Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 44
Temps de recherche: 0.0534s

singularité paramétrées

L’ANONYMAT DIGITAL N’EXISTE PAS, AUTANT LE SAVOIR UNE BONNE FOIS POUR TOUTES

Toutes les traces que nous générons, toutes les données nous concernant, que nous communiquons d’une manière ou d’une autre, même les plus anonymes et les plus incomplètes, toutes ces informations permettent… de nous identifier avec une quasi-certitude! Telle est la conclusion d’une recherche menée par Luc Rocher, aspirant FNRS au pôle en ingénierie mathématique de l’UClouvain.

Le doctorant a travaillé avec un spécialiste du domaine, le Pr Yves-Alexandre de Montjoye, désormais professeur assistant, responsable du Computational Privacy Group à l’Imperial College de Londres.

Les deux chercheurs, accompagnés par Julien Hendrickx (Icteam/UCLouvain) ont élaboré un algorithme qui permet d’estimer, avec grande précision, si des données anonymes, mais " réidentifiées ", appartiennent bien à une même personne ou non. L’algorithme évalue la probabilité pour une combinaison de caractéristiques connues d’être suffisamment précise pour décrire un seul individu parmi plusieurs milliards de personnes.

Une réidentification à 99,98%

En utilisant cette méthode, les chercheurs de l’UCLouvain et de l’Imperial College London ont montré que 99.98% des Américains seraient correctement réidentifiés dans n’importe quelle base de données en utilisant 15 attributs démographiques, avec des chiffres similaires à travers le monde (16 attributs en ajoutant la nationalité).

" Beaucoup de personnes vivant à New York sont des hommes et ont la trentaine. Parmi elles, beaucoup moins sont également nées le 5 janvier, conduisent une voiture de sport rouge, ont deux enfants et un chien ", précise Luc Rocher, dans un communiqué de l’UCLouvain. " Des informations plutôt standards, que les entreprises demandent régulièrement. Et qui permettent de réidentifier les individus ".

Après avoir appris quelles caractéristiques rendent les individus uniques, les algorithmes des chercheurs génèrent des populations synthétiques pour estimer si un individu peut se démarquer parmi des milliards de personnes.

" En Belgique, depuis 2017, certaines données médicales collectées par des hôpitaux sont revendues de manière anonyme. Le sont-elles vraiment ? C’est là tout l’intérêt du modèle développé par les chercheurs de l’UCLouvain et du Imperial College London, puisqu’il permet désormais de vérifier la réalité, ou non, de cet anonymat ", estime l’UCLouvain.

Tout le monde recueille des données

Voici un peu plus d’un an, l’ingénieur civil Yves-Alexandre de Montjoye, qui jongle avec les mathématiques appliquées et la protection de la vie privée avait déjà indiqué à Bruxelles, lors d’une conférence " Science & Cocktails ", qu’au départ de quelques bribes de données, il était possible d’identifier avec quasi certitude un individu.

À quoi peuvent servir les données d’un téléphone portable ? Comment utiliser en toute sécurité les données volumineuses tout en allant de l’avant ? Ces questions étaient au centre de cette rencontre avec un large public.

" Nous vivons à une époque où l’information sur la plupart de nos mouvements et de nos actions est recueillie et stockée en temps réel. Tout le monde recueille des données sur vous : vos recherches sur Google, vos commandes de nourriture en ligne, vos lieux de vacances et les profils d’autres personnes que vous consultez sur Facebook. Et la disponibilité d’un téléphone mobile à grande échelle, d’une carte de crédit, d’un historique de navigation, etc., augmente considérablement notre capacité à comprendre et potentiellement affecter le comportement des individus et des collectifs.

Toutefois, l’utilisation de ces données soulève des préoccupations légitimes en matière de protection de la vie privée. Lors de cet événement, Yves-Alexandre de Montjoye a expliqué comment les mécanismes traditionnels de protection des données ne parviennent pas à protéger la vie privée des personnes à l’ère des grandes données. Et il explique comment des informations sensibles peuvent souvent être déduites de données apparemment inoffensives.

Les mots de passe et la cryptographie n’y changent rien

Et pour celles et ceux qui pensent qu’avec quelques bons mots de passe et autres outils de cryptographie, il est possible de protéger durablement ses données… Mieux vaut tout de suite faire son deuil de cette idée.

" Qu’il s’agisse de messages, de photos de vacances ou de tout autre type d’informations personnelles transmises ou stockées sur internet: ces données sont absolument transparentes. Ou du moins, elles le seront dans un proche avenir ", martèle le scientifique québécois Gilles Brassard, spécialiste de la cryptographie quantique.

De passage à Bruxelles en début d’année dans le cadre de la chaire du Québec à l’Académie royale des Sciences, ce professeur au Département d’informatique et de recherche opérationnelle de l’Université de Montréal disait: " rien de ce que vous confiez en ligne n’est sûr. Ou plus exactement, rien de ce que vous avez confié ou transmis jusqu’à présent, et ce depuis les débuts de l’internet, n’est confidentiel "…

Auteur: Internet

Info: Daily mail, 24 Jjuily 2019, Christian Du Brulle

[ profils numériques ] [ éthique des métadonnées ]

 

Commentaires: 0

Ajouté à la BD par miguel

recherche fondamentale

Personne ne prenait au sérieux les expériences quantiques de John F. Clauser. 50 ans plus tard, il reçoit un prix Nobel.

Le 4 octobre, John F. Clauser, 80 ans, s'est réveillé dans sa maison californienne pour apprendre qu'il avait reçu le prix Nobel de physique. Il le recevra lors d'une cérémonie à Stockholm, en Suède, le 10 décembre, avec Anton Zeilinger et Alain Aspect, pour leurs travaux sur l'intrication quantique. 

Un moment de fête pour Clauser, dont les expériences révolutionnaires sur les particules de lumière ont contribué à prouver des éléments clés de la mécanique quantique.

"Tout le monde veut gagner un prix Nobel", a déclaré M. Clauser. "Je suis très heureux."

Mais son parcours jusqu'à l'obtention du plus grand prix scientifique n'a pas toujours été simple. 

Dans les années 1960, Clauser était étudiant en physique à l'université Columbia. Par hasard, il découvrit à la bibliothèque de l'université un article qui allait façonner sa carrière et l'amener à poursuivre les travaux expérimentaux qui lui ont valu le prix Nobel.

L'article, écrit par le physicien irlandais John Stewart Bell et publié dans la revue Physics en 1964, se demandait si la mécanique quantique donnait ou non une description complète de la réalité. Le phénomène d'intrication quantique constituant le cœur de la question.

L'intrication quantique se produit lorsque deux ou plusieurs particules sont liées d'une certaine manière, et quelle que soit la distance qui les sépare dans l'espace, leurs états restent liés. 

Par exemple, imaginez une particule A qui s'envole dans une direction et une particule B dans l'autre. Si les deux particules sont intriquées - ce qui signifie qu'elles partagent un état quantique commun - une mesure de la particule A déterminera immédiatement le résultat de la mesure de la particule B. Peu importe que les particules soient distantes de quelques mètres ou de plusieurs années-lumière - leur liaison à longue distance est instantanée. 

Cette possibilité avait été rejetée par Albert Einstein et ses collègues dans les années 1930. Au lieu de cela, ils soutenaient qu'il existe un "élément de réalité" qui n'est pas pris en compte par la mécanique quantique. 

Dans son article de 1964, Bell soutenait qu'il était possible de tester expérimentalement si la mécanique quantique échouait à décrire de tels éléments de la réalité. Il appelait ces éléments non pris en compte des "variables cachées".

Bell pensait en particulier à des variables locales. Ce qui signifie qu'elles n'affectent la configuration physique que dans leur voisinage immédiat. Comme l'explique Clauser, "si vous placez des éléments localement dans une boîte et effectuez une mesure dans une autre boîte très éloignée, les choix de paramètres expérimentaux effectués dans une boîte ne peuvent pas affecter les résultats expérimentaux dans l'autre boîte, et vice versa."

Clauser décida de tester la proposition de Bell. Mais lorsqu'il voulut faire l'expérience, son superviseur l'exhorta à reconsidérer sa décision. 

"Le plus difficile au départ a été d'obtenir l'opportunité", se souvient Clauser. "Tout le monde me disait que ce n'était pas possible, donc à quoi bon !".

Le laboratoire quantique 

En 1972, Clauser a finalement eu l'occasion de tester la proposition de Bell alors qu'il occupait un poste postdoctoral au Lawrence Berkeley National Laboratory en Californie. Il s'associa à un étudiant en doctorat, Stuart Freedman. Ensemble, ils mirent sur pied un laboratoire rempli d'équipement optique. 

"Personne n'avait fait cela auparavant", a déclaré Clauser. "Nous n'avions pas d'argent pour faire quoi que ce soit. Nous avons dû tout construire à partir de rien. Je me suis sali les mains, ai été immergé dans l'huile, il y avait beaucoup de fils et j'ai construit beaucoup d'électronique."

Clauser et Freedman ont réussi à créer des photons intriqués en manipulant des atomes de calcium. Les particules de lumière, ou photons, s'envolaient dans des filtres polarisants que Clauser et Freedman pouvaient faire tourner les uns par rapport aux autres. 

La mécanique quantique prédit qu'une plus grande quantité de photons passerait simultanément les filtres que si la polarisation des photons était déterminée par des variables locales et cachées.

L'expérience de Clauser et Freedman mis en évidence que les prédictions de la mécanique quantique étaient correctes. "Nous considérons ces résultats comme des preuves solides contre les théories de variables cachées locales", ont-ils écrit en 1972 dans Physical Review Letters.

Des débuts difficiles

Les résultats de Clauser et Freedman furent confirmés par d'autres expériences menées par Alain Aspect et Anton Zeilinger. 

"Mes travaux ont eu lieu dans les années 70, ceux d'Aspect dans les années 80 et ceux de Zeilinger dans les années 90", a déclaré Clauser. "Nous avons travaillé de manière séquentielle pour améliorer le domaine".

Mais l'impact de l'expérience révolutionnaire de Clauser n'a pas été reconnu immédiatement.

"Les choses étaient difficiles", se souvient Clauser. "Tout le monde disait : "Belle expérience, mais vous devriez peut-être sortir et mesurer des chiffres et arrêter de perdre du temps et de l'argent et commencer à faire de la vraie physique"."

Il a fallu attendre 50 ans pour que Clauser reçoive le prix Nobel pour son travail expérimental. Son collègue, Stuart Freedman, est décédé en 2012. 

"Mes associés sont morts depuis longtemps. Mon seul titre de gloire est d'avoir vécu assez longtemps". a déclaré Clauser

Lorsqu'on lui a demandé s'il avait des conseils à donner aux jeunes chercheurs compte tenu de sa propre difficulté initiale, Clauser a répondu : "Si vous prouvez quelque chose que tout le monde pense vrai, et que vous êtes le premier à le faire, vous ne serez probablement pas reconnu avant 50 ans. C'est la mauvaise nouvelle. La bonne, c'est que j'ai eu beaucoup de plaisir à faire ce travail." 


Auteur: Internet

Info: https://www.livescience.com, Jonas Enande, 9 déc 2022

[ agrément moteur ] [ délectation ] [ observateur dualisant ]

 

Commentaires: 0

Ajouté à la BD par miguel

prospective technologique

9 Tendances de l'intelligence artificielle que vous devriez surveiller en 2019

1) Les puces activées par l'intelligence artificielle seront généralisées
Contrairement à d'autres technologies et outils logiciels, l'IA dépend fortement de processeurs spécialisés. Pour répondre aux exigences complexes de l'IA, les fabricants de puces créeront des puces spécialisées capables d'exécuter des applications compatibles avec l'IA.
Même les géants de la technologie comme Google, Facebook et Amazon dépenseront plus d'argent pour ces puces spécialisées. Ces puces seraient utilisées à des fins comme le traitement du langage naturel, la vision par ordinateur et la reconnaissance vocale.

2) L'IA et l'IdO (Internet des objets) se rencontrent
2019 sera l'année de la convergence des différentes technologies avec l'IA. L'IdO se joindra à l'IA sur la couche informatique de pointe. L'IdO industriel exploitera la puissance de l'IA pour l'analyse des causes profondes, la maintenance prédictive des machines et la détection automatique des problèmes.
Nous verrons la montée de l'IA distribuée en 2019. Le renseignement sera décentralisé et situé plus près des biens et des dispositifs qui effectuent les vérifications de routine. Des modèles d'apprentissage machine hautement sophistiqués, alimentés par des réseaux neuronaux, seront optimisés pour fonctionner à la fine pointe de la technologie.

3) Dites "Bonjour" à AutoML.
L'une des plus grandes tendances qui domineront l'industrie de l'IA en 2019 sera l'apprentissage automatique automatisé (AutoML). Grâce à ces capacités les développeurs seront en mesure de modifier les modèles d'apprentissage machine et de créer de nouveaux modèles prêts à relever les défis futurs de l'IA.
AutoML (Cloud AutoMLB, modèles de machine learning personnalisés de haute qualité) trouvera le juste milieu entre les API cognitives et les plates-formes d'apprentissage sur mesure. Le plus grand avantage de l'apprentissage automatique sera d'offrir aux développeurs les options de personnalisation qu'ils exigent sans les forcer à passer par un flux de travail complexe. Lorsque vous combinez les données avec la portabilité, AutoML peut vous donner la flexibilité que vous ne trouverez pas avec d'autres technologies AI.

4) Bienvenue chez AIOps (intelligence artificielle pour les opérations informatiques)
Lorsque l'intelligence artificielle est appliquée à la façon dont nous développons les applications, elle transforme la façon dont nous gérions l'infrastructure. DevOps sera remplacé par AIOps et permettra au personnel de votre service informatique d'effectuer une analyse précise des causes profondes. De plus, cela vous permettra de trouver facilement des idées et des modèles utiles à partir d'un vaste ensemble de données en un rien de temps. Les grandes entreprises et les fournisseurs de cloud computing bénéficieront de la convergence de DevOps avec AI.

5) Intégration du réseau neuronal
L'un des plus grands défis auxquels les développeurs d'IA seront confrontés lors du développement de modèles de réseaux neuronaux sera de choisir le meilleur framework. Mais, avec des douzaines d'outils d'IA disponibles sur le marché, choisir le meilleur outil d'IA pourrait ne pas être aussi facile qu'avant. Le manque d'intégration et de compatibilité entre les différentes boîtes à outils des réseaux de neurones entrave l'adoption de l'IA. Des géants technologiques tels que Microsoft et Facebook travaillent déjà au développement d'un réseau neuronal ouvert (ONNX). Cela permettra aux développeurs de réutiliser les modèles de réseaux neuronaux sur plusieurs frameworks.

6) Les systèmes d'IA spécialisés deviennent une réalité.
La demande de systèmes spécialisés augmentera de façon exponentielle en 2019. Les organisations ont peu de données à leur disposition, mais ce qu'elles veulent, ce sont des données spécialisées.
Cela obligera les entreprises à se doter d'outils qui peuvent les aider à produire des données d'IA de grande qualité à l'interne. En 2019, l'accent sera mis sur la qualité des données plutôt que sur la quantité. Cela jettera les bases d'une IA qui pourra fonctionner dans des situations réelles. Les entreprises se tourneront vers des fournisseurs de solutions d'IA spécialisés qui ont accès à des sources de données clés et qui pourraient les aider à donner du sens à leurs données non structurées.

7) Les compétences en IA détermineront votre destin.
Même si l'IA a transformé toutes les industries auxquelles vous pouvez penser, il y a une pénurie de talents avec des compétences en IA. Pat Calhoun, PDG d'Espressive a déclaré : " La plupart des organisations souhaitent intégrer l'IA dans leur transformation numérique, mais n'ont pas les développeurs, les experts en IA et les linguistes pour développer leurs propres solutions ou même former les moteurs des solutions préconçues pour tenir leurs promesses ".
Rahul Kashyap, PDG d'Awake Security, ajoute : "Avec autant de solutions'AI-powered' disponibles pour répondre à une myriade de préoccupations commerciales, il est temps que les entreprises deviennent plus intelligentes sur ce qui se passe dans la 'boîte noire' de leurs solutions AI". La façon dont les algorithmes d'IA sont formés, structurés ou informés peut conduire à des différences significatives dans les résultats, poursuit-il. La bonne équation pour une entreprise ne sera pas la bonne pour une autre."

8) L'IA tombera dans de mauvaises mains
Tout comme une pièce de monnaie à deux faces, l'IA a un côté positif et un côté négatif. Les professionnels de la sécurité informatique utiliseront l'intelligence artificielle pour détecter rapidement les activités malveillantes. Vous pouvez réduire les faux positifs de 90 % à l'aide d'algorithmes de réponse et d'apprentissage machine pilotés par l'intelligence artificielle.
L'intelligence artificielle tombera entre de mauvaises mains et les cybercriminels aux desseins malveillants en abuseront pour réaliser leurs objectifs. Avec l'automatisation, les armées de cyberattaquants peuvent lancer des attaques mortelles avec plus de succès. Cela obligera les entreprises à combattre le feu par le feu et à investir dans des solutions de sécurité alimentées par l'IA capables de les protéger contre de telles attaques.

9) Transformation numérique alimentée par l'IA
En 2019, l'IA sera partout. Des applications Web aux systèmes de soins de santé, des compagnies aériennes aux systèmes de réservation d'hôtels et au-delà, nous verrons des nuances de l'IA partout et elle sera à l'avant-garde de la transformation numérique.
Tung Bui, président du département informatique et professeur à l'Université d'Hawaii a déclaré : "Contrairement à la plupart des prédictions et des discussions sur la façon dont les véhicules et les robots autonomes finiront par affecter le marché du travail - ceci est vrai mais prendra du temps pour des raisons institutionnelles, politiques et sociales - je soutiens que la tendance principale en IA sera une accélération dans la transformation numérique, rendant plus intelligent les systèmes commerciaux existants".

Auteur: Internet

Info: zero hedge, 1 mars 2019

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

neurologie

Construire de meilleures cartes mentales

Des techniques innovantes d'analyse de la fonction et de la structure cérébrales révèlent des détails remarquables de l'architecture neuronale, offrant ainsi de nouvelles pistes pour le diagnostic et le traitement des maladies cérébrales.

Bien que le cerveau humain soit un objet de fascination scientifique depuis des siècles, nous ne faisons qu'effleurer la surface en termes de compréhension de sa fonctionnalité et de sa complexité. Nous connaissons bien les zones fonctionnelles générales du cerveau, mais la manière dont ce réseau interconnecté de neurones traite et transmet les informations pour donner naissance à la pensée et à la mémoire reste un domaine de recherche très actif.

L'étude du fonctionnement du cerveau au niveau physiologique fondamental est l'un des domaines de recherche les plus difficiles, nécessitant de nouvelles méthodes d'expérimentation et de détection de l'activité cérébrale à l'échelle neuronale. Les progrès récents des techniques d'imagerie cérébrale et la compréhension de la structure fine du cerveau ont permis d'explorer les fonctions cérébrales d'une nouvelle manière. Ces découvertes ont des répercussions sur la santé du cerveau et l'intelligence artificielle.

Cerveau/ESPRITS et au-delà

Les projets japonais Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) et Strategic International Brain Science Research Promotion Program (Brain/MINDS Beyond), qui font partie de plusieurs projets nationaux de recherche à grande échelle sur le cerveau lancés ces dernières années dans le monde entier, visent à étudier les circuits neuronaux qui sous-tendent les fonctions cérébrales supérieures. Il s'agit d'initiatives nationales auxquelles participent des dizaines d'institutions, chacune spécialisée dans un domaine particulier de l'étude du cerveau.

L'étude des primates non humains à l'Université de Tokyo et à l'Institut national des sciences et technologies quantiques (QST) est un domaine qui apporte de nouvelles connaissances sur l'architecture du cerveau.

"Lorsqu'il s'agit de comprendre le cerveau humain et les troubles qui peuvent l'affecter, seuls les autres primates partagent nos fonctions supérieures, telles qu'un cortex visuel hiérarchisé et un cortex préfrontal hautement développé responsable de la fonction exécutive et de la prise de décision", explique Takafumi Minamimoto, qui dirige le groupe des systèmes et circuits neuronaux du département d'imagerie cérébrale fonctionnelle de l'Institut national des sciences et technologies quantiques.

"La recherche sur le cerveau des primates est difficile et coûteuse, mais indispensable. Elle nous permet de mieux comprendre le fonctionnement du cerveau, ce qui peut nous aider à comprendre et à traiter les troubles cérébraux chez l'homme".

L'équipe de Minamimoto se concentre sur le développement de méthodes plus précises d'analyse des fonctions cérébrales. Leur plus grande réussite a été la mise au point d'une méthode chimiogénétique pour désactiver l'activité cérébrale au niveau d'un neurone unique, combinée à la tomographie par émission de positrons (TEP) - une technique d'imagerie pour des molécules spécifiques. Cela a permis de visualiser non seulement l'activité des neurones des primates, mais aussi leur connexion avec d'autres zones du cerveau.

"Avec la chimiogénétique, nous injectons une solution virale inoffensive dans une zone spécifique du cerveau pour modifier génétiquement les neurones afin de les rendre sensibles à un produit chimique suppresseur", explique Minamimoto. "Nous pouvons ensuite injecter le suppresseur afin d'éteindre les neurones modifiés pendant plusieurs heures".

L'équipe a récemment mis au point un produit chimique suppresseur 100 fois plus efficace, ce qui lui permet d'injecter de minuscules doses de ce suppresseur pour affecter sélectivement des groupes individuels de neurones et leurs connexions axonales. Ils ont utilisé cette technique pour réduire au silence des connexions spécifiques afin de découvrir les circuits responsables de la mémoire de travail et de la prise de décision.

Cette approche est également prometteuse pour le traitement des troubles cérébraux chez l'homme. Par exemple, comme modèle potentiel de traitement chez l'homme, le groupe a récemment rapporté que la chimiogénétique peut supprimer les crises d'épilepsie chez les macaques.

Le système visuel

Une autre équipe, située à l'université de Tokyo et dirigée par Kenichi Ohki, étudie la manière dont les informations visuelles sont traitées chez les primates, dont le cortex visuel est très développé et hiérarchisé. Les recherches du groupe sur les ouistitis utilisent une technique d'imagerie calcique à haute sensibilité qui permet de visualiser la façon dont des parties spécifiques du cerveau réagissent à différents stimuli.

"L'imagerie au calcium est une technique utilisée depuis longtemps pour observer le fonctionnement du cerveau chez les souris, mais elle n'était pas assez sensible pour visualiser des groupes discrets de neurones chez les primates avec la même qualité que chez les souris", explique M. Ohki. "En collaboration avec Tetsuo Yamamori du RIKEN, nous avons mis au point une méthode améliorée qui a augmenté de manière significative l'expression de la protéine fluorescente GCaMP6 dans le cerveau des primates, ce qui, combiné à l'imagerie à deux photons basée sur le laser, nous permet de visualiser l'activité des neurones avec une étonnante précision dans des détails.

Le système visuel représente plus de la moitié du cortex cérébral chez les primates et se constitue vie une hiérarchie élaborée d'étapes de traitement de l'information. Il existe des zones distinctes qui traitent les motifs et les angles, par exemple, et les recherches d'Ohki ont montré que les neurones se déclenchent selon des schémas coordonnés sensibles à ces différents stimuli, avec des fonctionnalités différentes au niveau cellulaire.

"L'une des conclusions fascinantes de nos travaux est que la hiérarchie du système visuel semble traiter le bruit dans une direction opposée à celle dont les réseaux neuronaux artificiels traitent généralement les stimuli sonores", explique Ohki. "Il serait intéressant de construire un réseau neuronal artificiel qui permette une telle méthode de traitement du bruit dans le système visuel des primates.

Le groupe de recherche d'Ohki étudie en détail la façon dont le bruit est traité dans ces connexions cortico-corticales, qui semblent fondamentales pour le fonctionnement du cerveau chez les primates. Ces connexions peuvent également expliquer la plasticité du cerveau et la façon dont différentes zones peuvent être enrôlées pour le traitement de l'information si la connexion primaire est entravée.

"Par exemple, nous avons découvert que le développement du système visuel se produit chez le nouveau-né à la suite d'une activité ondulatoire à travers la rétine, qui stimule les connexions thalamo-corticales qui construisent cette structure hiérarchique", explique Ohki4.

Sans ces stimuli, les connexions ne peuvent pas se développer du cortex visuel primaire vers le cortex visuel supérieur. Par ailleurs, si ces connexions ne se développent pas, on peut s'attendre à ce que des connexions alternatives soient établies à partir d'autres zones, telles que le cortex somatosensoriel, vers le cortex visuel supérieur. Ohki suggère que cela pourrait également expliquer comment les patients aveugles utilisent le cortex visuel pour "lire" le braille, bien qu'il s'agisse d'une fonction tactile.

"Les résultats de nos études sur les primates fournissent des indications précieuses sur les troubles neuropsychiatriques humains, en particulier ceux qui sont liés à une mauvaise communication dans le cerveau. Nos techniques seront utiles pour orienter la recherche spécifique et transposer les connaissances des primates à l'homme", déclare M. Minamimoto.

"Nous espérons partager ces connaissances et cette technologie avec le monde entier et collaborer avec d'autres groupes pour faire avancer ce domaine important de la recherche sur le cerveau.

Auteur: Internet

Info: https://www.nature.com, article publicitaire, Réf : Nagai, Y. et al. Nat. Comm. 7, 13605 (2016), Neuro. 23, 1157-1167 (2020), Miyakawa, N. et al. Nat 608, 578-585 (2022). Comm. 14, 971 (2023)

[ visualisation ] [ primatocentrisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

femmes-hommes

L'esprit pourrait affecter les machines selon les sexes
Pendant 26 ans, des conversations étranges ont eu lieu dans un laboratoire du sous-sol de l'université de Princeton. On utilise des ordinateurs au rendement aléatoire et les expériences font se concentrer des participants sur le contrôle d'une ou de plusieurs machines. Après plusieurs million d'épreuves on peut détecter de petits signes "statistiquement significatifs" comme quoi les esprits semblent pouvoir agir sur les machines. Cependant les chercheurs font attention à ne pas annoncer que les esprits ont cet effet ou qu'ils connaissent la nature de cette communication.
Les services secrets, la défense et les agences de l'espace ont également montré de l'intérêt pour cette recherche. Le premier support que les chercheurs ont employé était un bruit aléatoire à haute fréquence. Les chercheurs ont branché des circuits au dispositif pour traduire ce bruit en code binaire. Chaque participant, après un protocole pré-enregistré, devait développer une intention dans son esprit pour faire que le générateur ait plus ou moins de zéros. Les effets furent faibles mais mesurables. Depuis les mêmes résultats se sont reproduits avec d'autres expériences, telles qu'en impliquant un pendule relié à un mécanisme commandé par ordinateur. Quand la machine libère le pendule pour qu'il se balance, les participants se concentrent sur modifier le taux avec lequel le pendule ralentit. D'autres expériences impliquent une machine à tambour que les participants essayent de commander et une machine de cascade mécanique dans laquelle un dispositif laisse tomber des milliers de petites boules noires de polystyrène, le but est que ces boules tombent dans une rangée de fentes. Les participants essayent alors de les diriger pour les faire tomber d'un côté de ou de l'autre. Au final les participants ont pu "diriger " un bit sur 10.000 issus des données mesurées dans tous les essais. Ce qui pourrait sembler petit, mais le doyen Radin, scientifique à l'institut des sciences de Noetic et ancien chercheur aux laboratoires Bell et de AT&T, dit que c'était prévisible. Radin compare l'état actuel de cette recherche avec celui où les scientifiques commencèrent à étudier l'électricité statique et ne surent pas, au début, que les niveaux d'humidité pouvaient affecter la quantité de l'électricité statique produite.
Les chercheurs ne comprennent pas grand-chose sur ce phénomène, mais ils savent que les résultats ne sont pas affectés par la distance ou le temps. Les participants, par exemple, peuvent avoir le même impact sur une machine de l'extérieur de la salle ou d'ailleurs dans le pays. Ils peuvent également avoir le même effet s'ils ont une intention avant qu'elle soit allumée ou même s'ils lisent un livre ou écoutent la musique tandis alors que la machine fonctionne. Les conditions environnementales - telles que la température ambiante - n'importent pas, mais l'humeur et l'attitude des gens qui contrôlent l'appareil oui. Cela aide, si par exemple le participant croit qu'il peut affecter la machine. Jahn dit que la résonance avec la machine est un autre facteur important. Il la compare à ce qui se produit quand un grand musicien semble faire un avec son violon. Le sexe importe aussi. Les hommes tendent à obtenir des résultats assortis à leurs intentions, bien que le degré de l'effet soit souvent petit. Les femmes tendent à obtenir un plus grand effet, mais pas nécessairement celui qu'elles prévoient. Par exemple, elles voudraient diriger des boules dans la machine aléatoire de cascade pour une chute vers la gauche, mais elles tombent plutôt vers la droite. Les résultats qui sont également plus grands si un mâle et une femelle travaillent ensemble, les couple de même sexe ne produisent aucun résultat significatif. Les couple de sexe opposé qui sont impliqué de manière romantique donnent de bien meilleurs résultats - souvent sept fois plus grands que quand les mêmes individus sont examinés seuls.
Brenda Dunne, psychologue développementaliste et directrice du laboratoire dit que dans ces cas les résultats reflètent souvent le styles des deux modèles de sexes. Les effets sont plus grands, en accord avec ce que seule la femelle tendrait à produire, et plus ciblés, en accord avec ce que seul le mâle produirait.
"C'est presque comme si il y avait deux modèles ou deux variables et qu'elles étaient complémentaires" dit Dunne." le modèle masculin est associé à l'intention, le modèle féminin est plus associé à la résonance."
Que signifie tout ceci ? Personne ne le sait. Radin et Jahn indiquent que ce n'est pas parce qu'il y a une corrélation entre l'intention du participant et les actions de la machine que cela signifie qu'un cause l'autre. " Il y a une inférence (qui les deux sont connexes) mais aucune évidence directe" dit Radin qui indique que le phénomène pourrait être semblable à l'indétermination d'Heisenberg dans lequel deux particules séparées l'une de l'autre semblent être reliées sans qu'on sache comment... sous quelle forme de communication.
"la différence est nous ne parlons pas en envoyant des signaux du cerveau à la machine par un circuit" dit Jahn au sujet de ces essais. "quoi qu'il se passe, se passe par un itinéraire que nous ne connaissons pas. Nous savons seulement quelque chose au sujet des conditions qui la favorisent.." Bien que les effets produits dans ces expériences soient faibles, ils ont toujours été répétés, cependant pas toujours de façon prévisible. Un participant peut avoir un effet un jour et répéter l'expérience le jour suivant sans résultats.
Le laboratoire a beaucoup de détracteurs qui pointent sur des défauts de la méthode et écartent ce travail le traitant de divertissement, comparant ses résultats aux automobilistes qui souhaitent qu'une lumière rouge passe au vert et pensent que le changement de lumière est causé par eux.
Stanley Jeffers, professeur de physique à l'université d'York à Toronto, a tenté des expériences semblables, mais il ne put pas répliquer les résultats. Les chercheurs de deux laboratoires allemands, fonctionnant en coopération avec Pegg, ne purent également pas répliquer ces résultats à l'aide du même équipement utilisé par Pegg.
"Si leurs annonces veulent être prises au sérieux par la science elles doivent être répliquées" dit Jeffers. "Si elles ne peuvent pas être répliquées, cela ne signifie pas qu'elles sont fausses, mais la science y perdra rapidement son intérêt."
Dunne, psychologue développementaliste dit que Pegg a répété ses propres expériences et a obtenu des résultats significatifs. Et ces méta-analyses - une douzaine - faites depuis les années 80 ont donné une base pour les résultats de Pegg dans les expériences faites par d'autres chercheurs. La Méta-analyse utilise de grands stocks de données à travers de beaucoup d'expériences et les combine statistiquement pour voir si les effets répètent la même combinaison. "Nous analysons les déviations statistiques par rapport à la chance au travers de cette batterie d'expériences" dit Jahn... "quand on fait assez de ces expériences, les effets analysés ont un poids statistique. Il n'y a aucun doute sur la validité de ces effets."
Radin, qui n'est pas affilié au Pegg, écarte les critiques qui disent que ce groupe ne pratique pas de science solide. "Ce domaine a reçu bien plus d'examen minutieux et critique que beaucoup d'autres, ordinaires... les personnes qui font ce genre de recherche sont bien conscientes du fait que leur recherche doit être faite au mieux. Le laboratoire de Pegg a pris les meilleurs principes de science rigoureuse et s'est appliqué a des questions extrêmement difficiles et a proposé quelques jolies réponses intéressantes."
Jahn pense que les critiques s'attendent à ce que les phénomènes suivent les règles habituelles de la cause et de l'effet. Au lieu de cela, il pense qu'ils appartiennent à la catégorie de ce que Karl Jung a appelé "des phénomènes acausal," qui incluent des choses comme la synchronicité. "Cela se joue par des règles plus compliquées, plus lunatiques, évasives... ... mais cela joue." dit Jahn
Jeffers est sceptique " cela ne peut se passer de deux manières - dire qu'on est des scientifiques honorables et avoir des affirmations pour un effet particulier dans des conditions contrôlées, et ensuite quand les résultats ne marchent pas, dire que les méthodes scientifiques rigoureuses ne s'appliquent pas." Mais Jahn dit que justement que puisque que les scientifiques ne peuvent pas expliquer ces phénomènes cela ne signifie pas qu'ils ne sont pas vrais. "si ces choses existent... je pense que notre société a le droit de demander à la science d'y faire attention et de fournir un certain outillage pour avoir affaire avec de manière constructive.

Auteur: Zetter Kim

Info: Juillet 2005, Fortean Times

[ mâles-femelles ] [ vus-scientifiquement ] [ parapsychologie ] [ femmes-hommes ]

 

Commentaires: 0

fric

Faut-il réduire la taille des établissements bancaires ? Une stricte séparation entre banque de dépôt et banque d'investissement est-elle nécessaire ? Qu'en est-il des relations entre les pouvoirs publics et les banques ?
La Lettre des Académies, une publication commune de l'Académie royale de Belgique, l'Académie royale de Médecine de Belgique, l'Académie royale de langue et littérature françaises de Belgique, The Royal Academies for Science and the Arts of Belgium et l'Union Académique internationale, me pose la question mise en titre. Ma réponse sera publiée dans le N° 31.
Une réponse a été offerte indirectement à ces questions d'actualité, le 6 mars 2013, par Eric Holder, l'Attorney General des États-Unis, l'équivalent de notre Ministre de la justice.
Le cadre de sa déclaration était une audition du Comité judiciaire du Sénat américain. Les questions posées visaient à comprendre pourquoi aucun dirigeant d'établissement bancaire n'avait été poursuivi à la suite des événements qui avaient conduit à l'effondrement du système financier international en septembre 2008, le fait étant patent que l'origine de ce séisme se trouve au sein-même du système bancaire américain, et plus particulièrement dans l'émission de titres adossés à des prêts immobiliers résidentiels de qualité médiocre, les fameux prêts "subprime".
Répondant au Sénateur Chuck Grassley (républicain de l'Iowa), qui l'interrogeait sur l'apathie du ministère de la Justice dans la recherche de coupables, Eric Holder déclaraot ceci :
"Je crains que la taille de certains de ces établissements ne soit devenue si grande qu'il est devenu difficile de les poursuivre en justice, parce que des indications nous parviennent qui si nous les poursuivions - si nous procédions à des inculpations - cela aurait un impact négatif sur l'économie nationale, voire même sur l'économie mondiale, et il me semble que ceci est la conséquence du fait que certains de ces établissements sont devenus trop importants [...] Ceci a une influence inhibitoire sur, ou impacte, notre capacité à prendre les mesures qui seraient selon moi les plus adéquates..."
Holder ne dit pas explicitement qu'il existe entre le secteur bancaire et le ministère de la Justice un rapport de force et qu'au sein de celui-ci, le ministère de la Justice est en position défavorable, mais c'est bien ainsi que ses propos furent interprétés par les sénateurs qui l'interrogeaient. C'est également la manière dont sa réponse fut rapportée par la presse unanime.
* * *
Lorsqu'il était devenu manifeste à l'automne 2008 que certaines banques étaient à ce point stratégiques que leur chute, comme celle de Lehman Brothers qui venait d'intervenir, entraînerait celle du secteur financier tout entier, l'expression "Too Big to Fail" se répandit : trop grosse pour faire défaut. Elle s'emploie toujours, en concurrence avec l'expression officielle de "banque systémique", en référence au risque systémique : la mise en péril du système financier dans son ensemble.
En février 2013, dans une tribune libre du Financial Times, Neil Barofsky, qui avait été l'Inspecteur-général du Troubled Asset Relief Programme (TARP), le programme de sauvetage du système financier américain, employa une nouvelle expression calquée sur la première : "Too Big to Jail", trop grosse pour être mise en prison.
S'il était donc apparu en 2008 que certains établissements bancaires étaient à ce point cruciaux que leur faillite se répercuterait sur l'ensemble du système financier, il était devenu évident en 2013, et c'est ce que les propos du ministre de la Justice américain confirmaient, que le rapport de force entre ces mêmes banques et le gouvernement était tel qu'elles disposaient du pouvoir de maintenir le statu quo. Les banques systémiques disposaient désormais du pouvoir de faire obstacle à ce qu'on les empêche de mettre en péril l'ensemble du système financier, et ce pouvoir, elles l'exerçaient.
Trois approches étaient envisageables vis-à-vis des banques systémiques :
1) les démanteler, jusqu'à ce que la taille des unités recomposées soit telle que leur défaut n'entraîne plus d'effet domino ;
2) décourager ou interdire celles de leurs activités qui génèrent du risque systémique, à savoir les paris sur les variations de prix (ce qu'on désigne habituellement du terme trop vague de "spéculation").
3) accroître les réserves par rapport à leur niveau d'avant-crise, en espérant que le calcul soit cette fois fait correctement.
À chaud, à l'automne 2008, les deux premières options uniquement étaient sérieusement prises en considération, la troisième était écartée du fait de sa touchante naïveté. Seule cette dernière pourtant serait adoptée en juillet 2011 avec les normes Bâle III, qui devraient être mises en vigueur entre 2016 et 2019, du moins si les efforts des lobbies qui cherchent aujourd'hui à les bloquer devaient échouer.
Dans une approche en termes de réserves, rien n'est fait - il faut le souligner - pour endiguer le risque systémique : on s'efforce seulement d'évaluer les pertes éventuelles. Bâle III ne distingue pas non plus les risques inévitables, dus aux impondérables d'un avenir incertain, et les risques encourus délibérément par les banques quand elles font des paris sur les variations de prix.
* * *
Dans trois cas récents, les efforts du secteur bancaire pour faire obstacle à ce qu'on l'empêche de mettre à l'avenir l'ensemble du système financier en péril, furent couronnés de succès.
Un tribunal à Washington invalidait le 29 septembre 2012 des mesures prises par la CFTC (Commodity Futures Trading Commission), le régulateur américain du marché des produits dérivés, règles qui auraient plafonné le volume des positions qu'un intervenant peut prendre sur le marché à terme des matières premières, afin qu'il ne puisse à lui seul le déséquilibrer. Le secteur s'était opposé à de telles mesures, noyant la commission sous un flot d'avis défavorables, s'assurant ensuite - grâce au parti républicain - que le budget de l'organe de contrôle prévu ne soit pas voté, assignant enfin la CFTC devant les tribunaux. Cette dernière stratégie s'avérerait payante.
On avait appris quelques jours auparavant, le 24 septembre 2012, que l'IOSCO (International Organisation of Securities Commissions), organisme fédérant les régulateurs nationaux sur le marché des matières premières, et à qui le G20 avait confié le soin de réguler le marché du pétrole, jetait l'éponge. Lors de la réunion qui venait de se tenir, les contreparties : l'Agence Internationale de l'énergie, l'OPEP (Organisation des pays exportateurs de pétrole) et les compagnies Total et Shell, avaient constitué un front du refus. Les compagnies pétrolières avaient affirmé qu'en cas de réglementation du secteur, elles cesseraient de communiquer à leurs organismes de supervision les données relatives aux prix pratiqués.
Le mois précédent, le 22 août 2012, alors que la SEC (Securities and Exchange Commission), le régulateur des marchés boursiers américains, avait mis au point un ensemble de mesures en vue d'empêcher que ne se reproduise un effondrement du marché des capitaux à court terme (money market), tel celui qui l'avait dévasté en septembre 2008, elle n'était pas parvenue à réunir une majorité en son sein, l'un des membres du comité - très lié au secteur - ayant refusé son aval.
Je concluais ainsi ma chronique dans le quotidien Le Monde, où je rapportais ces trois illustrations (°) :
"La finance dispose donc des moyens de neutraliser toute tentative de réduire la nocivité de ses pratiques. Elle s'est immunisée contre les efforts engagés par la communauté pour se protéger contre un nouvel effondrement, efforts motivés bien entendu par le souci de se prémunir contre les conséquences économiques et sociales d'une telle catastrophe. Toute mesure préventive d'un nouveau désastre étant systématiquement désamorcée, celui-ci devient inéluctable".
J'avais donné pour titre à ma chronique elle-même, une citation d'Arnold J. Toynbee : "Les civilisations ne meurent pas assassinées, elles se suicident".
Tous les efforts menés en vue d'une nouvelle régulation de la finance recourent à la même stratégie : le monde financier est consulté par les autorités, se tient ensuite une négociation visant à ce que se dégage un compromis entre les exigences des uns et des autres. La condition essentielle pour qu'une telle stratégie réussisse est que l'industrie financière s'identifie à l'intérêt général, qu'elle reconnaisse et promeuve la nécessité de garantir un cadre qui maintienne la pérennité des institutions financières sans affecter pour autant la bonne santé de l'économie. Cette condition-là n'est hélas pas remplie.
John Maynard Keynes écrivait en 1926 dans un essai consacré à "La fin du laisser-faire" : "Suggérer à la City de Londres une action sociale en vue du bien public est du même ordre d'idée que discuter L'origine des espèces avec un évêque il y a soixante ans". La remarque n'a rien perdu de son actualité, et notre tolérance, à nous citoyens, face à ce scandale, toujours aussi grande, suggérant que nous nous sommes faits une raison devant un rapport de force entre le secteur bancaire et nous qui semble destiné à nous demeurer éternellement défavorable.

Auteur: Jorion Paul

Info: 13 AOÛT 2013

[ société ] [ pouvoir ] [ profit ]

 

Commentaires: 0

strates biologiques

Les chemins aléatoires de l'évolution mènent à un même endroit

Une étude statistique massive suggère que le résultat final de l’évolution – la forme physique – est prévisible.

(Photo  : Différentes souches de levure cultivées dans des conditions identiques développent des mutations différentes, mais parviennent finalement à des limites évolutives similaires.)

Dans son laboratoire du quatrième étage de l'Université Harvard, Michael Desai a créé des centaines de mondes identiques afin d'observer l'évolution à l'œuvre. Chacun de ses environnements méticuleusement contrôlés abrite une souche distincte de levure de boulangerie. Toutes les 12 heures, les assistants robots de Desai arrachent la levure à la croissance la plus rapide de chaque monde – sélectionnant celle qui est la plus apte à vivre – et jettent le reste. Desai surveille ensuite les souches à mesure qu'elles évoluent au cours de 500 générations. Son expérience, que d'autres scientifiques considèrent comme d'une ampleur sans précédent, cherche à mieux comprendre une question qui préoccupe depuis longtemps les biologistes : si nous pouvions recommencer le monde, la vie évoluerait-elle de la même manière ?

De nombreux biologistes affirment que ce ne serait pas le cas et que des mutations fortuites au début du parcours évolutif d’une espèce influenceraient profondément son destin. "Si vous rejouez le déroulement du vivant, vous pourriez avoir une mutation initiale qui vous emmènera dans une direction totalement différente", a déclaré Desai, paraphrasant une idée avancée pour la première fois par le biologiste Stephen Jay Gould dans les années 1980.

Les cellules de levure de Desai remettent en question cette croyance. Selon les résultats publiés dans Science en juin, toutes les variétés de levures de Desai ont atteint à peu près le même point final d'évolution (tel que mesuré par leur capacité à se développer dans des conditions de laboratoire spécifiques), quel que soit le chemin génétique précis emprunté par chaque souche. C'est comme si 100 taxis de la ville de New York acceptaient d'emprunter des autoroutes distinctes dans une course vers l'océan Pacifique et que 50 heures plus tard, ils convergeaient tous vers la jetée de Santa Monica.

Les résultats suggèrent également un décalage entre l’évolution au niveau génétique et au niveau de l’organisme dans son ensemble. Les mutations génétiques se produisent pour la plupart de manière aléatoire, mais la somme de ces changements sans but crée d’une manière ou d’une autre un modèle prévisible. Cette distinction pourrait s’avérer précieuse, dans la mesure où de nombreuses recherches en génétique se sont concentrées sur l’impact des mutations dans des gènes individuels. Par exemple, les chercheurs se demandent souvent comment une seule mutation pourrait affecter la tolérance d’un microbe aux toxines ou le risque de maladie d’un humain. Mais si les découvertes de Desai s'avèrent valables pour d'autres organismes, elles pourraient suggérer qu'il est tout aussi important d'examiner comment un grand nombre de changements génétiques individuels fonctionnent de concert au fil du temps.

"En biologie évolutive, il existe une sorte de tension entre penser à chaque gène individuellement et la possibilité pour l'évolution de modifier l'organisme dans son ensemble", a déclaré Michael Travisano, biologiste à l'université du Minnesota. "Toute la biologie s'est concentrée sur l'importance des gènes individuels au cours des 30 dernières années, mais le grand message à retenir de cette étude est que ce n'est pas nécessairement important". 

La principale force de l’expérience de Desai réside dans sa taille sans précédent, qui a été qualifiée d’« audacieuse » par d’autres spécialistes du domaine. La conception de l'expérience est ancrée dans le parcours de son créateur ; Desai a suivi une formation de physicien et, depuis qu'il a lancé son laboratoire il y a quatre ans, il a appliqué une perspective statistique à la biologie. Il a imaginé des moyens d'utiliser des robots pour manipuler avec précision des centaines de lignées de levure afin de pouvoir mener des expériences évolutives à grande échelle de manière quantitative. Les scientifiques étudient depuis longtemps l’évolution génétique des microbes, mais jusqu’à récemment, il n’était possible d’examiner que quelques souches à la fois. L'équipe de Desai, en revanche, a analysé 640 lignées de levure qui avaient toutes évolué à partir d'une seule cellule parent. L'approche a permis à l'équipe d'analyser statistiquement l'évolution.

"C'est l'approche physicienne de l'évolution, réduisant tout aux conditions les plus simples possibles", a déclaré Joshua Plotkin, biologiste évolutionniste à l'Université de Pennsylvanie qui n'a pas participé à la recherche mais a travaillé avec l'un des auteurs. "Ce qui pourrait permettre de définir la part du hasard dans l'évolution, quelle est la part du point de départ et la part du bruit de mesure."

Le plan de Desai était de suivre les souches de levure à mesure qu'elles se développaient dans des conditions identiques, puis de comparer leurs niveaux de condition physique finaux, déterminés par la rapidité avec laquelle elles se développaient par rapport à leur souche ancestrale d'origine. L’équipe a utilisé des bras robotisés spécialement conçus pour transférer les colonies de levure vers une nouvelle maison toutes les 12 heures. Les colonies qui s’étaient le plus développées au cours de cette période passèrent au cycle suivant et le processus se répéta pendant 500 générations. Sergey Kryazhimskiy , chercheur postdoctoral dans le laboratoire de Desai, passait parfois la nuit dans le laboratoire, analysant l'aptitude de chacune des 640 souches à trois moments différents. Les chercheurs ont ensuite pu comparer la variation de la condition physique entre les souches et découvrir si les capacités initiales d'une souche affectaient sa position finale. Ils ont également séquencé les génomes de 104 souches pour déterminer si les mutations précoces modifiaient les performances finales.

Des études antérieures ont indiqué que de petits changements au début du parcours évolutif peuvent conduire à de grandes différences plus tard, une idée connue sous le nom de contingence historique. Des études d'évolution à long terme sur la bactérie E. coli, par exemple, ont montré que les microbes peuvent parfois évoluer pour manger un nouveau type d'aliment, mais que des changements aussi importants ne se produisent que lorsque certaines mutations habilitantes se produisent en premier. Ces mutations précoces n’ont pas d’effet important en elles-mêmes, mais elles jettent les bases nécessaires pour des mutations ultérieures qui en auront.

Mais en raison de la petite échelle de ces études, Desai ne savait pas clairement si ces cas constituaient l'exception ou la règle. "Obtenez-vous généralement de grandes différences dans le potentiel évolutif qui surviennent au cours du cours naturel de l'évolution, ou l'évolution est-elle en grande partie prévisible?" il répond "Pour répondre à cette question, nous avions besoin de la grande échelle de notre expérience."

Comme dans les études précédentes, Desai a constaté que les mutations précoces influencent l'évolution future, en façonnant le chemin que prend la levure. Mais dans cette expérience, ce chemin n'a pas eu d'incidence sur la destination finale. "Ce type particulier de contingence rend en fait l'évolution de la forme physique  plus prévisible, et pas moins prévisible", a déclaré M. Desai.

Desai a montré que, tout comme une seule visite à la salle de sport profite plus à un amateur flappi par la TV qu'à un athlète, les microbes qui commençent par croître lentement tirent bien plus parti des mutations bénéfiques que leurs homologues plus en forme qui démarrent sur les chapeaux de roue. " Si vous êtes à la traîne au début à cause de la malchance, vous aurez tendance à aller mieux dans le futur ", a déclaré Desai. Il compare ce phénomène au principe économique des rendements décroissants - après un certain point, chaque unité d'effort supplémentaire aide de moins en moins.

Les scientifiques ne savent pas pourquoi toutes les voies génétiques chez la levure semblent arriver au même point final, une question que Desai et d'autres acteurs du domaine trouvent particulièrement intrigante. La levure a développé des mutations dans de nombreux gènes différents, et les scientifiques n'ont trouvé aucun lien évident entre eux. On ne sait donc pas exactement comment ces gènes interagissent dans la cellule, voire pas du tout. "Il existe peut-être une autre couche du métabolisme que personne ne maîtrise", a déclaré Vaughn Cooper, biologiste à l'Université du New Hampshire qui n'a pas participé à l'étude.

Il n’est pas non plus clair si les résultats soigneusement contrôlés de Desai sont applicables à des organismes plus complexes ou au monde réel chaotique, où l’organisme et son environnement changent constamment. "Dans le monde réel, les organismes réussissent dans différentes choses, en divisant l'environnement", a déclaré Travisano. Il prédit que les populations situées au sein de ces niches écologiques seraient toujours soumises à des rendements décroissants, en particulier à mesure qu'elles s'adaptent. Mais cela reste une question ouverte, a-t-il ajouté.

Cependant, certains éléments suggèrent que les organismes complexes peuvent également évoluer rapidement pour se ressembler davantage. Une étude publiée en mai a analysé des groupes de drosophiles génétiquement distinctes alors qu'elles s'adaptaient à un nouvel environnement. Malgré des trajectoires évolutives différentes, les groupes ont développé des similitudes dans des attributs tels que la fécondité et la taille du corps après seulement 22 générations. " Ainsi beaucoup de gens pensent à un gène pour un trait, une façon déterministe de résoudre des problèmes par l'évolution ", a déclaré David Reznick, biologiste à l'Université de Californie à Riverside. " Cela montre que ce n'est pas vrai ; on peut évoluer pour être mieux adapté à l'environnement de nombreuses façons. "





 

Auteur: Internet

Info: Quanta Magazine, Emily Singer, September 11, 2014

[ bio-mathématiques ] [ individu-collectif ] [ équilibre grégaire ] [ compensation mutationnelle ]

 
Commentaires: 1
Ajouté à la BD par miguel

surnaturel

Les scientifiques ont-ils finalement démontré des phénomènes psychiques ? De nouvelles études montrent que les gens peuvent prévoir des événements futurs.
Dans "au travers du miroir" de Lewis Carroll, la reine blanche dit a Alice que dans son pays, la mémoire travaille dans deux sens. Non seulement la reine peut se rappeler de choses du passé, mais elle se rappelle également de "choses qui se produiront la semaine d'après." Alice essaye de discuter avec la reine, énonçant : "je suis sûr que la mienne ne va que dans un sens... je ne peut me rappeler de choses avant qu'elles ne se produisent." La reine répond, "c'est une sorte de faiblesse, si ta mémoire ne fonctionne qu'en arrière."
Combien nos vies seraient meilleures si nous pouvions vivre dans le royaume de la reine blanche, où notre mémoire travaillerait en arrière et en avant. Dans un tel monde, par exemple, on pourrais faire un examen et étudier après coup pour s'assurer qu'on l'a bien réussi dans le passé. Bon, la bonne nouvelle est que selon une série récente d'études scientifiques de Daryl Bem, nous vivons déjà dans pareil monde !
Le Dr.Bem, psychologue social à l'université de Cornell, a entrepris une série d'études qui seront bientôt publiées dans un des journaux de psychologie les plus prestigieux. Au travers de neuf expériences, Bem a examiné l'idée que notre cerveau a la capacité de réfléchir non seulement sur des expériences antérieures, mais peut également en prévoir de futures. Cette capacité de "voir" est souvent désignée comme phénomène psi.
Bien que des recherches antérieures aient été conduites sur de tel phénomènes - nous avons tous vu ces films où des personnes regardent fixement des cartes de Zener avec une étoile ou des lignes ondulées dessus - de telles études n'arrivent pas vraiment à atteindre le statut seuil "de recherche scientifique." Les études de Bem sont uniques du fait qu'elles présentent des méthodes scientifiques standard et se fondent sur des principes bien établis en psychologie. Cela donne essentiellement des résultats qui sont considérés comme valides et fiables en psychologie. Par exemple, l'étude améliore la mémoire, et facilite le temps de réponse - mais ici on inverse simplement l'ordre chronologique.
Par exemple, nous savons tous que répéter un ensemble de mots rend plus facile le fait de s'en souvenir dans l'avenir, mais si la répétition se produit après le rappel ?... Dans une des études, on a donné une liste de mots à lire à des étudiants et, après lecture de la liste, on les a confrontés à un test surprise pour voir de combien de mots ils se rappelaient. Ensuite, un ordinateur a aléatoirement choisi certains des mots sur la liste et on a demandé aux participants de les retaper plusieurs fois à la machine. Les résultats de l'étude ont montré que les étudiants étaient meilleurs pour se remémorer les mots apparus dans l'exercice qui avait suivi, donné par surprise et fait au hasard. Selon Bem, la pratique de ces mots après le test a permis d'une façon ou d'une autre aux participants "de revenir en arrière dans le temps pour faciliter le souvenir."
Dans une autre étude, Bem examiné si l'effet bien connu d'amorçage pouvait également être inversé. Dans une étude typique d'amorçage, on montre à des gens une photo et ils doivent rapidement indiquer si la photo représente une image négative ou positive. Si la photo est un chaton câlin, on appuie sur le bouton "positif" et si la photo représente des larves sur de la viande en décomposition, on appuie sur le bouton "négatif". Une recherche de masse a montré combien l'amorçage subliminal peut accélérer la capacité à classer ces photos. L'amorçage subliminal se produit quand un mot est clignoté sur l'écran tellement rapidement que le cerveau conscient ne l'identifie pas, mais le cerveau inconscient le fait. Ainsi on voit juste un flash, et si on vous demande de dire ce que vous avez vu, vous ne pouvez pas. Mais, profondément, votre cerveau inconscient a vu le mot et l'a traité. Dans l'étude d'amorçage, on constate uniformément que les gens qui s'amorcent avec un mot conformé à la valence de la photo la classeront par catégorie plus vite. Ainsi si on clignote rapidement le mot "heureux" avant l'image de chaton, la personne cliquera le bouton "positif" encore plus vite, mais on clignote à la place le mot "laid" avant, la personne prendra plus longtemps pour répondre. C'est parce que l'amorçage avec le mot "heureux" fait que l'esprit de la personne est prêt à recevoir un truc heureux.
Dans l'étude rétroactive d'amorçage de Bem, on a simplement inversé l'ordre du temps, faisant clignoter le mot amorcé après que la personne ait classé la photo. Ainsi on montre l'image du chaton, la personne sélectionne si elle est positive ou négative, et alors on choisit aléatoirement d'amorcer avec un bon ou mauvais mot. Les résultats ont prouvé que les gens sont plus rapides à classer des photos par catégorie quand elle était suivie d'un mot amorce cohérent. A tel point que non seulement le fait qu'on classe le chaton plus vite quand il est précédé par un bon mot, on le classera également plus vite par catégorie si il est suivit du bon mot après coup. C'est comme si, alors que les participants classaient la photo, leur cerveau savait quel mot viendrait après, qui facilite leur décision.
Voilà juste deux exemples des études que Bem conduit, mais les autres ont montrés des effets "rétroactifs" semblables. Les résultats suggèrent clairement que des gens moyens "non psychiques" semblent pouvoir prévoir des événement futurs.
La question qu'on peut se poser est "quel est l'ordre de grandeur de la différence ?" Ce fait d'étudier un essai après qu'il se soit produit, ou l'amorçage qu'on a eu avec un mot après avoir classé la photo donne un changement énorme, ou est-ce juste une légère bosse dans les statistiques ? Quelle est la taille de effet ?. Il est vrai que les tailles d'effet dans les études de Bem sont petites (par exemple, seulement légèrement plus grandes que la chance). Mais il y a plusieurs raisons pour lesquelles nous ne devons pas négliger ces résultats basés sur de petites, mais fortement conformées, tailles d'effet.
Tout d'abord, au travers ses études, Bem a constaté que certaines personnes ont des résultats plus forts que d'autres. En particulier les gens en grande quête de stimulus - aspect d'extraversion où les gens répondent plus favorablement aux nouveau stimulus. Pour des différences de l'ordre d'environ deux fois plus d'efficacité qu'une personne moyenne. Ceci suggère que des gens sont plus sensibles aux effets psi que d'autres.
Deuxièmement ces petites tailles d'effet ne sont pas rare en psychologie (et pour d'autres sciences). Par exemple la moyenne les études de Bem eut pour résultat des tailles d'effets assez petites, mais tout aussi grandes - ou plus grandes - que certains effets bien établis : lien entre l'aspirine et l'empêchement de crise cardiaque, prise de calcium et os améliorés, fumée et cancer du poumon, utilisation de condom et protection du HIV, etc.... Cohen précise que de telles tailles d'effet se produisent plus facilement quand on est dans les premiers stades d'exploration d'une matière, quand les scientifiques commencent juste à découvrir pourquoi l'effet se produit et quand il est le plus susceptible de se produire.
Ainsi si nous prenons ces phénomènes psi comme vrai, comment pouvons nous alors les expliquer sans jeter à la poubelle notre compréhension du temps et de la physique ? Bon, la vérité est que ces effets ressemblent vraiment beaucoup à ce que la physique moderne dit du temps et de l'espace. Par exemple, Einstein a cru que le seul acte d'observer quelque chose pouvait affecter cette chose là, phénomène qu'il appela "spooky action à distance."
De même, la physique quantique moderne a démontré que les particules légères semblent savoir ce qui se trouve en avant d'elles dans le temps et qu'elles ajusteront leur comportement en conséquence, quoique le futur événement ne se soit pas produit encore. Par exemple dans l'expérience classique "de la double fente" les physiciens ont découvert que les particules légères répondent différemment si elles sont observées. Mais en 1999, les chercheurs ont poussé cette expérience plus loin en se demandant "ce qui se produirait si l'observation avait lieu après que les particules légères aient été déployées. "Tout à fait curieusement, ils ont démontré que les particules agissaient de la même manière, comme si elles savaient qu'elles seraient observées plus tard..." même si cela ne s'était pas encore produit.
De tels effets, "dingues", avec le temps semblent contredire le bon sens et essayer de les comprendre peut donner un sacré mal de tête. Mais les physiciens ont simplement appris à l'accepter. Comme disait une fois le Dr. Chiao, physicien de Berkeley, au sujet de la mécanique quantique, "c'est complètement contre intuitif et extérieur à notre expérience journalière, mais nous (les physiciens) y sommes habitués"
Ainsi, alors que les humains perçoivent le temps comme linéaire, cela ne signifie pas nécessairement qu'il en soit ainsi. Donc, en tant que bons scientifiques, nous ne devrions pas nous laisser influencer par les préjugés sur ce que nous étudions, même si ces idées préconçues reflètent nos idées de base sur la façon dont le temps et l'espace fonctionnent.
Le travail du DR. Bem est un provocation pour la pensée, et comme toute science révolutionnaire est censée faire, il apporte plus de questions que de réponses. Si nous mettons entre parenthèses nos croyances sur le temps et acceptons que le cerveau est capable d'une prise sur le futur, la prochaine question est : comment le fait-il ?. Ce n'est pas parce que l'effet semble "surnaturel" que cela signifie que la cause le soit. Beaucoup de découvertes scientifiques furent considérées comme exotiques par le passé, convenant davantage à la science-fiction (par exemple : la terre est ronde, il y a des organismes microscopiques, etc...). Une recherche future est nécessaire pour explorer les causes exactes des effets de ces études
Comme beaucoup de nouvelles explorations en science, les résultats de Bem peuvent avoir un effet profond sur ce que nous savons et avons accepté comme "vrai". Mais pour certains d'entre vous, peut-être que ces effets ne sont pas une si grande surprise, parce que quelque part, profondément à l'intérieur, nous savons déjà que nous en aurions connaissance aujourd'hui !

Auteur: Internet

Info: Fortean Times, Octobre 11, 2010

[ sciences ] [ prémonition ]

 
Mis dans la chaine

Commentaires: 0

définition

(Q) - Peux-tu expliquer ce qu'on nomme "séparabilité dynamique" dans la recherche fondamentale ?

(R) - En recherche fondamentale, la "séparabilité dynamique" fait référence à la capacité de séparer et d'analyser les composants individuels ou les aspects d'un système ou d'un phénomène complexe tout en tenant compte de leurs interactions dynamiques. Il s'agit de comprendre et d'étudier les éléments individuels ou les variables qui contribuent au comportement global ou au fonctionnement du système.

Dans de nombreuses disciplines scientifiques, les systèmes complexes se composent de multiples éléments ou facteurs interconnectés qui interagissent et s'influencent mutuellement au fil du temps. La séparabilité dynamique vise à démêler et à examiner ces composants afin de mieux comprendre leurs propriétés individuelles, leurs comportements et leurs relations au sein d'un système plus vaste.

Le concept de séparabilité dynamique reconnaît que, bien que les composants puissent interagir et dépendre les uns des autres, leur étude isolée peut fournir des informations précieuses sur leurs caractéristiques et fonctions individuelles. En isolant ou en simplifiant temporairement des variables ou des composants spécifiques, les chercheurs peuvent mieux saisir leurs rôles et leurs contributions à la dynamique globale du système.

Une séparabilité dynamique qui implique souvent des approches expérimentales ou théoriques permettant aux scientifiques de manipuler ou de contrôler certaines variables, d'observer leurs effets et d'étudier leurs interactions dans le contexte d'un système plus large. Ce processus permet aux chercheurs d'identifier et d'analyser les mécanismes, les comportements ou les modèles individuels qui résultent de l'interaction entre les composants.

Globalement, la séparabilité dynamique est un concept fondamental de la recherche qui facilite l'étude et la compréhension des systèmes complexes en démêlant leurs composants interconnectés, en examinant leur dynamique individuelle et en contribuant finalement à une compréhension plus large du système dans son ensemble.

(Q) - C'est donc un domaine qui nous embarque immédiatement vers l'hyper-complexité

(R) - Oui, le concept de séparabilité dynamique met en évidence les défis et les complexités inhérents à l'étude de systèmes comportant de multiples composants en interaction. Lorsqu'ils tentent de comprendre ces systèmes, les chercheurs se heurtent souvent à un niveau de complexité qui peut être écrasant.

Les interdépendances et les interactions entre les composants d'un système peuvent donner lieu à des comportements et à des propriétés émergents qu'il n'est pas facile de prédire ou de comprendre en examinant les composants individuels de manière isolée. Cette complexité est souvent appelée "hypercomplexité" ou "complexité au-delà de la complexité".

L'étude des systèmes hypercomplexes exige des chercheurs qu'ils s'attaquent aux complexités des interactions et des boucles de rétroaction entre les composants. Il s'agit de déchiffrer comment les changements dans un composant peuvent se propager et affecter le comportement d'autres composants, conduisant souvent à des résultats non linéaires et imprévisibles.

Le domaine de l'hyper-complexité explore les méthodologies et les approches permettant de relever ces défis. Il s'agit de développer des modèles mathématiques avancés, des techniques de calcul et des outils analytiques pour naviguer dans les complexités et extraire des informations significatives de l'interconnexion des composants du système.

En acceptant la complexité inhérente et en utilisant des techniques telles que la séparabilité dynamique, les chercheurs cherchent à mieux comprendre les systèmes complexes et leurs propriétés émergentes. Cette compréhension peut conduire à des avancées dans divers domaines scientifiques, tels que la physique, la biologie, l'écologie, l'économie et les sciences sociales.

Cependant, il est important de noter que si la séparabilité dynamique et les approches connexes offrent des perspectives précieuses, la complexité totale de nombreux systèmes peut rester difficile à appréhender. Néanmoins, la recherche de la compréhension des systèmes hypercomplexes continue à stimuler l'exploration et l'innovation scientifiques.

(Q) - En ce qui concerne la séparabilité dynamique, les chercheurs extrapolent-ils ce concept en fonction de différents nombre de dimensions ?

(R) - Le concept de séparabilité dynamique n'a pas nécessairement un nombre prédéfini ou fixe de dimensions auxquelles les chercheurs l'extrapolent. Le nombre de dimensions considérées dépend du système spécifique étudié et des objectifs de la recherche.

Dans certains cas, la séparabilité dynamique peut impliquer de considérer la séparabilité des variables selon une seule dimension. Par exemple, les chercheurs peuvent chercher à isoler et à comprendre l'impact d'un seul facteur sur le comportement global du système.

Toutefois, dans les systèmes plus complexes, la séparabilité dynamique peut impliquer l'examen des interactions entre plusieurs dimensions ou variables. Ces dimensions peuvent représenter différents aspects ou caractéristiques du système qui interagissent et s'influencent mutuellement. Le nombre de dimensions prises en compte dans de tels cas peut varier considérablement en fonction de la complexité du système étudié.

Les chercheurs peuvent recourir à des techniques telles que les méthodes de réduction de la dimensionnalité, la modélisation statistique ou l'analyse de réseaux pour identifier et analyser les dimensions pertinentes et leurs interactions. En réduisant la complexité et en se concentrant sur la séparabilité au sein d'un ensemble réduit de dimensions, les chercheurs peuvent obtenir des informations sur la dynamique sous-jacente du système.

(Q) - Merci. Et donc il peut aussi s'agir d'un mélange de plusieurs mécanismes orthogonaux ?

(R) - Oui, la séparabilité dynamique peut impliquer un mélange de plusieurs mécanismes orthogonaux. Les mécanismes orthogonaux désignent des aspects ou des processus indépendants ou sans interaction au sein d'un système.

Dans les systèmes complexes, différents mécanismes ou variables peuvent contribuer au comportement global ou au fonctionnement du système, et ces mécanismes peuvent souvent être orthogonaux les uns par rapport aux autres. En étudiant la séparabilité de ces mécanismes orthogonaux, les chercheurs peuvent obtenir des informations sur leurs contributions individuelles et comprendre comment ils façonnent collectivement le comportement du système.

Par exemple, dans un système biologique, les chercheurs peuvent étudier la séparabilité de divers processus physiologiques tels que le métabolisme, l'expression des gènes et les voies de signalisation. Chacun de ces processus représente un mécanisme orthogonal qui peut être étudié indépendamment pour comprendre son rôle spécifique dans la fonction globale du système.

De même, dans le domaine de l'analyse des données ou de la reconnaissance des formes, les chercheurs peuvent utiliser des techniques telles que l'analyse en composantes principales (ACP) ou l'analyse en composantes indépendantes (ICA) pour identifier et isoler les composantes orthogonales au sein d'un ensemble de données. Cela permet de mieux comprendre les facteurs individuels qui contribuent aux modèles ou aux variations observés.

En examinant la séparabilité des mécanismes orthogonaux, les chercheurs peuvent démêler les interactions et dépendances complexes au sein d'un système et acquérir une compréhension plus nuancée de sa dynamique sous-jacente.

Il convient de noter que si les mécanismes orthogonaux peuvent être étudiés indépendamment les uns des autres, ils peuvent néanmoins interagir ou s'influencer indirectement par le biais d'effets d'ordre supérieur. L'étude de la séparabilité dynamique tient compte de ces interactions et vise à élucider les relations et les dépendances entre les mécanismes orthogonaux au sein du système global.

(Q) - OK merci. Pense-tu que la séparabilité dynamique puisse être une sorte d'hypothèse réductionniste ?

(R) - La séparabilité dynamique peut être considérée comme une approche réductionniste dans certains contextes. Le réductionnisme est une perspective philosophique qui suggère que les phénomènes complexes peuvent être compris en les réduisant à des composants ou mécanismes plus simples et plus fondamentaux. Dans le cas de la séparabilité dynamique, l'objectif est d'isoler et d'étudier des composants ou des variables individuels au sein d'un système complexe afin de mieux comprendre leurs contributions spécifiques.

En décomposant un système complexe en ses éléments constitutifs et en examinant leur comportement et leurs interactions, les chercheurs peuvent souvent simplifier l'analyse et se concentrer sur la compréhension des mécanismes ou variables individuels. Cette perspective réductionniste peut fournir des informations précieuses et aider à construire une compréhension fondamentale du système.

Cependant, il est important de reconnaître que le réductionnisme a ses limites. Les systèmes complexes sont souvent caractérisés par des propriétés émergentes qui ne peuvent être entièrement expliquées par l'étude de leurs composants individuels. Les phénomènes de plus haut niveau et les interactions entre les composants peuvent conduire à des comportements qui ne sont pas prévisibles ou compréhensibles sur la seule base d'une analyse réductionniste.

La séparabilité dynamique, en tant que concept de la recherche fondamentale, reconnaît la nécessité de trouver un équilibre entre le réductionnisme et l'appréciation des propriétés émergentes. Elle reconnaît que si l'étude des composants individuels isolés peut être instructive, il est également crucial de prendre en compte leurs interactions dynamiques et le comportement émergent qui découle de leurs interactions collectives.

En résumé, si la séparabilité dynamique implique une perspective réductionniste en isolant et en étudiant des composants individuels, il est important de garder à l'esprit les limites du réductionnisme et de prendre en compte les propriétés émergentes et la complexité du système dans son ensemble.

(Q) - On en revient donc à l'idée d'un mécanisme global orthogonal

(R) - Cela suggère l'existence d'un mécanisme ou d'un processus global distinct qui influence le système dans son ensemble, mais qui fonctionne de manière indépendante ou orthogonale par rapport à d'autres mécanismes locaux ou spécifiques au sein du système.

Dans ce contexte, le terme "orthogonal" implique que le mécanisme global est indépendant ou sans rapport avec les mécanismes ou composants spécifiques du système. Il peut avoir une influence plus large qui transcende les éléments individuels et joue un rôle dans l'élaboration du comportement global ou de la dynamique du système.

Un exemple de mécanisme global orthogonal pourrait être le concept d'auto-organisation dans les systèmes complexes. L'auto-organisation fait référence à l'émergence de modèles ou de comportements globaux à partir des interactions des composants locaux, sans qu'un contrôle ou une orientation externe ne soit nécessaire. Le mécanisme global d'auto-organisation fonctionne indépendamment des interactions locales spécifiques, tout en influençant l'organisation et la dynamique globales du système.

Un autre exemple pourrait être la présence de contraintes globales ou de conditions limites qui façonnent le comportement des composants locaux au sein du système. Ces contraintes globales peuvent dicter certaines règles ou limites qui guident le comportement et les interactions des éléments individuels, fournissant un mécanisme orthogonal qui affecte le comportement global du système.

En résumé, un "mécanisme global orthogonal" fait référence à un processus ou à une influence globale distincte qui opère indépendamment ou orthogonalement à des mécanismes spécifiques au sein d'un système, en façonnant son comportement ou sa dynamique globale.

Auteur: chatGPT4

Info: 17 juin 2023

[ ultracomplexité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

intelligence artificielle

Apprendre l'anglais n'est pas une tâche facile, comme le savent d'innombrables étudiants. Mais lorsque l'étudiant est un ordinateur, une approche fonctionne étonnamment bien : Il suffit d'alimenter un modèle mathématique géant, appelé réseau neuronal, avec des montagnes de textes provenant d'Internet. C'est le principe de fonctionnement des modèles linguistiques génératifs tels que ChatGPT d'OpenAI, dont la capacité à tenir une conversation cohérente (à défaut d'être toujours sincère) sur un large éventail de sujets a surpris les chercheurs et le public au cours de l'année écoulée.

Mais cette approche présente des inconvénients. D'une part, la procédure de "formation" nécessaire pour transformer de vastes archives textuelles en modèles linguistiques de pointe est coûteuse et prend beaucoup de temps. D'autre part, même les personnes qui forment les grands modèles linguistiques ont du mal à comprendre leur fonctionnement interne, ce qui, à son tour, rend difficile la prévision des nombreuses façons dont ils peuvent échouer.

Face à ces difficultés, certains chercheurs ont choisi d'entraîner des modèles plus petits sur des ensembles de données plus restreints, puis d'étudier leur comportement. "C'est comme le séquençage du génome de la drosophile par rapport au séquençage du génome humain", explique Ellie Pavlick, chercheuse sur les modèles de langage à l'université de Brown.

Dans un article récemment publié sur le serveur scientifique arxiv.org, deux chercheurs de Microsoft ont présenté une nouvelle méthode pour former de minuscules modèles de langage : Les élever avec un régime strict d'histoires pour enfants.

RÉSEAUX NEURONAUX

Des chercheurs acquièrent une nouvelle compréhension à partir d'une simple IA  

Les chercheurs en apprentissage automatique ont compris cette leçon. GPT-3.5, le grand modèle linguistique qui alimente l'interface ChatGPT, compte près de 200 milliards de paramètres et a été entraîné sur un ensemble de données comprenant des centaines de milliards de mots (OpenAI n'a pas publié les chiffres correspondants pour son successeur, GPT-4).  L'entraînement de modèles aussi vastes nécessite généralement au moins 1 000 processeurs spécialisés, appelés GPU, fonctionnant en parallèle pendant des semaines. Seules quelques entreprises peuvent réunir les ressources nécessaires, sans parler de l'entraînement et de la comparaison de différents modèles.

Les deux chercheurs ont montré que des modèles linguistiques des milliers de fois plus petits que les systèmes de pointe actuels apprenaient rapidement à raconter des histoires cohérentes et grammaticalement justes lorsqu'ils étaient formés de cette manière. Leurs résultats indiquent de nouvelles pistes de recherche qui pourraient être utiles pour former des modèles plus importants et comprendre leur comportement.

"J'ai trouvé tout  ça très instructif", a déclaré Chandra Bhagavatula, chercheur sur les modèles de langage à l'Allen Institute for Artificial Intelligence de Seattle. "Le concept lui-même est très intéressant.

Il était une fois

Les réseaux neuronaux au cœur des modèles de langage sont des structures mathématiques vaguement inspirées du cerveau humain. Chacun d'entre eux contient de nombreux neurones artificiels disposés en couches, avec des connexions entre les neurones des couches adjacentes. Le comportement du réseau neuronal est régi par la force de ces connexions, appelées paramètres. Dans un modèle linguistique, les paramètres contrôlent les mots que le modèle peut produire ensuite, compte tenu d'une invite initiale et des mots qu'il a déjà générés.

Un modèle ne prend véritablement vie qu'au cours de la formation, lorsqu'il compare de manière répétée ses propres résultats au texte de son ensemble de données de formation et qu'il ajuste ses paramètres afin d'accroître la ressemblance. Un réseau non entraîné avec des paramètres aléatoires est trivialement facile à assembler à partir de quelques lignes de code, mais il ne produira que du charabia. Après l'entraînement, il peut souvent poursuivre de manière plausible un texte peu familier. Les modèles de plus grande taille sont souvent soumis à des réglages plus fins qui leur apprennent à répondre à des questions et à suivre des instructions, mais l'essentiel de la formation consiste à maîtriser la prédiction des mots.

Pour réussir à prédire des mots, un modèle linguistique doit maîtriser de nombreuses compétences différentes. Par exemple, les règles de la grammaire anglaise suggèrent que le mot suivant le mot "going" sera probablement "to", quel que soit le sujet du texte. En outre, un système a besoin de connaissances factuelles pour compléter "la capitale de la France est", et compléter un passage contenant le mot "not" nécessite une connaissance rudimentaire de la logique.

"Le langage brut est très compliqué", explique Timothy Nguyen, chercheur en apprentissage automatique chez DeepMind. "Pour que des capacités linguistiques intéressantes apparaissent, les gens ont eu recours à l'idée que plus il y a de données, mieux c'est".

(photo) Ronen Eldan s'est rendu compte qu'il pouvait utiliser les histoires d'enfants générées par de grands modèles linguistiques pour en entraîner rapidement de plus petits.

Introduction

Ronen Eldan, mathématicien qui a rejoint Microsoft Research en 2022 pour étudier les modèles de langage génératifs, souhaitait développer un moyen moins coûteux et plus rapide d'explorer leurs capacités. Le moyen naturel d'y parvenir était d'utiliser un petit ensemble de données, ce qui signifiait qu'il devait entraîner les modèles à se spécialiser dans une tâche spécifique, afin qu'ils ne s'éparpillent pas. Au départ, il voulait entraîner les modèles à résoudre une certaine catégorie de problèmes mathématiques, mais un après-midi, après avoir passé du temps avec sa fille de 5 ans, il s'est rendu compte que les histoires pour enfants convenaient parfaitement. "L'idée m'est venue littéralement après lui avoir lu une histoire", a-t-il déclaré.

Pour générer des histoires cohérentes pour les enfants, un modèle de langage devrait apprendre des faits sur le monde, suivre les personnages et les événements, et observer les règles de grammaire - des versions plus simples des défis auxquels sont confrontés les grands modèles. Mais les grands modèles formés sur des ensembles de données massives apprennent d'innombrables détails non pertinents en même temps que les règles qui comptent vraiment. Eldan espérait que la brièveté et le vocabulaire limité des histoires pour enfants rendraient l'apprentissage plus gérable pour les petits modèles, ce qui les rendrait à la fois plus faciles à former et plus faciles à comprendre.

Dans le monde des modèles de langage, cependant, le terme "petit" est relatif : Un ensemble de données mille fois plus petit que celui utilisé pour former GPT-3.5 devrait encore contenir des millions d'histoires. "Je ne sais pas combien d'argent vous voulez dépenser, mais je suppose que vous n'allez pas engager des professionnels pour écrire quelques millions de nouvelles", a déclaré M. Nguyen.

Il faudrait un auteur extraordinairement prolifique pour satisfaire des lecteurs aussi voraces, mais Eldan avait quelques candidats en tête. Qui peut mieux écrire pour un public de petits modèles linguistiques que pour de grands modèles ?

Toys stories

Eldan a immédiatement entrepris de créer une bibliothèque d'histoires synthétiques pour enfants générées par de grands modèles linguistiques. Mais il a rapidement découvert que même les modèles de pointe ne sont pas naturellement très créatifs. Si l'on demande à GPT-4 d'écrire des histoires adaptées à des enfants de 4 ans, explique Eldan, "environ un cinquième des histoires concernera des enfants qui vont au parc et qui ont peur des toboggans". C'est apparemment la quintessence des histoires pour enfants d'âge préscolaire, selon l'Internet.

La solution a consisté à ajouter un peu d'aléatoire dans le message. Tout d'abord, Eldan a utilisé le GPT-4 pour générer une liste de 1 500 noms, verbes et adjectifs qu'un enfant de 4 ans pourrait connaître - suffisamment courte pour qu'il puisse facilement la vérifier lui-même. Il a ensuite écrit un programme informatique simple qui demanderait à plusieurs reprises à GPT-3.5 ou à GPT-4 de générer une histoire adaptée à l'âge de l'enfant, comprenant trois mots aléatoires de la liste, ainsi qu'un détail supplémentaire choisi au hasard, comme une fin heureuse ou un rebondissement de l'intrigue. Les histoires obtenues, heureusement, étaient moins axées sur des diapositives effrayantes.

Eldan disposait désormais d'une procédure pour produire des données de formation à la demande, mais il n'avait aucune idée du nombre d'histoires dont il aurait besoin pour former un modèle fonctionnel, ni de la taille de ce modèle. C'est alors qu'il s'est associé à Yuanzhi Li, chercheur en apprentissage automatique chez Microsoft et à l'université Carnegie Mellon, pour essayer différentes possibilités, en tirant parti du fait que les petits modèles peuvent être formés très rapidement. La première étape consistait à décider comment évaluer leurs modèles.

Introduction

Dans la recherche sur les modèles de langage - comme dans toute salle de classe - la notation est un sujet délicat. Il n'existe pas de rubrique parfaite qui englobe tout ce que les chercheurs veulent savoir, et les modèles qui excellent dans certaines tâches échouent souvent de manière spectaculaire dans d'autres. Au fil du temps, les chercheurs ont mis au point divers critères de référence standard basés sur des questions dont les réponses ne sont pas ambiguës, ce qui est une bonne approche si vous essayez d'évaluer des compétences spécifiques. Mais Eldan et Li se sont intéressés à quelque chose de plus nébuleux : quelle doit être la taille réelle des modèles linguistiques si l'on simplifie le langage autant que possible ?

"Pour vérifier directement si le modèle parle anglais, je pense que la seule chose à faire est de laisser le modèle générer de l'anglais de manière ouverte", a déclaré M. Eldan.

Il n'y a que deux façons de mesurer les performances d'un modèle sur des questions aussi qualitatives : S'appuyer sur des évaluateurs humains ou se tourner à nouveau vers le GPT-4. Les deux chercheurs ont opté pour cette dernière solution, laissant les grands modèles à la fois rédiger les manuels et noter les dissertations.

Bhagavatula a déclaré qu'il aurait aimé voir comment les évaluations de GPT-4 se comparaient à celles des correcteurs humains - GPT-4 peut être biaisé en faveur des modèles qu'il a aidé à former, et l'opacité des modèles de langage rend difficile la quantification de tels biais. Mais il ne pense pas que de telles subtilités affecteraient les comparaisons entre différents modèles formés sur des ensembles similaires d'histoires synthétiques - l'objectif principal du travail d'Eldan et Li.

Eldan et Li ont utilisé une procédure en deux étapes pour évaluer chacun de leurs petits modèles après la formation. Tout d'abord, ils ont présenté au petit modèle la première moitié d'une histoire distincte de celles de l'ensemble des données d'apprentissage, de manière à ce qu'il génère une nouvelle fin, en répétant ce processus avec 50 histoires de test différentes. Ensuite, ils ont demandé à GPT-4 d'évaluer chacune des fins du petit modèle en fonction de trois catégories : créativité, grammaire et cohérence avec le début de l'histoire. Ils ont ensuite fait la moyenne des notes obtenues dans chaque catégorie, obtenant ainsi trois notes finales par modèle.

Avec cette procédure en main, Eldan et Li étaient enfin prêts à comparer les différents modèles et à découvrir quels étaient les étudiants les plus brillants.

Résultats des tests

Après quelques explorations préliminaires, les deux chercheurs ont opté pour un ensemble de données de formation contenant environ 2 millions d'histoires. Ils ont ensuite utilisé cet ensemble de données, baptisé TinyStories, pour entraîner des modèles dont la taille varie de 1 million à 30 millions de paramètres, avec un nombre variable de couches. Le travail a été rapide : En utilisant seulement quatre GPU, l'entraînement du plus grand de ces modèles n'a pas pris plus d'une journée.

Les plus petits modèles ont eu du mal. Par exemple, l'une des histoires testées commence par un homme à l'air méchant qui dit à une fille qu'il va lui prendre son chat. Un modèle à un million de paramètres s'est retrouvé bloqué dans une boucle où la fille répète sans cesse à l'homme qu'elle veut être son amie. Mais les modèles plus grands, qui sont encore des milliers de fois plus petits que GPT-3.5, ont obtenu des résultats surprenants. La version à 28 millions de paramètres racontait une histoire cohérente, même si la fin était sinistre : "Katie s'est mise à pleurer, mais l'homme s'en fichait. Il a emporté le chat et Katie n'a plus jamais revu son chat. Fin de l'histoire".

En plus de tester leurs propres modèles, Eldan et Li ont soumis le même défi au GPT-2 d'OpenAI, un modèle de 1,5 milliard de paramètres publié en 2019. Le résultat a été bien pire - avant la fin abrupte de l'histoire, l'homme menace d'emmener la jeune fille au tribunal, en prison, à l'hôpital, à la morgue et enfin au crématorium.

Introduction

Selon M. Nguyen, il est passionnant que des modèles aussi petits soient aussi fluides, mais il n'est peut-être pas surprenant que GPT-2 ait eu du mal à accomplir la tâche : il s'agit d'un modèle plus grand, mais loin de l'état de l'art, et il a été formé sur un ensemble de données très différent. "Un enfant en bas âge qui ne s'entraînerait qu'à des tâches d'enfant en bas âge, comme jouer avec des jouets, obtiendrait de meilleurs résultats que vous ou moi", a-t-il fait remarquer. "Nous ne nous sommes pas spécialisés dans cette chose simple.

Les comparaisons entre les différents modèles de TinyStories ne souffrent pas des mêmes facteurs de confusion. Eldan et Li ont observé que les réseaux comportant moins de couches mais plus de neurones par couche étaient plus performants pour répondre aux questions nécessitant des connaissances factuelles ; inversement, les réseaux comportant plus de couches et moins de neurones par couche étaient plus performants pour garder en mémoire les personnages et les points de l'intrigue situés plus tôt dans l'histoire. Bhagavatula a trouvé ce résultat particulièrement intriguant. S'il peut être reproduit dans des modèles plus vastes, "ce serait un résultat vraiment intéressant qui pourrait découler de ce travail", a-t-il déclaré.

Eldan et Li ont également étudié comment les capacités de leurs petits modèles dépendaient de la durée de la période de formation. Dans tous les cas, les modèles maîtrisaient d'abord la grammaire, puis la cohérence. Pour Eldan, ce schéma illustre comment les différences dans les structures de récompense entraînent des différences dans les schémas d'acquisition du langage entre les réseaux neuronaux et les enfants. Pour les modèles de langage, qui apprennent en prédisant des mots, "l'incitation pour les mots "je veux avoir" est aussi importante que pour les mots "crème glacée"", a-t-il déclaré. Les enfants, en revanche, "ne se soucient pas de savoir s'ils disent 'j'aimerais avoir de la glace' ou simplement 'glace, glace, glace'".

Qualité contre quantité

Eldan et Li espèrent que cette étude incitera d'autres chercheurs à entraîner différents modèles sur l'ensemble des données de TinyStories et à comparer leurs capacités. Mais il est souvent difficile de prédire quelles caractéristiques des petits modèles apparaîtront également dans les plus grands.

"Peut-être que les modèles de vision chez la souris sont de très bons substituts de la vision humaine, mais les modèles de dépression chez la souris sont-ils de bons modèles de la dépression chez l'homme ? a déclaré M. Pavlick. "Pour chaque cas, c'est un peu différent.

Le succès des modèles TinyStories suggère également une leçon plus large. L'approche standard pour compiler des ensembles de données de formation consiste à aspirer des textes sur l'internet, puis à filtrer les déchets. Le texte synthétique généré par des modèles de grande taille pourrait constituer une autre façon d'assembler des ensembles de données de haute qualité qui n'auraient pas besoin d'être aussi volumineux.

"Nous avons de plus en plus de preuves que cette méthode est très efficace, non seulement pour les modèles de la taille de TinyStories, mais aussi pour les modèles plus importants", a déclaré M. Eldan. Ces preuves proviennent d'une paire d'articles de suivi sur les modèles à un milliard de paramètres, rédigés par Eldan, Li et d'autres chercheurs de Microsoft. Dans le premier article, ils ont entraîné un modèle à apprendre le langage de programmation Python en utilisant des extraits de code générés par GPT-3.5 ainsi que du code soigneusement sélectionné sur l'internet. Dans le second, ils ont complété l'ensemble de données d'entraînement par des "manuels" synthétiques couvrant un large éventail de sujets, afin d'entraîner un modèle linguistique à usage général. Lors de leurs tests, les deux modèles ont été comparés favorablement à des modèles plus importants formés sur des ensembles de données plus vastes. Mais l'évaluation des modèles linguistiques est toujours délicate, et l'approche des données d'entraînement synthétiques n'en est qu'à ses balbutiements - d'autres tests indépendants sont nécessaires.

Alors que les modèles linguistiques de pointe deviennent de plus en plus volumineux, les résultats surprenants de leurs petits cousins nous rappellent qu'il y a encore beaucoup de choses que nous ne comprenons pas, même pour les modèles les plus simples. M. Nguyen s'attend à ce que de nombreux autres articles explorent l'approche inaugurée par TinyStories.

"La question est de savoir où et pourquoi la taille a de l'importance", a-t-il déclaré. "Il devrait y avoir une science à ce sujet, et cet article est, je l'espère, le début d'une riche histoire.



 



 

Auteur: Internet

Info: https://www.quantamagazine.org/ Ben Brubaker, 5 octobre 2023

[ synthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel