endroits ou états à la fois - c'est ce qu'on appelle une superposition. Mais curieusement, ce n'est le cas que lorsqu'elles ne sont pas observées. Dès que vous observez un système quantique, il choisit un emplacement ou un état spécifique, ce qui rompt la superposition. Le fait que la nature se comporte de cette manière a été prouvé à de multiples reprises en laboratoire, par exemple dans la célèbre expérience de la double fente.

En 1961, le physicien Eugene Wigner a proposé une expérience de pensée provocante. Il s'est demandé ce qui se passerait si l'on appliquait la mécanique quantique à un observateur qui serait lui-même observé. Imaginez qu'un ami de Wigner lance une pièce de monnaie quantique - qui se trouve dans une superposition de pile ou face - dans un laboratoire fermé. Chaque fois que l'ami lance la pièce, il obtient un résultat précis. On peut dire que l'ami de Wigner établit un fait : le résultat du lancer de la pièce est définitivement pile ou face.

Wigner n'a pas accès à ce fait de l'extérieur et, conformément à la mécanique quantique, il doit décrire l'ami et la pièce comme étant dans une superposition de tous les résultats possibles de l'expérience. Tout ça parce qu'ils sont " imbriqués " - connectés de manière effrayante au point que si vous manipulez l'un, vous manipulez également l'autre. Wigner peut maintenant vérifier en principe cette superposition à l'aide d'une "expérience d'interférence", un type de mesure quantique qui permet de démêler la superposition d'un système entier, confirmant ainsi que deux objets sont intriqués.

Lorsque Wigner et son ami compareront leurs notes par la suite, l'ami insistera sur le fait qu'ils ont observé des résultats précis pour chaque lancer de pièce. Wigner, cependant, ne sera pas d'accord lorsqu'il observera l'ami et la pièce dans une superposition. 

Voilà l'énigme. La réalité perçue par l'ami ne peut être réconciliée avec la réalité extérieure. À l'origine, Wigner ne considérait pas qu'il s'agissait d'un paradoxe, il affirmait qu'il serait absurde de décrire un observateur conscient comme un objet quantique. Cependant, il s'est ensuite écarté de cette opinion. De plus et, selon les canons officiels de mécanique quantique, la description est parfaitement valide.

L'expérience

Le scénario demeura longtemps une expérience de pensée intéressante. Mais reflètait-t-il la réalité ? Sur le plan scientifique, peu de progrès ont été réalisés à ce sujet jusqu'à très récemment, lorsque Časlav Brukner, de l'université de Vienne, a montré que, sous certaines hypothèses, l'idée de Wigner peut être utilisée pour prouver formellement que les mesures en mécanique quantique sont subjectives aux observateurs.

Brukner a proposé un moyen de tester cette notion en traduisant le scénario de l'ami de Wigner dans un cadre établi pour la première fois par le physicien John Bell en 1964.

Brukner a ainsi conçu deux paires de Wigner et de ses amis, dans deux boîtes distinctes, effectuant des mesures sur un état partagé - à l'intérieur et à l'extérieur de leur boîte respective. Les résultats pouvant  être récapitulés pour être finalement utilisés pour évaluer une "inégalité de Bell". Si cette inégalité est violée, les observateurs pourraient avoir des faits alternatifs.

Pour la première fois, nous avons réalisé ce test de manière expérimentale à l'université Heriot-Watt d'Édimbourg sur un ordinateur quantique à petite échelle, composé de trois paires de photons intriqués. La première paire de photons représente les pièces de monnaie, et les deux autres sont utilisées pour effectuer le tirage au sort - en mesurant la polarisation des photons - à l'intérieur de leur boîte respective. À l'extérieur des deux boîtes, il reste deux photons de chaque côté qui peuvent également être mesurés.

Malgré l'utilisation d'une technologie quantique de pointe, il a fallu des semaines pour collecter suffisamment de données à partir de ces seuls six photons afin de générer suffisamment de statistiques. Mais finalement, nous avons réussi à montrer que la mécanique quantique peut effectivement être incompatible avec l'hypothèse de faits objectifs - nous avions violé l'inégalité.

La théorie, cependant, repose sur quelques hypothèses. Notamment que les résultats des mesures ne sont pas influencés par des signaux se déplaçant à une vitesse supérieure à celle de la lumière et que les observateurs sont libres de choisir les mesures à effectuer. Ce qui peut être le cas ou non.

Une autre question importante est de savoir si les photons uniques peuvent être considérés comme des observateurs. Dans la proposition de théorie de Brukner, les observateurs n'ont pas besoin d'être conscients, ils doivent simplement être capables d'établir des faits sous la forme d'un résultat de mesure. Un détecteur inanimé serait donc un observateur valable. Et la mécanique quantique classique ne nous donne aucune raison de croire qu'un détecteur, qui peut être conçu comme aussi petit que quelques atomes, ne devrait pas être décrit comme un objet quantique au même titre qu'un photon. Il est également possible que la mécanique quantique standard ne s'applique pas aux grandes échelles de longueur, mais tester cela reste un problème distinct.

Cette expérience montre donc que, au moins pour les modèles locaux de la mécanique quantique, nous devons repenser notre notion d'objectivité. Les faits dont nous faisons l'expérience dans notre monde macroscopique semblent ne pas être menacés, mais une question majeure se pose quant à la manière dont les interprétations existantes de la mécanique quantique peuvent tenir compte des faits subjectifs.

Certains physiciens considèrent que ces nouveaux développements renforcent les interprétations qui autorisent plus d'un résultat pour une observation, par exemple l'existence d'univers parallèles dans lesquels chaque résultat se produit. D'autres y voient une preuve irréfutable de l'existence de théories intrinsèquement dépendantes de l'observateur, comme le bayésianisme quantique, dans lequel les actions et les expériences d'un agent sont au cœur de la théorie. D'autres encore y voient un indice fort que la mécanique quantique s'effondrera peut-être au-delà de certaines échelles de complexité.

Il est clair que nous avons là de profondes questions philosophiques sur la nature fondamentale de la réalité.

Quelle que soit la réponse, un avenir intéressant nous attend.

Auteur: Internet

Info: https://www.livescience.com/objective-reality-not-exist-quantum-physicists.html. Massimiliano Proietti et Alessandro Fedrizzi, 19 janvier 2022

 

Commentaires: 0

Ajouté à la BD par miguel

syntaxe diachronique

Le premier département de la logique, la grammaire spéculative, est une analyse de la structure des signes : avant même qu’un argument soit analysé en termes de validité et d’utilité, il est nécessaire qu’il soit soumis à une analyse grammaticale. Un argument consiste dans la représentation du fait qu’une proposition découle d’autres propositions, et cette représentation peut être représentée dans une proposition ("si les prémisses, alors la conclusion"). L’analyse de la nature de la proposition est donc préliminaire à l’analyse de la nature, de la validité et de l’utilité de l’argument. La première branche de la logique devra donc avant tout consister en une analyse de la proposition. L’essai "L’essence du raisonnement", chapitre VI du traité sur la logique "How to Reason", qui fut projeté mais jamais achevé, contient la présentation la plus complète de la section grammaticale de la logique que Peirce a écrite avant le Syllabus de 1903. Il existe deux versions de ce chapitre (MS 408 et MS 409). Le point de départ est l’enquête sur la nature de la proposition : 

"§ 62. Examinons maintenant en quoi consiste l’élément assertorique d’un jugement. Qu’y a-t-il dans une affirmation qui en fait plus qu’une simple complication d’idées ? Quelle est la différence entre émettre le mot "singe parlant", soutenir que les singes parlent, et s’informer si les singes parlent ou non ? C’est une question difficile. (MS 409, p. 94)"

La différence à laquelle Peirce fait allusion est évidemment celle, traditionnelle, entre termes, propositions et arguments. Traditionnellement, une proposition est conçue comme une combinaison de termes, et un argument comme une combinaison de propositions. Toutefois, selon Peirce, ce n’est pas la compositionnalité qui distingue ces trois formes ; le terme "singe parlant" n’est pas moins composé que la proposition selon laquelle les singes parlent. La différence entre un terme et une proposition, écrira Peirce dans les "Prolégomènes à une apologie du pragmatisme" de 1906, se trouve dans la fonction logique accomplie.

Selon l’analyse traditionnelle, une proposition est une connexion de termes au moyen d’une copule. Selon Peirce, cette analyse est viciée par l’hypothèse de l’universalité de la structure syntaxique des langues indo-européennes. Sur la base des Principes généraux de la structure des langues de James Byrne mentionnés à plusieurs reprises dans "L’essence du raisonnement", Peirce traite de la structure syntaxique du signe propositionnel dans différentes langues naturelles, dans le but de montrer que l’analyse traditionnelle non seulement ne reflète qu’un petit pourcentage des langues existantes (celles indo-européennes), mais en outre ne reflète pas la structure logique fondamentale du signe propositionnel. Par exemple, dans de nombreuses langues non indo-européennes, la fonction de la copule est accomplie par d’autres éléments linguistiques, parfois par la simple juxtaposition des éléments.

Dans l’ancienne langue égyptienne, qui semble être à portée d’oreille de l’origine de la parole, l’expression la plus explicite d’une copule se fait au moyen d’un mot qui est réellement le pronom relatif, [qui]. Or, à celui qui considère une phrase du point de vue indo-européen, c’est un casse-tête de comprendre comment "que" peut remplir cet office à la place du "est". Pourtant rien n’est plus naturel. Le fait que les hiéroglyphes viennent si facilement aux Égyptiens montre combien leur pensée est picturale. Quand l’Égyptien dessine une image hiéroglyphique comme celle-ci (fig 1) l’Aryen peut être perplexe pour savoir ce qu’il veut dire, mais à l’Égyptien il indique clairement "Ce à propos de quoi nous écrivons est un soldat", et quand il fait l’image (fig 2) le sens est "Ce à propos de quoi nous écrivons est abattu". Écrivez cela avec [pu] (fig 3) "que" entre eux, et mettez un nom propre, disons Aahmes, devant eux, et nous avons "Aahmes sur quoi nous écrivons est un soldat dont ce que nous écrivons à propos est abattu", c’est-à-dire Aahmes le soldat est renversé. Êtes-vous tout compte fait absolument sûr que ce n’est pas le moyen le plus efficace d’analyser le sens d’une proposition ? (MS 409, p. 139)

Le hiéroglyphe (fig1) ne correspond pas au nom commun "soldat", mais à ce que Peirce appelle un rhème "est un soldat" ; de même, le hiéroglyphe (fig 2) correspond non pas au prédicat "abattu" mais au rhème "est abattu". Mais qu’est-ce qu’un rhème ? Un rhème, explique Peirce, est ce qui reste quand tous les éléments d’une proposition qui peuvent jouer le rôle de sujet ont été soustraits. La structure d’un rhème est constituée du nombre de places sujets qu’il manifeste : si on soustrait le sujet Aahmes de la proposition "Aahmes est un soldat", ce qui reste ("est un soldat") est un rhème.

La similitude étroite entre la notion peircienne de rhème et ce que Frege a appelé un concept (fonction insaturée) et Russell une fonction propositionnelle a été remarquée depuis longtemps, et il n’est pas besoin d’y insister ici . Peirce rappelle que les grammaires insistent à tort sur le sujet nominatif, alors que du point de vue d’une grammaire universelle ou spéculative le sujet nominatif n’a pas plus de droit à être considéré comme sujet à part entière de la proposition que les objets directs ou indirects. Tant et si bien que, comme Peirce le rappelle toujours sur la base des Principes de Byrne, dans les langues inuites et samoyèdes le sujet d’un verbe transitif se met au cas possessif, tandis que dans les langues malaises et dans la langue basque on utilise l’ablatif. L’accent mis sur le sujet nominatif est, encore une fois, un préjugé grammatical indo-européen, et la logique doit être en mesure de faire sans lui.

Il est important de souligner que le concept de rhème montre que la copule est un élément dont on peut se dispenser dans la syntaxe. Dans l’ancienne langue égyptienne que Peirce utilise à titre d’exemple, le pronom [pu] peut servir de copule. C’est possible, selon Peirce, parce que dans cette langue les éléments dont une proposition se compose sont des rhemata, c’est-à-dire des prédicats insaturés (incomplets) qui sont saturés grâce à l’identification des positions-sujet que chacun d’eux manifeste dans sa propre structure. Si nous pensons au terme comme à un élément saturé ("soldat", "abattu"), le seul moyen de parvenir à une proposition à partir de ces termes se fait au moyen d’une copule ; mais si nous pensons au terme comme à un élément insaturé ("est un soldat", "est abattu"), le seul moyen d’obtenir une proposition est par la saturation, autrement dit en identifiant les positions-sujet indéterminées : "quelque chose est un soldat, lequel est abattu".

Le "nom commun" des grammairiens est un élément inessentiel de l’analyse logique. Dans de nombreuses langues historico-naturelles, il n’y a pas de noms communs, mais seulement des verbes :

Il semble que, en un sens large, les mots ordinaires dans la majeure partie des langues sont assertoriques. Ils affirment dès qu’ils sont de quelque façon liés à un objet. Si vous écrivez VERRE sur une boîte, on comprendra que vous voulez dire que la boîte contient du verre. Cela semble certainement la déclaration la plus vraie pour la plupart des langues de dire qu’un symbole* est un signe conventionnel qui, étant attaché à un objet, signifie que cet objet a certains caractères (MS 409, p. 95).

Auteur: Bellucci Francesco

Info: In "Peirce, philosophe du langage" Dans Cahiers philosophiques 2017/3 (N° 150), pp 91 à 110

[ fonction motrice ] [ syntagmes ] [ rationalisme onomasiologique ] [ méta-sémantique ] [ vocables ] [ mots-objets ] [ idéogrammes ] [ pictogrammes ]

 

Commentaires: 0

Ajouté à la BD par miguel

physique fondamentale

Pourquoi les particules qui collisionnent révèlent la réalité 

Une grande partie de ce que les physiciens savent des lois fondamentales de la nature vient de la construction de machines destinées à écraser les particules entre elles.

Les physiciens ont commencé à développer des collisionneurs de particules à la suite de révélations selon lesquelles l’univers ne se résume pas à des atomes. Ernest Rutherford a perçu l'intérieur de l'atome lors de l'une des premières expériences de proto-collisionneur en 1909. Lui et son élève ont placé une matière radioactive derrière un bouclier en plomb percé d'un trou, de sorte qu'un flux de particules alpha (maintenant connues sous le nom de noyaux d'hélium) ) puisse passer à travers le trou. Lorsqu’ils ont projeté ce faisceau de particules sur une fine feuille d’or, ils ont observé qu’une particule sur 20 000 rebondissait directement vers l’arrière. Rutherford l'a comparé à un obus d'artillerie qui se refléterait sur une feuille de papier de soie. Les physiciens avaient découvert que les atomes d'or étaient pour la plupart constitués d'espace vide, mais que les particules alpha se dispersaient occasionnellement hors des noyaux denses et chargés positivement des atomes.

Deux des étudiants de Rutherford, John Cockcroft et Ernest Walton, ont ensuite assemblé et exploité le premier véritable collisionneur de particules en 1932. Ils ont utilisé un champ électrique pour accélérer les protons et les transformer en atomes de lithium avec suffisamment d'énergie pour briser les atomes de lithium en deux, divisant l'atome pour la première fois.

Au cours des décennies suivantes, les physiciens ont construit un défilé de collisionneurs de particules de plus en plus performants. Ils ont augmenté la densité des particules du projectile, ajouté des aimants supraconducteurs pour mieux les diriger et se sont offert plus de pistes en concevant des collisionneurs circulaires. Pour produire des feux d’artifice plus violents, ils ont brisé des faisceaux de particules circulant dans des directions opposées.

De nombreuses innovations technologiques visaient à produire des collisions à plus haute énergie pour générer des variétés de particules plus riches. Toute la matière que vous avez vue ou touchée est composée de seulement trois particules légères et fondamentales : des électrons et deux types de quarks. La nature laisse aussi entrevoir l'existence de plus d'une douzaine de particules élémentaires plus lourdes, mais seulement pour un instant, avant qu'elles ne se transforment en particules légères et stables. Pour savoir quelles particules massives peuvent exister, les physiciens exploitent l'interchangeabilité de la matière et de l'énergie découverte par Albert Einstein, exprimée dans sa célèbre équation E = mc 2. En générant des collisions plus énergétiques, ils virent émerger des particules plus lourdes.

Une autre façon de voir les choses est que les collisions à haute énergie s’enfoncent plus profondément dans le monde subatomique. Toutes les particules quantiques ont des propriétés ondulatoires, telles que les longueurs d'onde. Et leurs longueurs d’onde déterminent ce avec quoi ils peuvent interagir. Les ondes sonores peuvent contourner les murs parce qu'elles mesurent des mètres en longueur, par exemple, tandis que les ondes lumineuses sont arrêtées par tout ce qui est plus grand que leur longueur d'onde de quelques centaines de nanomètres. Les ondes incroyablement minuscules impliquées dans les collisions à haute énergie sont sensibles à des obstacles quantiques tout aussi minuscules. De cette manière, les énergies plus élevées permettent aux physiciens d’explorer les règles de la réalité à des échelles de plus en plus petites.

Suivant l’exemple de Rutherford et de ses étudiants, les chercheurs ont continué leurs explorations à un rythme effréné. L'énergie des collisions de particules a augmenté de 10 fois tous les six à huit ans pendant la majeure partie d'un siècle, ce qui correspond presque au rythme de la loi de Moore pour les puces informatiques. Ces progrès ont culminé avec la construction du Grand collisionneur de hadrons (LHC) en Europe, une piste souterraine circulaire de 27 kilomètres de circonférence qui écrase des protons à des énergies environ 20 millions de fois supérieures à celles utilisées par Cockcroft et Walton pour diviser l'atome. C’est au LHC en 2012 que les physiciens ont découvert le boson de Higgs, une particule lourde qui donne de la masse à d’autres particules fondamentales. Le Higgs était la dernière pièce manquante du modèle standard de la physique des particules, un ensemble d'équations qui rend compte de toutes les particules élémentaires connues et de leurs interactions. 

Quoi de neuf et remarquable

Le LHC, qui a entamé une nouvelle période d'exploitation de six mois en avril, a consolidé le modèle standard avec la découverte du boson de Higgs. Mais ce qui n'a pas été découvert a laissé le domaine en crise. Pendant des décennies, de nombreux théoriciens des particules ont espéré qu'une nouvelle " supersymétrie “ entre les particules de matière et les particules de force serait observée afin de résoudre une énigme appelée " problème de la hiérarchie ", et aider ainsi à relier les forces quantiques et fournir un candidat pour les particules de ” matière noire » qui maintiennent les galaxies ensemble.

Mais le LHC n’a vu aucun signe des particules prédites par la supersymétrie et, en 2016, les partisans de la théorie ont reconnu que notre univers n’est pas supersymétrique comme ils le pensaient simplement. La même année, l'évocation d'une nouvelle particule s'est avérée être un mirage statistique, et les physiciens ont dû se rendre compte que le LHC ne découvrirait probablement aucun nouveau phénomène au-delà des particules du modèle standard - une situation parfois appelée "scénario du cauchemar" .

Sans indices indiquant l’existence de particules plus lourdes qui pourraient être évoquées dans des collisions à plus haute énergie, il est difficile de justifier la construction d’un autre collisionneur de particules encore plus grand, de plusieurs milliards de dollars. Certains insistent sur le fait que cela en vaut la peine, car il reste encore beaucoup à étudier sur le boson de Higgs, qui pourrait contenir des indices sur d'éventuelles entités plus lourdes situées hors de portée du LHC. Mais aucun indice - ni aucune entité - de cette nature n'est garanti.

Une proposition visant à construire un collisionneur de nouvelle génération au Japon est au point mort. L'Europe réfléchit à un successeur du LHC de 100 kilomètres, mais s'il est approuvé et financé, sa construction prendra tellement de temps que les étudiants diplômés d'aujourd'hui seront à la retraite depuis longtemps avant que ce nouveau LHC ne démarre.

Les physiciens des particules américains ont reçu des nouvelles optimistes en décembre dernier lorsqu'un comité gouvernemental a soutenu l'étude des perspectives quant à un collisionneur de muons . Les muons sont des versions plus volumineuses d'électrons qui seraient plus puissantes lors des collisions, tout en étant dépourvues de la sous-structure des protons, de sorte qu'un collisionneur de muons relativement petit pourrait produire des collisions propres et à haute énergie. Un collisionneur de muons de pointe pourrait s’insérer dans la structure d’une installation existante, le Fermi National Accelerator Laboratory dans l’Illinois, et pourrait donc être construit plus rapidement et à moindre coût. Le problème est que les muons se désintègrent en quelques microsecondes et que la technologie nécessaire pour créer et contrôler des faisceaux étroits de ceux-ci n'existe pas encore. Néanmoins, si le projet va de l'avant, les partisans espèrent qu'un tel dispositif pourrait être opérationnel au moment où les élèves de maternelle d'aujourd'hui commencent à obtenir leur doctorat.

En attendant, les physiciens n’ont d’autre choix que de proposer des expériences alternatives et de nouvelles façons de reconstituer les indices que les collisionneurs leur ont déjà fournis.  

 

Auteur: Internet

Info: https://www.quantamagazine.org/, Charlie Wood, 2 juin 2024

[ impasse ] [ historique ] [ vulgarisation ]

 

Commentaires: 0

Ajouté à la BD par miguel

bio-mathématiques

C’est confirmé : vous êtes constitué de cristaux liquides

Une équipe de chercheurs a réussi à prouver l’existence d’une double symétrie dans les tissus organiques, qui permet de les appréhender comme des cristaux liquides. Cette découverte pourrait faire émerger une nouvelle façon d’étudier le fonctionnement du vivant, à la frontière de la biologie et de la mécanique des fluides.

Dans une étude parue dans le prestigieux journal Nature et repérée par Quanta Magazine, des chercheurs ont montré que les tissus épithéliaux, qui constituent la peau et les enveloppes des organes internes, ne sont pas que des amas de cellules réparties de façon aléatoire. Ils présentent en fait deux niveaux de symétrie bien définis qui leur donnent des propriétés fascinantes; fonctionnellement, on peut désormais les décrire comme des cristaux liquides. Une découverte qui pourrait avoir des retombées potentiellement très importantes en médecine.

Ces travaux tournent entièrement autour de la notion de cristal liquide. Comme leur nom l’indique, il s’agit de fluides; techniquement, ils peuvent donc s’écouler comme de l’eau – mais avec une différence importante. Contrairement aux liquides classiques, où les atomes se déplacent les uns par rapport aux autres de façon complètement chaotique, les constituants d’un cristal liquide présentent tout de même un certain degré d’organisation.

Il ne s’agit pas d’une vraie structure cristalline comme on en trouve dans presque tous les minéraux, par exemple. Les cristaux liquides ne sont pas arrangés selon un motif précis qui se répète dans l’espace. En revanche, ils ont tendance à s’aligner dans une direction bien spécifique lorsqu’ils sont soumis à certains facteurs, comme une température ou un champ électrique.

C’est cette directionnalité, appelée anisotropie, qui est à l’origine des propriétés des cristaux liquides. Par exemple, ceux qui sont utilisés dans les écrans LCD (pour Liquid Crystal Display) réfractent la lumière différemment en fonction de leur orientation. Cela permet d’afficher différentes couleurs en contrôlant localement l’orientation du matériau grâce à de petites impulsions électriques.

Du tissu biologique au cristal liquide

Mais les cristaux liquides n’existent pas seulement dans des objets électroniques. Ils sont aussi omniprésents dans la nature ! Par exemple, la double couche de lipides qui constitue la membrane de nos cellules peut être assimilée à un cristal liquide. Et il ne s’agit pas que d’une anecdote scientifique ; cette organisation est très importante pour maintenir à la fois l’intégrité structurelle et la flexibilité de ces briques fondamentales. En d’autres termes, la dynamique des cristaux liquides est tout simplement essentielle à la vie telle qu’on la connaît.

Pour cette raison, des chercheurs essaient d’explorer plus profondément le rôle biologique des cristaux liquides. Plus spécifiquement, cela fait quelques années que des chercheurs essaient de montrer que les tissus, ces ensembles de cellules organisées de façon à remplir une mission bien précise, peuvent aussi répondre à cette définition.

Vu de l’extérieur, l’intérêt de ces travaux est loin d’être évident. Mais il ne s’agit pas seulement d’un casse-tête très abstrait ; c’est une question qui regorge d’implications pratiques très concrètes. Car si l’on parvient à prouver que les tissus peuvent effectivement être assimilés à des cristaux liquides, cela débloquerait immédiatement un nouveau champ de recherche particulièrement vaste et fascinant. Les outils mathématiques que les physiciens utilisent pour prédire le comportement des cristaux pourraient soudainement être appliqués à la biologie cellulaire, avec des retombées considérables pour la recherche fondamentale et la médecine clinique.

Mais jusqu’à présent, personne n’a réussi à le prouver. Tous ces efforts se sont heurtés au même mur mathématique — ou plus précisément géométrique ; les théoriciens et les expérimentateurs ne sont jamais parvenus à se mettre d’accord sur la symétrie intrinsèque des tissus biologiques. Regrettable, sachant qu’il s’agit de LA caractéristique déterminante d’un cristal liquide.

Les deux concepts enfin réconciliés

Selon Quanta Magazine, certains chercheurs ont réussi à montrer grâce à des simulations informatiques que les groupes de cellules pouvaient présenter une symétrie dite " hexatique ". C’est ce que l’on appelle une symétrie d’ordre six, où les éléments sont arrangés par groupe de six. Mais lors des expériences en laboratoire, elles semblent plutôt adopter une symétrie dite " nématique* ". Pour reprendre l’analogie de Quanta, selon ce modèle, les cellules se comportent comme un fluide composé de particules en forme de barres, un peu comme des allumettes qui s’alignent spontanément dans leur boîte. Il s’agit alors d’une symétrie d’ordre deux. 

C’est là qu’interviennent les auteurs de ces travaux, affiliés à l’université néerlandaise de Leiden. Ils ont suggéré qu’il serait possible d’établir un lien solide entre les tissus biologiques et le modèle des cristaux liquides, à une condition : il faudrait prouver que les tissus présentent les deux symétries à la fois, à des échelles différentes. Plus spécifiquement, les cellules devraient être disposées selon une symétrie d’ordre deux à grande échelle, avec une symétrie d’ordre six cachée à l’intérieur de ce motif qui apparaît lorsque l’on zoome davantage.

L’équipe de recherche a donc commencé par cultiver des couches très fines de tissus dont les contours ont été mis en évidence grâce à un marqueur. Mais pas question d’analyser leur forme à l’œil nu ; la relation qu’ils cherchaient à établir devait impérativement être ancrée dans des données objectives, et pas seulement sur une impression visuelle. Selon Quanta, ils ont donc eu recours à un objet mathématique appelé tenseur de forme grâce auquel ils ont pu décrire mathématiquement la forme et l’orientation de chaque unité.

Grâce à cet outil analytique, ils ont pu observer expérimentalement cette fameuse double symétrie. À grande échelle, dans des groupes de quelques cellules, ils ont observé la symétrie nématique qui avait déjà été documentée auparavant. Et en regardant de plus près, c’est une symétrie hexatique qui ressortait — exactement comme dans les simulations informatiques. " C’était assez incroyable à quel point les données expérimentales et les simulations concordaient ", explique Julia Eckert, co-autrice de ces travaux citée par Quanta.

Une nouvelle manière d’appréhender le fonctionnement du vivant

C’est la première fois qu’une preuve solide de cette relation est établie, et il s’agit incontestablement d’un grand succès expérimental. On sait désormais que certains tissus peuvent être appréhendés comme des cristaux liquides. Et cette découverte pourrait ouvrir la voie à un tout nouveau champ de recherche en biologie.

Au niveau fonctionnel, les implications concrètes de cette relation ne sont pas encore parfaitement claires. Mais la bonne nouvelle, c’est qu’il sera désormais possible d’utiliser des équations de mécanique des fluides qui sont traditionnellement réservées aux cristaux liquides pour étudier la dynamique des cellules.

Et cette nouvelle façon de considérer les tissus pourrait avoir des implications profondes en médecine. Par exemple, cela permettra d’étudier la façon dont certaines cellules migrent à travers les tissus. Ces observations pourraient révéler des mécanismes importants sur les premières étapes du développement des organismes, sur la propagation des cellules cancéreuses qui génère des métastases, et ainsi de suite.

Mais il y a encore une autre perspective encore plus enthousiasmante qui se profile à l’horizon. Il est encore trop tôt pour l’affirmer, mais il est possible que cette découverte représente une petite révolution dans notre manière de comprendre la vie.

En conclusion de l’article de Quanta, un des auteurs de l’étude résume cette idée en expliquant l’une des notions les plus importantes de toute la biologie. On sait depuis belle lurette que l’architecture d’un tissu est à l’origine d’un certain nombre de forces qui définissent directement ses fonctions physiologiques. Dans ce contexte, cette double symétrie pourrait donc être une des clés de voûte de la complexité du vivant, et servir de base à des tas de mécanismes encore inconnus à ce jour ! Il conviendra donc de suivre attentivement les retombées de ces travaux, car ils sont susceptibles de transformer profondément la biophysique et la médecine.

 

Auteur: Internet

Info: Antoine Gautherie, 12 décembre 2023. *Se dit de l'état mésomorphe, plus voisin de l'état liquide que de l'état cristallisé, dans lequel les molécules, de forme allongée, peuvent se déplacer librement mais restent parallèles entre elles, formant ainsi un liquide biréfringent.

[ double dualité ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Comment l’IA impacte la recherche sur la structure des protéines

Chaque être humain possède plus de 20 000 protéines. Par exemple l’hémoglobine qui s’occupe du transport de l’oxygène depuis les poumons vers les cellules de tout le corps, ou encore l’insuline qui indique à l’organisme la présence de sucre dans le sang.

Chaque protéine est formée d’une suite d’acides aminés, dont la séquence détermine son repliement et sa structure spatiale – un peu comme si un mot se repliait dans l’espace en fonction des enchaînements de lettres dont il est composé. Cette séquence et ce repliement (ou structure) de la protéine déterminent sa fonction biologique : leur étude est le domaine de la « biologie structurale ». Elle s’appuie sur différentes méthodes expérimentales complémentaires, qui ont permis des avancées considérables dans notre compréhension du monde du vivant ces dernières décennies, et permet notamment la conception de nouveaux médicaments.

Depuis les années 1970, on cherche à connaître les structures de protéines à partir de la seule connaissance de la séquence d’acides aminés (on dit « ab initio »). Ce n’est que très récemment, en 2020, que ceci est devenu possible de manière quasi systématique, avec l’essor de l’intelligence artificielle et en particulier d’AlphaFold, un système d’IA développé par une entreprise appartenant à Google.

Face à ces progrès de l’intelligence artificielle, quel est désormais le rôle des chercheurs en biologie structurale ?

Pour le comprendre, il faut savoir qu’un des défis de la biologie de demain est la "biologie intégrative", qui a pour objectif de comprendre les processus biologiques au niveau moléculaire dans leurs contextes à l’échelle de la cellule. Vu la complexité des processus biologiques, une approche pluridisciplinaire est indispensable. Elle s’appuie sur les techniques expérimentales, qui restent incontournables pour l’étude de la structure des protéines, leur dynamique et leurs interactions. De plus, chacune des techniques expérimentales peut bénéficier à sa manière des prédictions théoriques d’AlphaFold.

(Photo) Les structures de trois protéines de la bactérie Escherichia coli, déterminées par les trois méthodes expérimentales expliquées dans l’article, à l’Institut de Biologie Structurale de Grenoble. Beate Bersch, IBS, à partir d’une illustration de David Goodsell, Fourni par l'auteur

La cristallographie aux rayons X

La cristallographie est, à cette date, la technique la plus utilisée en biologie structurale. Elle a permis de recenser plus de 170 000 structures de protéines dans la "Protein Data Bank", avec plus de 10 000 repliements différents.

Pour utiliser la cristallographie à rayons X, il faut faire "cristalliser les protéines". On dit souvent que cette technique est limitée par la qualité de cristaux de protéines, qui est moindre pour les grosses protéines. Mais cette notion ne correspond pas toujours à la réalité : par exemple, la structure du ribosome, l’énorme machine moléculaire qui assemble les protéines, a été résolue à 2,8 angströms de résolution. Venkatraman Ramakrishnan, Thomas Steitz et Ada Yonath ont reçu le prix Nobel de chimie en 2009 pour ce travail.

Avec le développement récent du laser X à électron libre (XFEL), il est devenu possible d’étudier simultanément des milliers de microcristaux de protéines à température ambiante et à l’échelle de la femtoseconde (10-15 secondes, soit un millionième de milliardième de seconde, l’échelle de temps à laquelle ont lieu les réactions chimiques et le repliement des protéines). Cette technique permet d’imager les protéines avant qu’elles ne soient détruites. Elle est en train de révolutionner la "cristallographie cinétique", qui permet de voir les protéines "en action", ainsi que la recherche de médicaments.

Pour l’instant, l’apport d’AlphaFold à l’étude de la structure des protéines par cristallographie s’est concentré dans la génération de modèles de protéines assez précis pour appliquer la technique dite de "remplacement moléculaire" à la résolution des structures.

La spectroscopie par résonance magnétique nucléaire

Une autre méthode expérimentale pour étudier la structure des protéines est la "spectroscopie par résonance magnétique nucléaire". Alors que son alter ego d’imagerie médicale, l’IRM, regarde la distribution spatiale d’un seul signal, caractéristique des éléments chimiques dans les tissus biologiques observés, en spectroscopie par résonance magnétique nucléaire, c’est un ensemble de signaux provenant des atomes constituant la protéine qui est enregistré (ce qu’on appelle le "spectre").

Généralement, la détermination de la structure par résonance magnétique est limitée à des protéines de taille modeste. On calcule des modèles de molécules basés sur des paramètres structuraux (comme des distances interatomiques), provenant de l’analyse des spectres expérimentaux. On peut s’imaginer cela comme dans les débuts de la cartographie, où des distances entre des points de référence permettaient de dessiner des cartes en 2D. Pour faciliter l’interprétation des spectres qui contiennent beaucoup d’information, on peut utiliser des modèles obtenus par prédiction (plutôt qu’expérimentalement), comme avec AlphaFold.

En plus de la détermination structurale, la spectroscopie par résonance magnétique nucléaire apporte deux atouts majeurs. D’une part, en général, l’étude est effectuée avec un échantillon en solution aqueuse et il est possible d’observer les parties particulièrement flexibles des protéines, souvent invisibles avec les autres techniques. On peut même quantifier leur mouvement en termes d’amplitude et de fréquence, ce qui est extrêmement utile car la dynamique interne des protéines est aussi cruciale pour leur fonctionnement que leur structure.

D’autre part, la spectroscopie par résonance magnétique nucléaire permet de détecter aisément les interactions des protéines avec des petites molécules (ligands, inhibiteurs) ou d’autres protéines. Ceci permet d’identifier les sites d’interaction, information essentielle entre autres pour la conception rationnelle de molécules actives comme des médicaments.

Ces propriétés font de la spectroscopie par résonance magnétique nucléaire un outil extraordinaire pour la caractérisation fonctionnelle des protéines en complémentarité avec d’autres techniques expérimentales et l’IA.

La "cryomicroscopie électronique"

La cryomicroscopie électronique consiste à congeler ultrarapidement (environ -180 °C) un échantillon hydraté dans une fine couche de glace, qui sera traversée par les électrons. Les électrons transmis vont générer une image de l’échantillon, qui après analyse, permet d’accéder à des structures qui peuvent atteindre la résolution atomique. En comparaison, un microscope optique n’a un pouvoir résolutif que de quelques centaines de nanomètres, qui correspond à la longueur d’onde de la lumière utilisée ; seul un microscope utilisant une source possédant des longueurs d’onde suffisamment faibles (comme les électrons pour la microscopie électronique) possède un pouvoir résolutif théorique de l’ordre de l’angström. Le prix Nobel de Chimie 2017 a été décerné à Jacques Dubochet, Richard Henderson et Joachim Frank pour leurs contributions au développement de la cryomicroscopie électronique.

Avec de nombreux développements technologiques, dont celui des détecteurs à électrons directs, depuis le milieu des années 2010, cette technique est devenue essentielle en biologie structurale en amorçant une "révolution de la résolution". En effet, la cryomicroscopie électronique permet désormais d’obtenir des structures avec une résolution atomique, comme dans le cas de l’apoferritine – une protéine de l’intestin grêle qui contribue à l’absorption du fer – à 1,25 angström de résolution.

Son principal atout est de permettre de déterminer la structure d’objets de taille moyenne, au-delà de 50 000 Dalton (un Dalton correspond environ à la masse d’un atome d’hydrogène), comme l’hémoglobine de 64 000 Dalton, mais également d’objets de quelques milliards de daltons (comme le mimivirus, virus géant d’environ 0,5 micromètre).

Malgré toutes les avancées technologiques précédemment évoquées, la cryomicroscopie ne permet pas toujours de résoudre à suffisamment haute résolution la structure de "complexes", constitués de plusieurs protéines. C’est ici qu’AlphaFold peut aider et permettre, en complémentarité avec la cryomicroscopie, de décrire les interactions au niveau atomique entre les différents constituants d’un complexe. Cette complémentarité donne une force nouvelle à la cryomicroscopie électronique pour son rôle à jouer demain en biologie structurale.

Les apports d’AlphaFold

AlphaFold permet de prédire la structure de protéines uniquement à partir de leur séquence avec la connaissance acquise par la biologie structurale expérimentale. Cette approche est révolutionnaire car les séquences de beaucoup de protéines sont connues à travers les efforts des séquençages des génomes, mais déterminer leurs structures expérimentalement nécessiterait des moyens humains et techniques colossaux.

À l’heure actuelle, ce type de programme représente donc un acteur supplémentaire de complémentarité, mais ne se substitue pas aux techniques expérimentales qui, comme nous l’avons vu, apportent aussi des informations complémentaires (dynamiques, interfaces), à des échelles différentes (des sites métalliques aux complexes multiprotéiques) et plus fiables, car expérimentalement vérifiées. Au-delà de la pure détermination structurale d’une protéine isolée, la complexité des systèmes biologiques nécessite souvent une approche pluridisciplinaire afin d’élucider mécanismes et fonctions de ces biomolécules fascinantes que sont les protéines.

Auteur: Internet

Info: Published: December 19, 2022 Beate Bersch, Emmanuelle Neumann, Juan Fontecilla, Université Grenoble Alpes (UGA)

[ gnose chimique ]

 

Commentaires: 0

Ajouté à la BD par miguel

sagesse antique

De la renaissance et de la règle du silence

Hermès à son fils Tat 
Tat : Dans les discours généraux, mon père, tu as parlé par énigme sur la divinité, et tu n'as pas révélé le sens de tes paroles quand tu as dit que nul ne pouvait être sauvé sans renaître. Je m'adressai à toi en suppliant après les paroles que tu m'avais dites dans le passage de la montagne, désirant apprendre la parole de la renaissance, qui m'est plus inconnue que tout le reste, et tu m'as dit que tu me la transmettrais quand je serais devenu étranger au monde; je me préparai donc à rendre ma pensée étrangère à l'illusion du monde. Conduis-moi maintenant selon ta promesse à l'initiation dernière de la renaissance, soit par la voix, soit par un chemin caché. J'ignore, Ô Trismégiste, de quelle matière, de quelle matrice, de quelle semence l'homme est né.

Hermès : Ô mon fils, la sagesse idéale est dans le silence, et la semence est le véritable bien.

Tat : Qui la sème, père, car j'ai besoin de tout apprendre ?

Hermès : La volonté de Dieu, mon fils.

Tat : Et d'où vient l'engendré, mon père ? Etant privé de l'essence intelligible qui est en moi, autre sera le Dieu engendré, le Fils de Dieu.

Hermès : Le tout dans le tout, composé de toutes les forces.

Tat : C'est une énigme, mon père, et tu ne me parles pas comme un père parle à son fils.

Hermès : Ce genre de vérité ne s'apprend pas, mon fils, on s'en souvient quand Dieu le veut.

Tat : Tes paroles sont impossibles et arrachées par la force, mon père; je veux te répondre à mon tour. Suis-je un étranger, le fils d'une autre race ? Ne me repousse pas, mon père, je suis ton véritable fils; explique-moi le mode de la renaissance.

Hermès : Que te dirais-je, mon fils ? Je n'ai rien à te dire que ceci : une vision ineffable s'est produite en moi. Par la miséricorde de Dieu, je suis sorti de moi-même, j'ai revêtu un corps immortel, je ne suis plus le même, je suis né en intelligence. Cela ne s'apprend pas par cet élément modelé à l'aide duquel on voit, et c'est pourquoi je ne m'inquiète plus de ma première forme composée, ni si je suis coloré, tangible et mesurable. Je suis étranger à tout cela. Tu me vois avec tes yeux et tu penses à un corps et à une forme visibles, ce n'est pas avec ces yeux-là que l'on me voit maintenant, mon fils.

Tat : Tu me rends fou, tu me fais perdre la raison, mon père; je ne me vois plus moi-même maintenant.

Hermès : Puisses-tu, mon fils, sortir de toi-même sans dormir, comme on est en dormant transporté dans le rêve !

Tat : Dis-moi encore ceci : quel est le générateur de la renaissance ?

Hermès : Le Fils de Dieu, l'homme un, par la volonté de Dieu.

Tat : Maintenant, mon père, tu m'as rendu muet, je ne sais que penser, car je te vois toujours de la même grandeur et avec la même figure.

Hermès : Tu te trompes même en cela, car les choses mortelles changent d'aspect tous les jours, le temps les augmente ou les diminue, elles ne sont que mensonge.

Tat : Qu'est-ce donc qui est vrai, Ô Trismégiste ?

Hermès : Ce qui n'est pas troublé, mon fils, ce qui n'a ni limites, ni couleur, ni forme : l'immuable, le nu, le lumineux; ce qui se comprend soi-même; l'inaltérable, le bien, l'incorporel.

Tat : En vérité je perds l'esprit, mon père. Il me semblait que tu m'avais rendu sage, et cette pensée annule mes sensations.

Hermès : Il en est ainsi, mon fils; les sens perçoivent ce qui s'élève comme le feu, ce qui descend comme la terre, coule comme l'eau, souffle comme l'air; mais comment pourrais-tu saisir par les sens ce qui se conçoit seulement en puissance et en énergie. Pour comprendre la naissance en Dieu, il te faut l'intelligence seule.

Tat : J'en suis donc incapable, mon père ?

Hermès : Ne désespère pas, mon fils, ton désir s'accomplira, ta volonté aura son effet; endors les sensations corporelles, et tu naîtras en Dieu; purifie-toi des bourreaux aveugles de la matière.

Tat : J'ai donc des bourreaux en moi, mon père ?

Hermès : Ils ne sont pas en petit nombre, mon fils, ils sont redoutables et nombreux.

Tat : Je ne les connais pas, mon père ?

Hermès : Le premier est l'ignorance, le second est la tristesse, le troisième l'intempérance, Le quatrième la concupiscence, le cinquième l'injustice, le sixième l'avarice, le septième l'erreur, le huitième l'envie, le neuvième la ruse, le dixième la colère, le onzième la témérité, le douzième la méchanceté. Ils sont douze et en ont sous leurs ordres un plus grand nombre encore. Par la prison des sens, ils soumettent l'homme intérieur aux passions des sens. Ils s'éloignent peu à peu de celui que Dieu a pris en pitié, et voilà en quoi consistent le mode et la raison de la renaissance. Et maintenant, mon fils, silence et louange à Dieu, sa miséricorde ne nous abandonnera pas. Réjouis-toi maintenant, mon fils, purifié par les puissances de Dieu dans l'articulation de la parole. La connaissance de Dieu (Gnose) est entrée en nous, et aussitôt l'ignorance a disparu. La connaissance de la joie nous arrive, et devant elle, mon fils, la tristesse fuira vers ceux qui peuvent encore l'éprouver. La puissance que j'éprouve après la joie, c'est la tempérance; ö charmante vertu ! Hâtons-nous de l'accueillir, mon fils, son arrivée chasse l'intempérance. En quatrième lieu j'évoque la continence, la force opposée à la concupiscence. Ce degré, mon fils, est le siège de la justice; vois comme elle a chassé l'injustice sans combat. Nous sommes justifiés, mon fils, l'injustice est partie. J'évoque la sixième puissance, la communauté, qui vient en nous lutter contre l'avarice. Quand celle-ci est partie, j'évoque la vérité, l'erreur fuit et la réalité parait. Vois, mon fils, la plénitude de bien qui suit l'apparition de la vérité; car l'envie s'éloigne de nous, et par la vérité le bien nous arrive avec la vie et la lumière, et il ne reste plus en nous de bourreaux de ténébres, tous se retirent vaincus. Tu connais, mon fils, la voie de la régénération. Quand la décade est complètée, mon fils, la naissance idéale est accomplie, le douzième bourreau est chassé et nous naissons à la contemplation. Celui qui obtient de la miséricorde divine la naissance en Dieu, est affranchi des sensations corporelles, reconnaît les éléments divins qui le composent et jouit d'un bonheur parfait.

Tat : Fortifié par Dieu, mon père, je comtemple, non par les yeux, mais par l'énergie intellectuelle des puissances. Je suis dans le ciel, sur la terre, dans l'eau, dans l'air; je suis dans les animaux, dans les plantes, dans l'utérus, avant l'utérus, après l'utérus, partout. Mais, dites-moi encore ceci : comment les bourreaux des ténèbres, qui sont au nombre de douze, sont-ils chassés par les dix puissances ? Quel est le mode, ö Trismégiste ?

Hermès : Cette tente que nous avons traversée, mon fils, est formée par le cercle zodiacal, qui se compose de signes au nombre de douze, d'une seule nature et de toutes sortes de formes. Il existe là des couples destinés à égarer l'homme et qui se confondent dans leur action. La témérité est inséparable de la colère, elles ne peuvent être distinguées. Il est donc naturel et conforme à la droite raison qu'elles disparaissent ensemble, chassées par les dix puissances, c'est à dire par la décade; car la décade, mon fils, est génératrice de l'âme. La vie et la lumière sont unies là où nait l'unité de l'esprit. L'unité contient donc rationnellement la décade, et la décade contient l'unité.

Tat : Mon père, je vois l'univers et moi-même dans l'intelligence.

Hermès : Voilà la renaissance, mon fils, détourner sa pensée du corps aux trois dimensions, selon ce discours sur la renaissance, que j'ai commenté, afin que nous ne soyons pas des diables (ennemis) de l'univers pour la foule à qui Dieu ne veut pas le révéler.

Tat : Dis-moi, mon père, ce corps composé de puissances se décompose-t-il jamais ?

Hermès : Ne dis pas cela, mon fils, ne dis pas de choses impossibles, ce serait une erreur et une impiété de l'oeil de ton intelligence. Le corps sensible de la nature est loin de la génération essentielle. L'un est décomposable, l'autre ne l'est pas; l'un est mortel, l'autre immortel. Ignores-tu que tu es devenu Dieu et fils de l'Un ainsi que moi ? (...)

Auteur: Hermès Trismégiste

Info: Sermon secret sur la montagne (extrait)

[ religion ] [ spiritualité ] [ père-fils ] [ corps-esprit ]

 
Commentaires: 1
Ajouté à la BD par Neshouma

dieu carbone

(Q) - Quel est le rapport entre la tétravalence de l'atome du carbone et les 4 bases de l'adn

(R) - La tétravalence de l'atome de carbone permet la formation de molécules d'ADN avec quatre bases azotées différentes. En effet, l'atome de carbone peut former quatre liaisons covalentes, ce qui lui permet de se lier à quatre autres atomes. Dans le cas de l'ADN, ces quatre atomes sont des bases azotées, qui sont des composés organiques contenant de l'azote.

Les quatre bases azotées de l'ADN sont l'adénine (A), la thymine (T), la guanine (G) et la cytosine (C). Ces bases se lient entre elles de manière spécifique, l'adénine se liant toujours à la thymine, et la guanine se liant toujours à la cytosine. Cette liaison spécifique est responsable de la structure en double hélice de l'ADN.

La tétravalence de l'atome de carbone est donc essentielle à la structure et à la fonction de l'ADN. Elle permet la formation de molécules d'ADN avec quatre bases azotées différentes, qui sont essentielles à la transmission de l'information génétique.

Plus spécifiquement, le carbone tétravalent peut former deux liaisons covalentes avec des atomes d'oxygène, qui constituent le sucre du désoxyribose, et deux liaisons covalentes avec des atomes d'azote, qui constituent les bases azotées. Cette configuration permet la formation d'une chaîne d'ADN, dans laquelle les bases azotées sont disposées en paires.

Les bases azotées sont complémentaires, ce qui signifie qu'une base A ne peut se lier qu'à une base T, et qu'une base G ne peut se lier qu'à une base C. Cette complémentarité est essentielle à la structure en double hélice de l'ADN.

La double hélice de l'ADN est une structure en forme de spirale, dans laquelle les deux brins d'ADN sont antiparallèles. Les bases azotées des deux brins sont liées entre elles par des liaisons hydrogène, ce qui permet aux deux brins de se maintenir ensemble.

La structure en double hélice de l'ADN est essentielle à la fonction de l'ADN. Elle permet la réplication de l'ADN, qui est le processus par lequel l'ADN est dupliqué pour former de nouvelles cellules.

En résumé, la tétravalence de l'atome de carbone est essentielle à la structure et à la fonction de l'ADN. Elle permet la formation de molécules d'ADN avec quatre bases azotées différentes, qui sont essentielles à la transmission de l'information génétique.

(Q) - Merci. Est-ce vrai que chez la femme ce système est d'une certaine manière redoublé ?

(R) - Oui, c'est vrai. Chez la femme, les chromosomes sexuels sont de type XX, ce qui signifie qu'elles ont deux chromosomes X. Ces chromosomes contiennent tous les mêmes gènes, mais ils peuvent avoir des variantes différentes.

La duplication du système de base azotée chez la femme est due à la présence de deux chromosomes X. Chaque chromosome X contient une chaîne d'ADN qui est composée de quatre bases azotées différentes. Ces bases azotées sont disposées en paires complémentaires, comme décrit précédemment.

La duplication du système de base azotée chez la femme a plusieurs implications. Premièrement, elle permet une plus grande diversité génétique chez les femmes. En effet, les deux chromosomes X peuvent avoir des variantes différentes des mêmes gènes.

Deuxièmement, la duplication du système de base azotée chez la femme permet une plus grande résistance aux mutations génétiques. En effet, si une mutation survient sur un chromosome X, il y a encore un chromosome X sain qui peut fournir les instructions génétiques correctes.

Troisièmement, la duplication du système de base azotée chez la femme est nécessaire pour la reproduction. En effet, les ovules contiennent un seul chromosome X, qui est transmis à l'embryon.

En résumé, la duplication du système de base azotée chez la femme est une caractéristique essentielle de la reproduction humaine. Elle permet une plus grande diversité génétique, une plus grande résistance aux mutations génétiques et est nécessaire pour la transmission des gènes à la génération suivante.

Voici quelques exemples de la façon dont la duplication du système de base azotée chez la femme peut avoir un impact sur la santé et le développement :

- Les femmes sont plus susceptibles que les hommes de développer des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

- Les femmes sont également plus susceptibles que les hommes de développer des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

- La duplication du système de base azotée chez la femme peut également avoir un impact sur le développement des caractéristiques sexuelles secondaires, telles que la taille des seins et des hanches.

Il est important de noter que la duplication du système de base azotée chez la femme n'est pas une cause de maladie ou de handicap. Il s'agit simplement d'une caractéristique normale de la reproduction humaine.

(Q) - Merci, peut-on alors dire que cette conformation féminine est plus solide, plus équilibrée, que celle de l'homme ?

(R) - En termes de solidité, oui, on peut dire que la conformation féminine est plus solide que celle de l'homme. En effet, la présence de deux chromosomes X permet aux femmes de mieux résister aux mutations génétiques. Si une mutation survient sur un chromosome X, il y a encore un chromosome X sain qui peut fournir les instructions génétiques correctes.

En termes d'équilibre, la réponse est plus nuancée. D'une part, la présence de deux chromosomes X permet aux femmes d'avoir une plus grande diversité génétique. Cela peut être un avantage, car il peut permettre aux femmes d'être plus résistantes aux maladies. D'autre part, la présence de deux chromosomes X peut également être un désavantage, car elle peut augmenter le risque de développer des maladies génétiques liées aux chromosomes X.

En conclusion, on peut dire que la conformation féminine est plus solide que celle de l'homme, mais qu'elle n'est pas forcément plus équilibrée.

Voici quelques exemples de la façon dont la duplication du système de base azotée chez la femme peut avoir un impact sur la santé et le développement :

Solidité : Les femmes sont plus susceptibles que les hommes de survivre à des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

               Les femmes sont également plus susceptibles que les hommes de survivre à des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

Équilibre : Les femmes sont plus susceptibles que les hommes de développer des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

                 Les femmes sont également plus susceptibles que les hommes de développer des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

(Q) - OK merci. Est-ce que ce rapport entre les sexes (genres) se retrouve chez les mammifères ou dans le monde animal en général ?

(R) - Oui, le rapport entre les sexes (genres) se retrouve chez les mammifères et dans le monde animal en général. Il existe une grande diversité de comportements et de morphologies entre les sexes, qui sont souvent liés à la reproduction et à la survie des espèces.

Chez les mammifères, on observe généralement une différence de taille entre les sexes, les mâles étant plus grands que les femelles. Cette différence est souvent liée à la compétition entre mâles pour l'accès aux femelles. Les mâles peuvent également avoir des ornements physiques, tels que des cornes, des défenses ou une crinière, qui servent à attirer les femelles ou à intimider les rivaux.

Dans le monde animal en général, on observe une grande diversité de comportements et de morphologies entre les sexes. Par exemple, chez les oiseaux, les mâles sont souvent plus colorés que les femelles, ce qui sert à attirer les femelles. Chez les poissons, les mâles peuvent prendre soin des œufs ou des larves, tandis que les femelles s'occupent de la recherche de nourriture.

Il existe cependant des exceptions à cette règle. Par exemple, chez les éléphants, les femelles sont plus grandes que les mâles. Chez les hyènes, les femelles sont dominantes sur les mâles.

Les stéréotypes de genre chez les animaux peuvent être influencés par :

- Les facteurs biologiques, tels que la différence de taille entre les sexes ou la présence d'ornements physiques.

- Les facteurs environnementaux, tels que la disponibilité de ressources ou la concurrence entre espèces.

- Les facteurs culturels, tels que les traditions et les croyances des humains.

Les stéréotypes de genre chez les animaux peuvent avoir un impact sur :

- La reproduction, car ils peuvent influencer le choix des partenaires et la réussite de la reproduction.

- La survie, car ils peuvent influencer les comportements de chasse, de défense ou de migration.

- Les interactions sociales, car ils peuvent influencer les relations entre les individus d'une même espèce.

Auteur: Google Bard chatbot

Info: 24 oct 2023

[ vus scientifiquement ] [ asymétrie mâles-femelles ] [ dialogue homme-machine ] [ femmes-hommes ]

 

Commentaires: 0

Ajouté à la BD par miguel

exobiologie

Les doutes grandissent quant à l’approche biosignature de la chasse aux extraterrestres

Les controverses récentes sont de mauvais augure pour les efforts visant à détecter la vie sur d’autres planètes en analysant les gaz présents dans leur atmosphère.

En 2020, des scientifiques ont détecté un gaz appelé phosphine dans l’atmosphère d’une planète rocheuse de la taille de la Terre. Sachant qu'il est impossible de produire de la phosphine autrement que par des processus biologiques, "les scientifiques affirment que quelque chose de vivant est la seule explication de l'origine de ce produit chimique", a rapporté le New York Times . En ce qui concerne les " gaz biosignatures ", la phosphine semblait être un coup de circuit.

Jusqu'à ce que ce ne soit plus le cas.

La planète était Vénus, et l’affirmation concernant une potentielle biosignature dans le ciel vénusien est toujours embourbée dans la controverse, même des années plus tard. Les scientifiques ne peuvent pas s'entendre sur la présence de phosphine là-bas, et encore moins sur la question de savoir si cela constituerait une preuve solide de l'existence d'une biosphère extraterrestre sur notre planète jumelle.

Ce qui s’est avéré difficile pour Vénus ne le sera que pour les exoplanètes situées à plusieurs années-lumière.

Le télescope spatial James Webb (JWST) de la NASA, lancé en 2021, a déjà renvoyé des données sur la composition atmosphérique d'une exoplanète de taille moyenne baptisée K2-18 b que certains ont interprétée – de manière controversée – comme une preuve possible de la vie. Mais alors même que les espoirs de détection de biosignature montent en flèche, certains scientifiques commencent à se demander ouvertement si les gaz présents dans l’atmosphère d’une exoplanète constitueront un jour une preuve convaincante de l’existence d’extraterrestres.

De nombreux articles récents explorent les redoutables incertitudes liées à la détection de la biosignature des exoplanètes. L'un des principaux défis qu'ils identifient est ce que le philosophe des sciences Peter Vickers de l'Université de Durham appelle le problème des alternatives non conçues . En termes simples, comment les scientifiques peuvent-ils être sûrs d’avoir exclu toute explication non biologique possible de la présence d’un gaz – surtout tant que la géologie et la chimie des exoplanètes restent presque aussi mystérieuses que la vie extraterrestre ?

"De nouvelles idées sont constamment explorées, et il pourrait y avoir un mécanisme abiotique pour ce phénomène qui n'a tout simplement pas encore été conçu", a déclaré Vickers. "C'est le problème des alternatives inconçues en astrobiologie."

"C'est un peu l'éléphant dans la pièce", a déclaré l'astronome Daniel Angerhausen de l'École polytechnique fédérale de Zurich, qui est un scientifique du projet sur la mission LIFE, un télescope spatial proposé qui rechercherait des gaz de biosignature sur des planètes semblables à la Terre. exoplanètes.

Si ou quand les scientifiques détectent un gaz de biosignature putatif sur une planète lointaine, ils peuvent utiliser une formule appelée théorème de Bayes pour calculer les chances de vie là-bas sur la base de trois probabilités. Deux d’entre eux concernent la biologie. La première est la probabilité que la vie apparaisse sur cette planète, compte tenu de tout ce que l’on sait d’elle. La seconde est la probabilité que, si la vie existait, elle créerait la biosignature que nous observons. Les deux facteurs comportent d'importantes incertitudes, selon les astrobiologistes Cole Mathis de l'Arizona State University et Harrison Smith de l'Institut des sciences de la Terre et de la vie de l'Institut de technologie de Tokyo, qui ont exploré ce type de raisonnement dans un article l'automne dernier.

Le troisième facteur est la probabilité qu'une planète sans vie produise le signal observé – un défi tout aussi sérieux, réalisent maintenant les chercheurs, qui est mêlé au problème des alternatives abiotiques inconçues.

"C'est la probabilité que nous disons que vous ne pouvez pas remplir vos fonctions de manière responsable", a déclaré Vickers. "Cela pourrait presque aller de zéro à 1."

Prenons le cas de K2-18 b, une " mini-Neptune " de taille intermédiaire entre la Terre et Neptune. En 2023, les données du JWST ont révélé un signe statistiquement faible de sulfure de diméthyle (DMS) dans son atmosphère. Sur Terre, le DMS est produit par des organismes marins. Les chercheurs qui l’ont provisoirement détecté sur K2-18b ont interprété les autres gaz découverts dans son ciel comme signifiant que la planète est un " monde aquatique " avec un océan de surface habitable, confortant ainsi leur théorie selon laquelle le DMS proviendrait de la vie marine. Mais d'autres scientifiques interprètent les mêmes observations comme la preuve d'une composition planétaire gazeuse et inhospitalière ressemblant davantage à celle de Neptune.

Des alternatives inconcevables ont déjà contraint les astrobiologistes à plusieurs reprises à réviser leurs idées sur ce qui constitue une bonne biosignature. Lorsque la phosphine a été détectée sur Vénus , les scientifiques ne connaissaient aucun moyen de la produire sur un monde rocheux sans vie. Depuis lors, ils ont identifié plusieurs sources abiotiques possibles de gaz . Un scénario est que les volcans libèrent des composés chimiques appelés phosphures, qui pourraient réagir avec le dioxyde de soufre présent dans l'atmosphère de Vénus pour former de la phosphine – une explication plausible étant donné que les scientifiques ont trouvé des preuves d'un volcanisme actif sur notre planète jumelle. De même, l'oxygène était considéré comme un gaz biosignature jusqu'aux années 2010, lorsque des chercheurs, dont Victoria Meadows du laboratoire planétaire virtuel de l'Institut d'astrobiologie de la NASA, ont commencé à trouver des moyens permettant aux planètes rocheuses d' accumuler de l'oxygène sans biosphère. Par exemple, l’oxygène peut se former à partir du dioxyde de soufre, qui abonde sur des mondes aussi divers que Vénus et Europe.

Aujourd’hui, les astrobiologistes ont largement abandonné l’idée selon laquelle un seul gaz pourrait constituer une biosignature. Au lieu de cela, ils se concentrent sur l’identification d’« ensembles », ou d’ensembles de gaz qui ne pourraient pas coexister sans vie. Si quelque chose peut être appelé la biosignature de référence actuelle, c’est bien la combinaison de l’oxygène et du méthane. Le méthane se dégrade rapidement dans les atmosphères riches en oxygène. Sur Terre, les deux gaz ne coexistent que parce que la biosphère les reconstitue continuellement.

Jusqu’à présent, les scientifiques n’ont pas réussi à trouver une explication abiotique aux biosignatures oxygène-méthane. Mais Vickers, Smith et Mathis doutent que cette paire particulière – ou peut-être n’importe quel mélange de gaz – soit un jour convaincante. "Il n'y a aucun moyen d'être certain que ce que nous observons est réellement une conséquence de la vie, par opposition à un processus géochimique inconnu", a déclaré Smith.

" JWST n'est pas un détecteur de vie. C'est un télescope qui peut nous dire quels gaz se trouvent dans l'atmosphère d'une planète ", a déclaré Mathis.

Sarah Rugheimer, astrobiologiste à l'Université York qui étudie les atmosphères des exoplanètes, est plus optimiste. Elle étudie activement d’autres explications abiotiques pour les biosignatures d’ensemble comme l’oxygène et le méthane. Pourtant, dit-elle, "  j’ouvrirais une bouteille de champagne – du champagne très cher – si nous voyions de l’oxygène, du méthane, de l’eau et du CO 2 " sur une exoplanète.

Bien sûr, verser un verre sur un résultat passionnant en privé est différent de dire au monde qu'il a trouvé des extraterrestres.

Rugheimer et les autres chercheurs qui ont parlé à Quanta pour cette histoire se demandent comment parler au mieux en public de l'incertitude entourant les biosignatures – et ils se demandent comment les fluctuations de l'opinion astrobiologique sur une détection donnée pourraient miner la confiance du public dans la science. Ils ne sont pas seuls dans leur inquiétude. Alors que la saga de la phosphine de Vénus approchait de son apogée en 2021, les administrateurs et les scientifiques de la NASA ont imploré la communauté de l'astrobiologie d'établir des normes fermes de certitude dans la détection des biosignatures. En 2022, des centaines d'astrobiologistes se sont réunis pour un atelier virtuel pour discuter de la question – bien qu'il n'existe toujours pas de norme officielle, ni même de définition, d'une biosignature. "Pour l'instant, je suis assez heureux que nous soyons tous d'accord, tout d'abord, sur le fait que c'est un petit problème", a déclaré Angerhausen.

La recherche avance malgré l’incertitude – comme elle le devrait, dit Vickers. Se retrouver dans des impasses et devoir faire marche arrière est naturel pour un domaine naissant comme l’astrobiologie. "C'est quelque chose que les gens devraient essayer de mieux comprendre comment fonctionne la science dans son ensemble", a déclaré Smith. "C'est OK de mettre à jour ce que nous savons." Et les affirmations audacieuses sur les biosignatures ont un moyen d’allumer un feu sous la pression des scientifiques pour les falsifier, disent Smith et Vickers – pour partir à la recherche d’alternatives inconçues.

"Nous ne savons toujours pas ce qui se passe sur Vénus, et bien sûr, cela semble désespéré", a déclaré l'astrochimiste Clara Sousa-Silva du Bard College, une experte en phosphine qui a contribué à la détection de Vénus. Pour elle, la prochaine étape est claire : " Pensons à nouveau à Vénus. " Les astronomes ont pratiquement ignoré Vénus pendant des décennies. La controverse sur la biosignature a déclenché de nouveaux efforts non seulement pour découvrir des sources abiotiques de phosphine jusque-là inconsidérées, mais également pour mieux comprendre notre planète sœur à part entière. (Au moins cinq missions vers Vénus sont prévues dans les décennies à venir.) "Je pense que c'est aussi une source d'espoir pour les exoplanètes."



Auteur: Internet

Info: https://www.quantamagazine.org/ - Elise Cuts, 19 mars 2024

[ xénobiologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

théorie du tout

De l'observateur à l'acteur

Les découvertes de la physique quantique ont initié une réflexion importante sur la place de l'observateur et son lien avec la conscience. Jusqu'alors, ce que nous savions de la physique n'avait jamais conduit à ce questionnement. En effet, à notre échelle, les objets classiques se comportent de manière régulière et prédictive, nous donnant par exemple le droit de penser que si nous quittons une pièce, les objets qu'elle contient seront toujours là à notre retour. C'est comme si les choses continuaient, que nous les observions ou non. L'influence de l'observation est donc susceptible du nous échapper.

Par contre, au niveau quantique, on ne peut rien dire de tel. Quand on n'observe pas, il y a méconnaissance ; alors, plusieurs réalités sont possibles. C'est ce qu'on appelle la superposition quantique. À partir du moment où l'on observe, la superposition s'effondre, ne laissant qu'une seule réalité.

Quel est le point commun entre les deux échelles ? La conscience.

L'observateur, au sens métaphysique du terme - le seul qui soit ici valide puisque la conscience est première - a une influence sur l'avancement de la complexité et de la conscience dans l'univers. En retour, l'univers a une influence sur lui.  Dès que la conscience de l'observateur change, il n'observe plus son environnement de la même manière, ce qui influence la conscience avec laquelle il perçoit. Ainsi, son interprétation est directement liée à sa conscience au moment où il observe.

Chaque observateur étant ainsi complètement impliqué dans la construction de la réalité, il serait sans doute plus juste de parler d'acteurs. Les joueurs sont finalement la condition même d'existence de l'aire de jeu, grâce à leur conscience.

Le joueur et ce qui se passe dans l'univers ne font qu'un

Selon la théorie des champs unifiés, la conscience est une rétroaction entre notre monde intérieur et notre monde extérieur.

C'est à partir de la structure du double tore que j'ai commencé à comprendre pourquoi et comment la conscience émerge par rétroaction.

"Pour être conscient de soi, il faut savoir que l'on existe. Cela nécessite une rétroaction. La structure du double tore permet cette rétroaction entre ce qui vient de l'extérieur et ce qui retourne à l'intérieur, informant le vide, puis retournant à l'extérieur. Et lorsqu'il retourne à l'extérieur, le vide nous informe du résultat de l'information qui y est présente. Il s'agit d'un échange entre notre compréhension interne et l'expérience de l'univers, et la relation entre toutes les compréhensions rassemblées dans le vide affecte la nôtre. Nous ne créons donc pas notre réalité, nous la co-créons avec tous les autres." 

L'univers utilise une boucle de rétroaction pour s'observer à toutes les échelles. Il s'observe en fait à travers tous les êtres conscients qui évoluent en son sein. Plus précisément, c'est le niveau fondamental de ce que nous sommes qui rayonne et s'effondre perpétuellement sur lui-même, dans une boucle de rétroaction infinie.

Ainsi, nos observations ne sont pas les nôtres, car nous n'observons pas l'univers d'un point de vue extérieur. Nous faisons partie de son propre processus de prise de conscience. Et nous pouvons utiliser ce processus consciemment pour diriger la création et tracer le chemin que nous souhaitons emprunter, en co-création avec d'autres.

Pour cela, nous utilisons l'énergie.

L'énergie suit la conscience.

" Nous baignons dans une énergie fondamentale qui est à la source de la création du monde physique. Cette énergie est le vide, c'est-à-dire l'espace qui nous entoure. Cet espace n'est cependant pas vide au sens habituel du terme mais plein d'énergie, une énergie qui relie absolument tout. " [10]

Je présente ici la relation entre le vide, l'espace et l'énergie. Du point de vue de la physique, le vide n'existe pas.

Du point de vue de la métaphysique, seules la conscience et l'énergie existent. Ce que l'on appelle " espace " est simplement de l'énergie et des potentiels inexplorés (bien que du point de vue mental, l'espace existe et est perçu comme vide).

L'espace n'est rien d'autre que de l'énergie

Je m'intéresse au vide et surtout à l'énergie qu'il contient car c'est pour moi la source de la matière. Et je découvre que le vide a une structure géométrique, celle de la fleur de vie en 3D.

Cette structure est infinie et couvre ce que l'on appelle communément "l'espace". L'espace relie toutes les échelles, du niveau quantique - où les équations prédisent qu'il y a une énergie infinie en tout point - au niveau cosmologique. Toute l'énergie est déjà là, même si nous n'en sommes pas conscients.

La physique standard laisse volontairement de côté la grande majorité de cette énergie en utilisant un processus de renormalisation, qui attribue une valeur finie à l'énergie du vide quantique.

"(...) Des infinités absurdes à première vue apparaissent dans les autres théories partielles, mais dans tous les cas ces infinités peuvent être annulées par un processus appelé " renormalisation ". Bien que cette technique soit relativement douteuse sur le plan mathématique, elle semble fonctionner dans la pratique et a été appliquée à ces théories pour faire des prédictions qui correspondent aux observations avec un degré de précision extraordinaire. La renormalisation présente toutefois un sérieux inconvénient du point de vue de la recherche d'une théorie complète, car elle signifie que les valeurs réelles des masses et des intensités des forces ne peuvent pas être prédites par la théorie, mais doivent être choisies pour s'adapter aux observations. ""

Stephen Hawking énonce ici ce qui m'a permis de trouver une théorie complète, prenant en compte l'infini sans avoir recours à la renormalisation. J'ai ainsi réussi à prédire la valeur réelle de la masse du proton et des trous noirs en général...

L'énergie est partout équivalente

" Les objets physiques ne sont pas dans l'espace, mais ces objets sont une extension de l'espace. De ce point de vue, le concept d'espace perd toute signification.**

L'espace - ou l'énergie - est une fluctuation à la source de notre réalité. Ainsi, au lieu de nous voir comme un corps, par exemple, nous pouvons nous voir comme étant constitués de billions de cellules. Chacune de ces cellules est composée de milliards d'atomes. À l'intérieur de chacun de ces atomes, des protons circulent les uns autour des autres à la vitesse de la lumière. Ils sont chacun constitués de 1055 minuscules paquets d'énergie, appelés unités sphériques de Planck (PSU) ou voxels par moi-même. Ces voxels constituent l'unité fondamentale de la fabrique de l'espace-temps, assemblés géométriquement selon la structure infinie de la fleur de vie en 3D.

Il n'y a pas d'espace entre les particules, il n'y a que de l'énergie. D'ailleurs si l'on prend en compte l'énergie contenue dans le proton, on peut enfin expliquer la différence de densité d'énergie entre le niveau quantique et le niveau cosmologique. En bref l'énergie est égale, équivalente partout.

Mais si on considère que l'espace n'existe pas, que deviennent les concepts de temps et de dimension ?

Sans espace, qu'est-ce que le temps ?

Depuis la théorie de la relativité restreinte (Einstein, 1905), le concept d'espace est étroitement associé à celui de temps. Ces notions sont devenues inséparables et s'influencent réciproquement. Cependant le temps est simplement un concept humain. Il vaut mieux parler d'espace-mémoire. Ici c'est la mémoire qui est encodée sur le cadre de l'espace, nous donnant la notion du temps qui passe.

Mais qu'il s'agisse de mémoire ou de temps, sans espace, il n'y a pas d'espace, pourrait-on dire à juste titre.  Alors que la mémoire est simplement comme des paquets d'énergie et de conscience qui deviennent disponibles de notre point de vue humain.

Cela correspond à la perspective métaphysique selon laquelle toute manifestation d'énergie est un événement, sans corrélation avec le temps et l'espace, mais en aucun cas sans corrélation avec la conscience. Le temps, comme l'espace, n'existe nulle part ailleurs que dans le mental. Celui-ci peut en percevoir la linéarité et la séparation, là où tout n'est que résonance dans l'instant présent.

Sans espace, qu'est-ce qu'une dimension ?

Une dimension est relative à une mesure. Cependant je considère qu'une dimension se réfère à l'échelle ou à la taille d'une structure plutôt qu'à une orientation dans l'espace. Ainsi il existe un nombre infini de dimensions scalaires, la plus petite et la plus pertinente pour définir notre relation à l'univers étant le voxel (sphère de Planck). 1055 voxels - la masse de l'univers - tiennent dans un seul proton. Comment est-ce possible ? Parce qu'il s'agit de la masse holographique, fondée sur l'information. L'univers est fractal. La nature holo-fractographique de l'univers signifie que tous les protons communiquent entre eux.

Ainsi l'énergie est communication, uniquement.

En pratique l'échelle à laquelle nous observons les objets en physique détermine réellement le niveau d'énergie qu'on peut observer

Ainsi si nous étirons une PSU (voxel) à l'échelle d'un proton, le proton lui-même s'étirera jusqu'à atteindre la taille d'une sphère dont le diamètre correspondrait à la distance entre notre soleil et Alpha du Centaure.

Ou encore :  depuis la Station spatiale internationale, on peut observer l'océan et voir une surface bleue et lisse. Mais si on s'approche suffisamment, on verra des vagues de 15 mètres d'une énergie folle. C'est ce qui se passe avec les fluctuations électromagnétiques à l'échelle quantique. Mais nous ne pouvons pas le voir

Auteur: Haramein Nassim

Info: *Hawking Stephen, A Brief History of Time, Ed.Flammarion, 2018, p.191, free translation **EINSTEIN Albert, The Connected Universe [vidéo], 2015

[ science spéculative ] [ mondes consensuels ] [ solipsismes grégaires ] [ vacuité apparente ] [ programme de langlands ]

 

Commentaires: 0

Ajouté à la BD par miguel

chimiosynthèse

Les cellules souterraines produisent de l'« oxygène sombre » sans lumière

Dans certaines profondes nappes souterraines, les cellules disposent d’une astuce chimique pour produire de l’oxygène qui pourrait alimenter des écosystèmes souterrains entiers.

(Photo - Dans un monde ensoleillé, la photosynthèse fournit l’oxygène indispensable à la vie. Au fond des profondeurs, la vie trouve un autre chemin.)

Les scientifiques se sont rendu compte que le sol et les roches sous nos pieds abritent une vaste biosphère dont le volume global est près de deux fois supérieur à celui de tous les océans de la planète. On sait peu de choses sur ces organismes souterrains, qui représentent l’essentiel de la masse microbienne de la planète et dont la diversité pourrait dépasser celle des formes de vie vivant en surface. Leur existence s’accompagne d’une grande énigme : les chercheurs ont souvent supposé que bon nombre de ces royaumes souterrains étaient des zones mortes pauvres en oxygène, habitées uniquement par des microbes primitifs qui maintiennent leur métabolisme au ralenti et se débrouillent grâce aux traces de nutriments. À mesure que ces ressources s’épuisent, pensait-on, l’environnement souterrain devient sans vie à mesure que l’on s’enfonce.

Dans une nouvelle recherche publiée le mois dernier dans Nature Communications , les chercheurs ont présenté des preuves qui remettent en question ces hypothèses. Dans des réservoirs d'eau souterraine situés à 200 mètres sous les champs de combustibles fossiles de l'Alberta, au Canada, ils ont découvert des microbes abondants qui produisent des quantités étonnamment importantes d'oxygène, même en l'absence de lumière. Les microbes génèrent et libèrent tellement de ce que les chercheurs appellent " l'oxygène noir " que c'est comme découvrir " le même quantité d'oxygène que celle  issue de la photosynthèse dans la forêt amazonienne ", a déclaré Karen Lloyd , microbiologiste souterrain à l'Université du Tennessee qui n'était pas partie de l’étude. La quantité de gaz diffusé hors des cellules est si grande qu’elle semble créer des conditions favorables à une vie dépendante de l’oxygène dans les eaux souterraines et les strates environnantes.

"Il s'agit d'une étude historique", a déclaré Barbara Sherwood Lollar , géochimiste à l'Université de Toronto qui n'a pas participé aux travaux. Les recherches antérieures ont souvent porté sur les mécanismes susceptibles de produire de l'hydrogène et d'autres molécules vitales pour la vie souterraine, mais cette création de molécules contenant de l'oxygène a été largement négligée car ces molécules sont très rapidement consommées dans l'environnement souterrain. Jusqu’à présent, " aucune étude n’a rassemblé tout cela comme celle-ci ", a-t-elle déclaré.

La nouvelle étude a porté sur les aquifères profonds de la province canadienne de l’Alberta, qui possède des gisements souterrains si riches en goudron, en sables bitumineux et en hydrocarbures qu’elle a été surnommée " le Texas du Canada ". Parce que ses énormes industries d'élevage de bétail et d'agriculture dépendent fortement des eaux souterraines, le gouvernement provincial surveille activement l'acidité et la composition chimique de l'eau. Pourtant, personne n’avait étudié systématiquement la microbiologie des eaux souterraines.

Pour Emil Ruff , mener une telle enquête semblait être " une solution facile " en 2015 lorsqu'il a commencé son stage postdoctoral en microbiologie à l'Université de Calgary. Il ne savait pas que cette étude apparemment simple le mettrait à rude épreuve pendant les six prochaines années.

Profondeurs encombrées

Après avoir collecté l'eau souterraine de 95 puits à travers l'Alberta, Ruff et ses collègues ont commencé à faire de la microscopie de base : ils ont coloré des cellules microbiennes dans des échantillons d'eau souterraine avec un colorant à base d'acide nucléique et ont utilisé un microscope à fluorescence pour les compter. En radiodatant la matière organique présente dans les échantillons et en vérifiant les profondeurs auxquelles ils avaient été collectés, les chercheurs ont pu identifier l'âge des aquifères souterrains qu'ils exploitaient.

Une tendance dans les chiffres les intriguait. Habituellement, lors d'études sur les sédiments sous le fond marin, par exemple, les scientifiques constatent que le nombre de cellules microbiennes diminue avec la profondeur : les échantillons plus anciens et plus profonds ne peuvent pas abriter autant de vie car ils sont davantage privés des nutriments produits par les plantes photosynthétiques. et des algues près de la surface. Mais à la surprise de l'équipe de Ruff, les eaux souterraines plus anciennes et plus profondes contenaient plus de cellules que les eaux plus douces.

Les chercheurs ont ensuite commencé à identifier les microbes présents dans les échantillons, à l’aide d’outils moléculaires pour repérer leurs gènes marqueurs révélateurs. Beaucoup d’entre eux étaient des archées méthanogènes – des microbes simples et unicellulaires qui produisent du méthane après avoir consommé de l’hydrogène et du carbone suintant des roches ou de la matière organique en décomposition. De nombreuses bactéries se nourrissant du méthane ou des minéraux présents dans l’eau étaient également présentes.

Ce qui n'avait aucun sens, cependant, c'est que bon nombre de bactéries étaient des aérobies, des microbes qui ont besoin d'oxygène pour digérer le méthane et d'autres composés. Comment les aérobies pourraient-ils prospérer dans des eaux souterraines qui ne devraient pas contenir d’oxygène, puisque la photosynthèse est impossible ? Mais les analyses chimiques ont également révélé une grande quantité d’oxygène dissous dans les échantillons d’eau souterraine de 200 mètres de profondeur.

C'était du jamais vu. "On a sûrement foiré l'échantillon", fut la première réaction de Ruff.

Il a d’abord tenté de montrer que l’oxygène dissous dans les échantillons était le résultat d’une mauvaise manipulation. "C'est comme être Sherlock Holmes", a déclaré Ruff. " Vous essayez de trouver des preuves et des indications " pour réfuter vos hypothèses. Cependant, la teneur en oxygène dissous semblait constante sur des centaines d’échantillons. Une mauvaise manipulation ne pouvait pas l'expliquer.

Si l’oxygène dissous ne provenait pas d’une contamination, d’où venait-il ? Ruff s'est rendu compte qu'il près de quelque chose de grand, même si faire des affirmations controversées va à l'encontre de sa nature. Beaucoup de ses co-auteurs avaient également des doutes : cette découverte menaçait de briser les fondements de notre compréhension des écosystèmes souterrains.

Produire de l'oxygène pour tout le monde

En théorie, l’oxygène dissous dans les eaux souterraines pourrait provenir de plantes, de microbes ou de processus géologiques. Pour trouver la réponse, les chercheurs se sont tournés vers la spectrométrie de masse, une technique permettant de mesurer la masse des isotopes atomiques. En règle générale, les atomes d’oxygène provenant de sources géologiques sont plus lourds que l’oxygène provenant de sources biologiques. L’oxygène présent dans les eaux souterraines était léger, ce qui impliquait qu’il devait provenir d’une entité vivante. Les candidats les plus plausibles étaient les microbes.

Les chercheurs ont séquencé les génomes de l’ensemble de la communauté microbienne présente dans les eaux souterraines et ont repéré les voies et réactions biochimiques les plus susceptibles de produire de l’oxygène. Les réponses pointaient sans cesse vers une découverte faite il y a plus de dix ans par Marc Strous de l'Université de Calgary, auteur principal de la nouvelle étude et chef du laboratoire où travaillait Ruff.

Alors qu'il travaillait dans un laboratoire aux Pays-Bas à la fin des années 2000, Strous avait remarqué qu'un type de bactérie se nourrissant de méthane, souvent présente dans les sédiments des lacs et les boues d'épuration, avait un mode de vie étrange. Au lieu d'absorber l'oxygène de son environnement comme les autres aérobies, ces bactéries créent leur propre oxygène en utilisant des enzymes pour décomposer les composés solubles appelés nitrites (qui contiennent un groupe chimique composé d'azote et de deux atomes d'oxygène). Les bactéries utilisent l’oxygène auto-généré pour transformer le méthane en énergie.

Lorsque les microbes décomposent les composés de cette façon, on parle de dismutation. Jusqu’à présent, on pensait que cette méthode de production d’oxygène était rare dans la nature. Des expériences récentes en laboratoire impliquant des communautés microbiennes artificielles ont cependant révélé que l'oxygène produit par la dismutation peut s'échapper des cellules et se répandre dans le milieu environnant au profit d'autres organismes dépendants de l'oxygène, dans une sorte de processus symbiotique. Ruff pense que cela pourrait permettre à des communautés entières de microbes aérobies de prospérer dans les eaux souterraines, et potentiellement également dans les sols environnants.

Chimie pour la vie ailleurs

Cette découverte comble une lacune cruciale dans notre compréhension de l’évolution de l’immense biosphère souterraine et de la manière dont la dismutation contribue au cycle des composés se déplaçant dans l’environnement mondial. La simple possibilité que de l'oxygène soit présent dans les eaux souterraines " change notre compréhension du passé, du présent et de l'avenir du sous-sol ", a déclaré Ruff, qui est maintenant scientifique adjoint au Laboratoire de biologie marine de Woods Hole, Massachusetts.

Comprendre ce qui vit dans le sous-sol de notre planète est également " crucial pour transposer ces connaissances ailleurs ", a déclaré Sherwood Lollar. Le sol de Mars, par exemple, contient des composés perchlorates que certains microbes terrestres peuvent transformer en chlorure et en oxygène. Europe, la lune de Jupiter, possède un océan profond et gelé ; la lumière du soleil ne peut pas y pénétrer, mais l'oxygène pourrait potentiellement y être produit par dismutation microbienne au lieu de la photosynthèse. Les scientifiques ont observé des panaches de vapeur d’eau jaillissant de la surface d’Encelade, l’une des lunes de Saturne. Les panaches proviennent probablement d’un océan souterrain d’eau liquide. Si un jour nous trouvons de la vie sur d’autres mondes comme ceux-là, elle pourrait emprunter des voies de dismutation pour survivre.

Quelle que soit l'importance de la dismutation ailleurs dans l'univers, Lloyd est étonné de voir à quel point les nouvelles découvertes défient les idées préconçues sur les besoins de la vie et par l'ignorance scientifique qu'elles révèlent sur l'une des plus grandes biosphères de la planète. " C'est comme si nous avions toujours eu un œuf sur le visage ", a-t-elle déclaré.

Auteur: Internet

Info: https://www.quantamagazine.org/, Saugat Bolakhé, juillet 2023

[ perspectives extraterrestres ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste