Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 435
Temps de recherche: 0.0434s

affrontement racial

J'ai juste eu le temps de percevoir un rai brutal de lumière, un bruit de rires bizarres, une espèce d'exclamation rauque. Je suis devant la vitre, médusé. Des rideaux dissimulent tout l'intérieur, mais laissent passer une lueur assez forte. Je distingue contre la porte, à droite, un écriteau de bois : "A la ville d'Oran, café-hôtel. Chambres au mois et à la journée." Un bouge à sidis. Elle est là-dedans. Je suis interdit, épouvanté. Mais ma main est déjà sur la poignée. Ce qui m'a poussé (je crois pouvoir le dire, maintenant, après coup) c'est un dernier sentiment d'incrédulité, le refus d'admettre qu'une telle chose soit possible. J'ouvre la porte avec décision. Je fais deux pas. C'est bien un bistrot à sidis, pareil du reste à tous les bistrots de faubourg, assez exigu, éclairé très crûment. Mes yeux vont aussitôt à la petite. Elle est bien là, elle se tourne vers moi. Tout le monde me regarde. Ce sont des Bicots. Je vois des gueules bistrées, des tignasses crépues, des nez en bec d'aigle. Ils sont presque tous debout, autour du zinc qui reluit, ils doivent être sept ou huit. J'en repère deux, trois, à chapeaux mous, complets prétentieux ; un autre, en noir, de mine assez noble, peut-être. Au bout du groupe, il y a un gros type assis d'une trentaine d'années, frisottant, le mieux habillé, en bleu marine. J'aperçois un képi de sous-officier de tirailleurs, et dessous une tête maigre de Sarrasin, belle, ma foi ! Je vois aussi une seconde fille, près du type en bleu, un peu plus grande que l'autre, vingt-quatre ou vingt-cinq ans, mince, bien faite, semble t-il, mise avec simplicité, sans mauvais goût. C'est sur elle peut-être que mon regard s'arrête avec le plus de stupeur. Elle est d'une décence de silhouette invraisemblable dans un tel lieu. Et avec cela, des mèches de cheveux désordonnées, les pupilles agrandies et égarées, sa blouse claire dépoitraillée sur le creux de deux seins palpitants.

- Qu'y c'qu'y c'est ?

Un affreux asticot, debout, derrière le zinc, m'interpelle aigrement. Le tenancier sans doute.

J'articule d'une voix aussi naturelle que possible :

- Je désirerais boire un verre.

J'ai les yeux vissés sur la petite. C'est pourtant bien elle, son chapeau, ses boucles, sa petite jupe plissée, ses yeux clairs et rieurs. Je distingue vaguement une autre salle, au fond, plus grande, avec des festons de bois découpés à la morisque.

L'asticot a demandé je ne sais quoi, en arabe, à un des macaques. Il aboie, à mon adresse :

- Pas di verr. Ci fermé ici.

Je vois sur moi les yeux féroces et perçants de tous ces coquins. Je suis sans armes, dans ce coupe-gorge. Je me tourne d'instinct vers l'individu en bleu, le plus civilisé, apparemment, de la bande. C'est un Levantin de je ne sais quel Levant, déjà empâté, très infatué. Ce pourrait être un de ces "étudiants" qu'on voit au quartier autour des restaurants orientaux. Etudiant, barbeau, trafiquant de je ne sais quoi, le tout à la fois, sans doute. Il y a des raies rosâtres, trop larges, sur son complet bien coupé. Il s'est levé nonchalamment, il me toise avec une mine supérieure. Il laisse tomber trois ou quatre mots d'arabe qui font éclater tous les macaques d'un rire énorme. je vois ces gueules de pirates fendues, leurs grandes dents jaunes. Ils se foutent de moi devant la petite. Je dois pâlir brusquement : la colère, en même temps que la peur, mais la colère plus forte que la peur. Je les dévisage, j'arrête mon regard sur les deux filles :

- Il me semble que ce n'est pas fermé pour tout le monde...

Un hurlement de toute la bicaillerie. Je suis en un instant encerclé. La figure du sous-off est à trois pouces de la mienne. J'enregistre machinalement qu'il a quatre rubans à sa tunique.

Il me saisit le bras :

- Allez, dehors !

La petite lève la main :

- Non ! c'est un amoureux. Il me suit depuis le boulevard des Belges.

- Suivi ? Mouche ! Poulice ! Kha Poulice...

Ils glapissent à plein gosier. Je suis happé par dix pattes terribles : "mais non de Dieu ! écoutez-moi !" J'essaie d'atteindre mon portefeuille pour brandir ma carte d'étudiant. Une main lève une bouteille, un couteau jaillit. Ils ont dû croire que j'allais sortir un feu. Ce sont eux qui m'arrachent le portefeuille. J'ai les poignets immobilisés, je m'accroche où je peux avec les ongles. Ils me traînent jusqu'à la porte, j'encaisse trois ou quatre coups de poings. Je suis précipité dans les ténèbres extérieures, mes papiers lancés sur le sol, à demi déshabillé, ma chemise déchirée. Je tremble de la tête aux pieds. Les salauds m'ont attient à la mâchoire, derrière l'oreille. Une grande bordée de leur affreux rire. La porte se referme brusquement derrière moi.

Je fais une quarantaine de mètres en flageolant. Je reprends haleine, je me rajuste et me remets un peu. Je suis encore tout tremblotant de rage et de trouille : "Je vais chercher les flics !" Je voudrais me ruer avec une troupe en armes à l'assaut de cet effroyable repaire... Mais depuis quand ai-je recours aux flics ? D'ailleurs, que leur dirais-je ? Je m'en tire en somme à bon compte. Tout seul parmi parmi ces sauvages, aux poches pleines de rasoirs, de surins, de revolvers. Ma carte les aura rassurés ! Ils m'ont évacué par mépris. Toute récidive de ma part serait folle. Au reste, du coin de la place où je me suis embusqué, je vois l'asticot ouvrir la porte, accrocher un volet de bois, rentrer par-dessous. Le bouge est bouclée, barricadé. Je n'ai plus rien à faire ici.

Mais la petite est derrière cette porte, derrière ces fenêtres. Il y a cinq fenêtres au moins qui sont éclairées, aux deux étages plus voilées que celles du bas, tout à fait louches. Quinze ans. Cette petite perfection. Et elle traverse tout Lyon pour venir se faire mettre, pour venir se faire bitter dans cet immonde claque... Le petit ange aux cils innocents... La petite gaupe, oui ! ... Gaupette : voilà son nom.

Ses parents sont sortis, pour toute la nuit, peut-être. Elle a couru chez elle pour s'en assurer, se donner l'alibi de les embrasser. Ah ! sur le chapitre de la rouerie... Et puis elle s'envole ; ça la tient. Et moi qui l'imaginais déjà en tournée de charité ! Toujours conjecturer le vice plutôt que la vertu. Mais à ce point-là ! Quel roman noir, quel tréfonds ! mais comment expliquer le début ? Dans quelles pattes a-t-elle pu tomber ? Y revenir toute seule ! Une entremise de cette autre fille ?... Celle-là aussi, quelle apparition ! Ce tailleur de chaste et modeste petite bourgeoise. Et ces seins affolés ! Elle venait déjà de se faire branler en attendant l'autre ? Sa moule toute ouverte, pendant qu'elle me regardait, du jus plein le poil, jusqu'aux cuisses...

Mais elles sont là-dedans toutes les deux. Comment parvenir à penser ça ? Lequel de ces singes, avec Gaupette ? L'espèce d'étudiant ? Mais c'était lui, quand je suis entré, qui avait l'air de tenir l'autre fille.

La bagarre m'a fait débander un moment. Mais mes images, mes convoitises ont été trop violentes, à la fin de cette poursuite, dans ces rues noires. Je suis repris par cette excitation furibonde. Je ne peux plus m'en aller. L'autre fille a amené Gaupette. Elle l'a sans doute branlée, gougnottée avant. Le gros métèque se les farcit toutes les deux. Il a déjà du déculotter Gaupette. Ses pattes sur la petite jupe plissée, la petite culotte blanche, chaude, les deux cuisses roses, déjà femelles, le petit derrière. Le petit con doré. Le métèque l'enfile, pendant que l'autre fille s'astique, ou qu'un des sidis la tronche, le rempilé peut-être sur Gaupette. Ce n'est pas une invention répugnante de ma cervelle, c'est la vérité exacte. Ces bougres en rut perpétuel, montés comme des ânes. Son con de petite fille avec ces manches-là dedans ! C'est horrible, c'est ignoble. Et pourtant plus c'est ignoble et plus ça me chauffe, m'incendie. On comprend que dans de telles passes, s'il n'y avait pas les mécanismes et les habitudes de la civilisation, on se mettrait à bramer, à hurler au con. Je suis un moment sur le point de me taper un rassis, dans le noir, contre le mur d'une des baraques aveugles.

... Je suis là depuis plus d'une heure, sur cette espèce de carrefour d'assassinat, totalement sourd et désert, dans cette nuit crapuleuse. La petite Gaupette est en train de forniquer, de s'en faire mettre plein le vagin. Elle est sous zob !

Mais je peux l'avoir, moi aussi, je peux me l'envoyer. Elle ne demande que ça ! Elle ne pensait qu'à ça, pendant toute ma chasse, dans le tramway. Et je n'osais pas lui murmurer un "bonsoir"! Elle pensait que j'allais être de la partouze. Elle m'y emmenait. Ça lui allait bien ! elle n'a probablement jamais fait ça de sa vie avec un garçon européen, ça devait l'exciter. Elle a essayé de me tirer du pétrin. Si elle n'avait pas fait cette gaffe : "Il me suit depuis les Brotteaux! " Elle aurait seulement dit "je le connais, c'est un camarade !", je restais. Elle avait envie de moi. En ce moment, je la baiserais, je me frotterais à son ventre, à son poil, à ses fesses, j'aurais ma queue entre ses cuisses.

La porte s'ouvre derrière le volet de bois. Un couple sort, en se baissant. J'aperçois une grosse garce en cheveux, avec un grand bougre. Je m'approche, je ne sais pourquoi, comme si je pouvais leur demander de me réintroduire. Je vois les traits de l'homme, aussi barbares que ceux des sidis. Mais celui-là paraît avoir l'accent espagnol. La femme, elle, est Lyonnaise. Je suis à quatre ou cinq pas d'eux. L'"Espagnol" se retourne, me voit, i la l'air encore plus féroce que les Bics. Je ralentis, je les laisse filer. A la lueur de l'unique bec de gaz du coin, je devine le monumental pétard sur lequel chaloupe la pouffiasse, un gros cul qui vient de s'évaser, de s'enfoutrer, pendant que derrière la cloison, Gaupette...

Oh ! je la veux moi aussi ! Pourquoi les Bics m'ont-ils chassé ? Je ne leur voulais aucun mal. Je suis un salopard, comme eux. Si j'essayais d'entrer de nouveau, de leur expliquer ? Je vais frapper au volet, quelques petits coups, puis plus fort. Il semble que le bistrot soit vide. On ne répond pas, ça ne bouge pas. Je n’ose pas appeler.

Je commence à avoir froid. Mais je n’arrive pas à quitter la place. Gaupette ne couchera tout de même pas là. Si les deux filles sortent seules, je les aborde au coin de la rue. J’attendrai leur sortie, le temps qu’il faut.

Mais personne ne sort plus de ce borgnard. Tout est éteint en bas ; aux étages, il n’y a plus que deux fenêtres vaguement éclairées. Je n’y comprends plus rien. Je m’avise enfin, en contournant les bicoques voisines, d’aller jeter un coup d’œil cinq ou six mètres de la bâtisses, fermant sans doute une sorte de cour. Il y a une porte dans ce mur. En face, une ruelle, toute droite, bordée d’entrepôts noirs, conduit à une espèce de boulevard mieux éclairé que le reste de ce lugubre quartier. Elles ont pu s’en aller par là. Ce doit être la sortie des initiés. A moins qu’elles ne couchent ici. Serait-ce plus incroyable que le reste.

Je suis là depuis près de trois heures, et il en est bientôt onze. Je suis transi, écœuré, furieux. Je n’ai plus qu’à rentrer chez moi. Mais je me perds dans ces "chemins", ces rues inconnues, cet effrayant faubourg où il semble que je sois seul vivant. J’aperçois enfin un taxi. Tant pis pour la dépense.

Auteur: Rebatet Lucien

Info: les deux étendards (1952, 1312 p., Gallimard) p. 722-727

[ vulgarité ] [ laideur ] [ hostilité étrangère ] [ agressivité allogène ] [ fantasme ] [ sexe ] [ baston ] [ tabassage ]

 
Commentaires: 1

addiction

Elle étudie la façon dont la toxicomanie interfère avec l'apprentissage dans le cerveau

Erin Calipari cherche à comprendre comment des drogues comme les opioïdes et la cocaïne modifient les circuits d'apprentissage et la neurochimie dans l'un des épicentres nationaux des troubles liés à la consommation de substances psychoactives et de la toxicomanie.

(Photo : La dopamine est mieux comprise comme une molécule " d’apprentissage " que comme une molécule de " plaisir ", déclare Erin. "Tout le monde doit avoir un neuromodulateur préféré dans le cerveau, et pour moi c'est la dopamine.")

À quoi ressemble l’apprentissage dans le cerveau et comment les drogues interfèrent-elles avec cela ?

Notre cerveau est programmé pour nous aider à voir les choses qui sont importantes et à y réagir. Cela détermine si nous devons refaire quelque chose ou non. Devons-nous déménager ou rester ? Est-ce bon ou mauvais? Est-ce quelque chose auquel je dois faire attention ?

Les drogues convainquent notre cerveau : " Oui, c’est important. C’est quelque chose que nous devons refaire. Les drogues déterminent non seulement les décisions concernant la drogue elle-même, mais également les décisions concernant les stimuli non médicamenteux présents dans notre environnement. Elles modifient la façon dont nous apprenons.

Comment ça marche au niveau moléculaire ?

Les médicaments comme les opioïdes agissent sur la dopamine. La plupart des gens considèrent la dopamine comme une " molécule du plaisir ", mais ce n’est pas tout. Oui, la dopamine est libérée par des stimuli enrichissants comme le chocolat ou le sucre. Mais Elle est également libérée par des stimuli aversifs comme le stress ou la douleur. Elle se déclenche lorsque les choses sont nouvelles ou différentes, qu'elles soient bonnes ou mauvaises. Et de cette façon, la dopamine est essentielle pour vous aider à apprendre.

Les drogues continuent essentiellement à stimuler la dopamine même lorsque les choses ne sont plus nouvelles ou différentes. Le cerveau continue de penser que quelque chose est important, vous signalant ainsi de continuer à y prêter attention. Mais si les drogues augmentent la dopamine sur le moment, leur consommation à long terme la diminue. Ainsi, avec la consommation croissante de drogues, il y a de moins en moins de dopamine dans le cerveau, ce qui signifie que vous avez du mal à apprendre quelque chose de nouveau.

La dopamine doit-elle être redéfinie comme une molécule " d’apprentissage " plutôt que comme une molécule de " plaisir " ?

Oui. Comprendre la dopamine en tant que molécule qui détermine l’efficacité de notre apprentissage est beaucoup plus précis.

Comment étudiez-vous ce système compliqué ?

Dans mon laboratoire, nous utilisons différentes stratégies pour enregistrer et manipuler différentes cellules du cerveau afin d’essayer de déterminer quelles cellules et quels circuits nous aident à prendre des décisions adaptatives. Et puis, une fois que nous avons identifié ces circuits, nous y allons et disons : Comment l'exposition aux drogues change-t-elle le fonctionnement du système ? Nous effectuons ce travail au niveau physiologique et épigénétique. L’objectif est de comprendre la biologie fondamentale – comment les médicaments détournent les circuits – et ensuite de déterminer si nous pouvons inverser le processus. Nous pouvons utiliser les outils CRISPR*, par exemple, pour inverser une partie de la plasticité de cellules cérébrales spécifiques.

Comprendre le fonctionnement de la dopamine peut-il éventuellement nous aider à développer des traitements contre la dépendance ?

Comprendre ce que fait la dopamine pour aider le cerveau à apprendre est vraiment important. Mais ce sera très difficile à cibler. Vous ne pouvez pas simplement bloquer la dopamine : si vous le faites, les gens ne pourront plus bouger, ils ne pourront plus prêter attention à quoi que ce soit. De nombreux travaux sont en cours sur différentes manières d'affiner le système dopaminergique au lieu de simplement l'activer ou le désactiver. Je pense que c'est ce que nous allons devoir faire.

Qu'est-ce que ça fait de travailler en tant que chercheur en toxicomanie dans l'un des épicentres de la toxicomanie ?

Nashville est mauvais. Au plus fort de l’épidémie d’opioïdes, le Tennessee avait l’un des taux de prescriptions d’opioïdes les plus élevés. Ces dernières années, ce chiffre a diminué, mais pas le problème des opioïdes. Et il ne s’agit pas uniquement d’opioïdes pour nous ; la méthamphétamine est également un problème important. Vanderbilt se trouve donc dans cet espace unique en tant que l’un des plus grands hôpitaux de recherche de la région, au cœur des troubles liés à l’usage de ces substances.

Parfois, il est épuisant de ne pas pouvoir résoudre sa dépendance. C'est écrasant dans un sens pas sympa. Parfois, c'est triste de parler à des personnes qui souffrent de troubles liés à l'usage de substances, et je ne sais pas comment les aider. Elles me posent des questions, mais si je suis experte des changements neurobiologiques spécifiques qui se produisent il m’est difficile de comprendre l’impact de ce trouble sur la vie quotidienne d’un individu puisque je ne l’ai pas vécu personnellement.

Sommes-nous sur le point de comprendre et, à terme, de trouver un remède à la dépendance ?

Guérir de la dépendance est difficile car la dépendance n’est pas une maladie uniforme. Certaines personnes souffrant de dépendance souffrent de troubles comorbides comme l’anxiété et la dépression. Certaines personnes prennent des drogues pour éviter la douleur. Certaines personnes ont un comportement compulsif, d’autres non.

Il sera essentiel de comprendre ce qui est similaire et différent dans le cerveau des individus présentant chacun de ces symptômes uniques pour comprendre comment aborder le traitement en premier lieu. Dans mon laboratoire, par exemple, nous étudions les différences entre les hommes et les femmes.

Qu'avez-vous découvert ?

Lorsque l’on examine les raisons pour lesquelles les gens consomment de la drogue, les femmes sont plus susceptibles de déclarer qu’elles en prennent pour éviter ou échapper à des conséquences négatives, comme le stress et l’anxiété. Les hommes sont plus susceptibles de consommer des drogues de manière impulsive, de planer et de sortir avec des amis. Les deux sexes consomment des drogues et un certain pourcentage d’entre eux développeront un trouble lié à l’usage de substances. Mais ils le font pour différentes raisons.

Les hormones ont beaucoup à voir avec cela. Nous avons découvert que l'estradiol, une hormone ovarienne qui circule avec le cycle menstruel, modifie la façon dont la nicotine agit dans le cerveau en modifiant les fonctions de ses récepteurs.

Nous avons également constaté que si l’on donne aux animaux un accès illimité aux drogues, les mâles et les femelles consomment la même quantité de drogues et leur comportement semble identique. Mais lorsque nous avons examiné les modifications apportées aux protéines de leur cerveau, les hommes et les femmes étaient totalement différents. Beaucoup de ces protéines ont des fonctions cellulaires similaires. Nous pensons que ce médicament augmente la dopamine chez les hommes et les femmes et détermine le comportement de la même manière, mais les voies moléculaires utilisées par chaque sexe sont très différentes.

Pourquoi les cerveaux de sexes différents emprunteraient-ils des chemins différents pour arriver au même point ?

Si vous aviez un système dans lequel vous avez besoin d’un neurone pour coder une information, ce système serait susceptible de tomber en panne. Tout devrait fonctionner parfaitement à chaque fois pour que vous puissiez naviguer dans l'environnement. Mais le cerveau comporte de nombreuses redondances, ce qui signifie que vous n’avez pas besoin que tout fonctionne parfaitement. Il existe de nombreuses façons d’arriver au même but. La raison pour laquelle les mâles et les femelles ont des manières différentes de coder leurs comportements est probablement basée sur l'évolution et la survie de notre espèce.

Cela doit être un domaine difficile dans lequel travailler. Qu'est-ce qui vous motive ?

Ce qui me préoccupe chaque jour, c’est que ce sont des questions importantes. Apprendre la prochaine chose et résoudre des problèmes difficiles est en soi très satisfaisant. Ensuite, lorsque vous respirez, prenez du recul et réalisez que les problèmes difficiles que vous résolvez ont vraiment un impact sur les gens, cela rend le tout encore plus significatif. Mais ma véritable motivation réside dans le mentorat de la prochaine génération. Lorsque je me suis lancé dans la recherche, mon objectif était d’influencer le plus de personnes possible. Je pensais y parvenir en découvrant quelque chose d'important et en changeant la société, ce qui est évidemment le but ultime. Mais ensuite, quand je suis arrivée ici et que j'ai installé mon laboratoire, j'ai réalisé que ce qu'on fait, c'est apprendre aux étudiants qu'ils peuvent faire ce travail. Leur permettre de découvrir ce pour quoi ils sont bons et ce qu'ils aiment me permet de continuer, même lorsque la science ne va pas toujours comme je le souhaite.

Vous êtes un peu comme l'entraîneur de votre propre équipe.

Lorsque vous finissez par diriger un laboratoire, vous réalisez qu’il s’agit d’une grande partie de la science, mais aussi d’une grande partie de la non-science. Il s'agit d'amener les gens à travailler ensemble et de créer l'environnement approprié pour chaque individu, ce qui peut s'avérer difficile. C'est comme constituer une équipe. S'ils travaillent ensemble, c'est moins difficile pour chacun. Et si vous le faites correctement, alors tout le monde y gagne.

Vous défendez également les femmes scientifiques. D’où vient cette motivation ?

Personne dans ma famille n’avait de diplôme d’études supérieures avant moi. Parce que mon père est sportif, l'accent n'était pas mis sur les études. Ensuite, je me suis retrouvé dans un espace dans lequel – je ne veux pas dire que je n’avais rien à faire, mais j’étais entouré d’un groupe de personnes qui, à mon avis, étaient plus intelligentes que moi. Ils savaient ce qu'ils faisaient. Ils savaient quel chemin ils étaient censés emprunter.  Heureusement j’ai eu des mentors extraordinaires qui m’ont aidé à rester sur un chemin que je ne connaissais pas. Et puis, en vieillissant, j’ai commencé à réaliser que ma place était ici. J'étais aussi intelligente que les gens autour de moi. Cela seul m’a fait réaliser à quel point il est important que les gens se sentent à leur place.

Au lieu de demander aux femmes d'agir comme des hommes pour s'intégrer dans un système construit pour les hommes, peut-être devrions-nous changer le système pour renforcer les éléments qui nous manquent, c'est-à-dire les éléments que les femmes apportent à la table : la façon dont elles naviguent dans le monde, comment elles perçoivent les choses, comment elles accompagnent les étudiants. Nous bénéficions énormément de la création d’un espace pour les femmes.

Vous avez fait du sport toute votre vie, y compris le basket-ball à l'université. Pensez-vous que cela a eu une influence sur votre carrière aujourd’hui ? 

Les choses les plus importantes que l’on apprend dans le sport sont comment se dépasser pour s’améliorer chaque jour, comment se remettre d’un échec et comment compter sur ses coéquipiers. Quand j'étais plus jeune, ces expériences m'ont appris à venir travailler après qu'une expérience n'ait pas fonctionné et à demander de l'aide lorsque j'en avais besoin.

Durant mon entraînement, j’étais l’athlète qui jouait à un jeu. Cependant, lorsque je suis devenu professeur, je suis tout d’un coup devenu entraîneur. Mon travail est différent maintenant. Il se concentre sur la façon dont je peux amener mon équipe à s’améliorer. Je dois identifier les points forts de chacun et les mettre en mesure de réussir. Je suis également là pour les aider à combler les lacunes avec d’excellents coéquipiers qui sont bons dans des domaines pour lesquels ils ne sont peut-être pas bons. Le sport m'a donné les compétences nécessaires pour me concentrer sur le travail acharné et la motivation, et m'a donné un cadre pour créer une équipe efficace et la motiver à donner le meilleur d'elle-même.

Votre père, John Calipari , est un entraîneur de basket-ball professionnel. Était-il un mentor pour vous ?

Il était un mentor extraordinaire, mais plus par les choses qu'il faisait que par les choses qu'il disait. Quand j'étais au collège, il a été viré. Le regarder se faire virer, puis revenir et dire : " Vous savez quoi, tout va bien ; Je vais me lever et recommencer " – c'était vraiment important pour moi de réaliser que même lorsque les choses semblent être d'énormes échecs, c'est parfois le début de quelque chose de nouveau.

Auteur: Internet

Info: Quanta Magazine, Yasemin Saplakoglu, 7 décembre 2023 *système simple, rapide et efficace pour couper l'ADN à un endroit précis du génome, dans n'importe quelle cellule.

[ accoutumance ] [ femmes-hommes ] [ éducation ] [ dépaysement ] [ ajustement ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Le premier chapitre de l’ouvrage montre que la période grecque est déterminante pour les développements ultérieurs de la connaissance, elle a posé certains principes fondamentaux qui seront discutés jusqu’à nos jours. En synthétisant les apports de penseurs grecs d’Héraclite et Parménide, de Socrate à Platon, Aristote et Épicure, Martine Bocquet pointe qu’à cette époque le signe (séméïon) est secondaire, il est considéré comme un signe de la nature que l’on peut interpréter (symptôme de maladies, foudre, etc.). Il s’oppose au mot qui, lui, repose sur une relation conventionnelle. Martine Bocquet montre qu’Aristote est important pour la sémiotique, de Deely en particulier. Réaffirmant l’importance du rapport sensible au monde, face à Platon, il a placé le séméïon au fondement de la connaissance et orienté ses recherches vers la relation comme catégorie discursive (pp. 33-45), notion qui sera au cœur des discussions des scoliastes.

Le chapitre deux montre l’évolution importante des notions de signe et de relation à la période latine médiévale et scolastique. Suivant l’étude de Deely, Martine Bocquet souligne le rôle d’Augustin d’Hippone. En traduisant le séméïon grec en signum, il a proposé la première formulation générale du signe qui subsume l’opposition entre nature et culture entre lesquelles il fonctionne comme une interface (p. 65, 68). Bien qu’elle demeure imparfaite, l’approche d’Augustin pose d’une part les fondements d’une théorie relationnelle de la connaissance ; d’autre part, en maintenant une distinction entre signe naturel (signum naturale, séméïon) et signe conventionnel (signum datum), elle ouvre sur une conception de la communication, tout à fait intéressante, engageant tous les êtres vivants (animaux, plantes) (p. 67, 69). D’une autre façon, la problématisation de la relation apparaît tout aussi importante à cette période. En distinguant, chez Aristote, la relatio secundum dici (relation transcendantale) — relation exprimée par le discours — et la relatio secundum esse (relation ontologique) — relation en tant qu’entité particulière (p. 70) — Boèce permet de concevoir l’existence de relations ontologiques, indépendantes de la pensée (p. 73) — fondamentales chez Poinsot, Peirce et Deely. Cette distinction aura son incidence puisqu’elle posera les termes de la querelle des universaux, tournant épistémologique majeur de l’histoire des connaissances.

Initiée par Pierre Abélard, la "querelle des universaux" est abordée par Martine Bocquet au chapitre trois et apparaît comme le point pivot de l’ouvrage (pp. 107-112) dans la mesure où elle aura une incidence sur le rapport au monde et à la connaissance. La dispute, qui porte sur la nature de l’objectivité et du statut de réalité des entités dépendantes ou non de la pensée, par le biais de la catégorie aristotélicienne de relation, et, par extension, de celle de signe, oppose les réalistes aux nominalistes.

Les penseurs dits "réalistes", parmi lesquels Thomas d’Aquin, Roger Bacon, Duns Scot, considèrent que le signe est constitué d’une relation indépendante de la pensée, dite ontologique, à la nature. Le traitement de Martine Bocquet montre clairement que Deely se retrouve dans la pensée de ces auteurs, dont il a avant tout souligné la contribution à la sémiotique de Peirce : (i) le signe subsume l’activité cognitive (pp. 80-81) (ii) la relation de signe est dans tous les cas triadique (p. 82), (iii) les signes se constituent de manière dynamique, ce qui leur permet d’agir (sémiosis) et de jouer un rôle dans l’expérience et la connaissance (pp. 83-86).

Martine Bocquet met particulièrement en évidence la pensée de Jean Poinsot (Jean de St-Thomas), en soulignant son influence sur Deely. L’originalité de ce dernier est d’avoir considéré Poinsot comme le précurseur d’une sémiotique voisine de celle de Peirce, plus ontologique encore. Pour le résumer en quelques points, Poinsot défend avant tout que la nature et la réalité du signe sont ontologiques (secundum esse), c’est-à-dire que le signe est une relation dont le véhicule est indifférent à ce qu’il communique (p. 102). Ce point est essentiel car il permet de doter le signe d’une nature proprement relationnelle : (i) il pointe vers autre chose (une autre réalité physique ou psychique), (ii) il permet d’articuler la subjectivité et l’intersubjectivité et (iii) opère la médiation entre les choses (indépendantes de la pensée) et les objets (dépendants de la pensée) (pp. 105-106) ; ce que la représentation, où l’objet pointe vers lui-même, n’autorise pas. Le point de vue de Poinsot est déterminant, car les nombreux retours vers sa pensée réalisés tout au long de l’ouvrage, montrent que c’est au prisme de ces principes que Deely réévaluait les pensées modernes.

De l’autre côté, les "nominalistes" comme Guillaume d’Ockham considèrent que la réalité est extra mentale, que seules les causes externes sont réelles, et qu’en conséquence, les relations intersubjectives n’existent que dans la pensée. Malgré l’intervention des successeurs d’Ockham qui, contrairement à celui-ci, admettront le signe, divisé en deux entités — signes instrumentaux (physiques, accessibles aux sens) et signes formels (concepts) — à partir de 1400 environ, les concepts (signes formels) seront considérés comme des représentations (p. 91). Martine Bocquet montre bien que le principe nominaliste, souvent simplifié, sera largement adopté par les sciences empiriques qu’il permettra de développer, mais cela, et c’est l’enjeu de la démarche de Deely, au détriment du rapport entre le monde et les sens.

Dans le quatrième chapitre consacré à la modernité, Martine Bocquet montre comment Deely a pointé les problèmes et les limites posés par l’héritage du nominalisme, en mettant notamment en perspective les travaux des empiristes (John Locke, David Hume), puis ceux de Kant, avec les propositions de Poinsot. Elle montre d’emblée que le rationalisme de Descartes, où la raison est indépendante et supérieure à la perception, conduira à renégocier la place de la perception dans la connaissance. En concevant les qualités des sens comme des images mentales, les modernes renversent l’ordre de la perception sensorielle reconnu par les scoliastes, les qualités sensorielles (couleurs, odeurs, sons) autrefois premières sont reléguées au second plan (p. 117). Les empiristes (John Locke, George Berkeley, David Hume) contribueront à considérer l’ensemble des sensations comme des images mentales, ils ne seront alors plus capables de s’extraire de la subjectivité (p. 121-124). À ce titre, Martine Bocquet porte à notre attention que Deely avait bien montré que l’empirisme et le rationalisme éludaient la description du phénomène de cognition.

L’approche de Kant apparaît dans l’ouvrage comme point culminant, ou synthèse, de la pensée moderne. En suivant les pas de Deely, Martine Bocquet prend le soin de mettre son travail en perspective avec la pensée de Poinsot, ce qui permet de réaffirmer sa pertinence dans le projet sémiotique de Deely. Kant a eu le mérite d’envisager des relations objectives. Toutefois, en limitant la cognition aux représentations, il la sépare de la signification, c’est-à-dire du supplément de sens contenu dans l’objectivité (au sens de Poinsot), et se coupe de l’expérience de l’environnement sensible qui permet à l’homme de connaître et de constituer le monde (pp. 130-131). Martine Bocquet insiste sur le fait que, selon Deely, la pensée kantienne est lourde de conséquences puisqu’en inversant les concepts d’objectivité et de subjectivité, elle enferme l’individu dans sa propre pensée (p. 134), reléguant la communication au rang d’illusion.

Le dernier chapitre de l’ouvrage est consacré aux chercheurs post-modernes, qui ont marqué la fin du modernisme et opéré un retour vers le signe. On y trouve notamment les apports d’Hegel et de Darwin, entre autres, qui ont permis d’affirmer le rôle concret de la relation ontologique dans la cognition, et la prise des facultés cognitives avec l’environnement physique. Martine Bocquet consacre une grande partie du chapitre à la sémiotique en tant que discipline, ce qui lui permet de réaffirmer l’ancrage de Deely dans l’héritage peircien qui est ici clairement distingué des modèles de Saussure et Eco.

Martine Bocquet rappelle d’abord que la pensée de Peirce s’inspire des réalistes (d’Aquin, Duns Scot) et considère donc que les produits de la pensée sont bien réels, et non de simples constructions des sens. La sémiotique qu’il développe appréhende la signification comme un parcours de pensée dynamique entre expérience et cognition. Dans son modèle ternaire, présenté en détail, la relation de tiercité caractérise le fonctionnement de la cognition humaine depuis la perception d’indices jusqu’à la constitution d’un système de signification ; elle est propre à l’homme qui peut se référer à la réalité mais aussi évoquer des choses imaginées (p. 146). L’intérêt de ce modèle est de permettre d’envisager que les non-humains utilisent aussi des signes, possibilité envisagée par Peirce dans sa « grande vision », doctrine qui selon Bocquet fascine Deely. Ce projet consistait à étendre la sémiotique au vivant, considérant que l’action des signes est enracinée dans toutes les choses du monde. Il ouvre sur un vaste champ de recherche abordé en conclusion, sur lequel nous reviendrons.

Contrairement à la sémiotique peircienne, Bocquet montre que John Deely considère que la sémiologie de Saussure, reposant sur le signe linguistique, est limitée car elle ne s’occupe que des signes conventionnels, culturels. De ce fait, elle se montre non seulement incapable d’approcher le signe naturel mais elle court aussi le risque de faire de la réalité une construction de l’esprit (idéalisme). En dépit d’un substrat peircien partagé, la même critique sera adressée à la théorie des codes d’Eco puis, plus loin dans la conclusion de Martine Bocquet (pp. 171-172), au structuralisme (Greimas, Lévi-Strauss). En somme, ces sémiotiques sont très efficaces pour étudier les systèmes de signes spécifiquement humains, mais, enfermées dans le langage et la culture, elles sont incapables de traiter les signes naturels, toute tentative révèle leur idéalisme. À cet endroit, l’auteure met bien en évidence l’opposition irréductible entre, d’un côté, ces théories qui ne rendent compte ni du signe naturel ni de la reconnaissance des phénomènes de la nature, et de l’autre, la posture de Deely qui défend l’idée que les données des sens ne sont jamais déconnectées et que la perception comprend une structure d’objectivité car les relations sont réelles (p. 165). Finalement, au travers de l’ouvrage, Bocquet montre que Deely prônait un retour à l’universalité du signe.

La conclusion du livre indique que Deely plaçait le signe et la sémiotique au cœur d’une pensée postmoderne capable de rétablir le dialogue entre les sciences dures et les sciences de la communication. Ce dialogue répondrait à la nécessité de comprendre l’action des signes autant dans la nature que dans la culture. Pour concrétiser cela, Deely propose un retour au réalisme oublié des scoliastes latins pour réviser les théories des modernes afin de renouer le lien avec la nature, en tenant compte des entités dépendantes et indépendantes de la pensée (p. 168).

Cette posture s’inscrirait, selon Martine Bocquet, dans un projet sémioéthique au sein duquel l’homme prendrait conscience de ses responsabilités vis-à-vis de la nature. Finalement, la solution à adopter correspond à la "grande vision" de Peirce, introduite en amont, c’est-à-dire une doctrine des signes qui, d’une part, intègre l’ensemble de la connaissance humaine du sensoriel aux interactions sociales et à la culture et, d’autre part, étend la sémiotique à l’ensemble du monde vivant, considéré comme un réseau de significations entre humains et non-humains, et noué sur une relation ontologique présente dans toute chose (pp. 169-170). Mis en application dans les années 1960, ce projet a donné lieu à un ensemble de sémiotiques spécifiques étudiant aussi bien le vivant, comme la physiosémiotique, la phytosémiotique, la zoosémiotique, la biosémiotique, que l’homme avec l’anthroposémiotique. Nous soulignons que certaines de ces disciplines sont aujourd’hui émergentes pour répondre aux questions environnementales actuelles en termes de climat, de cohabitation entre espèces et d’habitabilité du monde.

La restitution des travaux de Deely par Martine Bocquet semble tout à fait pertinente pour les sciences de la communication. Tout d’abord, parce que la démarche historique de Deely invitant à réévaluer nos acquis au prisme de modèles plus anciens, parfois moins connus, est tout à fait d’actualité et nécessaire dans notre réseau de recherche pluridisciplinaire. Ensuite, du fait de la structure détaillée du livre de Martine Bocquet qui permettra autant aux étudiants qu’aux chercheurs de trouver une formulation des concepts et des problèmes qui sous-tendent encore le domaine de la communication.

D’autre part, le grand intérêt de l’ouvrage réside dans le parti pris épistémologique de la sémiotique de Deely. En adoptant la relation ontologique de Poinsot, présente en creux chez Peirce, Deely ouvre des perspectives importantes pour le champ des sciences de la communication puisqu’il attire notre attention sur un concept universel de signe capable de réaffirmer la place du sensible dans la communication et de problématiser les interactions entre humains et non-humains. À ce titre, la pensée de Deely rapportée par Martine Bocquet est tout à fait en phase avec la recherche de ces quinze dernières années où différentes disciplines ont cherché à étudier la signification au-delà des particularités entre humains mais aussi entre êtres vivants, soit en adoptant un point de vue ontologique soit en intégrant les sciences physiques ou cognitives. Citons par exemple la biosémiotique, la zoosémiotique mais aussi l’anthropologie de la nature de Philippe Descola, "l’anthropologie au-delà de l’humain" d’Eduardo Kohn, la sémiophysique de René Thom et Jean Petitot ou encore la sémiotique cognitive.

Auteur: Chatenet Ludovic

Info: résumé critique de : Martine Bocquet, Sur les traces du signe avec John Deely : une histoire de la sémiotique Limoges, Éditions Lambert Lucas, 2019, 200 p.

[ panorama sémiologique ] [ anthropocentrisme ] [ xénolinguistique ] [ philologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Comment l'IA comprend des trucs que personne ne lui lui a appris

Les chercheurs peinent à comprendre comment les modèles d'Intelligence artificielle, formés pour perroquetter les textes sur Internet, peuvent effectuer des tâches avancées comme coder, jouer à des jeux ou essayer de rompre un mariage.

Personne ne sait encore comment ChatGPT et ses cousins ​​de l'intelligence artificielle vont transformer le monde, en partie parce que personne ne sait vraiment ce qui se passe à l'intérieur. Certaines des capacités de ces systèmes vont bien au-delà de ce pour quoi ils ont été formés, et même leurs inventeurs ne savent pas pourquoi. Un nombre croissant de tests suggèrent que ces systèmes d'IA développent des modèles internes du monde réel, tout comme notre propre cerveau le fait, bien que la technique des machines soit différente.

"Tout ce que nous voulons faire avec ces systèmes pour les rendre meilleurs ou plus sûrs ou quelque chose comme ça me semble une chose ridicule à demander  si nous ne comprenons pas comment ils fonctionnent", déclare Ellie Pavlick de l'Université Brown,  un des chercheurs travaillant à combler ce vide explicatif.

À un certain niveau, elle et ses collègues comprennent parfaitement le GPT (abréviation de generative pretrained transformer) et d'autres grands modèles de langage, ou LLM. Des modèles qui reposent sur un système d'apprentissage automatique appelé réseau de neurones. De tels réseaux ont une structure vaguement calquée sur les neurones connectés du cerveau humain. Le code de ces programmes est relativement simple et ne remplit que quelques pages. Il met en place un algorithme d'autocorrection, qui choisit le mot le plus susceptible de compléter un passage sur la base d'une analyse statistique laborieuse de centaines de gigaoctets de texte Internet. D'autres algorithmes auto-apprenants supplémentaire garantissant que le système présente ses résultats sous forme de dialogue. En ce sens, il ne fait que régurgiter ce qu'il a appris, c'est un "perroquet stochastique", selon les mots d'Emily Bender, linguiste à l'Université de Washington. Mais les LLM ont également réussi à réussir l'examen pour devenir avocat, à expliquer le boson de Higgs en pentamètre iambique (forme de poésie contrainte) ou à tenter de rompre le mariage d'un utilisateurs. Peu de gens s'attendaient à ce qu'un algorithme d'autocorrection assez simple acquière des capacités aussi larges.

Le fait que GPT et d'autres systèmes d'IA effectuent des tâches pour lesquelles ils n'ont pas été formés, leur donnant des "capacités émergentes", a surpris même les chercheurs qui étaient généralement sceptiques quant au battage médiatique sur les LLM. "Je ne sais pas comment ils le font ou s'ils pourraient le faire plus généralement comme le font les humains, mais tout ça mes au défi mes pensées sur le sujet", déclare Melanie Mitchell, chercheuse en IA à l'Institut Santa Fe.

"C'est certainement bien plus qu'un perroquet stochastique, qui auto-construit sans aucun doute une certaine représentation du monde, bien que je ne pense pas que ce soit  vraiment de la façon dont les humains construisent un modèle de monde interne", déclare Yoshua Bengio, chercheur en intelligence artificielle à l'université de Montréal.

Lors d'une conférence à l'Université de New York en mars, le philosophe Raphaël Millière de l'Université de Columbia a offert un autre exemple à couper le souffle de ce que les LLM peuvent faire. Les modèles avaient déjà démontré leur capacité à écrire du code informatique, ce qui est impressionnant mais pas trop surprenant car il y a tellement de code à imiter sur Internet. Millière est allé plus loin en montrant que le GPT peut aussi réaliser du code. Le philosophe a tapé un programme pour calculer le 83e nombre de la suite de Fibonacci. "Il s'agit d'un raisonnement en plusieurs étapes d'un très haut niveau", explique-t-il. Et le robot a réussi. Cependant, lorsque Millière a demandé directement le 83e nombre de Fibonacci, GPT s'est trompé, ce qui suggère que le système ne se contentait pas de répéter ce qui se disait sur l'internet. Ce qui suggère que le système ne se contente pas de répéter ce qui se dit sur Internet, mais qu'il effectue ses propres calculs pour parvenir à la bonne réponse.

Bien qu'un LLM tourne sur un ordinateur, il n'en n'est pas un lui-même. Il lui manque des éléments de calcul essentiels, comme sa propre mémoire vive. Reconnaissant tacitement que GPT seul ne devrait pas être capable d'exécuter du code, son inventeur, la société technologique OpenAI, a depuis introduit un plug-in spécialisé -  outil que ChatGPT peut utiliser pour répondre à une requête - qui remédie à cela. Mais ce plug-in n'a pas été utilisé dans la démonstration de Millière. Au lieu de cela, ce dernier suppose plutôt que la machine a improvisé une mémoire en exploitant ses mécanismes d'interprétation des mots en fonction de leur contexte -  situation similaire à la façon dont la nature réaffecte des capacités existantes à de nouvelles fonctions.

Cette capacité impromptue démontre que les LLM développent une complexité interne qui va bien au-delà d'une analyse statistique superficielle. Les chercheurs constatent que ces systèmes semblent parvenir à une véritable compréhension de ce qu'ils ont appris. Dans une étude présentée la semaine dernière à la Conférence internationale sur les représentations de l'apprentissage (ICLR), le doctorant Kenneth Li de l'Université de Harvard et ses collègues chercheurs en intelligence artificielle, Aspen K. Hopkins du Massachusetts Institute of Technology, David Bau de la Northeastern University et Fernanda Viégas , Hanspeter Pfister et Martin Wattenberg, tous à Harvard, ont créé leur propre copie plus petite du réseau neuronal GPT afin de pouvoir étudier son fonctionnement interne. Ils l'ont entraîné sur des millions de matchs du jeu de société Othello en alimentant de longues séquences de mouvements sous forme de texte. Leur modèle est devenu un joueur presque parfait.

Pour étudier comment le réseau de neurones encodait les informations, ils ont adopté une technique que Bengio et Guillaume Alain, également de l'Université de Montréal, ont imaginée en 2016. Ils ont créé un réseau de "sondes" miniatures pour analyser le réseau principal couche par couche. Li compare cette approche aux méthodes des neurosciences. "C'est comme lorsque nous plaçons une sonde électrique dans le cerveau humain", dit-il. Dans le cas de l'IA, la sonde a montré que son "activité neuronale" correspondait à la représentation d'un plateau de jeu d'Othello, bien que sous une forme alambiquée. Pour confirmer ce résultat, les chercheurs ont inversé la sonde afin d'implanter des informations dans le réseau, par exemple en remplaçant l'un des marqueurs noirs du jeu par un marqueur blanc. "En fait, nous piratons le cerveau de ces modèles de langage", explique Li. Le réseau a ajusté ses mouvements en conséquence. Les chercheurs ont conclu qu'il jouait à Othello à peu près comme un humain : en gardant un plateau de jeu dans son "esprit" et en utilisant ce modèle pour évaluer les mouvements. Li pense que le système apprend cette compétence parce qu'il s'agit de la description la plus simple et efficace de ses données pour l'apprentissage. "Si l'on vous donne un grand nombre de scripts de jeu, essayer de comprendre la règle qui les sous-tend est le meilleur moyen de les comprimer", ajoute-t-il.

Cette capacité à déduire la structure du monde extérieur ne se limite pas à de simples mouvements de jeu ; il apparaît également dans le dialogue. Belinda Li (aucun lien avec Kenneth Li), Maxwell Nye et Jacob Andreas, tous au MIT, ont étudié des réseaux qui jouaient à un jeu d'aventure textuel. Ils ont introduit des phrases telles que "La clé est dans le coeur du trésor", suivies de "Tu prends la clé". À l'aide d'une sonde, ils ont constaté que les réseaux encodaient en eux-mêmes des variables correspondant à "coeur" et "Tu", chacune avec la propriété de posséder ou non une clé, et mettaient à jour ces variables phrase par phrase. Le système n'a aucun moyen indépendant de savoir ce qu'est une boîte ou une clé, mais il a acquis les concepts dont il avait besoin pour cette tâche."

"Une représentation de cette situation est donc enfouie dans le modèle", explique Belinda Li.

Les chercheurs s'émerveillent de voir à quel point les LLM sont capables d'apprendre du texte. Par exemple, Pavlick et sa doctorante d'alors, l'étudiante Roma Patel, ont découvert que ces réseaux absorbent les descriptions de couleur du texte Internet et construisent des représentations internes de la couleur. Lorsqu'ils voient le mot "rouge", ils le traitent non seulement comme un symbole abstrait, mais comme un concept qui a une certaine relation avec le marron, le cramoisi, le fuchsia, la rouille, etc. Démontrer cela fut quelque peu délicat. Au lieu d'insérer une sonde dans un réseau, les chercheurs ont étudié sa réponse à une série d'invites textuelles. Pour vérifier si le systhème ne faisait pas simplement écho à des relations de couleur tirées de références en ligne, ils ont essayé de le désorienter en lui disant que le rouge est en fait du vert - comme dans la vieille expérience de pensée philosophique où le rouge d'une personne correspond au vert d'une autre. Plutôt que répéter une réponse incorrecte, les évaluations de couleur du système ont évolué de manière appropriée afin de maintenir les relations correctes.

Reprenant l'idée que pour remplir sa fonction d'autocorrection, le système recherche la logique sous-jacente de ses données d'apprentissage, le chercheur en apprentissage automatique Sébastien Bubeck de Microsoft Research suggère que plus la gamme de données est large, plus les règles du système faire émerger sont générales. "Peut-être que nous nous constatons un tel bond en avant parce que nous avons atteint une diversité de données suffisamment importante pour que le seul principe sous-jacent à toutes ces données qui demeure est que des êtres intelligents les ont produites... Ainsi la seule façon pour le modèle d'expliquer toutes ces données est de devenir intelligent lui-même".

En plus d'extraire le sens sous-jacent du langage, les LLM sont capables d'apprendre en temps réel. Dans le domaine de l'IA, le terme "apprentissage" est généralement réservé au processus informatique intensif dans lequel les développeurs exposent le réseau neuronal à des gigaoctets de données et ajustent petit à petit ses connexions internes. Lorsque vous tapez une requête dans ChatGPT, le réseau devrait être en quelque sorte figé et, contrairement à l'homme, ne devrait pas continuer à apprendre. Il fut donc surprenant de constater que les LLM apprennent effectivement à partir des invites de leurs utilisateurs, une capacité connue sous le nom d'"apprentissage en contexte". "Il s'agit d'un type d'apprentissage différent dont on ne soupçonnait pas l'existence auparavant", explique Ben Goertzel, fondateur de la société d'IA SingularityNET.

Un exemple de la façon dont un LLM apprend vient de la façon dont les humains interagissent avec les chatbots tels que ChatGPT. Vous pouvez donner au système des exemples de la façon dont vous voulez qu'il réponde, et il obéira. Ses sorties sont déterminées par les derniers milliers de mots qu'il a vus. Ce qu'il fait, étant donné ces mots, est prescrit par ses connexions internes fixes - mais la séquence de mots offre néanmoins une certaine adaptabilité. Certaines personnes utilisent le jailbreak à des fins sommaires, mais d'autres l'utilisent pour obtenir des réponses plus créatives. "Il répondra mieux aux questions scientifiques, je dirais, si vous posez directement la question, sans invite spéciale de jailbreak, explique William Hahn, codirecteur du laboratoire de perception de la machine et de robotique cognitive à la Florida Atlantic University. "Sans il sera un meilleur universitaire." (Comme son nom l'indique une invite jailbreak -prison cassée-, invite à  moins délimiter-verrouiller les fonctions de recherche et donc à les ouvrir, avec les risques que ça implique) .

Un autre type d'apprentissage en contexte se produit via l'incitation à la "chaîne de pensée", ce qui signifie qu'on demande au réseau d'épeler chaque étape de son raisonnement - manière de faire qui permet de mieux résoudre les problèmes de logique ou d'arithmétique en passant par plusieurs étapes. (Ce qui rend l'exemple de Millière si surprenant  puisque le réseau a trouvé le nombre de Fibonacci sans un tel encadrement.)

En 2022, une équipe de Google Research et de l'École polytechnique fédérale de Zurich - Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov et Max Vladymyrov - a montré que l'apprentissage en contexte suit la même procédure de calcul de base que l'apprentissage standard, connue sous le nom de descente de gradient". 

Cette procédure n'était pas programmée ; le système l'a découvert sans aide. "C'est probablement une compétence acquise", déclare Blaise Agüera y Arcas, vice-président de Google Research. De fait il pense que les LLM peuvent avoir d'autres capacités latentes que personne n'a encore découvertes. "Chaque fois que nous testons une nouvelle capacité que nous pouvons quantifier, nous la trouvons", dit-il.

Bien que les LLM aient suffisamment d'angles morts et autres défauts pour ne pas être qualifiés d'intelligence générale artificielle, ou AGI - terme désignant une machine qui atteint l'ingéniosité du cerveau animal - ces capacités émergentes suggèrent à certains chercheurs que les entreprises technologiques sont plus proches de l'AGI que même les optimistes ne l'avaient deviné. "Ce sont des preuves indirectes que nous en sommes probablement pas si loin", a déclaré Goertzel en mars lors d'une conférence sur le deep learning à la Florida Atlantic University. Les plug-ins d'OpenAI ont donné à ChatGPT une architecture modulaire un peu comme celle du cerveau humain. "La combinaison de GPT-4 [la dernière version du LLM qui alimente ChatGPT] avec divers plug-ins pourrait être une voie vers une spécialisation des fonctions semblable à celle de l'homme", déclare Anna Ivanova, chercheuse au M.I.T.

Dans le même temps, les chercheurs s'inquiètent de voir leur capacité à étudier ces systèmes s'amenuiser. OpenAI n'a pas divulgué les détails de la conception et de l'entraînement de GPT-4, en partie du à la concurrence avec Google et d'autres entreprises, sans parler des autres pays. "Il y aura probablement moins de recherche ouverte de la part de l'industrie, et les choses seront plus cloisonnées et organisées autour de la construction de produits", déclare Dan Roberts, physicien théoricien au M.I.T., qui applique les techniques de sa profession à la compréhension de l'IA.

Ce manque de transparence ne nuit pas seulement aux chercheurs, il entrave également les efforts qui visent à comprendre les répercussions sociales de l'adoption précipitée de la technologie de l'IA. "La transparence de ces modèles est la chose la plus importante pour garantir la sécurité", affirme M. Mitchell.

Auteur: Musser Georges

Info: https://www.scientificamerican.com,  11 mai 2023. *algorithme d'optimisation utilisé dans l'apprentissage automatique et les problèmes d'optimisation. Il vise à minimiser ou à maximiser une fonction en ajustant ses paramètres de manière itérative. L'algorithme part des valeurs initiales des paramètres et calcule le gradient de la fonction au point actuel. Les paramètres sont ensuite mis à jour dans la direction du gradient négatif (pour la minimisation) ou positif (pour la maximisation), multiplié par un taux d'apprentissage. Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit rempli. La descente de gradient est largement utilisée dans la formation des modèles d'apprentissage automatique pour trouver les valeurs optimales des paramètres qui minimisent la différence entre les résultats prédits et les résultats réels. Trad et adaptation Mg

[ singularité technologique ] [ versatilité sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

ufo

Un bon copain et ancien compagnon d'escadron, Dave "Sex" Fravor, a vécu une des histoires d'aviation les plus bizarres de tous les temps. Un truc qui éclate la crédibilité, alors je vais la raconter en m'appuyant sur la bonne foi de Dave.
Je le connais personnellement - très bien. Nous avons volé sur des A-6 ensemble avant qu'il n'entre dans le monde des Hornet. C'est un mec drôle. Intelligent et malin, avec la typique surestimation de ses compétences du pilote de chasse. En vol cependant, Dave était aussi professionnel que possible.
Au matin du 14 novembre 2004, Dave et son équipier se sont lancés dans le ciel bleu clair de la Californie du Sud, à une centaine de kilomètres au sud-ouest de San Diego. Leur nom d'appel était FASTEAGLE 01. Son ailier a décollé juste après eux dans FASTEAGLE 02. Ils ont grimpé au-dessus du navire et eu rendez-vous de façon normale avant de partir vers la zone de travail assignée dans l'océan ouvert au sud de l'USS Nimitz. Jour normal, opérations normales pour le pré-déploiement du cycle de travail dans tel milieu.
Le Nimitz Carrier Strike Group était déjà en poste depuis quelques semaines et travaillait à intégrer les opérations du transporteur avec ses différents navires de soutien, y compris le croiseur de missiles guidés de classe Ticonderoga, USS Princeton. En ce qui concerne Dave, c'était un jour standard, autre étape dans le long processus de la préparation des navires du Strike group et des avions de l'Air Wing pour travailler harmonieusement leur prochain déploiement de combat.
Ce que Dave ne savait pas, c'était qu'au cours des derniers jours, le Princeton avait attrapé des retours bizarres sur leur radar SPY-1. À plusieurs occasions, à compter du 10 novembre, le fire control officer, un type expérimenté, tout comme les radaristes, avaient détecté de nombreux échos qui se situaient bien au-dessus du volume de balayage du radar, quelque part à plus de 80 000 pieds. Des signaux qui partaient de 80 000 pieds jusqu'à planer à environ 50 pieds au-dessus de l'eau en quelques secondes. Toujours au même endroit, à la latitude d'environ 30NM au large de la côte de Baja, à environ 70NM au sud-ouest de Tijuana. À l'époque, le SPY-1 était le radar tactique le plus sophistiqué et le plus puissant de la planète. Avec cet engin, ils ont pu suivre ces AAV* pendant qu'ils descendaient, tournaient et glissaient à des vitesses, des taux de rotation et des accélérations plus rapides que n'importe quel avion ami ou menace connu. Incroyablement rapide.
Une fois les avions de l'escadre aérienne arrivés près du Nimitz, le fire squad control du Princeton y vit l'opportunité d'utiliser ces atouts et ces yeux pour aider à résoudre le mystère de ces AAVs.
A un moment, le vol FASTEAGLE terminait son entraînement prévu, le cmdt de l'escadron VMFA-232 de Marine, le lieutenant-colonel "Cheeks" Kurth, effectuait un vol de vérification post-maintenance pas très loin. Il fut le premier engin rapide contacté par le Princeton. La communication était étrange et intrigante. On lui demandait d'enquêter sur un contact aérien non identifié. Ce n'est pas une demande terriblement inhabituelle quand un Strike Group est en transit ou déployé loin des eaux domestiques, mais c'est plus qu'un peu étrange, pratiquement en vue du San Diego Homeport. Pour ajouter aux communications inhabituelles, on lui demanda quel armement il avait à bord. "Aucun."
Alors que le Princeton communiquait avec Cheeks, ils tentait également de transmettre ce contact AAV à l'E-2C Hawkeye de l'Air Wing, également en vol à l'époque. L'équipage de VAW-117 participait au contrôle d'interception pour le vol FASTEAGLE pendant leur entraînement et le Princeton souhaitait maintenant que l'E-2 guide les Super Hornets vers le point d'interception avec le contact de l'AAV, qui planait à ce moment sur leur spot préféré, mais maintenant à environ 20 000 pieds au-dessus de l'océan.
Les retours de l'AAV n'étaient pas été assez forts pour apparaître sur le large balayage de l'E-2, mais une fois qu'ils concentrèrent leur radar sur les coordonnées que le Princeton leur indiqua ils obtinrent un contact faible. Echos qui ne suffisaient pas pour générer une piste cible. Alors le Princeton contacta directement FASTEAGLE. Bien qu'il n'ait pas pu verrouiller les AAV, le contrôleur E-2 resta sur la fréquence et put suivre toute l'évolution qui s'ensuivit.
Alors que Cheeks s'approchait de l'endroit où il était dirigé, le Princeton lui conseilla de rester au-dessus de 10K alors que la section des Super Hornets s'approchait de la cible. Son radar reconnut les deux ships FASTEAGLE, mais pas d'autre contact. Un moment plus tard, le Princeton lui ordonna de le laisser tomber et de retourner au navire. Comme il était très proche, il décida de survoler l'action et de jeter un coup d'oeil.
La mer était calme, presque vitreuse et on était en fin de matinée d'une belle journée. Des conditions parfaites. Alors que Cheeks survolait l'endroit, il vit une perturbation à la surface de l'océan. Une section ronde d'eau turbulente d'environ 50-100 mètres de diamètre. C'était la seule zone du type de ce qu'il nomma "eau vive", décrivant ça comme s'il y avait quelque chose sous la surface comme un banc ou ce qu'il avait entendu dire de ce à quoi ressemble un navire qui coule rapidement.
Il survola la perturbation et fit demi-tour en direction de Nimitz sans voir ce qui faisait mousser l'eau. Comme il s'en retournait, au moment où les Super Hornets convergeaient vers l'endroit, les eaux blanches cessèrent et la surface de l'océan redevint lisse. Le point de la perturbation précédente étant complètement indiscernable.
À quelques milliers de pieds au-dessous de lui, Dave avait vu le même spectacle surréaliste, tout comme il s'était fait demander par le Princeton si les jets FASTEAGLE avaient des armes avec munition. Dave, déconcerté, rapporta que tout ce qu'ils avaient c'était deux missiles d'entraînement passifs. On lui donna des vecteurs de portée et un ensemble de coordonnées et on leur a dit d'enquêter sur un contact aérien inconnu à cet endroit.
Sans plus d'informations sur le contact, ils descendirent vers 20 mile pieds pour balayer avec un radar, ne percevant rien. Aucun avion de ce vol ne portait de girouette FLIR, ce qui limitait le type de capteurs avec lesquels il pouvait effectuer des recherches; mais les deux avions étaient neufs, selon les termes de Dave: "Ils avaient toujours cette nouvelle odeur de voiture". Les radars APG-73 étaient à la fois neufs et avaient parfaitement fonctionné durant l'entraînement de l'heure précédente. Pourtant, les écrans des deux avions étaient vides au point que Princeton lança "Merge plot!" (radars stop ?)
De ce moment les quatre membres d'équipage n'étaient plus que des yeux. La première indication inhabituelle que Dave nota fut la zone d'eau vive sur la surface que Cheeks regardait par-dessus son épaule alors qu'il s'éloignait. Il se souvient avoir pensé qu'il s'agissait de la taille d'un 737 et peut-être que le contact sur lequel ils avaient été dirigés était un avion de ligne qui venait de s'écraser. Il manoeuvra son F-18 plus bas pour mieux voir. Comme il descendait à environ 20K il fut surpris à la vue d'un objet blanc qui se déplaçait juste au-dessus de l'eau moussante. Il était immaculé, sans relief, oblong, et effectuait des mouvements latéraux mineurs tout en restant à une altitude constante au-dessus du disque d'eau turbulente.
Dave mis FASTEAGLE 02 en haute couverture passant vers environ 15K et avec son équipier put assister aux événements d'un point de vue parfait. Dave continua sa plongée en bas vers l'objet, essayant maintenant d'asservir le radar par l'intermédiaire de son NCSM pour le régler sur une distance de courte portée. Sans succès. Son intention était de passer près de l'objet à près de 350 nœuds. En se rapprochant il remarqua que l'AAV avait orienté l'une de ses extrémités fine vers lui, comme si, selon ses mots, "Il venait de nous remarquer et maintenant il nous pointait".
L'AAV commença alors à s'élever de son vol stationnaire. L'objet, qu'il décrivit plus tard comme bougeant en tic-tac, s'est élevé et fit deux cercles à droite, à environ un mile de la trajectoire en cercle du Hornet de Dave. Les instincts de BFM prirent le dessus et Dave poussa le nez vers le bas pour couper le bas du cercle. Alors il regarda l'AAV en mettant le nez en l'air, et tenta à nouveau d'asservir son radar via le NCSM. Encore une fois, l'APG-73 ne put verrouiller l'objet volant blanc de la taille d'un chasseur à quelques milliers de pieds de là.
Tout au long de ces manoeuvres, le WSO de Dave diffusait les événements en temps réel de l'interception vers le Princeton. Les opérateurs radar de l'E-2 entendirent sur le réseau sécurisé ce qui ressemblait à l'une des centaines d'interceptions qu'ils avaient entendues au fil des ans. À l'exception notable que les voix des équipages étaient plus stressées et que le verbiage pour identifier la cible était différent de ce qu'ils entendaient en général.
Dans leurs commentaires de débriefing, Dave, son OSM et les deux autres équipages déclarèrent que l'objet avait initialement plané comme un Harrier. Ils le décrivirent comme étant uniformément blanc, mesurant environ 45 pieds de longueur (grosso modo comme un avion de chasse), avec un axe horizontal discernable (comme un fuselage) mais sans fenêtres visibles, ni nacelles, ailes ou de systèmes de propulsion.
Alors que Dave tentait de manoeuvrer et d'essayer d'obtenir un verrou de combat avec son radar, l'AAV resserra son virage, "lift vector, puis vers l'arrière" comme Dave l'a décrit. Dave demanda immédiatement au Princeton un snap instantané, mais le radar SPY-1 avait également perdu le contact.
Les premières réponses du Princeton furent "image propre". Quelques instants plus tard, le Princeton relança "Vous n'allez pas le croire, mais il est à votre CAP." Le Princeton avait récupéré l'AAV planant à 24K au niveau assigné Lat / Long que Dave avait utilisé plus tôt pendant l'entraînement comme point orbital.
Bien que court en carburant, le vol FASTEAGLE bascula vers la position CAP pour essayer de reprendre l'AAV. Ils ne virent rien, ni sur leur chemin de retour vers Nimitz. Même le cercle de 100 mètres d'eau océanique turbulente avait disparu, lieu maintenant indiscernable du reste de la surface de la mer. Interrogé plus tard, Dave rapporta qu'il n'avait rien vu sur ou sous la surface de l'océan qui aurait pu causer ce cercle d'eau turbulente. Il était là quand ils acquirent visuellement le tic-tac, puis c'était parti lorsqu'ils cerclèrent quelques minutes plus tard.
De retour sur Nimitz, les quatre membres d'équipage se sont dirigés vers le paraloft pour retirer leur équipement. Les quatre équipages suivants de VFA-41 s'habillaient pour leur mission d'entraînement dans la même zone, avec utilisation des mêmes points Lat / Long que les points CAP de Dave. Dave et ses membres d'équipage transmirent ce qu'ils avaient vu aux nouveaux gars et leur rappelèrent d'enregistrer s'ils le pouvaient.
Le temps que lancement de la nouvelle équipe se fasse avec rendez-vous et vérification avec l'E-2 pour le contrôle, on était en début d'après-midi; 1500. Les avions se séparèrent, avec un cap vers ce même emplacement du sud de la PAC. Ils naviguaient à 20K et 300kts, max endurance. Là aussi le jet, le radar et aussi cette fois le FLIR, étaient nickel et fonctionnaient parfaitement.
Le WSO acquit d'abord un contact sur le radar à une distance d'environ 30 NM alors qu'il fonctionnait en mode balayage RWS. Il vérifia les coordonnées et ça oscillait en effet au point précis du CAP. Il tenta plusieurs verrouillage STT, sans succès. Plus tard, lors du débriefing, il expliqua qu'il avait plusieurs indices révélateurs d'EA.
L'aspect de la cible sur l'enregistrement de tracking tournait à 360 degrés avec d'autres indications de brouillage distinctes. En mode de balayage moins précis, le retour indiquait que l'objet était, aux dires du WSO, "à quelques milliers de pieds au-dessous de nous. Environ 15-20K- mais stationnaire." Le seul mouvement fut généré par le verrouillage radar du jet vers l'emplacement de la PAC.
Le WSO utilisa le pod FLIR à bord, l'asservissant à la piste faible que le mode RWS avait pu générer. Il enregistra la séquence sur l'enregistreur de bord. En utilisant le mode IR, il avait pu se verrouiller sur l'AAV., qui apparaissait sur l'écran dans l’enregistrement comme un objet blanc sur fond noir planant sans moyens connus.
La caméra Infra rouge ne détectait pas de gaz chauds sous l'AAV, comme avec un Harrier ou un hélicoptère. C'était simplement suspendu dans les airs. Il passa en mode TV et put verrouiller à nouveau le FLIR sur l'objet tout en essayant, sans succès, d'obtenir une piste STT sur le radar. Comme il regardait, l'AAV sortit de l'écran vers la gauche si soudainement qu'il sembla disparaître. Sur la bande au ralenti l'objet accélère hors du champ de vision avec une vitesse choquante. Le WSO ne fut pas en mesure de réacquérir l'AAV soit dans RWS soit avec le FLIR.
D'une manière ou d'une autre, la bande fut diffusée sur YouTube. Quelques années après l'incident, en me racontant l'histoire, Dave me montra le lien. C'était sans grand intérêt sans les informations de base. Mais remis dans le contexte, c'était incroyable, en particulier le ralenti du point d'accélération hors de l'écran. Pendant des années, j'ai raconté l'histoire à des amis et leur ai montré la vidéo.
Le mois dernier, lorsque j'ai appelé Dave pour me rafraîchir la mémoire avant de m'asseoir pour écrire cette rencontre bizarre, il m'a informé que la vidéo avait été retirée de YouTube. Il m'a dit qu'une agence gouvernementale avec un identificateur à trois lettres avait récemment mené une enquête sur les AAVs et avait interviewé exhaustivement toutes les parties impliquées, les sept membres d'équipage, dont les 6 membres du VFA-41 et Cheeks du VMFA-232, le fire control officer et le chef principal du Princeton, ainsi que l'opérateur radar de l'E-2. Ils ont même questionné l'équipage de l'USS Louisville, un sous-marin Fast-Attack de la classe de Los Angeles, qui faisait partie du Nimitz Carrier Strike Group, qui a rapporté qu'il n'y avait pas de contacts sonar non identifiés ou de bruits sous-marins étranges ce jour-là.
Je ne sais pas quoi faire de ces événements. J'ai aimé l'histoire dès sa première écoute parce que c'est tellement fou. Je n'avais jamais beaucoup réfléchi aux extraterrestres ou aux ovnis. C'était pour moi du gaspillage de le faire. S'ils voulaient prendre contact, ils le feraient. S'ils voulaient observer de loin, ils pourraient facilement être impossibles à discerner compte tenu de la haute technologie qu'ils semblent avoir.
Maintenant j'ai été confronté à des témoins crédibles. Pas des cinglés portant des chapeaux de papier mais des gens que je connais, des gens de mon monde. Il y eut plusieurs plates-formes corroborantes qui détectèrent l'AAV à l'aide de capteurs variés. Et, bien sûr, les huit globes oculaires qui ont eu le visuel sur le tic-tac blanc alors que Dave manœuvrait pour l'intercepter.
Dave n'a pas besoin d'être un étranger pour vous non plus. Regardez-le sur la série PBS, Carrier, et faites-vous votre propre opinion sur son professionnalisme et sa santé mentale.

Auteur: Chierici Paco

Info: 14 mars 2015. *Anomalous Aerial Vehicles

[ témoignage ] [ extraterrestres ]

 

Commentaires: 0

psychosomatique

Nous avons 2 cerveaux.

On se demande souvent pourquoi les gens ont des "boules" dans l'estomac avant d'aller sur scène ? Ou pourquoi un entretien d'emploi imminent peut causer des crampes intestinales ? Ainsi que : pourquoi les antidépresseur qui visent le cerveau causent la nausée ou un bouleversement abdominal chez des millions de personnes qui prennent de telles drogues ?

Les scientifiques disent que la raison de ces réactions est que notre corps a deux cerveaux : le familier, dans le crâne et, moins connus, mais extrêmement importants un autre dans l'intestin humain- Tout comme des jumeaux siamois, les deux cerveaux sont reliés ensemble ; quand l'un est affecté, l'autre aussi. Le cerveau de l'intestin, connu sous le nom de système nerveux entérique, est situé dans les gaines du tissu qui tapissent l'oesophage, l'estomac, le petit intestin et le colon. Si on le considère comme une simple entité, c'est un réseau de neurones, de neurotransmetteurs et de protéines qui zappent des messages entre eux, soutiennent des cellules comme celles du cerveau proprement dit et offrent des circuits complexes qui lui permettent d'agir indépendamment, d'apprendre, de se rappeler et, selon le dicton, de produire des sensations dans les intestins.

Le cerveau de l'intestin joue un rôle important dans le bonheur et la misère humains. Mais peu de gens savent qu'il existe indique le Dr. Michael Gershon, professeur d'anatomie et de biologie des cellules au centre médical presbytérien de Colombia à New York. Pendant des années, on a dit aux gens qui ont des ulcères, des problèmes pour avaler ou des douleurs abdominales chroniques que leurs problèmes étaient imaginaires ou, émotifs, c'est à dire simplement dans leurs têtes. Ces gens ont donc faits la navette entre divers psychiatres pour le traitement. Les médecins avaient raison en attribuant ces problèmes au cerveau dit le DR. Gershon, mais ils blâment le faux. Beaucoup de désordres gastro-intestinaux, comme le syndrome d'entrailles irritable proviennent des problèmes dans le propre cerveau de l'intestin, affirme-t'il. Les symptômes provenant des deux cerveaux - tendent à être confus : " Comme le cerveau peut déranger l'intestin, l'intestin peut également déranger le cerveau... si tu es enchaîné aux toilette avec un serre joint, tu seras aussi affecté."

Les détails de la façon dont le système nerveux entérique reflète le système nerveux central ont émergé ces dernières années, dit le Dr. Gershon, et c'est considéré comme un nouveau champ d'investigation appelé neuro-gastro-enterologie par la médecine. Ainsi, presque chaque substance qui aide à faire fonctionner et à commander le cerveau a donné des résultat dans l'intestin, dit Gershon. Les neurotransmetteurs principaux comme la sérotonine, dopamine, glutamate, nopépinéphrine et l'oxyde nitrique sont là. Deux douzaine de petites protéines cervicales, appelées les neuropeptides, sont dans l'intestin, comme les cellules principales du système immunitaire. Les Enkephalins, une classe d'opiacés normaux du corps, sont dans l'intestin et, constatation qui laisse les chercheurs perplexe, l'intestin est une riche source de benzodiazépines - la famille des produits chimiques psycho-actifs qui inclut des drogues toujours populaires telles que le Valium et le Xanax.

En termes évolutionnistes, il est assez clair que le corps a deux cerveaux, dit le Dr. David Wingate, professeur de science gastro-intestinale à l'université de Londres et conseiller à l'hôpital royal de Londres. Les premiers systèmes nerveux étaient des animaux non tubulaires qui collaient aux roches et attendaient le passage de nourriture. Le système limbique est souvent désignée sous le nom de "cerveau reptilien". Alors que la vie évoluait, les animaux ont eu besoin d'un cerveau plus complexe pour trouver la nourriture et un partenaire sexuel et ainsi ont développé un système nerveux central. Mais le système nerveux de l'intestin était trop important pour l'intégrer à cette nouvelle tête, même avec de longs raccordements sur tout le corps. Un rejeton à toujours besoin de manger et digérer de la nourriture à la naissance. Par conséquent, la nature semble avoir préservé le système nerveux entérique en tant que circuit indépendant.

Chez de plus grands animaux, il est simplement relié de manière vague au système nerveux central et peut la plupart du temps fonctionner seul, sans instructions de l'extérieur. C'est en effet l'image vue par les biologistes développementalistes. Une motte de tissus appelée la "crête neurale" se forme tôt dans l'embryogenese dit le DR.Gershon. Une section se transforme en système nerveux central. Un autre morceau émigre pour devenir le système nerveux entérique. Et postérieurieurement seulement les deux systèmes nerveux seront relié par l'intermédiaire d'une sorte de câble appelé le nerf "vagus". Jusque à relativement récemment, les gens ont pensé que les muscles et les nerfs sensoriels de l'intestin étaient câblés directement au cerveau et que le cerveau commandait l'intestin par deux voies qui augmentaient ou diminuaient les taux de l'activité. L'intestin étant un simple tube avec des réflexes. L'ennui est que personne ne pris la peine de compter les fibres de nerf dans l'intestin. Quand on l'a fait on fut étonné de constater que l'intestin contient 100 millions de neurones - plus que la moelle épinière.

Pourtant le conduit vagus n'envoie qu'environ deux mille fibres de nerf vers l'intestin. Le cerveau envoie des signaux à l'intestin en parlant à un nombre restreint de'"neurones de commande", qui envoient à leur tour des signaux aux neurones internes de l'intestin qui diffusent les messages. Les neurones et les inter neurones de commande sont dispersées dans deux couches de tissu intestinal appelées le plexus myenteric et le plexus subrmuscosal. ("le plexus solaire" est en fait un terme de boxe qui se réfère simplement aux nerfs de l'abdomen.) Ces neurones commandent et contrôlent le modèle de l'activité de l'intestin. Le nerf vagus modifie seulement le volume en changeant le taux de mise à feu. Les plexus contiennent également les cellules gliales qui nourrissent les neurones, les cellules pylônes impliquées dans des immuno-réactions, et "une barrière de sang cervical " qui maintient ces substances nocives loin des neurones importants. Ils ont des sondes pour les protéines de sucre, d'acidité et d'autres facteurs chimiques qui pourraient aider à surveiller le progrès de la digestion, déterminant comment l'intestin mélange et propulse son contenu. "Ce n'est pas une voie simple", Y sont employés des circuits intégrés complexes, pas différents du cerveau." Le cerveau de l'intestin et le cerveau de la tête agissent de la même manière quand ils sont privés d'informations venant du monde extérieur.

Pendant le sommeil, le cerveau de la tête produit des cycles de 90-minutes de sommeil lent, ponctué par des périodes de sommeil avec des mouvement d'oeil rapide (REM) où les rêves se produisent. Pendant la nuit, quand il n'a aucune nourriture, le cerveau de l'intestin produit des cycles 90-minute de lentes vagues de contractions des muscles, ponctuées par de courts gerbes de mouvements rapides des muscles, dit le Dr. Wingate. Les deux cerveaux peuvent donc s'influencer dans cet état. On a trouvé des patients présentant des problèmes d'entrailles ayant un sommeil REM anormal. Ce qui n'est pas contradictoire avec la sagesse folklorique qui voudrait que l'indigestion pousse au cauchemar. Alors que la lumière se fait sur les connexions entre les deux cerveaux, les chercheurs commencent à comprendre pourquoi les gens agissent et se sentent de telle manière.

Quand le cerveau central rencontre une situation effrayante, il libère les hormones d'effort qui préparent le corps combattre ou à se sauver dit le DR.Gershon. L'estomac contient beaucoup de nerfs sensoriels qui sont stimulés par cette montée chimique subite - ainsi surviennent les ballonnements. Sur le champ de bataille, le cerveau de la tête indique au cerveau d'intestin arrêter dit le DR.Gershon " Effrayé un animal en train de courir ne cesse pas de déféquer ". La crainte fait aussi que le nerf vagus au "monte le volume" des circuits de sérotonine dans l'intestin. Ainsi, trop stimulé, l'intestin impulse des vitesse élevés et, souvent, de la diarrhée. De même, des gens s'étouffent avec l'émotion. Quand des nerfs dans l'oesophage sont fortement stimulés, les gens peuvent éprouver des problèmes d'ingestion. Même le prétendu " Moment de Maalox " d'efficacité publicitaire peut être expliqué par les deux cerveaux agissant en interaction, dit le Dr. Jackie D. Wood, président du département de physiologie à l'université de l'Etat de l'Ohio à Columbus. Les signaux d'effort du cerveau de la tête peuvent changer la fonction de nerf entre l'estomac et l'oesophage, ayant pour résultat la brûlure d'estomac.

Dans les cas d'efforts extrême. le cerveau dominant semble protéger l'intestin en envoyant des signaux aux cellules pylônes immunologiques dans le plexus. Les cellules pylônes sécrètent l'histamine, la prostaglandine et d'autres agents qui aident à produire l'inflammation. "C'est protecteur. Si un animal est en danger et sujet au trauma, la substance sale dans les intestins est seulement à quelques cellules du reste du corps. En enflammant l'intestin, le cerveau amorce l'intestin pour la surveillance. Si la barrière se casse, l'intestin est prêt à faire les réparations ". Dit le DR. Wood. Malheureusement, ces produits chimiques libérés causent également la diarrhée et les crampes. Ceci explique également beaucoup d'interactions.."quand tu prends une drogue pour avoir des effets psychiques sur le cerveau, il est très probable que tu auras aussi des effets sur l'intestin. Réciproquement, les drogues développées pour le cerveau ont des utilisations pour l'intestin.

Par exemple, l'intestin est chargé avec la sérotonine des neurotransmetteur. Quand des récepteurs de pression de la doublure de l'intestin sont stimulés, la sérotonine est libérée et commence le mouvement réflexe du péristaltisme. Maintenant un quart des personnes prenant du Prozac ou des antidépresseur semblables ont des problèmes gastro- intestinaux comme la nausée, diarrhée et constipation. Ces drogues agissent sur la sérotonine, empêchant sa prise par les cellules cible de sorte qu'elle demeure plus abondante dans le système nerveux central. Dans une étude le DR.Gershon et ses collègues expliquent les effets secondaires du Prozac sur l'intestin. Ils ont monté une section de colon du cobaye sur un stand et ont mis un petit granule à l'extrémité de la "bouche". Le colon isolé fouette le granule vers le bas vers l'extrémité "anale" de la colonne, juste comme il le ferai à l'intérieur de l'animal. Quand les chercheurs ont mis un peu de Prozac dans le colon, le granule " y est entré dans la haute vitesse". La drogue a doublé la vitesse à laquelle le granule a traversé le colon, ce qui expliqueraient pourquoi certains ont la diarrhée. Le Prozac a été parfois utilisé à petites doses pour traiter la constipation chronique, a il ajouté. Mais quand les chercheurs ont augmenté la quantité de Prozac dans le colon du cobaye, le granule a cessé de se déplacer. Le DR Gershon dit que c'est pourquoi certains deviennent constipé avec cette drogue. Et parce que les nerfs sensoriels stimulés par Prozac peuvent également causer la nausée. Certains antibiotiques comme la crythromycine agissent sur des récepteurs d'intestin et produisent des oscillations. Certaines ont alors des crampes et des nausées. Des drogues comme la morphine et l'héroïne s'attachent aux récepteurs des opiacé de l'intestin, produisant la constipation. En effet, les deux cerveaux peuvent être intoxiqués aux opiacés. Les victimes des maladies d'Alzheimer et de Parkinson souffrent de constipation. Les nerfs dans leur intestin sont aussi malades que les cellules de nerf dans leurs cerveaux. Juste comme le cerveau central affecte l'intestin, le cerveau de l'intestin peut parler à la tête. La plupart des sensations d'intestin qui entrent dans la part consciente sont des choses négatives comme la douleur et le ballonnement.

Les gens ne s'attendent pas à sentir "du bon" venant de l'intestin... mais cela ne signifie pas que de tels signaux sont absents. Par conséquent, il y a la question intrigante : pourquoi l'intestin produit-il de la benzodiazépine ? Le cerveau humain contient des récepteurs pour la benzodiazépine, une drogue qui soulage l'inquiétude, suggérant que le corps produise sa propre source interne de la drogue, dit le Dr. Anthony Basile, neurochimiste au laboratoire de neurologie aux instituts nationaux de la santé a Bethesda. Il y a plusieurs années, dit-il, un scientifique italien a fait une découverte plus effrayante. Les patients présentant un disfonctionnement du foie tombèrent dans un coma profond. Le coma put être renversé, en quelques minutes, en donnant aux patients une drogue qui bloque la benzodiazépine. Quand le foie s'arrête, les substances habituellement neutralisées par le foie vont au cerveau. Certaines sont mauvaises, comme l'ammoniaque et les mercaptans, qui sont "les composés puants que les putois pulvérisent pour se défendre ". Mais une série de composés est également identique à la benzodiazépine. " Nous ne savons pas s'ils viennent de l'intestin lui-même, de bactéries dans l'intestin ou de la nourriture". dit. Le Dr Basile. Mais quand le foie s'arrête la benzodiazépine de l'intestin va directement au cerveau, mettant le patient dans le coma.

L'intérêt pour de telles interactions entre le cerveau d'intestin et celui de tête est énorme... Par exemple, beaucoup de personnes sont allergiques à certaines nourritures, comme les mollusques et les crustacés. C'est parce que les cellules pylônes dans l'intestin deviennent mystérieusement sensibilisées aux antigènes de la nourriture. La prochaine fois que l'antigène apparaît dans l'intestin ; les cellules pylônes appellent un programme, libérant des modulateurs chimiques, qui essaye d'éliminer la menace. La personne allergique se retrouve donc avec de la diarrhée et des crampes. Beaucoup de maladies auto-immunes comme la maladie de Krohn et les colites ulcérative peuvent impliquer le cerveau de l'intestin. Les conséquences peuvent être horribles, comme dans la maladie de Chagas, qui est provoquée par un parasite trouvé en Amérique du sud. Les infectés développent une réponse auto-immune des neurones de leur intestin. Leurs systèmes immunitaires détruit alors lentement leurs propres neurones intestinales. Quand assez de neurones sont mortes, les intestins éclatent littéralement.

Restent ces questions : Est ce que le cerveau de l'intestin apprend ? Pense - il pour lui-même ? L'intestin humain a été longtemps vu comme le réceptacle des bons et des mauvais sentiments. Des états peut-être émotifs du cerveau de la tête sont reflétés dans le cerveau de l'intestin, ou sont-ils ressentis que par ceux qui prêtent l'attention à elles. Le cerveau de l'intestin prend la forme de deux réseaux de raccordements neuraux dans la doublure de l'appareil gastro-intestinal, appelée le plexus myenteric et le plexus subrnucosal. Les nerfs sont fortement reliés ensemble et ont une influence directe sur des choses comme la vitesse de la digestion, le mouvement et des sécrétions de la muqueuses "comme-des-doigts" qui ligne les intestins et les contractions des différents genres de muscle dans les parois de l'intestin. Autoroute cerveau intestin à 2 voies : RUE Bidirectionnelle : L'intestin a son propre esprit, le système nerveux entérique. Juste comme le cerveau dans la tête, disent les chercheurs. Ce système envoie et reçoit des impulsions, enregistre, fait des expériences et répond aux émotions. Ses cellules nerveuse sont baignées et influencées par les mêmes neurotransmetteurs. L'intestin peut déranger le cerveau juste comme le cerveau peut déranger l'intestin. Diagramme des parois du petit intestin : un plan de coupe montre deux réseaux de nerfs qui composent le système nerveux entérique, ou "cerveau dans l'intestin". Le premier réseau, appelé le plexus submucosal, est juste sous la doublure muqueuse. le second, le plexus myenteric, se trouve entre les deux manteaux de muscle.

Auteur: Blakeslee Sandra

Info: New York Times 23 Janvier 1996

[ dyspepsie ] [ tourista ]

 

Commentaires: 0

homme-animal

CAPACITÉS COGNITIVES DU DAUPHIN

Au-delà de leur physiologie cérébrale, les dauphins font preuve de capacités extrêmement rares dans le domaine animal. Comme les humains, les dauphins peuvent imiter, aussi bien sur le mode gestuel que sur le mode vocal, ce qui est soi est déjà exceptionnel. Si certains oiseaux peuvent imiter la voix, ils n’imitent pas les attitudes. Les singes, de leur côté, imitent les gestes et non les mots. Le dauphin est capable des deux. Les dauphins chassent les poissons et se nourrissent d’invertébrés, mais ils usent pour ce faire de techniques complexes et variables, acquises durant l’enfance grâce à l’éducation. L’usage des outils ne leur est pas inconnu : un exemple frappant de cette capacité est la façon dont deux dauphins captifs s’y sont pris pour extraire une murène cachée dans le creux d’un rocher à l’intérieur de leur bassin. L’un d’eux a d’abord attrapé un petit poisson scorpion très épineux, qui passait dans le secteur, et l’ayant saisi dans son rostre, s’en est servi comme d’un outil pour extraire la murène de sa cachette. S’exprimant à propos de leur intelligence, le Dr Louis M.Herman, Directeur du Kewalo Basin Marine Mammal Laboratory de l’Université d’Hawaii, note que les dauphins gardent en mémoire des événements totalement arbitraires, sans le moindre rapport avec leur environnement naturel et sans aucune incidence biologique quant à leur existence.

Recherches sur le langage des dauphins

Beaucoup d’humains trouvent intrigante l’idée de communiquer avec d’autres espèces. A cet égard, le dauphin constitue un sujet attractif, particulièrement dans le domaine du langage animal, du fait de ses capacités cognitives et de son haut degré de socialisation. Dès le début des années soixante, c’est le neurologue John Lilly qui, le premier, s’est intéressé aux vocalisations des cétacés. Les recherches de Lilly se poursuivirent durant toute une décennie, tout en devenant de moins en moins conventionnelles. Le savant alla même jusqu’à tester les effets du L.S.D. sur les émissions sonores des dauphins et dut finalement interrompre ses recherches en 1969, lorsque cinq de ses dauphins se suicidèrent en moins de deux semaines. Malheureusement, nombre de découvertes ou de déclarations de John Lilly sont franchement peu crédibles et ont jeté le discrédit sur l’ensemble des recherches dans le domaine du langage animal. De ce fait, ces recherches sont aujourd’hui rigoureusement contrôlées et très méticuleuses, de sorte que les assertions des scientifiques impliquées dans ce secteur restent désormais extrêmement réservées.

Louis Herman est sans doute l’un des plus importants chercheurs à mener des études sur la communication et les capacités cognitives des dauphins. Son instrument de travail privilégié est la création de langues artificielles, c’est-à-dire de langages simples crées pour l’expérience, permettant d’entamer des échanges avec les dauphins. Louis Herman a surtout concentré ses travaux sur le phénomène de la "compréhension" du langage bien plus que sur la "production" de langage, arguant que la compréhension est le premier signe d’une compétence linguistique chez les jeunes enfants et qu’elle peut être testée de façon rigoureuse. En outre, la structure grammaticale qui fonde les langages enseignés s’inspire le plus souvent de celle de l’anglais. Certains chercheurs ont noté qu’il aurait été mieux venu de s’inspirer davantage de langues à tons ou à flexions, comme le chinois, dont la logique aurait parue plus familière aux cétacés. Dans les travaux d’Herman, on a appris à deux dauphins, respectivement nommés Akeakamai (Ake) et Phoenix, deux langues artificielles. Phoenix a reçu l’enseignement d’un langage acoustique produit par un générateur de sons électroniques. Akeakamai, en revanche, a du apprendre un langage gestuel (version simplifiée du langage des sourds-muets), c’est-à-dire visuel. Les signaux de ces langues artificiels représentent des objets, des modificateurs d’objet (proche, loin, gros, petit, etc.) ou encore des actions. Ni les gestes ni les sons ne sont sensés représenter de façon analogique les objets ou les termes relationnels auxquels ils se réfèrent. Ces langages utilisent également une syntaxe, c’est-à-dire des règles de grammaire simples, ce qui signifie que l’ordre des mots influe sur le sens de la phrase. Phoenix a appris une grammaire classique, enchaînant les termes de gauche à droite (sujet-verbe-complément) alors que la grammaire enseignée à Ake allait dans l’autre sens et exigeait de sa part qu’elle voit l’ensemble du message avant d’en comprendre le sens correctement. Par exemple, dans le langage gestuel de Ake, la séquence des signaux PIPE-SURFBOARD-FETCH ("tuyau – planche à surf – apporter") indiquait l’ordre d’amener la planche de surf jusqu’au tuyau, alors que SURFBOARD-PIPE-FETCH ("planche-tuyau- rapporter") signifiait qu’il fallait, au contraire, amener le tuyau jusqu’ à la planche de surf. Phoenix et Ake ont ainsi appris environ 50 mots, lesquels, permutés l’un avec l’autre au sein de séquences courtes, leur permirent bientôt de se servir couramment de plus de mille phrases, chacune produisant une réponse neuve et non apprise.

Compte tenu de l’influence possible de la position dans l’espace des expérimentateurs sur l’expérimentation, les lieux d’apprentissage et les entraîneurs se voyaient changés de session en session. Dans le même temps, des observateurs "aveugles", qui ne connaissaient pas les ordres et ne voyaient pas les entraîneurs, notaient simplement le comportement des dauphins, afin de vérifier ensuite qu’il correspondait bien aux commandes annoncées. Les entraîneurs allaient jusqu’à porter des cagoules noires, afin de ne révéler aucune expression ou intention faciale et se tenaient immobiles, à l’exception des mains. Les dauphins se montrèrent capables de reconnaître les signaux du langage gestuels aussi bien lorsqu’il étaient filmés puis rediffusés sur un écran vidéo que lorsque ces mêmes signes étaient exécutés à l’air libre par l’entraîneur. Même le fait de ne montrer que des mains pâles sur un fond noir ou des taches de lumière blanche reproduisant la dynamique des mains, a largement suffi aux dauphins pour comprendre le message ! Il semble donc que les dauphins répondent davantage aux symboles abstraits du langage qu’à tout autre élément de la communication.

Par ailleurs, si les dauphins exécutent aisément les ordres qu’on leur donne par cette voie gestuelle, ils peuvent également répondre de façon correcte à la question de savoir si un objet précis est présent ou absent, en pressant le levier approprié (le clair pour PRESENT, le sombre pour ABSENT). Ceci démontre évidement leur faculté de "déplacement mental", qui consiste à manipuler l’image d’objets qui ne se trouvent pas dans les environs. Des expériences additionnelles ont conduit à préciser comment le dauphin conçoit l’étiquetage des objets, comment il les qualifie de son point de vue mental. "Nous avons constaté" nous apprend Louis Herman, "qu’au regard du dauphin, le signe CERCEAU n’est pas seulement le cerceau précis utilisé dans le cadre de cette expérience précise, c’est plutôt TOUT OBJET DE GRANDE TAILLE PERCE D’UN GRAND TROU AU MILIEU. Un seul concept général associe donc pour le dauphin les cerceaux ronds, carrés, grands et petits, flottants ou immergés, que l’on utilise généralement lors de la plupart des expériences". Parmi les choses que le Dr Herman estime n’avoir pu enseigner aux dauphins, il y a le concept du "non" en tant que modificateur logique. L’ordre de "sauter au-dessus d’une non-balle" indique en principe que le dauphin doit sauter au-dessus de n’importe quoi, sauf d’une balle ! Mais cela n’est pas compris, pas plus, affirme toujours Herman, que le concept de "grand" ou de "petit".

Communication naturelle chez les dauphins

On sait que les dauphins émettent de nombreux sifflements, de nature très diverse. La fonction de la plupart d’entre eux demeure toujours inconnue mais on peut affirmer aujourd’hui que la moitié d’entre eux au moins constitue des "signatures sifflées". Un tel signal se module dans une fourchette de 5 à 20 kilohertz et dure moins d’une seconde. Il se distingue des autres sifflements - et de la signature de tous les autres dauphins – par ses contours particuliers et ses variations de fréquences émises sur un temps donné, ainsi que le montrent les sonogrammes. Les jeunes développent leur propre signature sifflée entre l’âge de deux mois et d’un an. Ces sifflements resteront inchangés douze ans au moins et le plus souvent pour la durée entière de la vie de l’animal. Par ailleurs, au-delà de leur seule fonction nominative, certains des sifflements du dauphin apparaissent comme de fidèles reproductions de ceux de leurs compagnons et servent manifestement à interpeller les autres par leur nom. Lorsqu’ils sont encore très jeunes, les enfants mâles élaborent leur propre signature sifflée, qui ressemble fort à celle de leur mère. En revanche, les jeunes femelles doivent modifier les leurs, précisément pour se distinguer de leur mère.

Ces différences reflètent sans doute celles qui existent dans les modes de vie des femelles et des mâles. Puisque les filles élèvent leur propre enfant au sein du groupe maternel, un sifflement distinct est donc indispensable pour pouvoir distinguer la maman de la grand mère. La signature sifflée masculine, presque identique à celle de la mère, permet tout au contraire d’éviter l’inceste et la consanguinité. Le psychologue James Ralston et l’informaticien Humphrey Williams ont découvert que la signature sifflée pouvait véhiculer bien plus que la simple identité du dauphin qui l’émet. En comparant les sonogrammes des signatures sifflées durant les activités normales et lors de situations stressantes, ils découvrirent que la signature sifflée, tout en conservant sa configuration générale, pouvait changer en termes de tonalité et de durée et transmettre ainsi des informations sur l’état émotionnel de l’animal. Les modifications causé par cet état émotionnel sur les intonations de la signature varient en outre selon les individus. Les dauphins semblent donc utiliser les sifflement pour maintenir le contact lorsqu’ils se retrouvent entre eux ou lorsqu’ils rencontrent d’autres groupes, mais aussi, sans doute, pour coordonner leur activités collectives. Par exemple, des sifflements sont fréquemment entendus lorsque le groupe entier change de direction ou d’activité.

De son côté, Peter Tyack (Woods Hole Oceanographic Institute) a travaillé aux côtés de David Staelin, professeur d’ingénierie électronique au M.I.T., afin de développer un logiciel d’ordinateur capable de détecter les "matrices sonores" et les signaux répétitifs parmi le concert de couinements, piaulements et autres miaulements émis par les dauphins. Une recherche similaire est menée par l’Université de Singapore (Dolphin Study Group). Avec de tels outils, les chercheurs espèrent en apprendre davantage sur la fonction précise des sifflements.

Dauphins sociaux

Les observations menées sur des individus sauvages aussi bien qu’en captivité révèlent un très haut degré d’ordre social dans la société dauphin. Les femelles consacrent un an à leur grossesse et puis les trois années suivantes à élever leur enfant. Les jeunes s’éloignent en effet progressivement de leur mère dès leur troisième année, restant près d’elle jusqu’à six ou dix ans ! – et rejoignent alors un groupe mixte d’adolescents, au sein duquel ils demeurent plusieurs saisons. Parvenus à l’âge pleinement adulte, vers 15 ans en moyenne, les mâles ne reviennent plus que rarement au sein du "pod" natal. Cependant, à l’intérieur de ces groupes d’adolescents, des liens étroits se nouent entre garçons du même âge, qui peuvent persister la vie entière. Lorsque ces mâles vieillissent, ils ont tendance à s’associer à une bande de femelles afin d’y vivre une paisible retraite. Bien que les dauphins pratiquent bien volontiers la promiscuité sexuelle, les familles matriarcales constituent de fortes unités de base de la société dauphin. Lorsqu’une femelle donne naissance à son premier enfant, elle rejoint généralement le clan de sa propre mère et élève son delphineau en compagnie d’autres bébés, nés à la même saison. La naissance d’un nouveau-né donne d’ailleurs souvent lieu à des visites d’autres membres du groupe, mâles ou femelles, qui s’étaient séparés de leur mère depuis plusieurs années. Les chercheurs ont également observé des comportements de "baby-sitting", de vieilles femelles, des soeurs ou bien encore d’autres membres du groupe, voire même un ancien mâle prenant alors en charge la surveillance des petits. On a ainsi pu observer plusieurs dauphins en train de mettre en place une véritable "cour de récréation", les femelles se plaçant en U et les enfants jouant au milieu ! (D’après un texte du Dr Poorna Pal)

Moi, dauphin.

Mais qu’en est-il finalement de ce moi central au coeur de ce monde circulaire sans relief, sans couleurs constitué de pixels sonores ? C’est là que les difficultés deviennent insurmontables tant qu’un "contact" n’aura pas été vraiment établi par le dialogue car le "soi" lui-même, le "centre de la personne" est sans doute construit de façon profondément différente chez l’homme et chez le dauphin. H.Jerison parle carrément d’une "conscience collective". Les mouvements de groupe parfaitement coordonnés et quasi-simultanés, à l’image des bancs de poissons ou des troupeaux de gnous, que l’on observe régulièrement chez eux, suppose à l’évidence une pensée "homogène" au groupe, brusquement transformé en une "personne plurielle". On peut imaginer ce sentiment lors d’un concert de rock ou d’une manifestation, lorsqu’une foule entière se tend vers un même but mais ces attitudes-là sont grossières, globales, peu nuancées. Toute autre est la mise à l’unisson de deux, trois, cinq (les "gangs" de juvéniles mâles associés pour la vie) ou même de plusieurs centaines de dauphins ensemble (de formidables "lignes de front" pour la pêche, qui s’étendent sur des kilomètres) et là, bien sûr, nous avons un comportement qui traduit un contenu mental totalement inconnu de nous. On sait que lorsqu’un dauphin voit, tout le monde l’entend. En d’autres termes chaque fois qu’un membre du groupe focalise son faisceau de clicks sur une cible quelconque, l’écho lui revient mais également à tous ceux qui l’entourent. Imaginons que de la même manière, vous regardiez un beau paysage. La personne qui vous tournerait le dos et se tiendrait à l’arrière derrière vous pourrait le percevoir alors aussi bien que vous le faites. Cette vision commune, qui peut faire croire à de la télépathie, n’est pas sans conséquence sur le contenu mental de chaque dauphin du groupe, capable de fusionner son esprit à ceux des autres quand la nécessité s’en fait sentir. Ceci explique sans doute la formidable capacité d’empathie des dauphins mais aussi leur fidélité "jusqu’à la mort" quand il s’agit de suivre un compagnon qui s’échoue. Chez eux, on ne se sépare pas plus d’un ami en détresse qu’on ne se coupe le bras quand il est coincé dans une portière de métro ! En d’autres circonstances, bien sûr, le dauphin voyage seul et il "rassemble" alors sa conscience en un soi individualisé, qui porte un nom, fait des choix et s’intègre dans une lignée. Il en serait de même pour l’homme si les mots pouvaient faire surgir directement les images qu’ils désignent dans notre cerveau, sans passer par le filtre d’une symbolisation intermédiaire. Si quelqu’un me raconte sa journée, je dois d’abord déchiffrer ses mots, les traduire en image et ensuite me les "représenter". Notre système visuel étant indépendant de notre système auditif, un processus de transformation préalable est nécessaire à la prise de conscience du message. Au contraire, chez le dauphin, le système auditif est à la fois un moyen de communication et un moyen de cognition "constructiviste" (analyse sensorielle de l’environnement). La symbolisation n’est donc pas nécessaire aux transferts d’images, ce qui n’empêche nullement qu’elle puisse exister au niveau des concepts abstraits. Quant à cette conscience fusion-fission, cet "ego fluctuant à géométrie variable", ils préparent tout naturellement le dauphin à s’ouvrir à d’autres consciences que la sienne. D’où sans doute, son besoin de nous sonder, de nous comprendre et de nous "faire" comprendre. Un dauphin aime partager son cerveau avec d’autres, tandis que l’homme vit le plus souvent enfermé dans son crâne. Ces êtres-là ont décidément beaucoup à nous apprendre...

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ mimétisme ] [ sémiotique ] [ intelligence grégaire ]

 

Commentaires: 0

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

univers protonique

Forces tourbillonnantes et pressions d’écrasement mesurées dans le proton

Des expériences très attendues qui utilisent la lumière pour imiter la gravité révèlent pour la première fois la répartition des énergies, des forces et des pressions à l’intérieur d’une particule subatomique.

(Image : Les forces poussent dans un sens près du centre du proton et dans l’autre sens près de sa surface.)

Les physiciens ont commencé à explorer le proton comme s’il s’agissait d’une planète subatomique. Les cartes en coupe affichent de nouveaux détails de l'intérieur de la particule. Le noyau du proton présente des pressions plus intenses que dans toute autre forme connue de matière. À mi-chemin de la surface, des tourbillons de force s’affrontent les uns contre les autres. Et la " planète " dans son ensemble est plus petite que ne le suggéraient les expériences précédentes.

Les recherches expérimentales marquent la prochaine étape dans la quête visant à comprendre la particule qui ancre chaque atome et constitue la majeure partie de notre monde.

"Nous y voyons vraiment l'ouverture d'une direction complètement nouvelle qui changera notre façon de considérer la structure fondamentale de la matière", a déclaré Latifa Elouadrhiri , physicienne au Thomas Jefferson National Accelerator Facility à Newport News, en Virginie, qui participe à l'effort.

Les expériences jettent littéralement un nouvel éclairage sur le proton. Au fil des décennies, les chercheurs ont méticuleusement cartographié l’influence électromagnétique de la particule chargée positivement. Mais dans la nouvelle recherche, les physiciens du Jefferson Lab cartographient plutôt l'influence gravitationnelle du proton, à savoir la répartition des énergies, des pressions et des contraintes de cisaillement, qui courbent le tissu espace-temps dans et autour de la particule. Pour ce faire, les chercheurs exploitent une manière particulière par laquelle des paires de photons, des particules de lumière, peuvent imiter un graviton, la particule supposée qui transmet la force de gravité. En envoyant un ping au proton avec des photons, ils déduisent indirectement comment la gravité interagirait avec lui, réalisant ainsi un rêve vieux de plusieurs décennies consistant à interroger le proton de cette manière alternative.

"C'est un tour de force", a déclaré Cédric Lorcé , physicien à l'Ecole Polytechnique en France, qui n'a pas participé aux travaux. "Expérimentalement, c'est extrêmement compliqué." 

Des photons aux gravitons


Les physiciens ont appris énormément sur le proton au cours des 70 dernières années en le frappant à plusieurs reprises avec des électrons. Ils savent que sa charge électrique s’étend sur environ 0,8 femtomètre, ou quadrillionièmes de mètre, à partir de son centre. Ils savent que les électrons entrants ont tendance à être projetés sur l’un des trois quarks – des particules élémentaires avec des fractions de charge – qui bourdonnent à l’intérieur. Ils ont également observé la conséquence profondément étrange de la théorie quantique où, lors de collisions plus violentes, les électrons semblent rencontrer une mer mousseuse composée de bien plus de quarks ainsi que de gluons, porteurs de la force dite forte, qui colle les quarks ensemble.

Toutes ces informations proviennent d’une seule configuration : vous lancez un électron sur un proton, et les particules échangent un seul photon – le porteur de la force électromagnétique – et se repoussent. Cette interaction électromagnétique indique aux physiciens comment les quarks, en tant qu'objets chargés, ont tendance à s'organiser. Mais le proton a bien plus à offrir que sa charge électrique.

(Photo : Latifa Elouadrhiri, scientifique principale du laboratoire Jefferson, a dirigé la collecte de données à partir desquelles elle et ses collaborateurs calculent désormais les propriétés mécaniques du proton.) 

" Comment la matière et l'énergie sont-elles distribuées ? " a demandé Peter Schweitzer , physicien théoricien à l'Université du Connecticut. "Nous ne savons pas."

Schweitzer a passé la majeure partie de sa carrière à réfléchir au côté gravitationnel du proton. Plus précisément, il s'intéresse à une matrice de propriétés du proton appelée tenseur énergie-impulsion. " Le tenseur énergie-impulsion sait tout ce qu'il y a à savoir sur la particule ", a-t-il déclaré.

Dans la théorie de la relativité générale d'Albert Einstein, qui présente l'attraction gravitationnelle comme des objets suivant des courbes dans l'espace-temps, le tenseur énergie-impulsion indique à l'espace-temps comment se plier. Elle décrit, par exemple, la disposition de l'énergie (ou, de manière équivalente, de la masse) – la source de ce qui est la part du lion de la torsion de l'espace-temps. Elle permet également d'obtenir des informations sur la répartition de la dynamique, ainsi que sur les zones de compression ou d'expansion, ce qui peut également donner une légère courbure à l'espace-temps.

Si nous pouvions connaître la forme de l'espace-temps entourant un proton, élaborée indépendamment par des physiciens russes et   américains dans les années 1960, nous pourrions en déduire toutes les propriétés indexées dans son tenseur énergie-impulsion. Celles-ci incluent la masse et le spin du proton, qui sont déjà connus, ainsi que l'agencement des pressions et des forces du proton, une propriété collective que les physiciens nomment " Druck term ", d'après le mot " pression"  en allemand. Ce terme est " aussi important que la masse et la rotation, et personne ne sait ce que c'est ", a déclaré Schweitzer – même si cela commence à changer.

Dans les années 60, il semblait que la mesure du tenseur énergie-momentum et le calcul du terme de Druck nécessiteraient une version gravitationnelle de l'expérience de diffusion habituelle : On envoie une particule massive sur un proton et on laisse les deux s'échanger un graviton - la particule hypothétique qui constitue les ondes gravitationnelles - plutôt qu'un photon. Mais en raison de l'extrême subtilité de la gravité, les physiciens s'attendent à ce que la diffusion de gravitons se produise 39 fois plus rarement que la diffusion de photons. Les expériences ne peuvent pas détecter un effet aussi faible.

"Je me souviens avoir lu quelque chose à ce sujet quand j'étais étudiant", a déclaré Volker Burkert , membre de l'équipe du Jefferson Lab. Ce qu’il faut retenir, c’est que " nous ne pourrons probablement jamais rien apprendre sur les propriétés mécaniques des particules ".Gravitation sans gravité

Les expériences gravitationnelles sont encore inimaginables aujourd’hui. Mais les recherches menées en fin des années 1990 et au début des années 2000 par les physiciens Xiangdong Ji et, travaillant séparément, feu Maxim Polyakov, ont révélé une solution de contournement.

Le schéma général est le suivant. Lorsque vous tirez légèrement un électron sur un proton, il délivre généralement un photon à l'un des quarks et le détourne. Mais lors d’un événement sur un milliard, quelque chose de spécial se produit. L’électron entrant envoie un photon. Un quark l'absorbe puis émet un autre photon un battement de cœur plus tard. La principale différence est que cet événement rare implique deux photons au lieu d’un : des photons entrants et sortants. Les calculs de Ji et Polyakov ont montré que si les expérimentateurs pouvaient collecter les électrons, protons et photons résultants, ils pourraient déduire des énergies et des impulsions de ces particules ce qui s'est passé avec les deux photons. Et cette expérience à deux photons serait essentiellement aussi informative que l’impossible expérience de diffusion de gravitons.

Comment deux photons pourraient-ils connaître la gravité ? La réponse fait appel à des mathématiques très complexes. Mais les physiciens proposent deux façons de comprendre pourquoi cette astuce fonctionne.

Les photons sont des ondulations dans le champ électromagnétique, qui peuvent être décrites par une seule flèche, ou vecteur, à chaque emplacement de l'espace indiquant la valeur et la direction du champ. Les gravitons seraient des ondulations dans la géométrie de l’espace-temps, un domaine plus complexe représenté par une combinaison de deux vecteurs en chaque point. Capturer un graviton donnerait aux physiciens deux vecteurs d’informations. En dehors de cela, deux photons peuvent remplacer un graviton, puisqu’ils transportent également collectivement deux vecteurs d’information.

Une interprétation mathématiques alternative est celle-ci. Pendant le moment qui s'écoule entre le moment où un quark absorbe le premier photon et celui où il émet le second, le quark suit un chemin à travers l'espace. En sondant ce chemin, nous pouvons en apprendre davantage sur des propriétés telles que les pressions et les forces qui entourent le chemin.

"Nous ne faisons pas d'expérience gravitationnelle", a déclaré Lorcé. Mais " nous devrions obtenir un accès indirect à la manière dont un proton devrait interagir avec un graviton ". 

Sonder la planète Proton
En 2000, les physiciens du Jefferson Lab ont réussi à obtenir quelques résultats de diffusion à deux photons. Cette démonstration de faisabilité les a incités à construire une nouvelle expérience et, en 2007, ils ont fait entrer des électrons dans des protons suffisamment de fois pour obtenir environ 500 000 collisions imitant les gravitons. L'analyse des données expérimentales a pris une décennie de plus.

À partir de leur index des propriétés de flexion de l’espace-temps, l’équipe a extrait le terme insaisissable de Druck, publiant son estimation des pressions internes du proton dans Nature en 2018.

Ils ont découvert qu’au cœur du proton, la force puissante génère des pressions d’une intensité inimaginable : 100 milliards de milliards de milliards de pascals, soit environ 10 fois la pression au cœur d’une étoile à neutrons. Plus loin du centre, la pression chute et finit par se retourner vers l'intérieur, comme c'est nécessaire pour que le proton ne se brise pas. "Voilà qui résulte de l'expérience", a déclaré Burkert. "Oui, un proton est réellement stable." (Cette découverte n’a cependant aucune incidence sur la désintégration des protons , ce qui implique un type d’instabilité différent prédit par certaines théories spéculatives.)

Le groupe Jefferson Lab a continué à analyser le terme Druck. Ils ont publié une estimation des forces de cisaillement (forces internes poussant parallèlement à la surface du proton) dans le cadre d'une étude publiée en décembre. Les physiciens ont montré que près de son noyau, le proton subit une force de torsion qui est neutralisée par une torsion dans l’autre sens plus près de la surface. Ces mesures soulignent également la stabilité de la particule. Les rebondissements étaient attendus sur la base des travaux théoriques de Schweitzer et Polyakov. "Néanmoins, le voir émerger de l'expérience pour la première fois est vraiment stupéfiant", a déclaré Elouadrhiri.

Ils utilisent désormais ces outils pour calculer la taille du proton d'une nouvelle manière. Dans les expériences de diffusion traditionnelles, les physiciens avaient observé que la charge électrique de la particule s'étendait à environ 0,8 femtomètre de son centre (c'est-à-dire que les quarks qui la composent bourdonnent dans cette région). Mais ce " rayon de charge " présente quelques bizarreries. Dans le cas du neutron, par exemple — l'équivalent neutre du proton, dans lequel deux quarks chargés négativement ont tendance à rester profondément à l'intérieur de la particule tandis qu'un quark chargé positivement passe plus de temps près de la surface — le rayon de charge apparaît comme un nombre négatif.  "Cela ne veut pas dire que la taille est négative ; ce n'est tout simplement pas une mesure fiable ", a déclaré Schweitzer.

La nouvelle approche mesure la région de l’espace-temps considérablement courbée par le proton. Dans une prépublication qui n'a pas encore été évaluée par des pairs, l'équipe du Jefferson Lab a calculé que ce rayon pourrait être environ 25 % plus petit que le rayon de charge, soit seulement 0,6 femtomètre.

Les limites de la planète Proton

D'un point de vue conceptuel, ce type d'analyse adoucit la danse floue des quarks pour en faire un objet solide, semblable à une planète, avec des pressions et des forces agissant sur chaque point de volume. Cette planète gelée ne reflète pas entièrement le proton bouillonnant dans toute sa gloire quantique, mais c'est un modèle utile. "C'est une interprétation", a déclaré M. Schweitzer.

Et les physiciens soulignent que ces cartes initiales sont approximatives, pour plusieurs raisons.

Premièrement, mesurer avec précision le tenseur énergie-impulsion nécessiterait des énergies de collision beaucoup plus élevées que celles que Jefferson Lab peut produire. L’équipe a travaillé dur pour extrapoler soigneusement les tendances à partir des énergies relativement faibles auxquelles elles peuvent accéder, mais les physiciens ne sont toujours pas sûrs de la précision de ces extrapolations.

(Photo : Lorsqu'il était étudiant, Volker Burkert a lu qu'il était impossible de mesurer directement les propriétés gravitationnelles du proton. Aujourd'hui, il participe à une collaboration au laboratoire Jefferson qui est en train de découvrir indirectement ces mêmes propriétés.)

De plus, le proton est plus que ses quarks ; il contient également des gluons, qui se déplacent sous leurs propres pressions et forces. L'astuce à deux photons ne peut pas détecter les effets des gluons. Une autre équipe du Jefferson Lab a utilisé une astuce analogue ( impliquant une interaction double-gluon ) pour publier l'année dernière une carte gravitationnelle préliminaire de ces effets des gluons dans Nature, mais elle était également basée sur des données limitées et à faible énergie.

"C'est une première étape", a déclaré Yoshitaka Hatta, physicien au Brookhaven National Laboratory qui a eu l'idée de commencer à étudier le proton gravitationnel après les travaux du groupe Jefferson Lab en 2018.

Des cartes gravitationnelles plus précises des quarks du proton et de ses gluons pourraient être disponibles dans les années 2030, lorsque le collisionneur électron-ion, une expérience actuellement en construction à Brookhaven, entrera en activité.

Pendant ce temps, les physiciens poursuivent leurs expériences numériques. Phiala Shanahan, physicienne nucléaire et des particules au Massachusetts Institute of Technology, dirige une équipe qui calcule le comportement des quarks et des gluons à partir des équations de la force forte. En 2019, elle et ses collaborateurs ont estimé les pressions et les forces de cisaillement, et en octobre, en ont estimé le rayon, entre autres propriétés. Jusqu'à présent, leurs résultats numériques ont été largement alignés sur les résultats physiques du Jefferson Lab. "Je suis certainement très excitée par la cohérence entre les résultats expérimentaux récents et nos données", a déclaré Mme Shanahan.

Même les aperçus flous du proton obtenus jusqu'à présent ont légèrement remodelé la compréhension des chercheurs sur la particule.

Certaines conséquences sont pratiques. Au CERN, l'organisation européenne qui gère le Grand collisionneur de hadrons, le plus grand broyeur de protons au monde, les physiciens pensaient auparavant que dans certaines collisions rares, les quarks pouvaient se trouver n'importe où dans les protons en collision. Mais les cartes inspirées par la gravitation suggèrent que les quarks ont tendance à rester près du centre dans de tels cas.

"Les modèles utilisés au CERN ont déjà été mis à jour", a déclaré François-Xavier Girod, physicien du Jefferson Lab qui a travaillé sur les expériences.

Les nouvelles cartes pourraient également offrir des pistes pour résoudre l’un des mystères les plus profonds du proton : pourquoi les quarks se lient en protons. Il existe un argument intuitif selon lequel, comme la force puissante entre chaque paire de quarks s'intensifie à mesure qu'ils s'éloignent, comme un élastique, les quarks ne peuvent jamais échapper à leurs camarades.

Mais les protons sont fabriqués à partir des membres les plus légers de la famille des quarks. Et les quarks légers peuvent également être considérés comme de longues ondes s'étendant au-delà de la surface du proton. Cette image suggère que la liaison du proton pourrait se produire non pas via la traction interne de bandes élastiques, mais par une interaction externe entre ces quarks ondulés et étirés. La cartographie de pression montre l’attraction de la force forte s’étendant jusqu’à 1,4 femtomètres et au-delà, renforçant ainsi l’argument en faveur de ces théories alternatives.

"Ce n'est pas une réponse définitive", a déclaré Girod, "mais cela indique que ces simples images avec des bandes élastiques ne sont pas pertinentes pour les quarks légers."



Auteur: Internet

Info: https://filsdelapensee.ch - Charlie Bois, 14 mars 2024

[ chromodynamique quantique ]

 

Commentaires: 0

Ajouté à la BD par miguel