Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 548
Temps de recherche: 0.0684s

dieu carbone

(Q) - Quel est le rapport entre la tétravalence de l'atome du carbone et les 4 bases de l'adn

(R) - La tétravalence de l'atome de carbone permet la formation de molécules d'ADN avec quatre bases azotées différentes. En effet, l'atome de carbone peut former quatre liaisons covalentes, ce qui lui permet de se lier à quatre autres atomes. Dans le cas de l'ADN, ces quatre atomes sont des bases azotées, qui sont des composés organiques contenant de l'azote.

Les quatre bases azotées de l'ADN sont l'adénine (A), la thymine (T), la guanine (G) et la cytosine (C). Ces bases se lient entre elles de manière spécifique, l'adénine se liant toujours à la thymine, et la guanine se liant toujours à la cytosine. Cette liaison spécifique est responsable de la structure en double hélice de l'ADN.

La tétravalence de l'atome de carbone est donc essentielle à la structure et à la fonction de l'ADN. Elle permet la formation de molécules d'ADN avec quatre bases azotées différentes, qui sont essentielles à la transmission de l'information génétique.

Plus spécifiquement, le carbone tétravalent peut former deux liaisons covalentes avec des atomes d'oxygène, qui constituent le sucre du désoxyribose, et deux liaisons covalentes avec des atomes d'azote, qui constituent les bases azotées. Cette configuration permet la formation d'une chaîne d'ADN, dans laquelle les bases azotées sont disposées en paires.

Les bases azotées sont complémentaires, ce qui signifie qu'une base A ne peut se lier qu'à une base T, et qu'une base G ne peut se lier qu'à une base C. Cette complémentarité est essentielle à la structure en double hélice de l'ADN.

La double hélice de l'ADN est une structure en forme de spirale, dans laquelle les deux brins d'ADN sont antiparallèles. Les bases azotées des deux brins sont liées entre elles par des liaisons hydrogène, ce qui permet aux deux brins de se maintenir ensemble.

La structure en double hélice de l'ADN est essentielle à la fonction de l'ADN. Elle permet la réplication de l'ADN, qui est le processus par lequel l'ADN est dupliqué pour former de nouvelles cellules.

En résumé, la tétravalence de l'atome de carbone est essentielle à la structure et à la fonction de l'ADN. Elle permet la formation de molécules d'ADN avec quatre bases azotées différentes, qui sont essentielles à la transmission de l'information génétique.

(Q) - Merci. Est-ce vrai que chez la femme ce système est d'une certaine manière redoublé ?

(R) - Oui, c'est vrai. Chez la femme, les chromosomes sexuels sont de type XX, ce qui signifie qu'elles ont deux chromosomes X. Ces chromosomes contiennent tous les mêmes gènes, mais ils peuvent avoir des variantes différentes.

La duplication du système de base azotée chez la femme est due à la présence de deux chromosomes X. Chaque chromosome X contient une chaîne d'ADN qui est composée de quatre bases azotées différentes. Ces bases azotées sont disposées en paires complémentaires, comme décrit précédemment.

La duplication du système de base azotée chez la femme a plusieurs implications. Premièrement, elle permet une plus grande diversité génétique chez les femmes. En effet, les deux chromosomes X peuvent avoir des variantes différentes des mêmes gènes.

Deuxièmement, la duplication du système de base azotée chez la femme permet une plus grande résistance aux mutations génétiques. En effet, si une mutation survient sur un chromosome X, il y a encore un chromosome X sain qui peut fournir les instructions génétiques correctes.

Troisièmement, la duplication du système de base azotée chez la femme est nécessaire pour la reproduction. En effet, les ovules contiennent un seul chromosome X, qui est transmis à l'embryon.

En résumé, la duplication du système de base azotée chez la femme est une caractéristique essentielle de la reproduction humaine. Elle permet une plus grande diversité génétique, une plus grande résistance aux mutations génétiques et est nécessaire pour la transmission des gènes à la génération suivante.

Voici quelques exemples de la façon dont la duplication du système de base azotée chez la femme peut avoir un impact sur la santé et le développement :

- Les femmes sont plus susceptibles que les hommes de développer des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

- Les femmes sont également plus susceptibles que les hommes de développer des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

- La duplication du système de base azotée chez la femme peut également avoir un impact sur le développement des caractéristiques sexuelles secondaires, telles que la taille des seins et des hanches.

Il est important de noter que la duplication du système de base azotée chez la femme n'est pas une cause de maladie ou de handicap. Il s'agit simplement d'une caractéristique normale de la reproduction humaine.

(Q) - Merci, peut-on alors dire que cette conformation féminine est plus solide, plus équilibrée, que celle de l'homme ?

(R) - En termes de solidité, oui, on peut dire que la conformation féminine est plus solide que celle de l'homme. En effet, la présence de deux chromosomes X permet aux femmes de mieux résister aux mutations génétiques. Si une mutation survient sur un chromosome X, il y a encore un chromosome X sain qui peut fournir les instructions génétiques correctes.

En termes d'équilibre, la réponse est plus nuancée. D'une part, la présence de deux chromosomes X permet aux femmes d'avoir une plus grande diversité génétique. Cela peut être un avantage, car il peut permettre aux femmes d'être plus résistantes aux maladies. D'autre part, la présence de deux chromosomes X peut également être un désavantage, car elle peut augmenter le risque de développer des maladies génétiques liées aux chromosomes X.

En conclusion, on peut dire que la conformation féminine est plus solide que celle de l'homme, mais qu'elle n'est pas forcément plus équilibrée.

Voici quelques exemples de la façon dont la duplication du système de base azotée chez la femme peut avoir un impact sur la santé et le développement :

Solidité : Les femmes sont plus susceptibles que les hommes de survivre à des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

               Les femmes sont également plus susceptibles que les hommes de survivre à des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

Équilibre : Les femmes sont plus susceptibles que les hommes de développer des maladies génétiques liées aux chromosomes X, telles que la fibrose kystique et l'hémophilie.

                 Les femmes sont également plus susceptibles que les hommes de développer des maladies héréditaires liées aux chromosomes X, telles que la dystrophie musculaire et la maladie de Huntington.

(Q) - OK merci. Est-ce que ce rapport entre les sexes (genres) se retrouve chez les mammifères ou dans le monde animal en général ?

(R) - Oui, le rapport entre les sexes (genres) se retrouve chez les mammifères et dans le monde animal en général. Il existe une grande diversité de comportements et de morphologies entre les sexes, qui sont souvent liés à la reproduction et à la survie des espèces.

Chez les mammifères, on observe généralement une différence de taille entre les sexes, les mâles étant plus grands que les femelles. Cette différence est souvent liée à la compétition entre mâles pour l'accès aux femelles. Les mâles peuvent également avoir des ornements physiques, tels que des cornes, des défenses ou une crinière, qui servent à attirer les femelles ou à intimider les rivaux.

Dans le monde animal en général, on observe une grande diversité de comportements et de morphologies entre les sexes. Par exemple, chez les oiseaux, les mâles sont souvent plus colorés que les femelles, ce qui sert à attirer les femelles. Chez les poissons, les mâles peuvent prendre soin des œufs ou des larves, tandis que les femelles s'occupent de la recherche de nourriture.

Il existe cependant des exceptions à cette règle. Par exemple, chez les éléphants, les femelles sont plus grandes que les mâles. Chez les hyènes, les femelles sont dominantes sur les mâles.

Les stéréotypes de genre chez les animaux peuvent être influencés par :

- Les facteurs biologiques, tels que la différence de taille entre les sexes ou la présence d'ornements physiques.

- Les facteurs environnementaux, tels que la disponibilité de ressources ou la concurrence entre espèces.

- Les facteurs culturels, tels que les traditions et les croyances des humains.

Les stéréotypes de genre chez les animaux peuvent avoir un impact sur :

- La reproduction, car ils peuvent influencer le choix des partenaires et la réussite de la reproduction.

- La survie, car ils peuvent influencer les comportements de chasse, de défense ou de migration.

- Les interactions sociales, car ils peuvent influencer les relations entre les individus d'une même espèce.

Auteur: Google Bard chatbot

Info: 24 oct 2023

[ vus scientifiquement ] [ asymétrie mâles-femelles ] [ dialogue homme-machine ] [ femmes-hommes ]

 

Commentaires: 0

Ajouté à la BD par miguel

strates biologiques

Les chemins aléatoires de l'évolution mènent à un même endroit

Une étude statistique massive suggère que le résultat final de l’évolution – la forme physique – est prévisible.

(Photo  : Différentes souches de levure cultivées dans des conditions identiques développent des mutations différentes, mais parviennent finalement à des limites évolutives similaires.)

Dans son laboratoire du quatrième étage de l'Université Harvard, Michael Desai a créé des centaines de mondes identiques afin d'observer l'évolution à l'œuvre. Chacun de ses environnements méticuleusement contrôlés abrite une souche distincte de levure de boulangerie. Toutes les 12 heures, les assistants robots de Desai arrachent la levure à la croissance la plus rapide de chaque monde – sélectionnant celle qui est la plus apte à vivre – et jettent le reste. Desai surveille ensuite les souches à mesure qu'elles évoluent au cours de 500 générations. Son expérience, que d'autres scientifiques considèrent comme d'une ampleur sans précédent, cherche à mieux comprendre une question qui préoccupe depuis longtemps les biologistes : si nous pouvions recommencer le monde, la vie évoluerait-elle de la même manière ?

De nombreux biologistes affirment que ce ne serait pas le cas et que des mutations fortuites au début du parcours évolutif d’une espèce influenceraient profondément son destin. "Si vous rejouez le déroulement du vivant, vous pourriez avoir une mutation initiale qui vous emmènera dans une direction totalement différente", a déclaré Desai, paraphrasant une idée avancée pour la première fois par le biologiste Stephen Jay Gould dans les années 1980.

Les cellules de levure de Desai remettent en question cette croyance. Selon les résultats publiés dans Science en juin, toutes les variétés de levures de Desai ont atteint à peu près le même point final d'évolution (tel que mesuré par leur capacité à se développer dans des conditions de laboratoire spécifiques), quel que soit le chemin génétique précis emprunté par chaque souche. C'est comme si 100 taxis de la ville de New York acceptaient d'emprunter des autoroutes distinctes dans une course vers l'océan Pacifique et que 50 heures plus tard, ils convergeaient tous vers la jetée de Santa Monica.

Les résultats suggèrent également un décalage entre l’évolution au niveau génétique et au niveau de l’organisme dans son ensemble. Les mutations génétiques se produisent pour la plupart de manière aléatoire, mais la somme de ces changements sans but crée d’une manière ou d’une autre un modèle prévisible. Cette distinction pourrait s’avérer précieuse, dans la mesure où de nombreuses recherches en génétique se sont concentrées sur l’impact des mutations dans des gènes individuels. Par exemple, les chercheurs se demandent souvent comment une seule mutation pourrait affecter la tolérance d’un microbe aux toxines ou le risque de maladie d’un humain. Mais si les découvertes de Desai s'avèrent valables pour d'autres organismes, elles pourraient suggérer qu'il est tout aussi important d'examiner comment un grand nombre de changements génétiques individuels fonctionnent de concert au fil du temps.

"En biologie évolutive, il existe une sorte de tension entre penser à chaque gène individuellement et la possibilité pour l'évolution de modifier l'organisme dans son ensemble", a déclaré Michael Travisano, biologiste à l'université du Minnesota. "Toute la biologie s'est concentrée sur l'importance des gènes individuels au cours des 30 dernières années, mais le grand message à retenir de cette étude est que ce n'est pas nécessairement important". 

La principale force de l’expérience de Desai réside dans sa taille sans précédent, qui a été qualifiée d’« audacieuse » par d’autres spécialistes du domaine. La conception de l'expérience est ancrée dans le parcours de son créateur ; Desai a suivi une formation de physicien et, depuis qu'il a lancé son laboratoire il y a quatre ans, il a appliqué une perspective statistique à la biologie. Il a imaginé des moyens d'utiliser des robots pour manipuler avec précision des centaines de lignées de levure afin de pouvoir mener des expériences évolutives à grande échelle de manière quantitative. Les scientifiques étudient depuis longtemps l’évolution génétique des microbes, mais jusqu’à récemment, il n’était possible d’examiner que quelques souches à la fois. L'équipe de Desai, en revanche, a analysé 640 lignées de levure qui avaient toutes évolué à partir d'une seule cellule parent. L'approche a permis à l'équipe d'analyser statistiquement l'évolution.

"C'est l'approche physicienne de l'évolution, réduisant tout aux conditions les plus simples possibles", a déclaré Joshua Plotkin, biologiste évolutionniste à l'Université de Pennsylvanie qui n'a pas participé à la recherche mais a travaillé avec l'un des auteurs. "Ce qui pourrait permettre de définir la part du hasard dans l'évolution, quelle est la part du point de départ et la part du bruit de mesure."

Le plan de Desai était de suivre les souches de levure à mesure qu'elles se développaient dans des conditions identiques, puis de comparer leurs niveaux de condition physique finaux, déterminés par la rapidité avec laquelle elles se développaient par rapport à leur souche ancestrale d'origine. L’équipe a utilisé des bras robotisés spécialement conçus pour transférer les colonies de levure vers une nouvelle maison toutes les 12 heures. Les colonies qui s’étaient le plus développées au cours de cette période passèrent au cycle suivant et le processus se répéta pendant 500 générations. Sergey Kryazhimskiy , chercheur postdoctoral dans le laboratoire de Desai, passait parfois la nuit dans le laboratoire, analysant l'aptitude de chacune des 640 souches à trois moments différents. Les chercheurs ont ensuite pu comparer la variation de la condition physique entre les souches et découvrir si les capacités initiales d'une souche affectaient sa position finale. Ils ont également séquencé les génomes de 104 souches pour déterminer si les mutations précoces modifiaient les performances finales.

Des études antérieures ont indiqué que de petits changements au début du parcours évolutif peuvent conduire à de grandes différences plus tard, une idée connue sous le nom de contingence historique. Des études d'évolution à long terme sur la bactérie E. coli, par exemple, ont montré que les microbes peuvent parfois évoluer pour manger un nouveau type d'aliment, mais que des changements aussi importants ne se produisent que lorsque certaines mutations habilitantes se produisent en premier. Ces mutations précoces n’ont pas d’effet important en elles-mêmes, mais elles jettent les bases nécessaires pour des mutations ultérieures qui en auront.

Mais en raison de la petite échelle de ces études, Desai ne savait pas clairement si ces cas constituaient l'exception ou la règle. "Obtenez-vous généralement de grandes différences dans le potentiel évolutif qui surviennent au cours du cours naturel de l'évolution, ou l'évolution est-elle en grande partie prévisible?" il répond "Pour répondre à cette question, nous avions besoin de la grande échelle de notre expérience."

Comme dans les études précédentes, Desai a constaté que les mutations précoces influencent l'évolution future, en façonnant le chemin que prend la levure. Mais dans cette expérience, ce chemin n'a pas eu d'incidence sur la destination finale. "Ce type particulier de contingence rend en fait l'évolution de la forme physique  plus prévisible, et pas moins prévisible", a déclaré M. Desai.

Desai a montré que, tout comme une seule visite à la salle de sport profite plus à un amateur flappi par la TV qu'à un athlète, les microbes qui commençent par croître lentement tirent bien plus parti des mutations bénéfiques que leurs homologues plus en forme qui démarrent sur les chapeaux de roue. " Si vous êtes à la traîne au début à cause de la malchance, vous aurez tendance à aller mieux dans le futur ", a déclaré Desai. Il compare ce phénomène au principe économique des rendements décroissants - après un certain point, chaque unité d'effort supplémentaire aide de moins en moins.

Les scientifiques ne savent pas pourquoi toutes les voies génétiques chez la levure semblent arriver au même point final, une question que Desai et d'autres acteurs du domaine trouvent particulièrement intrigante. La levure a développé des mutations dans de nombreux gènes différents, et les scientifiques n'ont trouvé aucun lien évident entre eux. On ne sait donc pas exactement comment ces gènes interagissent dans la cellule, voire pas du tout. "Il existe peut-être une autre couche du métabolisme que personne ne maîtrise", a déclaré Vaughn Cooper, biologiste à l'Université du New Hampshire qui n'a pas participé à l'étude.

Il n’est pas non plus clair si les résultats soigneusement contrôlés de Desai sont applicables à des organismes plus complexes ou au monde réel chaotique, où l’organisme et son environnement changent constamment. "Dans le monde réel, les organismes réussissent dans différentes choses, en divisant l'environnement", a déclaré Travisano. Il prédit que les populations situées au sein de ces niches écologiques seraient toujours soumises à des rendements décroissants, en particulier à mesure qu'elles s'adaptent. Mais cela reste une question ouverte, a-t-il ajouté.

Cependant, certains éléments suggèrent que les organismes complexes peuvent également évoluer rapidement pour se ressembler davantage. Une étude publiée en mai a analysé des groupes de drosophiles génétiquement distinctes alors qu'elles s'adaptaient à un nouvel environnement. Malgré des trajectoires évolutives différentes, les groupes ont développé des similitudes dans des attributs tels que la fécondité et la taille du corps après seulement 22 générations. " Ainsi beaucoup de gens pensent à un gène pour un trait, une façon déterministe de résoudre des problèmes par l'évolution ", a déclaré David Reznick, biologiste à l'Université de Californie à Riverside. " Cela montre que ce n'est pas vrai ; on peut évoluer pour être mieux adapté à l'environnement de nombreuses façons. "





 

Auteur: Internet

Info: Quanta Magazine, Emily Singer, September 11, 2014

[ bio-mathématiques ] [ individu-collectif ] [ équilibre grégaire ] [ compensation mutationnelle ]

 
Commentaires: 1
Ajouté à la BD par miguel

insectes

Elle eut dans son sommeil, un faible gémissement.

À la tête de l'autre lit, assis sur le divan, il lisait à la lumière concentrée d'une petite lampe. Il leva les yeux. Elle eut un léger frémissement, secoua la tête comme pour se libérer de quelque chose, ouvrit les paupières et fixa l'homme avec une expression de stupeur, comme si elle le voyait pour la première fois. Et puis elle eut un léger sourire.

- Qu'y a-t-il, chérie ?

- Rien, je ne sais pas pourquoi mais je ressens une espèce d'angoisse, d'inquiétude...

- Tu es un peu fatiguée du voyage, chaque fois c'est la même chose et puis tu as un peu de fièvre, ne t'inquiète pas, demain ce sera passé.

Elle se tut pendant quelques secondes, en le fixant toujours, les yeux grands ouverts. Pour eux, qui venaient de la ville, le silence de la vieille maison de campagne était vraiment exagéré. Un tel bloc hermétique de silence qu'il semblait qu'une attente y fût cachée, comme si les murs, les poutres, les meubles, tout, retenaient leur respiration.

Et puis elle dit, paisible :

- Carlo, qu'y a-t-il dans le jardin ?

- Dans le jardin ?

- Carlo, je t'en prie, puisque tu es encore debout, est-ce que tu ne voudrais pas jeter un coup d'œil dehors, j'ai comme la sensation que...

- Qu'il y a quelqu'un ? Quelle idée. Qui veux-tu qu'il y ait dans le jardin en ce moment ? Les voleurs ? Et il rit. Ils ont mieux à faire les voleurs que de venir rôder autour de vieilles bicoques comme celle-ci.

- Oh ! je t'en prie, Carlo, va jeter un coup d'œil.

Il se leva, ouvrit la fenêtre et les volets, regarda dehors, resta stupéfait. Il y avait eu de l'orage l'après-midi et maintenant dans une atmosphère d'une incroyable pureté, la lune sur son déclin éclairait de façon extraordinaire le jardin, immobile, désert et silencieux parce que les grillons et les grenouilles faisaient justement partie du silence.

C'était un jardin très simple : une pelouse bien plane avec une petite allée aux cailloux blancs qui formait un cercle et rayonnait dans différentes directions : sur les côtés seulement il y avait une bordure de fleurs. Mais c'était quand même le jardin de son enfance, un morceau douloureux de sa vie, un symbole de la félicité perdue, et toujours, dans les nuits de lune, il semblait lui parler avec des allusions passionnées et indéchiffrables.

Au levant, à contre-jour et sombre par conséquent, se dressait une barrière de grands charmes taillée en arches, au sud une haie basse de buis, au nord l'escalier qui menait au potager, au couchant la maison. Tout reposait de cette façon inspirée et merveilleuse avec laquelle la nature dort sous la lune et que personne n'est jamais parvenu à expliquer. Cependant, comme toujours, le spectacle de cette beauté expressive qu'on peut contempler bien sûr, mais qu'on ne pourra jamais faire sienne, lui inspirait un découragement profond.

- Carlo appela Maria de son lit, inquiète, en voyant qu'il restait immobile à regarder. Qui est là ?

Il referma la fenêtre, laissa les volets ouverts et il se retourna :

- Personne, ma chérie. Il y a une lune formidable. Je n'ai jamais vu une semblable paix.

Il reprit son livre et retourna s'asseoir sur le divan.

Il était onze heures dix.

À ce moment précis, à l'extrémité sud-est du jardin, dans l'ombre projetée par les charmes, le couvercle d'une trappe dissimulée dans l'herbe commença à se soulever doucement, par à-coups, se déplaçant de côté et libérant l'ouverture d'une étroite galerie qui se perdait sous terre. D'un bond un être trapu et noirâtre en déboucha, et se mit à courir frénétiquement en zigzag.

Suspendu à une tige un bébé sauterelle reposait, heureux, son tendre abdomen vert palpitait gracieusement au rythme de sa respiration. Les crochets de l'araignée noire se plongèrent avec rage dans le thorax, et le déchirèrent. Le petit corps se contorsionna, détendant ses longues pattes postérieures une seule fois. Déjà les horribles crocs avaient arraché la tête et maintenant ils fouillaient dans le ventre. Des morsures jaillit le suc abdominal que l'assassin se mit à lécher avidement.

Tout à la volupté démoniaque de son repas, il n'aperçut pas à temps une gigantesque silhouette sombre qui s'approchait de lui par-derrière. Serrant encore sa victime entre ses pattes, l'araignée noire disparut à jamais entre les mâchoires du crapaud.

Mais tout, dans le jardin, était poésie et calme divin.

Une seringue empoisonnée s'enfonça dans la pulpe tendre d'un escargot qui s'acheminait vers le jardin potager. Il réussit à parcourir encore deux centimètres avec la tête qui lui tournait, et puis il s'aperçut que son pied ne lui obéissait plus et il comprit qu'il était perdu. Bien que sa conscience fût obscurcie, il sentit les mandibules de la larve assaillante qui déchiquetaient furieusement des morceaux de sa chair, creusant d'affreuses cavernes dans son beau corps gras et élastique dont il était si fier.

Dans la dernière palpitation de son ignominieuse agonie il eut encore le temps de remarquer, avec une lueur de réconfort, que la larve maudite avait été harponnée par une araignée-loup et lacérée en un éclair.

Un peu plus loin, tendre idylle. Avec sa lanterne, allumée par intermittence au maximum, une luciole tournaillait autour de la lumière fixe d'une appétissante petite femelle, languissamment étendue sur une feuille. Oui ou non ? Oui ou non ? Il s'approcha d'elle, tenta une caresse, elle le laissa faire. L'orgasme de l'amour lui fit oublier à quel point un pré pouvait être infernal une nuit de lune. Au moment où il embrassait sa compagne, un scarabée doré d'un seul coup l'éventra irrévocablement, le fendant de bout en bout. Son petit fanal continuait à palpiter implorant, oui ou non ? que son assaillant l'avait déjà à moitié englouti.

À ce moment-là il y eut un tumulte sauvage à un demi-mètre de distance à peine. Mais tout se régla en quelques secondes. Quelque chose d'énorme et de doux tomba comme la foudre d'en haut. Le crapaud sentit un souffle fatal dans son dos, il chercha à se retourner. Mais il se balançait déjà dans les airs entre les serres d'un vieux hibou.

En regardant on ne voyait rien. Tout dans le jardin était poésie et divine tranquillité.

La kermesse de la mort avait commencé au crépuscule. Maintenant elle était au paroxysme de sa frénésie. Et elle continuerait jusqu'à l'aube. Partout ce n'était que massacre, supplice, tuerie. Des scalpels défonçaient des crânes, des crochets brisaient des jambes, fouillaient dans les viscères, des tenailles soulevaient les écailles, des poinçons s'enfonçaient, des dents trituraient, des aiguilles inoculaient des poisons et des anesthésiques, des filets emprisonnaient, des sucs érosifs liquéfiaient des esclaves encore vivants.

Depuis les minuscules habitants des mousses : les rotifères, les tardigrades, les amibes, les tecamibes, jusqu'aux larves, aux araignées, aux scarabées, aux mille-pattes, oui, oui, jusqu'aux orvets, aux scorpions, aux crapauds, aux taupes, aux hiboux, l'armée sans fin des assassins de grand chemin se déchaînait dans le carnage, tuant, torturant, déchirant, éventrant, dévorant. Comme si, dans une grande ville, chaque nuit, des dizaines de milliers de malandrins assoiffés de sang et armés jusqu'aux dents sortaient de leur tanière, pénétraient dans les maisons et égorgeaient les gens pendant leur sommeil.

Là-bas dans le fond, le Caruso des grillons vient de se taire à l'improviste, gobé méchamment par une taupe. Près de la haie la petite lampe de la luciole broyée par la dent d'un scarabée s'éteint. Le chant de la rainette étouffée par une couleuvre devient un sanglot. Et le petit papillon ne revient plus battre contre les vitres de la fenêtre éclairée : les ailes douloureusement froissées il se contorsionne dans l'estomac d'une chauve-souris.

Terreur, angoisse, déchirement, agonie, mort pour mille et mille autres créatures de Dieu, voilà ce qu'est le sommeil nocturne d'un jardin de trente mètres sur vingt. Et c'est la même chose dans la campagne environnante, et c'est toujours la même chose au-delà des montagnes environnantes aux reflets vitreux sous la lune, pâles et mystérieuses. Et dans le monde entier c'est la même chose, partout, à peine descend la nuit : extermination, anéantissement et carnage. Et quand la nuit se dissipe et que le soleil apparaît, un autre carnage commence avec d'autres assassins de grand chemin, mais une égale férocité. Il en a toujours été ainsi depuis l'origine des temps et il en sera de même pendant des siècles, jusqu'à la fin du monde.

Marie s'agite dans son lit, avec des petits grognements incompréhensibles. Et puis, de nouveau elle écarquille les yeux, épouvantée.

- Carlo, si tu savais quel horrible cauchemar je viens de faire. J'ai rêvé que là-dehors, dans le jardin, on était en train d'assassiner quelqu'un.

- Allons, tranquillise-toi un peu, ma chérie, je vais venir me coucher moi aussi.

- Carlo, ne te moque pas de moi, mais j'ai encore cette étrange sensation, je ne sais pas, moi, c'est comme si dehors dans le jardin il se passait quelque chose.

- Qu'est-ce que tu vas penser là...

- Ne me dis pas non, Carlo, je t'en prie. Je voudrais tant que tu jettes un coup d'œil dehors.

Il secoue la tête et sourit. Il se lève, ouvre la fenêtre et regarde.

Le monde repose dans une immense quiétude, inondé par la lumière de la lune. Encore cette sensation d'enchantement, encore cette mystérieuse langueur.

- Dors tranquille, mon amour, il n'y a pas âme qui vive dehors, je n'ai jamais vu une telle paix.

Auteur: Buzzati Dino

Info: Douce Nuit, Nouvelle

[ couple ] [ simultanéité ] [ histoire courte ]

 
Mis dans la chaine

Commentaires: 0

chronos

Prix Nobel de physique 2023 : on a tout compris et on vous explique simplement pourquoi c’est génial

Anne L’Huillier, Ferenc Krausz et Pierre Agostini ont inventé la physique attoseconde, et ça méritait bien d’être expliqué.

Les "impulsions laser très courtes permettant de suivre le mouvement ultrarapide des électrons à l’intérieur des molécules et des atomes", vous dites ? Les lauréats du prix Nobel de physique 2023, le Hongrois Ferenc Krausz et les Français Anne L’Huillier et Pierre Agostini n’ont pas choisi le thème le plus parlant aux néophytes (mais la physique fondamentale l’est rarement).

Commençons par un terme étrange : les lauréats sont les inventeurs de la physique attoseconde. Atto, quoi ? Une attoseconde est une fraction de seconde, précisément 1×10−18 seconde : c’est très, très peu. "Pour vous donner une idée", explique au HuffPost le physicien Franck Lépine, chercheur du CNRS à l’Institut lumière matière, et collaborateur des Nobel 2023, en terme d’ordre de grandeur "il y a autant de différence entre une attoseconde et une seconde qu’entre une seconde et l’âge de l’univers".

Lorsqu'il est contemplé à cette échelle de temps, le monde ralentit. Le battement d'ailes d'un colibri devient une éternité.

Aller "chercher" une attoseconde précise dans une seconde, c’est donc pointer une seconde précise dans l’univers depuis sa naissance. On vous l’avait bien dit, c’est court, un laps de temps à peine concevable.

La photo la plus rapide du monde

Mais comment ont-ils "inventé" cette physique ? Les Nobel 2023 ont réussi à mettre au point un appareil qui permet d’observer les électrons au sein de la matière : des éléments au déplacement si rapide que seul un "flash" de l’ordre de l’attoseconde permet de les capturer. Les trois chercheurs sont donc récompensés pour la mise au point d’une "caméra" ultrarapide… Et on va même vous raconter comment elle fonctionne.

Une impulsion très puissante est envoyée au laser vers des atomes. Sous l’effet de la lumière envoyée, Les électrons qui gravitent autour de ces atomes vont alors être accélérés et émettre à leur tour un flash lumineux qui dure environ une attoseconde : c’est ce que l’on appelle la High harmonic generation, ou production d’harmoniques élevées. Ce sont ces impulsions qui vont prendre les électrons en photo. Pourquoi une durée aussi courte est-elle nécessaire ? Parce que les électrons ne tiennent pas en place.

Au-delà de la physique

"Faisons un parallèle avec le cinéma, explique Franck Lépine. On découpe le mouvement en un certain nombre de photos par seconde. La photo fige l’objet qui bouge, mais si la capture prend trop de temps, on découpe le mouvement, les images se superposent", ce qui crée un effet de flou. "Si jamais nos flashes de lumières durent trop longtemps, on ne va pas voir seulement électrons bouger, mais également les atomes, voire les ensembles d’atomes", et donc l’objet de l’observation ne sera pas net.

Les découvertes des trosi chercheurs ne permettent pas seulement d’observer les électrons avec une précision nouvelle. Elles sont également un instrument pour les manipuler. La lumière envoyée sur les électrons les bouscule, et là encore la physique attoseconde peut tout changer, et pas seulement dans le domaine des sciences fondamentales. "On peut manipuler les réactions chimiques en manipulant les électrons", détaille Franck Lépine.

À Lyon, son laboratoire est l’un des trois en France à disposer des équipements nécessaires pour travailler avec la physique attoseconde. "Parmi les choses sur lesquelles on travaille, il y a l’utilisation des technologies attoseconde pour comprendre comment fonctionne l’ADN du vivant." La physique attoseconde, vous n’en entendrez peut-être pas parler à nouveau de sitôt, mais les découvertes qui en découlent certainement.

Historique

En 1925, Werner Heisenberg, pionniers de la mécanique quantique, a affirmé que le temps nécessaire à un électron pour faire le tour d'un atome d'hydrogène était inobservable. Dans un sens, il avait raison. Les électrons ne tournent pas autour d'un noyau atomique comme les planètes autour des étoiles. Les physiciens les considèrent plutôt comme des ondes de probabilité qui donnent leurs chances d'être observées à un certain endroit et à un certain moment, de sorte que nous ne pouvons pas mesurer un électron qui vole littéralement dans l'espace.

Heisenberg a sous-estimé l'ingéniosité de physiciens du XXe siècle comme L'Huillier, Agostini et Krausz. Les chances que l'électron soit ici ou là varient d'un moment à l'autre, d'une attoseconde à l'autre. Grâce à la possibilité de créer des impulsions laser attosecondes capables d'interagir avec les électrons au fur et à mesure de leur évolution, les chercheurs peuvent sonder directement les différents comportements des électrons.

Comment les physiciens produisent-ils des impulsions attosecondes ?

Dans les années 1980, Ahmed Zewail, de l'Institut de technologie de Californie, a développé la capacité de faire clignoter des lasers avec des impulsions d'une durée de quelques femtosecondes, soit des milliers d'attosecondes. Ces impulsions, qui ont valu à Zewail le prix Nobel de chimie en 1999, étaient suffisantes pour permettre aux chercheurs d'étudier le déroulement des réactions chimiques entre les atomes dans les molécules. Cette avancée a été qualifiée de "caméra la plus rapide du monde".

Pendant un certain temps, une caméra plus rapide semblait inaccessible. On ne savait pas comment faire osciller la lumière plus rapidement. Mais en 1987, Anne L'Huillier et ses collaborateurs ont fait une observation intrigante : Si vous éclairez certains gaz, leurs atomes sont excités et réémettent des couleurs de lumière supplémentaires qui oscillent plusieurs fois plus vite que le laser d'origine - un effet connu sous le nom d'"harmoniques". Le groupe de L'Huillier a découvert que dans des gaz comme l'argon, certaines de ces couleurs supplémentaires apparaissaient plus brillantes que d'autres, mais selon un schéma inattendu. Au début, les physiciens ne savaient pas trop quoi penser de ce phénomène.

Au début des années 1990, L'Huillier et d'autres chercheurs ont utilisé la mécanique quantique pour calculer les différentes intensités des diverses harmoniques. Ils ont alors pu prédire exactement comment, lorsqu'un laser infrarouge oscillant lentement frappait un nuage d'atomes, ces atomes émettaient à leur tour des faisceaux de lumière "ultraviolette extrême" oscillant rapidement. Une fois qu'ils ont compris à quelles harmoniques il fallait s'attendre, ils ont trouvé des moyens de les superposer de manière à obtenir une nouvelle vague : une vague dont les pics s'élèvent à l'échelle de l'attoseconde. Amener des collectifs géants d'atomes à produire ces ondes finement réglées de concert est un processus que Larsson compare à un orchestre produisant de la musique.

 Au cours des années suivantes, les physiciens ont exploité cette compréhension détaillée des harmoniques pour créer des impulsions attosecondes en laboratoire. Agostini et son groupe ont mis au point une technique appelée Rabbit, ou "reconstruction d'un battement attoseconde par interférence de transitions à deux photons". Grâce à Rabbit, le groupe d'Agostini a généré en 2001 une série d'impulsions laser d'une durée de 250 attosecondes chacune. La même année, le groupe de Krausz a utilisé une méthode légèrement différente, connue sous le nom de streaking, pour produire et étudier des salves individuelles d'une durée de 650 attosecondes chacune. En 2003, L'Huillier et ses collègues les ont tous deux surpassés avec une impulsion laser d'une durée de 170 attosecondes seulement.

Que peut-on faire avec des impulsions attosecondes ?

Les impulsions attosecondes permettent aux physiciens de détecter tout ce qui change sur une période de quelques dizaines à quelques centaines d'attosecondes. La première application a consisté à essayer ce que les physiciens avaient longtemps cru impossible (ou du moins extrêmement improbable) : voir exactement ce que font les électrons.

En 1905, Albert Einstein a donné le coup d'envoi de la mécanique quantique en expliquant l'effet photoélectrique, qui consiste à projeter des électrons dans l'air en éclairant une plaque métallique (sa théorie lui vaudra plus tard le prix Nobel de physique en 1921). Avant l'ère de la physique des attosecondes, les physiciens supposaient généralement que la chaîne de réactions qui conduisait à la libération des électrons lancés était instantanée.

En 2010, Krausz et ses collègues ont démontré le contraire. Ils ont utilisé des impulsions attosecondes pour chronométrer les électrons détachés des atomes de néon. Ils ont notamment constaté qu'un électron dans un état de basse énergie fuyait son hôte 21 attosecondes plus vite qu'un électron dans un état de haute énergie. En 2020, un autre groupe a montré que les électrons s'échappent de l'eau liquide des dizaines d'attosecondes plus rapidement que de la vapeur d'eau.

D'autres applications des impulsions attosecondes sont en cours de développement. La technique pourrait permettre de sonder toute une série de phénomènes liés aux électrons, notamment la façon dont les particules portent et bloquent la charge électrique, la façon dont les électrons rebondissent les uns sur les autres et la façon dont les électrons se comportent collectivement. Krausz fait également briller des flashs attosecondes sur du sang humain. L'année dernière, il a contribué à montrer que de minuscules changements dans un échantillon de sang peuvent indiquer si une personne est atteinte d'un cancer à un stade précoce, et de quel type.

Plus tôt dans la matinée, le comité Nobel a eu du mal à joindre Mme L'Huillier pour l'informer qu'elle était la cinquième femme de l'histoire à recevoir le prix Nobel de physique. Lorsqu'il a finalement réussi à la joindre, après trois ou quatre appels manqués, elle était en train de donner une conférence à ses étudiants. Elle est parvenue à la terminer, même si la dernière demi-heure a été très difficile. "J'étais un peu émue à ce moment", a-t-elle déclaré plus tard.

Auteur: Internet

Info: huffingtonpost et quantamagazine, 3 sept. 2023

[ nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel

chimiosynthèse

Les cellules souterraines produisent de l'« oxygène sombre » sans lumière

Dans certaines profondes nappes souterraines, les cellules disposent d’une astuce chimique pour produire de l’oxygène qui pourrait alimenter des écosystèmes souterrains entiers.

(Photo - Dans un monde ensoleillé, la photosynthèse fournit l’oxygène indispensable à la vie. Au fond des profondeurs, la vie trouve un autre chemin.)

Les scientifiques se sont rendu compte que le sol et les roches sous nos pieds abritent une vaste biosphère dont le volume global est près de deux fois supérieur à celui de tous les océans de la planète. On sait peu de choses sur ces organismes souterrains, qui représentent l’essentiel de la masse microbienne de la planète et dont la diversité pourrait dépasser celle des formes de vie vivant en surface. Leur existence s’accompagne d’une grande énigme : les chercheurs ont souvent supposé que bon nombre de ces royaumes souterrains étaient des zones mortes pauvres en oxygène, habitées uniquement par des microbes primitifs qui maintiennent leur métabolisme au ralenti et se débrouillent grâce aux traces de nutriments. À mesure que ces ressources s’épuisent, pensait-on, l’environnement souterrain devient sans vie à mesure que l’on s’enfonce.

Dans une nouvelle recherche publiée le mois dernier dans Nature Communications , les chercheurs ont présenté des preuves qui remettent en question ces hypothèses. Dans des réservoirs d'eau souterraine situés à 200 mètres sous les champs de combustibles fossiles de l'Alberta, au Canada, ils ont découvert des microbes abondants qui produisent des quantités étonnamment importantes d'oxygène, même en l'absence de lumière. Les microbes génèrent et libèrent tellement de ce que les chercheurs appellent " l'oxygène noir " que c'est comme découvrir " le même quantité d'oxygène que celle  issue de la photosynthèse dans la forêt amazonienne ", a déclaré Karen Lloyd , microbiologiste souterrain à l'Université du Tennessee qui n'était pas partie de l’étude. La quantité de gaz diffusé hors des cellules est si grande qu’elle semble créer des conditions favorables à une vie dépendante de l’oxygène dans les eaux souterraines et les strates environnantes.

"Il s'agit d'une étude historique", a déclaré Barbara Sherwood Lollar , géochimiste à l'Université de Toronto qui n'a pas participé aux travaux. Les recherches antérieures ont souvent porté sur les mécanismes susceptibles de produire de l'hydrogène et d'autres molécules vitales pour la vie souterraine, mais cette création de molécules contenant de l'oxygène a été largement négligée car ces molécules sont très rapidement consommées dans l'environnement souterrain. Jusqu’à présent, " aucune étude n’a rassemblé tout cela comme celle-ci ", a-t-elle déclaré.

La nouvelle étude a porté sur les aquifères profonds de la province canadienne de l’Alberta, qui possède des gisements souterrains si riches en goudron, en sables bitumineux et en hydrocarbures qu’elle a été surnommée " le Texas du Canada ". Parce que ses énormes industries d'élevage de bétail et d'agriculture dépendent fortement des eaux souterraines, le gouvernement provincial surveille activement l'acidité et la composition chimique de l'eau. Pourtant, personne n’avait étudié systématiquement la microbiologie des eaux souterraines.

Pour Emil Ruff , mener une telle enquête semblait être " une solution facile " en 2015 lorsqu'il a commencé son stage postdoctoral en microbiologie à l'Université de Calgary. Il ne savait pas que cette étude apparemment simple le mettrait à rude épreuve pendant les six prochaines années.

Profondeurs encombrées

Après avoir collecté l'eau souterraine de 95 puits à travers l'Alberta, Ruff et ses collègues ont commencé à faire de la microscopie de base : ils ont coloré des cellules microbiennes dans des échantillons d'eau souterraine avec un colorant à base d'acide nucléique et ont utilisé un microscope à fluorescence pour les compter. En radiodatant la matière organique présente dans les échantillons et en vérifiant les profondeurs auxquelles ils avaient été collectés, les chercheurs ont pu identifier l'âge des aquifères souterrains qu'ils exploitaient.

Une tendance dans les chiffres les intriguait. Habituellement, lors d'études sur les sédiments sous le fond marin, par exemple, les scientifiques constatent que le nombre de cellules microbiennes diminue avec la profondeur : les échantillons plus anciens et plus profonds ne peuvent pas abriter autant de vie car ils sont davantage privés des nutriments produits par les plantes photosynthétiques. et des algues près de la surface. Mais à la surprise de l'équipe de Ruff, les eaux souterraines plus anciennes et plus profondes contenaient plus de cellules que les eaux plus douces.

Les chercheurs ont ensuite commencé à identifier les microbes présents dans les échantillons, à l’aide d’outils moléculaires pour repérer leurs gènes marqueurs révélateurs. Beaucoup d’entre eux étaient des archées méthanogènes – des microbes simples et unicellulaires qui produisent du méthane après avoir consommé de l’hydrogène et du carbone suintant des roches ou de la matière organique en décomposition. De nombreuses bactéries se nourrissant du méthane ou des minéraux présents dans l’eau étaient également présentes.

Ce qui n'avait aucun sens, cependant, c'est que bon nombre de bactéries étaient des aérobies, des microbes qui ont besoin d'oxygène pour digérer le méthane et d'autres composés. Comment les aérobies pourraient-ils prospérer dans des eaux souterraines qui ne devraient pas contenir d’oxygène, puisque la photosynthèse est impossible ? Mais les analyses chimiques ont également révélé une grande quantité d’oxygène dissous dans les échantillons d’eau souterraine de 200 mètres de profondeur.

C'était du jamais vu. "On a sûrement foiré l'échantillon", fut la première réaction de Ruff.

Il a d’abord tenté de montrer que l’oxygène dissous dans les échantillons était le résultat d’une mauvaise manipulation. "C'est comme être Sherlock Holmes", a déclaré Ruff. " Vous essayez de trouver des preuves et des indications " pour réfuter vos hypothèses. Cependant, la teneur en oxygène dissous semblait constante sur des centaines d’échantillons. Une mauvaise manipulation ne pouvait pas l'expliquer.

Si l’oxygène dissous ne provenait pas d’une contamination, d’où venait-il ? Ruff s'est rendu compte qu'il près de quelque chose de grand, même si faire des affirmations controversées va à l'encontre de sa nature. Beaucoup de ses co-auteurs avaient également des doutes : cette découverte menaçait de briser les fondements de notre compréhension des écosystèmes souterrains.

Produire de l'oxygène pour tout le monde

En théorie, l’oxygène dissous dans les eaux souterraines pourrait provenir de plantes, de microbes ou de processus géologiques. Pour trouver la réponse, les chercheurs se sont tournés vers la spectrométrie de masse, une technique permettant de mesurer la masse des isotopes atomiques. En règle générale, les atomes d’oxygène provenant de sources géologiques sont plus lourds que l’oxygène provenant de sources biologiques. L’oxygène présent dans les eaux souterraines était léger, ce qui impliquait qu’il devait provenir d’une entité vivante. Les candidats les plus plausibles étaient les microbes.

Les chercheurs ont séquencé les génomes de l’ensemble de la communauté microbienne présente dans les eaux souterraines et ont repéré les voies et réactions biochimiques les plus susceptibles de produire de l’oxygène. Les réponses pointaient sans cesse vers une découverte faite il y a plus de dix ans par Marc Strous de l'Université de Calgary, auteur principal de la nouvelle étude et chef du laboratoire où travaillait Ruff.

Alors qu'il travaillait dans un laboratoire aux Pays-Bas à la fin des années 2000, Strous avait remarqué qu'un type de bactérie se nourrissant de méthane, souvent présente dans les sédiments des lacs et les boues d'épuration, avait un mode de vie étrange. Au lieu d'absorber l'oxygène de son environnement comme les autres aérobies, ces bactéries créent leur propre oxygène en utilisant des enzymes pour décomposer les composés solubles appelés nitrites (qui contiennent un groupe chimique composé d'azote et de deux atomes d'oxygène). Les bactéries utilisent l’oxygène auto-généré pour transformer le méthane en énergie.

Lorsque les microbes décomposent les composés de cette façon, on parle de dismutation. Jusqu’à présent, on pensait que cette méthode de production d’oxygène était rare dans la nature. Des expériences récentes en laboratoire impliquant des communautés microbiennes artificielles ont cependant révélé que l'oxygène produit par la dismutation peut s'échapper des cellules et se répandre dans le milieu environnant au profit d'autres organismes dépendants de l'oxygène, dans une sorte de processus symbiotique. Ruff pense que cela pourrait permettre à des communautés entières de microbes aérobies de prospérer dans les eaux souterraines, et potentiellement également dans les sols environnants.

Chimie pour la vie ailleurs

Cette découverte comble une lacune cruciale dans notre compréhension de l’évolution de l’immense biosphère souterraine et de la manière dont la dismutation contribue au cycle des composés se déplaçant dans l’environnement mondial. La simple possibilité que de l'oxygène soit présent dans les eaux souterraines " change notre compréhension du passé, du présent et de l'avenir du sous-sol ", a déclaré Ruff, qui est maintenant scientifique adjoint au Laboratoire de biologie marine de Woods Hole, Massachusetts.

Comprendre ce qui vit dans le sous-sol de notre planète est également " crucial pour transposer ces connaissances ailleurs ", a déclaré Sherwood Lollar. Le sol de Mars, par exemple, contient des composés perchlorates que certains microbes terrestres peuvent transformer en chlorure et en oxygène. Europe, la lune de Jupiter, possède un océan profond et gelé ; la lumière du soleil ne peut pas y pénétrer, mais l'oxygène pourrait potentiellement y être produit par dismutation microbienne au lieu de la photosynthèse. Les scientifiques ont observé des panaches de vapeur d’eau jaillissant de la surface d’Encelade, l’une des lunes de Saturne. Les panaches proviennent probablement d’un océan souterrain d’eau liquide. Si un jour nous trouvons de la vie sur d’autres mondes comme ceux-là, elle pourrait emprunter des voies de dismutation pour survivre.

Quelle que soit l'importance de la dismutation ailleurs dans l'univers, Lloyd est étonné de voir à quel point les nouvelles découvertes défient les idées préconçues sur les besoins de la vie et par l'ignorance scientifique qu'elles révèlent sur l'une des plus grandes biosphères de la planète. " C'est comme si nous avions toujours eu un œuf sur le visage ", a-t-elle déclaré.

Auteur: Internet

Info: https://www.quantamagazine.org/, Saugat Bolakhé, juillet 2023

[ perspectives extraterrestres ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

émergence du regard

Les yeux des mollusques révèlent à quel point l'évolution future dépend du passé

Les systèmes visuels d'un groupe obscur de mollusques fournissent un exemple naturel rare d'évolution dépendante du chemin, dans lequel une bifurcation critique dans le passé des créatures a déterminé leur avenir évolutif.

(photo : Les systèmes visuels des chitons, un type de mollusque marin, représentent un rare exemple réel d’évolution dépendante du chemin – où l’histoire d’une lignée façonne irrévocablement sa trajectoire future.)

Les biologistes se sont souvent demandé ce qui se passerait s'ils pouvaient rembobiner la bande de l'histoire de la vie et laisser l'évolution se dérouler à nouveau. Les lignées d’organismes évolueraient-elles de manière radicalement différente si on leur en donnait la possibilité ? Ou auraient-ils tendance à développer les mêmes types d’yeux, d’ailes et d’autres traits adaptatifs parce que leurs histoires évolutives précédentes les avaient déjà envoyés sur certaines voies de développement ?

Un nouvel article publié aujourd'hui dans Science décrit un cas test rare et important pour cette question, qui est fondamentale pour comprendre comment l'évolution et le développement interagissent. Une équipe de chercheurs de l'Université de Californie à Santa Barbara l'a découvert alors qu'elle étudiait l'évolution de la vision chez un groupe obscur de mollusques appelés chitons. Dans ce groupe d’animaux, les chercheurs ont découvert que deux types d’yeux – les ocelles et les yeux en coquille – ont chacun évolué deux fois indépendamment. Une lignée donnée peut évoluer vers un type d’œil ou vers l’autre, mais jamais les deux.

Curieusement, le type d’œil d’une lignée était déterminé par une caractéristique plus ancienne apparemment sans rapport : le nombre de fentes dans l’armure du chiton. Cela représente un exemple concret d' " évolution dépendante du chemin ", dans lequel l'histoire d'une lignée façonne irrévocablement sa trajectoire évolutive future. Les moments critiques dans une lignée agissent comme des portes à sens unique, ouvrant certaines possibilités tout en fermant définitivement d’autres options.

"C'est l'un des premiers cas où nous avons pu observer une évolution dépendante du cheminement", a déclaré Rebecca Varney , chercheuse postdoctorale au laboratoire de Todd Oakley à l'UCSB et auteur principal du nouvel article. Bien qu’une évolution dépendante du chemin ait été observée chez certaines bactéries cultivées en laboratoire, " montrer cela dans un système naturel était une chose vraiment excitante ".

"Il y a toujours un impact de l'histoire sur l'avenir d'un trait particulier", a déclaré Lauren Sumner-Rooney , qui étudie les systèmes visuels des invertébrés à l'Institut Leibniz pour les sciences de l'évolution et de la biodiversité et n'a pas participé à la nouvelle étude. "Ce qui est particulièrement intéressant et passionnant dans cet exemple, c'est que les auteurs semblent avoir identifié le moment où se produit cette division."

Pour cette raison, les chitons "sont susceptibles d'entrer dans les futurs manuels sur l'évolution" comme exemple d'évolution dépendante du chemin, a déclaré Dan-Eric Nilsson, un écologiste visuel à l'Université de Lund en Suède qui n'a pas participé à la recherche.

Les chitons, petits mollusques qui vivent sur les roches intertidales et dans les profondeurs marines, ressemblent à de petits réservoirs protégés par huit plaques de coquille – un plan corporel resté relativement stable pendant environ 300 millions d'années. Loin d'être des armures inertes, ces genres de plaques d'obus sont fortement décorées d'organes sensoriels qui permettent aux chitons de détecter d'éventuelles menaces.

(photo : Chiton tuberculatus , qui vit sur les côtes rocheuses des Caraïbes, utilise de nombreux ocelles pour obtenir une vision spatiale. Les chitons ont développé des ocelles à deux reprises au cours de leur histoire évolutive.)

Les organes sensoriels sont de trois types. Tous les chitons ont des esthètes (aesthetes : récepteur tout-en-un extrêmement synesthésique qui permet de détecter la lumière ainsi que les signaux chimiques et mécaniques de l'environnement.)

Certains chitons possèdent également un système visuel approprié : soit des milliers d'ocelles sensibles à la lumière, soit des centaines d'yeux en forme de coquille plus complexes, dotés d'un cristallin et d'une rétine permettant de capturer des images grossières. Les animaux dotés d'yeux en forme de coquille peuvent détecter les prédateurs imminents, en réponse à quoi ils se cramponnent fermement au rocher.

Pour comprendre comment cette variété d’yeux de chiton a évolué, une équipe de chercheurs dirigée par Varney a examiné les relations entre des centaines d’espèces de chiton. Ils ont utilisé une technique appelée capture d'exome pour séquencer des sections stratégiques d'ADN provenant d'anciens spécimens de la collection de Doug Eernisse , spécialiste du chiton à la California State University, Fullerton. Au total, ils ont séquencé l’ADN de plus de 100 espèces soigneusement sélectionnées pour représenter toute l’étendue de la diversité des chitons, assemblant ainsi la phylogénie (ou l’arbre des relations évolutives) la plus complète à ce jour pour les chitons.

Ensuite, les chercheurs ont cartographié les différents types d’yeux sur la phylogénie. Les chercheurs ont observé que la première étape avant l’évolution des yeux en coquille ou des ocelles était une augmentation de la densité des esthètes sur la coquille. Ce n’est qu’alors que des yeux plus complexes pourraient apparaître. Les taches oculaires et les yeux en coquille ont chacun évolué à deux reprises au cours de la phylogénie, ce qui représente deux instances distinctes d'évolution convergente.

Indépendamment, les chitons ont fait évoluer les yeux - et, à travers eux, ce que nous pensons être probablement quelque chose comme la vision spatiale - à quatre reprises, ce qui est vraiment impressionnant", a déclaré M. Varney. 

" Cette évolution s'est faite incroyablement rapidement ". Les chercheurs ont estimé que chez le genre néotropical Chiton, par exemple, les yeux ont évolué en l'espace de 7 millions d'années seulement, soit un clin d'œil à l'échelle de l'évolution.

Les résultats ont surpris les chercheurs. "Je pensais qu'il s'agissait d'une évolution progressive de la complexité, passant des esthètes à un système d'ocelles et à des yeux en forme de coquille - une progression très satisfaisante", a déclaré Dan Speiser , écologiste visuel à l'Université de Caroline du Sud et co-auteur d'un article. auteur. " Au lieu de cela, il existe plusieurs chemins vers la vision."

Mais pourquoi certaines lignées ont-elles développé des yeux en coquille plutôt que des ocelles ? Au cours d'un trajet de six heures en voiture depuis une conférence à Phoenix jusqu'à Santa Barbara, Varney et Oakley ont commencé à développer l'hypothèse selon laquelle le nombre de fentes dans la coquille d'un chiton pourrait être la clé de l'évolution de la vision du chiton.

Toutes les structures sensibles à la lumière sur la coquille du chiton, a expliqué Varney, sont attachées à des nerfs qui passent à travers les fentes de la coquille pour se connecter aux nerfs principaux du corps. Les fentes fonctionnent comme des organisateurs de câbles, regroupant les neurones sensoriels. Plus il y a de fentes plus il y les ouvertures par lesquelles les nerfs peuvent passer.

Il se trouve que le nombre de fentes est une information standard qui est enregistrée chaque fois que quelqu'un décrit une nouvelle espèce de chiton. " L'information était disponible, mais sans le contexte d'une phylogénie sur laquelle la cartographier, elle n'avait aucune signification ", a déclaré Varney. " Alors je suis allé voir ça et j'ai commencé à voir ce modèle."

Varney a constaté qu'à deux reprises, indépendamment, des lignées comportant 14 fentes ou plus dans la plaque céphalique ont développé des ocelles. Et deux fois, indépendamment, des lignées comportant 10 fentes ou moins ont développé des yeux en coquille. On se rend ainsi compte que le nombre de fentes verrouillées et le type d'yeux pouvaient évoluer : un chiton avec des milliers d'ocelles a besoin de plus de fentes, tandis qu'un chiton avec des centaines d'yeux en coquille en a besoin de moins. En bref, le nombre de fentes dans la  coquille déterminait l’évolution du système visuel des créatures.

Les résultats conduisent vers une nouvelle série de questions. Les chercheurs étudient activement pourquoi le nombre de fentes limite le type d'œil dans son évolution. Pour répondre à cette question, il faudra travailler à élucider les circuits des nerfs optiques et la manière dont ils traitent les signaux provenant de centaines ou de milliers d’yeux.

Alternativement, la relation entre le type d’œil et le nombre de fentes pourrait être déterminée non pas par les besoins de vision mais par la manière dont les plaques se développent et se développent dans différentes lignées, a suggéré Sumner-Rooney. Les plaques de coquille se développent du centre vers l'extérieur par accrétion, et des yeux sont ajoutés tout au long de la vie du chiton à mesure que le bord se développe. " Les yeux les plus anciens sont ceux au centre de l'animal, et les plus récents sont ajoutés sur les bords. ", a déclaré Sumner-Rooney. En tant que chiton, " vous pourriez commencer votre vie avec 10 yeux et finir votre vie avec 200 ".

Par conséquent, le bord de croissance d'une plaque de carapace doit laisser des trous pour les yeux nouceaux – de nombreux petits trous pour les ocelles, ou moins de trous plus grands pour les yeux de la coquille. Des trous trop nombreux ou trop grands pourraient affaiblir une coque jusqu'à son point de rupture, de sorte que des facteurs structurels pourraient limiter les possibilités pour cest yeux.

Il reste beaucoup à découvrir sur la façon dont les chitons voient le monde, mais en attendant, leurs yeux sont prêts à devenir le nouvel exemple préféré des biologistes d'évolution dépendante du chemin, a déclaré Nilsson. "Les exemples de dépendance au chemin qui peuvent être vraiment bien démontrés, comme dans ce cas, sont rares - même si le phénomène n'est pas seulement courant, c'est la manière standard dont les choses se produisent."



 



Auteur: Internet

Info: Résumé par Gemini

[ évolution qui dépend du chemin ] [ biologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

autodétermination

Le (non-)rôle de la conscience
Le biologiste François Jacob a utilisé à propos de notre cerveau, une image admirable : le cerveau humain est conçu, dit-il, comme une brouette sur laquelle aurait été greffé un moteur à réaction. Par cette image frappante, il attirait notre attention sur le fait que notre cerveau n’est pas constitué comme une machine d’une seule pièce. Il y a en son centre, le cerveau reptilien, appelé ainsi parce qu’il possède déjà la même structure chez le reptile, et le cerveau des mammifères s’est construit comme une couche additionnelle, absolument distincte : le cortex est d’une autre nature que le cerveau reptilien. Lequel est celui des sens, de la réaction immédiate, celui du réflexe, de l’affect, comme s’expriment les psychologues.

Le cortex s’est spécialisé dans le raisonnement, dans la réflexion rationnelle, l’enchaînement des arguments, le calcul mathématique, tout ce qui est de l’ordre des symboles, et il est greffé sur ce cerveau reptilien qui est lui d’une nature purement instinctive, ce qui fait que nous réagirons par l’enthousiasme ou par la peur devant ce que notre cerveau-cortex aura déterminé de faire. Les plus beaux exemples dans ce domaine, ce sont bien sûrs les traders qui nous les proposent. Ceux d’entre mes lecteurs qui connaissent des traders savent que le jour où ils ont gagné beaucoup d’argent ils sont dans les restaurants et les bars des beaux quartiers, ils fument de gros cigares et boivent beaucoup, alors que les jours où ils ont perdu des sommes impressionnantes, on les voit beaucoup moins : ils sont à la maison, ils essaient de dormir et ont pris des cachets pour tenter d’y parvenir.

Une autre caractéristique de notre cerveau, c’est que la conscience que nous avons de ce que nous faisons, cette conscience n’a pas véritablement été conçue comme un instrument qui nous permette de prendre des décisions. Quand les psychologues sont allés expérimenter, dans les années 1960, autour de la question de la volonté, ils ont fait la découverte sidérante que la volonté apparaît dans le cerveau après qu’a été réalisé l’acte qu’elle est censée avoir déterminé. La représentation de la volonté que nous allons poser un acte, n’intervient en fait qu’une demi-seconde après que l’acte a été posé, alors que l’acte lui-même a pu être réalisé un dixième de seconde seulement après l’événement qui en a été le véritable déclencheur.

Le psychologue qui a découvert cela est Américain et son nom est Benjamin Libet (1916-2007). La première hypothèse qu’il a émise, quand les faits lui sont apparus dans toute leur clarté, a été d’imaginer qu’il existait un mécanisme dans le cerveau qui permet à une information de remonter le temps. Son explication première n’a pas été que "volonté" est un mot dénotant un processus illusoire, une mésinterprétation de notre propre fonctionnement, mais que la volonté devait bien – comme nous l’imaginons spontanément parce que les mots de la langue nous le suggèrent fermement – décider des choses que nous allons accomplir, et que la seule explication possible était que la volonté remonte dans le temps pour poser les actes que nous supposons qu’elle détermine, seule manière de rendre compte du décalage d’une demi-seconde observé.

Il n’y a donc pas comme nous l’imaginions avant la découverte de l’inconscient, une conscience décidant de tous nos actes, à l’exception des actes réflexes. Il n’y a pas non plus, comme Freud l’avait imaginé, deux types d’actes : les uns déterminés par la conscience et les autres par l’inconscient, il n’y a – du point de vue décisionnel – qu’un seul type d’actes, déterminés par l’inconscient, la seule différence étant que certains apparaissent dans le "regard" de la conscience (avec une demi-seconde de retard sur l’acte posé), et certains non.

Dans l’article où je proposais pour la première fois une théorie complète de la conscience tenant compte des découvertes de Libet, j’écrivais : "la conscience est un cul-de-sac auquel des informations parviennent sans doute, mais sans qu’il existe un effet en retour de type décisionnel. C’est au niveau de l’affect, et de lui seul, que l’information affichée dans le regard de la conscience produit une rétroaction mais de nature "involontaire", automatique" (Jorion 1999 : 179). Je suggérais alors de remplacer, pour souligner les implications de la nouvelle représentation, le mot "conscience" par "imagination", et le mot "inconscient", par "corps", pour conclure alors que toutes nos décisions sont en réalité prises par notre corps mais que certaines d’entre elles (celles que nous avions l’habitude d’attribuer à notre "volonté") apparaissent à notre imagination : "En réalité, la prise de décision, la volonté, a été confiée au corps et non à l’imagination" (ibid. 185).

Il restait à comprendre pourquoi le regard de la "conscience" est apparu dans l’évolution biologique. L’explication – en parfait accord avec les observations de Libet – est qu’il s’agit d’un mécanisme nécessaire pour que nous puissions nous constituer une mémoire (adaptative) en associant à nos percepts, les affects qu’ils provoquent en nous, et ceci en dépit du fait que les sensations en provenance de nos divers organes des sens (nos "capteurs"), parviennent au cerveau à des vitesses différentes (ibid. 183-185).

Les observations de Libet, et la nouvelle représentation de nos prises de décision qui en découle, ont d’importantes conséquences pour nous, et en particulier quand nous voulons reconstruire sur un nouveau mode la manière dont nous vivons. Il faut que nous tenions compte du fait que notre conscience arrive en réalité toujours quelque temps après la bataille.

Il y a des gens heureux : ceux dont la conscience constate avec délice les actes qui ont été posés par eux. Il n’y a pas chez eux de dissonance, il n’y a pas de contradiction : nous sommes satisfaits de constater notre comportement tel qu’il a eu lieu. Et c’est pour cela que l’affect n’est pas trop déçu de ce qu’il observe. L’affect réagit bien entendu : soit il cautionne ce qu’il peut observer comme étant à l’œuvre, soit il est déçu quand il constate le résultat. On peut être honteux de ce qu’on a fait. Nous pouvons nous retrouver parfaitement humiliés par les actes qui ont été posés par nous : par ce que la conscience constate après la bataille. En voici un exemple : je me trouve dans le studio de FR 3, pour l’émission "Ce soir (ou jamais !)", et la personne invitée pour la partie musicale en fin d’émission, c’est Dick Rivers, et je lui dis : "C’est formidable, cette époque où vous chantiez avec Les chaussettes noires !", et il me répond : "En réalité, le nom de mon groupe, c’était Les chats sauvages". J’étais tellement humilié d’avoir commis une pareille bévue ! Il s’agit là d’un exemple excellent de dissonance, et ma conscience qui intervenait avec une demi-seconde de retard était extrêmement gênée de devoir être confrontée au triste sire que j’étais.

Bien sûr, nous sommes devenus très forts dans notre manière de vivre avec une telle dissonance : nous réalisons des miracles en termes d’explications après-coup de notre propre comportement. J’écoute parfois, comme la plupart d’entre nous, des conversations dans le métro ou dans le bus où une dame explique à l’une de ses amies à quel point elle était maître des événements : "Elle m’a dit ceci, et tu me connais, je lui ai répondu du tac-au-tac cela, et tu aurais dû voir sa tête…". Nous sommes très forts à produire des récits autobiographiques où nous intégrons l’ensemble des éléments qui font sens dans une situation, après coup. Plusieurs concepts de la psychanalyse renvoient aux différentes modalités de nos "rattrapages après la bataille", quand la conscience constate les dégâts que nous avons occasionnés par nos actes et tente de "faire avec" : la psychanalyse parle alors d’élaboration secondaire, de rationalisation, de déni, de dénégation, etc.

Pourquoi est-ce important d’attirer l’attention sur ces choses ? Parce que nous contrôlons beaucoup moins de manière immédiate ce que nous faisons que nous ne le laissons supposer dans les représentations que nous en avons. Dans celles-ci, nos comportements sont fortement calqués sur ce qu’Aristote appelait la cause finale : les buts que nous nous assignons. Bien sûr, quand nous construisons une maison, nous définissons les différentes étapes qui devront être atteintes successivement et nous procédons de la manière qui a été établie. Nous avons la capacité de suivre un plan et un échéancier, de manière systématique, mais la raison n’est pas, comme nous le supposons, parce que nous procédons pas à pas, d’étape en étape, mais plutôt parce que nous avons posé la réalisation de la tâche comme un "souci" projeté dans l’avenir, souci dont l’élimination nous délivrera et nous permettra… de nous en assigner de nouveaux. Encore une fois, c’est l’inconscient ou, si l’on préfère, le corps, qui s’en charge. J’écrivais dans le même article : "Wittgenstein s’est souvent interrogé quant à la nature de l’intention. Il se demande par exemple, "‘J’ai l’intention de partir demain’ – Quand as-tu cette intention ? Tout le temps : ou de manière intermittente ?" (Wittgenstein 1967 : 10). La réponse à sa question est en réalité "tout le temps dans le corps et de manière intermittente dans l’imagination"" (ibid. 189).

Mais dans nos actes quotidiens, dans la façon dont nous réagissons aux autres autour de nous, parce que nous vivons dans un univers entièrement social, il faut que nous prenions conscience du fait que nous avons beaucoup moins de maîtrise immédiate sur ce que nous faisons que nous ne l’imaginons le plus souvent, une maîtrise beaucoup plus faible que ce que nous reconstruisons par la suite dans ces discours autobiographiques que nous tenons : dans ces discours de rationalisation, d’autojustification faudrait-il dire, que nous produisons à l’intention des autres. Il faut bien dire que, sachant comment eux-mêmes fonctionnent, ils n’y croient pas en général. Et nous en sommes les seules dupes.

Auteur: Jorion Paul

Info: 7 avril 2012, dans Notre cerveau : conscience et volonté, "Le secret de la chambre chinoise", L’Homme 150, avril-juin 1999 : 177-202, Wittgenstein, Ludwig, Zettel, Oxford, Basil Blackwell, 1967

[ illusion ]

 

Commentaires: 0

orient-ponant

La pensée chinoise archaïque

Quelques éléments sur ce que nous savons aujourd’hui de la pensée chinoise archaïque (XVe – XIe siècles av. J.-C.).

La manière dont les Chinois parlent et écrivent constitue, chacun le sait, un langage dont la structure grammaticale est très éloignée de la nôtre, occidentale. Ce que nous appelons les " mots d’armature " : les articles, les prépositions, les conjonctions, ces mots qui nous permettent de relier entre eux les " mots de contenu " : les substantifs, les verbes, les adjectifs qualificatifs, les adverbes, ces mots d’armature qui constituent à nos yeux le " tissu conjonctif " de la langue, sont pour la plupart absents du chinois.

Alors que nous, Occidentaux, nous attendons à lire ces mots d’armature dans un texte comme la manière requise pour l’articuler, nous constatons à la place en chinois des séquences de noms de choses à la queue leu-leu, lesquels peuvent éventuellement être reliés par quelques éléments syntaxiques mais en tout cas d’une façon beaucoup plus rudimentaire que chez nous.

Il existe en particulier dans la phrase chinoise un mot que nous écrivons dans notre graphie comme " yeh " et que nous qualifions de marqueur d’affirmation, pour préciser la façon dont il sert à relier deux notions. Un philologue de la Chine, Kyril Ryjik, dit à propos de yeh : " … ce caractère entretient, entre son sens original et son emploi opératoire, le type de rapport qu’entretient la notion de “copule” […]. Il opère avec une notion de très forte jonction entre deux termes " (Ryjik 1980 : 218). Deux termes chinois sont rapprochés et il est suggéré à l’aide du terme yeh qu’il existe un lien spécial entre les deux.

Chad Hansen, commentateur éminent de la langue chinoise archaïque, explique : 

" Il n’y a pas en chinois de est, pas d’expression prédicative dénotant l’identité ou l’inclusion. La juxtaposition de deux termes (ordinairement suivis de la particule yeh) constitue une phrase relationnelle grossièrement équivalente à une phrase affirmant l’identité ou l’inclusion […] La phrase pai ma ma yeh (blanc cheval cheval “est”) : “(du) cheval blanc ‘est’ (du) cheval”, est un exemple d’une telle structure de phrase " (Hansen 1983 : 45). 

Par ailleurs, si je prononce l’un après l’autre les mots chinois pour cheval et pour bœuf et que je fais suivre leur séquence de yeh : " cheval bœuf yeh ", je laisse entendre qu’il existe quelque chose reliant les deux termes, quelque chose fait qu’ils aient été mentionnés ensemble et je réunis ce faisant automatiquement ces deux notions sous un seul concept qui conduit à parler de ce que nous caractérisons nous comme " animal de trait ", parce que l’union établie entre le bœuf et le cheval par la particule yeh met en avant ce qui nous apparaît comme un trait commun aux deux notions évoquées. Si l’on recourt au vocabulaire de la théorie mathématique des ensembles, on dira que leur rapprochement souligné par yeh met en avant l’intersection de leurs caractères propres : le principe de l’animal de trait ne combine pas l’équinité et la bovinité selon leur union, additionnant l’ensemble des chevaux à celui des bœufs, mais selon leur intersection : là où la blancheur recoupe l’équinité, nous avons " du cheval blanc ", là où l’équinité rencontre la bovinité, nous trouvons le principe de l’animal de trait, en l’occurrence le fait qu’ils puissent l’un et l’autre tracter un objet lourd, comme un chariot, une charrue, la meule d’un moulin à grain, etc. Et à partir de là, la conjonction cheval bœuf signifie en chinois " animal de trait ".

Nous disposons dès lors d’éléments susceptibles de nous faire appréhender de plus près cette notion d’affinité qui nous semble propre à la pensée totémique dont je considère, à la suite de Durkheim et de Mauss, qu’il s’agit avec elle des échos de la pensée archaïque chinoise dans le reste de la zone circum-pacifique, échos dus à un processus historique de diffusion à partir de la Chine ou à une identité foncière trouvant sa source dans leur origine commune.

Deux notions sont rapprochées, sans qu’il soit précisé pour quelle raison précise elles le sont, le seul geste posé étant cette suggestion d’un lien entre les deux. Comment opérons-nous, par exemple en français, dans un contexte similaire ? Dans un usage de copule, nous disposons de deux verbes : être et avoir. Le verbe être, nous l’utilisons pour exprimer la nature de la chose : " Le cheval est blanc ", où un élément de l’ordre d’une caractéristique vient compléter la description de la chose jusque-là : une nouvelle qualification est apportée en complément. Mais nous utilisons aussi le verbe être pour dire : " Le cheval est un mammifère ", ce qui nous permet de signaler l’inclusion d’une sorte dans une autre sorte. La sorte " cheval " est l’une des composantes de la sorte " mammifère ".

Le verbe avoir a un sens qui peut être en français celui de la possession mais également celui d’un lien plus lâche, à la façon de ce yeh que je viens d’évoquer. Quand nous disons : " Le pharaon et la pyramide ", nous savons qu’il existe un lien entre les deux sans qu’il soit clair de quel lien précis nous voulons parler. Est-ce le fait que le pharaon a une pyramide ? Que le pharaon a fait bâtir une pyramide ? Quoi qu’il en soit, que nous précisions d’une manière ou d’une autre, nous savons qu’il existe un lien, qu’il existe – pour recourir à ce terme vague que nous utilisons en Occident pour évoquer la pensée totémique ou celle de la Chine archaïque – une affinité entre le pharaon et la pyramide.

Un autre exemple, quand on dit " L’abeille et son miel ", on peut vouloir dire que l’abeille fait du miel ou que l’abeille dispose de miel. On peut dire aussi " le miel de l’abeille ". Là aussi, nous pouvons préciser la relation exacte mais quand on se contente de dire " l’abeille et son miel ", on procède comme le faisait le chinois dans la forme archaïque de sa langue quand il rapprochait, rassemblait, les deux notions à l’aide de ce terme yeh. Un autre exemple encore, fenêtre et verre : " la fenêtre est en verre ", " il y a du verre dans la fenêtre ", " le verre de la fenêtre ", etc. Tout cela demeure de l’ordre du réversible, d’une symétrie essentielle entre les deux notions rapprochées, alors que, par contraste, les langues de l’Occident, aussi haut que nous puissions retracer leur ascendance, sont familières de la relation anti-symétrique d’inclusion, ingrédient indispensable du raisonnement scientifique. L’émergence du discours théorique qu’est la science a permis la naissance d’une technologie qui soit à proprement parler de la " science appliquée ", par opposition à la technologie résultant de la méthode empirique de l’essai et erreur, la seule que connaissait la culture humaine, à l’Ouest comme à l’Est, dans la période qui précéda le XVIIe siècle.

Le moyen de signifier la relation d’inclusion manquait au chinois, du coup quand il s’agissait d’indiquer un rapport entre deux notions, n’existait dans tous les cas de figure que l’option d’indiquer une proximité, un apparentement, ou comme nous nous exprimons, une " affinité ", faute de pouvoir qualifier la relation plus précisément. Impossible dans ce contexte d’opérer une véritable classification de l’ensemble de ces notions : nous ne pouvons au mieux qu’en établir la liste.

H. G. Creel explique : " Le point crucial est que les anciens Chinois n’étaient dans l’ensemble ni des penseurs systématiques ni ordonnés […]. Ils étaient des cataloguistes infatigables ; ils n’étaient pas systématiciens " (in Hansen 1983 : 25).

Pour qu’un classement systématique puisse être opéré dans l’espace d’une langue, il faut qu’elle dispose parmi ses outils de cette relation d’inclusion et qu’elle permette en particulier d’utiliser le verbe être – ou ce qui en tient lieu – dans le sens qui est le sien quand nous disons : " Le cheval est un animal " ou " Le rat est un mammifère ", soit l’inclusion d’une sorte dans une autre.

Si vous êtes familier de l’œuvre de Jorge Luis Borges. Vous n’ignorez pas alors qu’il nous a diverti avec de petits textes mettant habilement en scène certains paradoxes essentiels. Parmi ceux-ci, celui qui est consacré à " Pierre Ménard, auteur du Don Quichotte ". Ménard, explique Borges, est considéré comme l’un des grands auteurs des années 1930 parce qu’il est parvenu à s’imprégner à ce point de l’esprit du temps de de Cervantes, qu’il a pu réécrire à l’identique deux chapitres (et une partie importante d’un troisième) du Don Quichotte. L’idée est ridicule bien sûr parce que l’on peut imaginer aussi bien qu’au lieu de s’imprégner à la perfection de l’esprit d’une époque, le Ménard en question se soit contenté de recopier le texte du Don Quichotte. Borges avait par ailleurs saisi dans l’une de ses petites fables ce qu’avançait Creel quand il rapportait que les Chinois anciens étaient " des cataloguistes infatigables et non des systématiciens ". Selon Borges, on pouvait trouver dans un ancien texte chinois que :

" Les animaux se divisent en : a) appartenant à l’Empereur, b) embaumés, c) apprivoisés, d) cochons de lait, e) sirènes, f) fabuleux, g) chiens en liberté, h) inclus dans la présente classification, i) qui s’agitent comme des fous, j) innombrables, k) dessinés avec un pinceau très fin en poils de chameau, l) etc., m) qui viennent de casser la cruche, n) qui de loin semblent des mouches ".

Un inventaire sans doute, mais privé de tout caractère systématique, au pôle opposé d’une classification fondée sur l’emboîtement des sortes sur plusieurs niveaux, les niveaux étant ici mélangés. Il s’agit d’une plaisanterie bien entendu et non d’un vrai texte chinois, mais Borges a su saisir ce qui caractérisait à nos yeux d’Occidentaux, l’essence de la … chinoiserie.

Lucien Lévy-Bruhl caractérisait de la même manière la " mentalité primitive ", l’autre nom chez lui, nous le verrons, du totémisme, qui est aussi ce que j’appelle, comme leur synonyme, et à la suite de Durkheim et Mauss, la pensée chinoise archaïque : 

" … les connaissances ne se hiérarchisent pas en concepts subordonnés les uns aux autres. Elles demeurent simplement juxtaposées sans ordre. Elles forment une sorte d’amas ou de tas " (Lévy-Bruhl 1935 : xiv).

Il s’agit bien avec la " mentalité primitive " selon Lévy-Bruhl, le totémisme et la pensée chinoise archaïque d’une seule et même entité.

Auteur: Jorion Paul

Info: 20 janvier 2024, sur son blog.

[ langues comparées ] [ listes ] [ éparpillement ] [ imprécision sémantique ] [ historique ] [ différences ] [ nord-sud ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

neuroscience

La conscience est un continuum et les scientifiques commencent à le mesurer

Une nouvelle technique aide les anesthésiologistes à suivre les changements dans les états de conscience

Que signifie être conscient ? Les gens réfléchissent et écrivent sur cette question depuis des millénaires. Pourtant, de nombreux aspects de l’esprit conscient restent un mystère, notamment la manière de le mesurer et de l’ évaluer. Qu'est-ce qu'une unité de conscience ? Existe-t-il différents niveaux de conscience ? Qu'arrive-t-il à la conscience pendant le sommeil, le coma et l'anesthésie générale ?

En tant qu’anesthésiologistes, nous réfléchissons souvent à ces questions. Nous promettons chaque jour aux patients qu’ils seront déconnectés du monde extérieur et de leurs pensées intérieures pendant l’opération, qu’ils ne conserveront aucun souvenir de l’expérience et qu’ils ne ressentiront aucune douleur. Ainsi, l’anesthésie générale a permis d’énormes progrès médicaux, depuis les réparations vasculaires microscopiques jusqu’aux greffes d’organes solides.

En plus de leur impact considérable sur les soins cliniques, les anesthésiques sont devenus de puissants outils scientifiques pour sonder les questions relatives à la conscience. Ils nous permettent d’induire des changements profonds et réversibles dans les états de conscience et d’étudier les réponses cérébrales lors de ces transitions.

Mais l’un des défis auxquels sont confrontés les anesthésiologistes est de mesurer la transition d’un état à un autre. En effet, bon nombre des approches existantes interrompent ou perturbent ce que nous essayons d'étudier. Essentiellement, l’évaluation du système affecte le système. Dans les études sur la conscience humaine, déterminer si une personne est consciente peut éveiller la personne étudiée, ce qui perturbe cette évaluation même. Pour relever ce défi, nous avons adapté une approche simple que nous appelons la méthode respirer-squeeze. Cela nous offre un moyen d'étudier les changements de l'état de conscience sans les interrompre.

Pour comprendre cette approche, il est utile de considérer quelques enseignements issus d’études sur la conscience qui ont utilisé des anesthésiques. Depuis des décennies, les chercheurs utilisent l’électroencéphalographie (EEG) pour observer l’activité électrique dans le cerveau de personnes recevant divers anesthésiques. Ils peuvent ensuite analyser cette activité avec des lectures EEG pour caractériser les modèles spécifiques à divers anesthésiques, appelés signatures anesthésiques.

Ces recherches révèlent que la plupart des médicaments anesthésiques ralentissent les rythmes cérébraux et augmentent leur taille, effets qui altèrent la communication entre les régions du cerveau. Par exemple, une étude récente a révélé que le propofol, le médicament le plus couramment utilisé pour l’anesthésie générale, perturbe la façon dont les régions du cerveau travaillent généralement ensemble pour traiter les informations sensorielles.

La conscience, comme le révèlent cette recherche et d’autres, n’est pas simplement un système binaire – activé ou désactivé, conscient ou inconscient – ​​mais plutôt quelque chose qui peut englober un continuum de différents états qui impliquent différents types de fonctionnement du cerveau. Par exemple, la conscience peut être connectée à l'environnement par le biais de nos sens et de notre comportement (conscience connectée), comme lors de la plupart de nos heures d'éveil, ou déconnectée de notre environnement (conscience déconnectée), comme lorsque nous rêvons pendant le sommeil.

L’inconscience – comme lorsqu’une personne est dans le coma – est plus difficile à étudier que la conscience connectée ou déconnectée, mais elle est généralement comprise comme un état d’oubli, vide d’expérience subjective ou de mémoire. Lorsque nous préparons un patient à une intervention chirurgicale, nous ajustons les niveaux d’anesthésie pour le rendre inconscient. Lorsqu’une personne est sous anesthésie générale, elle vit un coma temporaire et réversible pendant lequel elle ne ressent aucune douleur et après quoi elle n’aura plus aucun souvenir de son intervention.

Comprendre les transitions entre ces états est essentiel pour garantir des niveaux adéquats d’anesthésie générale et pour éclairer les questions de recherche en anesthésiologie, sur la conscience, le sommeil et le coma. Pour mieux cartographier la transition hors de la conscience connectée, nous avons récemment adapté une nouvelle approche pour surveiller la capacité d'une personne à générer des comportements volontaires sans incitation externe.

Généralement, les chercheurs suivent le début de la sédation en émettant des commandes verbales et en enregistrant les réponses comportementales. Par exemple, un scientifique peut périodiquement demander à quelqu’un d’ouvrir les yeux ou d’appuyer sur un bouton tout en recevant une perfusion anesthésique. Une fois que la personne cesse de répondre à cette commande, le scientifique suppose qu’elle a perdu la conscience connectée.

Cette technique s’est avérée utile pour contraster l’esprit conscient connecté et déconnecté. Mais lorsqu’il s’agit de comprendre la transition entre ces états, il y a plusieurs inconvénients. D’une part, le signal auditif n’est pas standardisé : l’inflexion et le volume de la voix, ce qui est dit et la fréquence à laquelle il est répété varient d’une étude à l’autre et même au sein d’une même étude. Un problème plus fondamental est que ces commandes peuvent éveiller les gens lorsqu’ils dérivent vers un état de déconnexion. Cette limitation signifie que les chercheurs doivent souvent attendre plusieurs minutes entre l’émission de commandes verbales et l’évaluation de la réponse, ce qui ajoute de l’incertitude quant au moment exact de la transition.

Dans notre étude, nous souhaitions une approche plus sensible et précise pour mesurer le début de la sédation sans risquer de perturber la transition. Nous nous sommes donc tournés vers une méthode décrite pour la première fois en 2014 par des chercheurs sur le sommeil du Massachusetts General Hospital et de l’Université Johns Hopkins. Dans ce travail, les enquêteurs ont demandé aux participants de serrer une balle à chaque fois qu'ils inspiraient. Les chercheurs ont suivi les pressions de chaque personne à l'aide d'un dynamomètre, un outil pour mesurer la force de préhension, et d'un capteur électromyographique, qui mesure la réponse musculaire. De cette façon, ils ont pu suivre avec précision le processus d’endormissement sans le perturber.

Pour notre étude, nous avons formé 14 volontaires en bonne santé à cette même tâche et présenté l’exercice de respiration en pressant comme une sorte de méditation de pleine conscience. Nous avons demandé aux participants de se concentrer sur leur respiration et de serrer un dynamomètre portatif chaque fois qu'ils inspirent. Après quelques minutes d'entraînement pour chaque personne, nous avons placé un cathéter intraveineux dans son bras pour administrer le sédatif et installé des moniteurs de signes vitaux et un équipé d'un capuchon EEG à 64 canaux pour enregistrer les ondes cérébrales tout au long de l'expérience.

Tous les participants ont synchronisé de manière fiable leurs pressions avec leur respiration pendant une période de référence initiale sans aucune sédation. Ils ont ensuite reçu une perfusion lente de dexmédétomidine, un sédatif couramment utilisé dans les salles d'opération et les unités de soins intensifs. À mesure que les concentrations cérébrales de dexmédétomidine augmentaient, les participants manquaient parfois une pression ou la prenaient au mauvais moment. Finalement, ils ont complètement arrêté de serrer.

Après quelques tests supplémentaires, nous avons arrêté la perfusion de dexmédétomidine, permettant ainsi aux participants de se remettre de la sédation. À notre grand étonnement, après une période de 20 à 30 minutes, tout le monde s'est souvenu de la tâche et a commencé à serrer spontanément en synchronisation avec sa respiration, sans aucune incitation. Cela nous a permis d'analyser à la fois le moment du début et du décalage de la sédation et de les comparer avec des études antérieures utilisant des commandes verbales pour évaluer la conscience.

La tâche de respiration et de compression est donc clairement une approche plus sensible pour mesurer la transition hors de la conscience connectée. Les participants ont arrêté d'effectuer la tâche à des concentrations de dexmédétomidine inférieures à celles auxquelles les personnes avaient cessé de répondre aux signaux auditifs dans d'autres études, soulignant les effets excitants des signaux externes sur le système. Ces résultats peuvent également indiquer que la conscience connectée peut être décomposée en comportements générés en interne (comme se rappeler de serrer une balle pendant que vous inspirez) et en comportements provoqués de l'extérieur (comme répondre à des commandes verbales) avec des points de transition distincts - une idée qui affine notre compréhension du continuum de la conscience.

Des recherches antérieures ont caractérisé l'apparence du cerveau dans des états de conscience connectée et déconnectée. Nous savions donc généralement à quoi s'attendre des enregistrements EEG. Mais nous étions moins sûrs de la façon dont notre technique pourrait s’aligner sur la transition cérébrale entre les états de conscience. Nous avons découvert un schéma très clair de changements dans le cerveau lorsque les gens arrêtent de serrer le ballon. De plus, nous n’avons vu aucune preuve que la tâche de compression perturbe l’état de conscience des personnes. L'EEG a également révélé un calendrier beaucoup plus précis pour ce changement que les travaux antérieurs, identifiant la transition dans une période environ 10 fois plus courte que ce qui était possible avec les signaux auditifs - une fenêtre de cinq à six secondes au lieu des 30 secondes. - à un intervalle de 120 secondes qui était courant dans les travaux antérieurs.

Comme avantage supplémentaire, nous avons été ravis de découvrir que de nombreux participants à notre étude appréciaient la tâche de respiration pressée comme moyen de se concentrer sur l'apaisement de leur esprit et de leur corps. Pour cette raison, nous avons également mis en œuvre la méthode dans la pratique clinique, c’est-à-dire en dehors d’études soigneusement contrôlées, lors de l’induction d’une anesthésie générale lors d’interventions chirurgicales majeures, qui peuvent autrement être une expérience stressante pour les patients.

Nous nous appuyons désormais sur ce travail en analysant nos données EEG, ainsi que les données d'imagerie par résonance magnétique structurelle (IRM) de nos volontaires. Ces connaissances sur le passage d’une conscience connectée à une conscience déconnectée peuvent aider à éclairer les soins cliniques des patients nécessitant une anesthésie pour une intervention chirurgicale, ainsi que de ceux qui souffrent de troubles du sommeil ou de coma. Ces études nous mettent également au défi de nous attaquer aux aspects plus philosophiques de la conscience et pourraient ainsi éclairer la question fondamentale de ce que signifie être conscient.

Auteur: Internet

Info: 26 janv, 2024    Christian Guay et Emery Brown

[ réveillé ] [ assoupi ] [ entendement ] [ présence ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste