Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 5275
Temps de recherche: 0.033s

interdépendances

La découverte d’un enfant de 8 ans dans son jardin sur les fourmis a transformé les sciences de la Terre

Dans le monde fascinant de la nature, des connexions imprévues peuvent chambouler notre vision des écosystèmes. Depuis un bail, les chercheurs s’intéressent aux fourmis qui transportent des graines. Ces graines ont souvent une petite attache grasse que les fourmis adorent trimballer sous terre, un phénomène qu’on appelle la myrmécochorie. Mais voilà qu’une découverte récente remet tout en question grâce à l’œil aiguisé d’un enfant de huit ans, Hugo.

L’observation d’Hugo change la donne

En se promenant, Hugo a vu des fourmis porter ce qu’il pensait être des graines. Son père, Andrew Deans, a vite compris que c’étaient en fait des galles de chêne. Ces galles sont des excroissances créées par certaines guêpes pour abriter leurs larves. Cette trouvaille accidentelle a ouvert la porte à une série d’études sur comment les guêpes pourraient berner les fourmis pour protéger leurs petits.

Les chercheurs ont donc décidé de scruter de près la structure et la composition chimique des galles de chêne pour voir si elles imitent ces fameuses attaches grasses qui plaisent tant aux fourmis.

Fourmis et chimie : pourquoi ça matche ?

On sait bien que les fourmis sont attirées par les acides gras présents sur certaines graines. Le truc dingue, c’est que plusieurs galles de chêne ont un revêtement similaire avec ces mêmes molécules alléchantes. Les fourmis mangent cette partie grasse sans toucher au reste, offrant ainsi un abri sûr aux larves de guêpes.

Cette imitation chimique a bluffé pas mal d’entomologistes. John Tooker, prof d’entomologie à l’Université de Pennsylvanie, a dit : " C’est incroyable comment ces structures copient le profil chimique des insectes morts, qui sont l’une des sources alimentaires principales pour les fourmis ". Ça montre bien toute la complexité et l’ingéniosité du monde naturel.

Un débat animé chez les scientifiques

Cette similitude entre graines et galles a créé pas mal de remous dans le milieu scientifique. Il se pourrait bien que ces capuchons de galles simulent l’odeur d’insectes morts, attirant irrésistiblement les fourmis. Ça pose plein de questions sur l’évolution et l’adaptation dans cet écosystème particulier.

Les archives fossiles montrent que les galles existaient avant même qu’on s’intéresse à leur rôle écologique. La vieille relation entre guêpes et chênes est bien documentée, mais on ne sait toujours pas trop quand exactement les fourmis ont rejoint ce processus complexe. Certaines théories disent que ce sont peut-être d’abord les guêpes qui ont incité les chênes à fabriquer ces structures protectrices avant d’attirer ensuite les fourmis avec leurs techniques chimiques astucieuses.

Ces interactions compliquées entre espèces montrent bien comment différentes formes de vie peuvent tisser des liens vitaux pour leur survie mutuelle. Les chercheurs soulignent combien il est important de préserver ces écosystèmes pour maintenir ces équilibres fragiles (d’autant plus que les chênes et les guêpes font face à plusieurs menaces comme la réduction de leur habitat naturel ou le changement climatique).

L’observation innocente d’Hugo prouve qu’un simple moment peut enrichir notre compréhension du monde naturel autour de nous. Les scientifiques se demandent maintenant si d’autres insectes utilisent aussi ce genre de stratégie pour influencer le comportement alimentaire des fourmis.

Cette découverte ajoute sans conteste une nouvelle page au récit fascinant sur la biodiversité terrestre tout en nous rappelant combien il reste encore à apprendre sur nos environnements naturels complexes mais fragiles. Comme le dit Andrew Deans : " Cela devrait nous faire réfléchir à tout ce qu’on ignore encore sur nos écosystèmes et pourquoi il faut absolument préserver cette biodiversité ".


 

Auteur: Internet

Info: https://armees.com/, Laurène Meghe. 12 janvier 2025

[ insectes ] [ camouflage ] [ apparence ] [ biomimétisme ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

humain miroir

La perception humaine de l'espace s'étend tout comme l'univers réel !

Le cerveau humain a une façon intéressante d'évaluer la proximité ou la distance d'un objet dans l'espace. Si vous regardez la nuit depuis votre voiture, il y a de fortes chances que la Lune vous paraisse se déplacer à vos côtés. Une nouvelle étude neuroscientifique a permis de découvrir pourquoi la zone de la mémoire de notre cerveau perçoit les images proches et lointaines et comment ces exagérations peuvent créer davantage de connexions cérébrales à mesure que nous vieillissons.

L'hippocampe est une zone du cerveau impliquée dans l'apprentissage et la mémoire. Dans l'étude actuelle, les auteurs ont constaté que les neurones associés à la planification, à la mémoire et à la navigation spatiale transforment l'espace en une forme géométrique hyperbolique non linéaire - pensez à un sablier en expansion qui grossit à mesure que vous vous en éloignez. Pour en revenir à l'exemple de la lune, les jeunes enfants ont pu constater que la lune les suivait ou qu'elle était suffisamment proche pour qu'ils l'attrapent.

Bien sûr, la Lune ne se déplace pas et sa taille est déformée par sa distance. Les résultats ont montré que la taille de l'image augmente avec le temps passé dans un lieu. La taille perçue par notre cerveau est également directement liée à la quantité d'informations qu'il peut traiter : les jeunes cerveaux sont peut-être plus enclins à naviguer et à percevoir l'espace de manière linéaire. Avec de nouvelles expériences, l'hippocampe est capable d'affiner ses connexions neuronales et de traiter davantage d'informations sur l'image.

Le cerveau "s'élargit" avec l'expérience

Comprendre comment les réseaux neuronaux du cerveau traitent la navigation spatiale pourrait aider à étudier les troubles neurocognitifs. La maladie d'Alzheimer, par exemple, est une maladie dans laquelle l'hippocampe est l'une des premières zones du cerveau à être détruite, ce qui affecte la mémoire de la personne.

"Notre étude démontre que le cerveau n'agit pas toujours de manière linéaire. Au contraire, les réseaux neuronaux fonctionnent le long d'une courbe en expansion, qui peut être analysée et comprise à l'aide de la géométrie hyperbolique et de la théorie de l'information", explique l'auteur principal, Tatyana Sharpee, professeur à l'Institut Salk et titulaire de la chaire Edwin K. Hunter, dans un communiqué de presse. "Il est passionnant de constater que les réponses neuronales dans cette région du cerveau forment une carte qui s'élargit avec l'expérience, en fonction du temps passé dans un lieu donné. L'effet s'est même maintenu pour des écarts de temps minuscules, lorsque l'animal courait plus lentement ou plus rapidement dans l'environnement."

L'équipe de recherche a utilisé des méthodes informatiques avancées pour comprendre le fonctionnement du cerveau. L'une de ces techniques consiste à utiliser la géométrie hyperbolique pour disséquer les signaux biologiques. Des travaux antérieurs ont utilisé la géométrie hyperbolique pour étudier le fonctionnement des molécules odorantes et de la perception des odeurs.

La géométrie hyperbolique s'est avérée efficace pour comprendre les réponses neuronales et pour cartographier les molécules et les événements sensoriels. Les chercheurs ont recueilli leurs informations auprès de rats qui ont passé du temps à explorer un nouvel environnement. Plus le rat passe de temps dans une zone, plus il acquiert d'informations sur l'espace qui l'entoure. Cela a permis à leur carte neuronale de s'étendre et de se développer.

"Ces résultats offrent une nouvelle perspective sur la manière dont les représentations neuronales peuvent être modifiées par l'expérience", explique Huanqiu Zhang, étudiant diplômé du laboratoire de M. Sharpee. "Les principes géométriques identifiés dans notre étude peuvent également guider les futurs efforts de compréhension de l'activité neuronale dans divers systèmes cérébraux.

Auteur: Internet

Info: Nature Neuroscience, repris par Jocelyn Solis-Moreira ,7 janvier 2023

[ horizon grégaire intégré ] [ vieillir grandir ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

L'origine quantique de l'effet de serre

En 1896, le physicien suédois Svante Arrhenius a découvert que le dioxyde de carbone (CO₂) piège la chaleur dans l'atmosphère terrestre, un phénomène maintenant appelé l'effet de serre. Depuis, des modèles climatiques de plus en plus sophistiqués ont confirmé que chaque doublement de la concentration de CO₂ dans l'atmosphère entraîne une augmentation de la température de la Terre de 2 à 5 degrés Celsius. Cependant, la raison physique pour laquelle le CO₂ se comporte ainsi est restée un mystère jusqu'à récemment.En 2022, des physiciens ont résolu une dispute sur l'origine de la "mise à l'échelle logarithmique" de l'effet de serre. Puis, au printemps 2024, une équipe dirigée par Robin Wordsworth de l'Université Harvard a découvert pourquoi la molécule de CO₂ est si efficace pour piéger la chaleur. Ils ont identifié une particularité de la structure quantique de la molécule qui explique pourquoi elle est un gaz à effet de serre si puissant.

Découvertes anciennes et récentes

Joseph Fourier,  mathématicien et physicien français, a montré il y a 200 ans que l'atmosphère de la Terre isole la planète du froid spatial. Ensuite, Eunice Foote et John Tyndall ont montré que le CO₂ absorbe bien le rayonnement infrarouge. Arrhenius a utilisé ces découvertes pour conclure que l'ajout de CO₂ réchaufferait la surface de la planète.Cependant, le physicien suédois Knut Ångström a contesté cette théorie en affirmant que le CO₂ n'absorbe qu'une longueur d'onde spécifique de 15 microns et que la quantité de CO₂ dans l'atmosphère était déjà suffisante pour piéger toute cette lumière. Ce qu'il lui a échappé, c'est que le CO₂ peut également absorber des longueurs d'onde légèrement plus courtes ou plus longues, bien que moins efficacement. Lorsque la concentration de CO₂ double, la lumière infrarouge a plus de molécules à traverser avant de s'échapper, ce qui ralentit le flux de chaleur.

Explication quantique

L'équipe de Wordsworth a utilisé la mécanique quantique pour expliquer pourquoi le CO₂ est si efficace pour piéger la chaleur. Les molécules de CO₂ peuvent absorber des photons lorsque ceux-ci ont exactement la bonne quantité d'énergie pour faire passer la molécule à un état quantique différent. Le CO₂ a un état de base où ses trois atomes forment une ligne, et des états excités où les atomes oscillent. Un photon de lumière de 15 microns contient l'énergie exacte nécessaire pour faire tourbillonner l'atome de carbone autour du point central dans une sorte de mouvement de hula-hoop.  Les climatologues ont longtemps imputé l'effet de serre à cet état de hula-hoop, mais, comme l'avait prévu Ångström, l'effet nécessite une quantité d'énergie trop précise, a constaté Wordsworth et son équipe. L'état de hula-hoop ne peut pas expliquer le déclin relativement lent du taux d'absorption des photons au-delà de 15 microns, et ne peut donc pas expliquer à lui seul le changement climatique.

La clé est un autre type de mouvement où les atomes d'oxygène oscillent vers et loin du centre de carbone, comme un ressort. Ce mouvement a une énergie proche du double de celle du mouvement de "hula-hoop", permettant aux deux états de se mélanger. Ce phénomène, appelé résonance de Fermi, explique pourquoi le CO₂ est si efficace pour piéger la chaleur.

Conclusion

Ces découvertes montrent que le changement climatique est directement lié aux principes de la mécanique quantique, renforçant ainsi les arguments en faveur de la réalité du réchauffement climatique. La concentration de CO₂ dans l'atmosphère a atteint un niveau record de 419,3 parties par million en 2023, entraînant une augmentation estimée de 1 degré Celsius de la température globale jusqu'à présent. 







 

Auteur: Internet

Info: https://www.quantamagazine.org, Joseph Howlett, 7 aout 2024

[ environnementalisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Des poissons plus méfiants remettent en cause les méthodes de surveillance des stocks de poissons.
L'Organisation des Nations unies pour l'alimentation et l'agriculture (FAO) estime que près de 70 % des stocks halieutiques sont pleinement exploités voire surexploités. Mais ce n'est peut-être qu'un tour joué par des poissons méfiants... La surexploitation industrielle est certainement un problème, mais une étude sur la pêche de loisir conduite par des scientifiques de l'UE sur les côtes de Majorque soulève quelques doutes sur l'exactitude des outils actuels utilisés pour la surveillance des stocks halieutiques.
Le tourisme représente 80 % de l'économie de l'île de Majorque, mais ce ne sont ni les plages ensoleillées ni les beaux paysages qui ont attiré Josep Alós et Robert Arlinghaus. Depuis janvier 2014, les deux scientifiques étudient les populations de poissons de la région, grâce à de nouveaux modèles mathématiques et méthodes de suivi. Et leurs découvertes sont plutôt déconcertantes. En effet, il semblerait que plus les pêcheurs sont nombreux, moins les poissons ont tendance à mordre à l'hameçon.
Pour arriver à ce résultat, les chercheurs ont étudié le comportement de deux poissons, le Serranus scriba (le Serran ou perche de mer), un carnivore, et le Diplodus annularis (le Sparaillon), un alguivore. Les études ont concerné 54 emplacements présentant les mêmes caractéristiques d'habitat mais soumises à différentes pressions de pêche à la ligne. Pendant la pêche, une caméra vidéo sous-marine autonome enregistrait le comportement des poissons.
Si je me fais avoir une fois...
Logiquement, la perche de mer, qui ne peut réfléchir trop longtemps avant d'attaquer une proie mobile, devait être plus agressive que le sparaillon envers les appâts. Mais les faits ont rapidement remis cette hypothèse en question: les poissons étaient effectivement plus agressifs lorsque les pêcheurs étaient rares, mais ils devenaient de plus en plus prudents avec l'augmentation du nombre d'appâts. Selon l'équipe, ce comportement évolutif peut s'expliquer par une sélection génétique vers une méfiance renforcée ainsi que par l'expérience, entraînant ainsi une diminution des prises.
Ces résultats sont en contradiction avec une étude précédente des deux scientifiques, qui s'était limitée à surveiller les méthodes standard de pêche à la ligne et avait conclu que les zones marines protégées contenaient des poissons plus nombreux et plus gros que les zones très exploitées. Le comportement du sparaillon, quant à lui, ne semblait pas affecté par ce changement.
"Ces résultats suggèrent que la pêche récréative pourrait aboutir à une situation apparente d'une forte réduction des prises mais sans changement réel dans la population des poissons, où le taux de prises décline plus vite que l'abondance des poissons", déclare Josep Alós, chercheur au Leibniz-Institute of Freshwater Ecology and Inland Fisheries et co-auteur de l'étude.
Cela veut-il dire que la diminution des stocks halieutiques, constatée à l'échelle mondiale, résulterait en fait d'un comportement plus méfiant des poissons? "Les rapports sur le déclin considérable des populations de poissons dans les océans s'appuyant uniquement sur les données provenant des pêcheries comme la pêche à la palangre du thon, de la morue ou de l'espadon pourraient donc s'expliquer par un comportement plus prudent de ces poissons. Nous devons revoir notre système de surveillance des stocks de poissons et tenir compte des possibles changements de comportement. Il se peut que certaines zones très exploitées contiennent en fait plus de poissons que nous le pensons", conclut Robert Arlinghaus, directeur de l'étude et chercheur à la Humboldt-Universität zu Berlin.
L'étude a été financée dans le cadre du projet FISH&FISHERS, qui cherche à améliorer les estimations de mortalité des poissons en étudiant les interactions spatiales entre les poissons et les pêcheurs. L'équipe espère que ses résultats contribueront à mieux protéger les écosystèmes marins, à préserver la biodiversité, et à renforcer la durabilité des pêcheries.

Auteur: Internet

Info: The role of the behavioural interactions between fish and fishers on fisheries sustainability, From 2014-01-01 to 2015-12-31, closed project

[ causes-effets ]

 

Commentaires: 0

mythe brésilien

En 1896, Belém s'enrichit en vendant le caoutchouc amazonien au monde entier, enrichissant du jour au lendemain les paysans qui construisent leurs riches demeures avec des matériaux venus d'Europe, tandis que leurs femmes et leurs filles envoient leurs vêtements se faire laver sur le vieux continent et importent de l'eau minérale de Londres pour leurs bains.

Le "Theatro da Paz" était le centre de la vie culturelle en Amazonie, avec des concerts d'artistes européens. Parmi eux, l'un d'entre eux attirait particulièrement l'attention du public, la belle chanteuse d'opéra française Camille Monfort (1869 - 1896), qui suscitait des désirs inavouables chez les riches seigneurs de la région, et une jalousie atroce chez ses épouses en raison de sa grande beauté.

Camille Monfort a également suscité l'indignation pour son comportement affranchi des conventions sociales de son époque. La légende raconte qu'on l'a vue, à moitié nue, danser dans les rues de Belém, alors qu'elle se rafraîchissait sous la pluie de l'après-midi, et la curiosité a également été attisée par ses promenades nocturnes solitaires, lorsqu'on l'a vue dans ses longues robes noires et fluides, sous la pleine lune, sur les rives du fleuve Guajará, vers l'Igarapé das Almas.

Bientôt, autour d'elle, des rumeurs se créent et des commentaires malveillants prennent vie. On disait qu'elle était l'amante d'un certain Francisco Bolonha (1872 - 1938, fameux architecte qui l'avait ramenée d'Europe), et qu'il la baignait avec de coûteux champagnes importés, dans la baignoire de son manoir.

On disait aussi qu'elle avait été attaquée par le vampirisme à Londres, à cause de sa pâleur et de son apparence maladive, et qu'elle avait apporté ce grand mal à l'Amazonie, ayant une mystérieuse envie de boire du sang humain, au point d'hypnotiser les jeunes femmes avec sa voix lors de ses concerts, les faisant s'endormir dans sa loge, pour que la mystérieuse dame puisse leur atteindre le cou. Ce qui, curieusement, coïncidait avec des rapports d'évanouissements dans le théâtre pendant ses concerts, expliqués simplement comme un effet de la forte émotion que sa musique produisait dans les oreilles du public.

On disait aussi qu'elle avait le pouvoir de communiquer avec les morts et de matérialiser ses esprits dans des brumes éthérées denses de matériaux ectoplasmiques expulsés de son propre corps, lors de séances de médiumnité. Il s'agit sans aucun doute des premières manifestations en Amazonie de ce que l'on appellera plus tard le spiritisme, pratiqué dans des cultes mystérieux dans des palais de Belém, comme le Palacete Pinho.

À la fin de l'année 1896, une terrible épidémie de choléra ravagea la ville de Belém, faisant de Camille Monfort l'une de ses victimes, qui fut enterrée dans le cimetière de Soledade.

Aujourd'hui, sa tombe est toujours là, couverte de boue, de mousse et de feuilles sèches, sous un énorme manguier qui la fait plonger dans l'obscurité de son ombre, seulement éclairée par quelques rayons de soleil projetés à travers les feuilles vertes.

Il s'agit d'un mausolée néoclassique dont la porte est fermée par un vieux cadenas rouillé, d'où l'on peut voir un buste de femme en marbre blanc sur le large couvercle de la tombe abandonnée, et attachée au mur, une petite image encadrée d'une femme vêtue de noir.

Sur sa pierre tombale, on peut lire l'inscription :

"Ci-gît

Camille Marie Monfort (1869 - 1896)

La voix qui a charmé le monde".

Mais certains affirment encore aujourd'hui que sa tombe est vide, que sa mort et son enterrement n'étaient rien d'autre qu'un acte visant à dissimuler son cas de vampirisme, et que Camille Monfort vit toujours en Europe, aujourd'hui à l'âge de 154 ans.

Auteur: Internet

Info: Camille Monfort, la légende du "Vampire de l'Amazonie" (1896).

[ rumeurs ] [ cantatrice ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

compétition évolutionniste

Le grand paradoxe des êtres vivants : l’hypothèse de la reine rouge

Cette célèbre théorie tient son nom d’" Alice au pays des merveilles " et explique pourquoi nous sommes condamnés à sans cesse évoluer.

( Image : Selon la théorie de la reine rouge, la majeure partie de la biodiversité actuelle est donc le résultat de " processus coévolutifs ", c'est-à-dire des interactions entre les vivants.)

Selon la théorie de la reine rouge, l'humanité marche sur un gigantesque tapis roulant : pour faire du sur-place, il faut déjà marcher ; et, pour avancer, il faut accélérer. Impossible d'arrêter notre progrès technologique. Ce phénomène de l'évolution naturelle révèle le grand paradoxe des êtres vivants.

Cette hypothèse sort tout droit de l'esprit du très célèbre et sulfureux biologiste américain Leigh Van Valen, de l'université de Chicago. Connu pour avoir nommé 20 mammifères fossiles qu'il a découverts d'après des personnages de la fiction de J. R. R. Tolkien Le Seigneur des anneaux, il doit surtout sa célébrité à son hypothèse célèbre, parmi l'une des plus citées dans la littérature de l'évolution : l'hypothèse de la reine rouge.

Une course aux armements

Pour comprendre cette théorie, prenons l'exemple de la gazelle et du léopard. Le guépard, au début de son évolution, fait la taille d'un chat domestique et n'est pas particulièrement rapide. La gazelle, de son côté, n'est pas balèze non plus. Évidemment, la gazelle est chassée par le guépard. À chaque génération, pour protéger ses gènes et sa dépendance, les petits de la gazelle sont sélectionnés pour leur capacité à éviter d'être chassés. C'est la sélection naturelle qui récompense les gazelles qui courent le plus vite.

Mais, en parallèle, le guépard doit lui aussi continuer à manger. Donc, à chaque génération, ce sont aussi ceux qui courent le plus vite qui sont favorisés. Cette cohabitation sur la Terre entre la proie et le prédateur produit un effet permanent d'escalade. Le premier qui arrête de gagner en vitesse disparaît.

Le mieux qu’une espèce peut faire pour survivre est de répondre sans cesse aux adaptations d’un adversaire.

Selon la théorie de la reine rouge, la majeure partie de la biodiversité actuelle est donc le résultat de " processus coévolutifs ", c'est-à-dire des interactions entre les vivants. En se basant sur l'étude des fossiles, Leigh Van Valen affirme que la durée d'existence d'une espèce ne dit rien sur ses chances de disparaître. Pour lui, l'évolution est une " surenchère des armements ". Le mieux qu'une espèce peut faire pour survivre est de répondre sans cesse aux adaptations d'un adversaire.

Nous sommes obligés de courir pour rester au même endroit

Le nom de cette hypothèse est tiré directement du livre de Lewis Caroll De l'autre côté du miroir, le deuxième volet d'Alice au pays des merveilles. C'est une référence à un passage dans le récit où Alice est en train de marcher avec la reine rouge. Malgré des heures de marche, elles stagnent au même endroit. Face à l'interrogation d'Alice, la reine lui répond : " Ici, vois-tu, on est obligés de courir tant qu'on peut pour rester au même endroit. Si on veut aller ailleurs, il faut courir au moins deux fois plus vite que ça ! "

Ce modèle d'évolution s'applique à beaucoup de domaines. Comme le raconte la théorie de la reine rouge, l'humanité, elle aussi, est condamnée à toujours avancer. " Nous aurions bien aimé, peut-être, à un moment de notre histoire, ralentir pour ne pas dévaster notre environnement et ne pas nous trouver dans une situation à risque d'effondrement. Mais nous ne le pouvons pas ", explique l'écologiste et chercheur au CNRS Vincent Mignerot dans une conférence sur le " syndrome de la reine rouge " à l'université Bretagne-Sud. Nous serions comme bloqués dans un escalator interminable.





 

Auteur: Internet

Info: https://www.lepoint.fr/ -  Joseph Le Corre, 2 avril 2024

[ co-évolutions ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

physique appliquée

"Superfluidité": des physiciens parviennent à prouver l'existence cet état (très) particulier de la matière

(Vidéo GEO : Et si la physique quantique redéfinissait la mesure du temps ?)

La matière supersolide vient de révéler l'un de ses secrets. Les chercheurs sont parvenus pour la première fois à obtenir la preuve irréfutable de sa double condition : à la fois solide et liquide.

On distingue quatre états de la matière : l'état solide, l'état liquide, l'état gazeux et, plus rarement, l'état plasma. Mais les scientifiques s’intéressent depuis longtemps à ce qu’ils appellent les états "exotiques" de la matière.

Des états particuliers qui émergent lorsque la température est soit extrêmement élevée, soit froide au point de se rapprocher du zéro absolu (-273,15 degrés Celsius). Ou alors lorsque la matière est confrontée à des niveaux de gravité, d’énergie ou de densité extrêmes.

La matière flotte alors entre plusieurs états, ni tout à fait solide, ni tout à fait liquide, ni vraiment gazeuse. Jusque-là, les physiciens n’étaient pas parvenus à confirmer leur intuition qu’il existait des "supersolides", une matière qui possède à la fois les propriétés d'un solide et d'un superfluide.

Mais des scientifiques ont annoncé le 6 novembre dans une étude publiée dans la revue Nature qu'ils avaient réussi à remuer pour la première fois un "supersolide". Une révolution.

"Si on remplace le café par un superfluide, celui-ci ne tourne pas avec la cuillère"

Pour mieux comprendre, il faut imaginer que dans les conditions extrêmes que nous avons évoquées, les liquides et les gaz ont une résistance plus ou moins grande à l’écoulement, mesurée par ce qu’on appelle la viscosité. Le miel et l’huile sont par exemple plus visqueux que l’eau.

"Les superfluides, eux, n’ont pas de viscosité: ils s’écoulent sans perte d’énergie, ce qui leur permet de circuler indéfiniment dans un contenant sans ralentir", explique l’étude.

"Imaginez une tasse de café, et que vous la remuiez un peu avec une cuillère. Vous verrez le café tourner autour du centre, et si vous regardez bien, il peut y avoir un tourbillon au milieu, là où le liquide tourbillonne le plus vite. C'est un exemple classique de vortex dans un fluide ordinaire", observe Francesca Ferlaino, physicienne de l’Université d’Innsbruck (Autriche) et principale auteure de l’étude, auprès de l’AFP.

"Si on remplace le café par un superfluide, celui-ci ne tourne pas avec la cuillère, il reste parfaitement immobile comme si rien ne l’avait dérangé", ajoute-t-elle. Les chercheurs étaient déjà parvenus à observer les structures cristallines à l'intérieur des supersolides de différentes manières.

Mais il manquait encore à notre travail une observation directe d’une des propriétés caractéristiques et fondamentales de la superfluidité: l’écoulement sans rotation.

Les "vortex quantifiés" visibles pour la première fois

"Cependant, si vous tournez la cuillère plus vite, au lieu de former un grand tourbillon au centre, une série de petits tourbillons (appelés vortex quantifiés) commencent à apparaître. Ce sont comme de petits trous dans le fluide, chacun tournant à une vitesse spécifique, qui s’organisent en de beaux motifs réguliers à la surface du superfluide, presque comme les trous d’un morceau de gruyère", explique Francesca Ferlaino.

Les scientifiques ont finalement réussi à créer et observer en laboratoire ces fameux vortex, “preuve irréfutable de la superfluidité et preuve forte et directe de la double nature d’un état supersolide”, indique la physicienne.

Cette découverte majeure va permettre de simuler en laboratoire des phénomènes qui ne se produisent normalement que dans des conditions vraiment extrêmes, par exemple ce qui se passe au cœur des étoiles à neutrons.



 

Auteur: Internet

Info: https://www.geo.fr/, Esther Buitekant, 8/11/2024

[ pâte de neutrons ] [ quark-gluon plasma ] [ matière dégénérée ]

 

Commentaires: 0

Ajouté à la BD par miguel

corps-esprit

Vous voulez être plus efficace au travail ? Prenez exemple sur les musiciens de jazz

Vous voulez être plus efficace lorsque vous travaillez ? Les musiciens de jazz pourraient avoir des choses à vous apprendre. Une étude a montré que ces derniers étaient capables d'atteindre un état de transe : le " flux ", durant lequel ils sont entièrement dévolus à leur tâche et plus créatifs.

Ce travail de recherche, publié dans la revue Neuropsychologia, porte sur ce que l'on appelle le " flux " (" flow ", en anglais). Un terme qui désigne un état de concentration absolu durant lequel le corps et l'esprit sont entièrement absorbés par une seule et même tâche. Le psychologue américano-hongrois Mihály Csíkszentmihályi a été le premier à s'intéresser à ce sujet dans les années 1970, au cours de recherches sur le processus créatif.

​​Depuis, les recherches en psychologie ont démontré que l'expérience du flux peut accroître les performances physiques et mentales. N'importe qui peut expérimenter des moments de flux durant son temps libre ou au travail. Mais les athlètes et les artistes sont plus susceptibles d'être fréquemment plongés dans cet état psychologique.

C'est pourquoi des chercheurs affiliés à l'université Drexel (États-Unis) ont recruté une trentaine de guitaristes de jazz pour comprendre les processus cérébraux clés associés au flux. Ils étaient plus ou moins expérimentés, en fonction du nombre de représentations publiques qu'ils avaient données. 

Une affaire d'expérience

Les scientifiques ont placé des électrodes sur leur tête pour enregistrer leurs ondes cérébrales pendant qu'ils improvisaient sur des séquences d'accords et des rythmes qui leur avaient été fournis. Par ailleurs, les guitaristes devaient évaluer le degré de flux qu'ils ont ressenti pendant qu'ils jouaient de la guitare. Des experts ont également écouté les morceaux que les participants avaient créés pour déterminer dans quelle mesure ces derniers avaient fait preuve de créativité.

Il s'avère que les performances jugées les plus créatives sont celles durant lesquelles les guitaristes ont dit être dans un état de flux. Les musiciens les plus aguerris avaient davantage tendance à expérimenter des moments de flux pendant qu'ils jouaient leur instrument que les novices, ce qui laisse penser que l'expérience est une condition préalable pour accéder à un état de flux. 

D'un point de vue cérébral, les chercheurs ont constaté que les musiciens expérimentés qui ont vécu des instants de flux pendant qu'ils jouaient de la guitare présentaient une activité réduite dans les parties de leur lobe frontal, connues pour être impliquées dans les fonctions exécutives. À l'inverse, les aires cérébrales impliquées dans l'audition et la vision étaient davantage sollicitées, ce qui est logique étant donné que les guitaristes improvisaient tout en lisant des suites d'accords et en écoutant des rythmes musicaux. 

Le " flux ", un état de transe ?

Ces découvertes montrent à quel point le cerveau est dans un état mental différent de l'éveil ordinaire quand on fait l'expérience du flux. Cela prouve que " le flux créatif correspond à un traitement optimisé d'un domaine spécifique, rendu possible par une pratique intensive associée à un contrôle cognitif réduit ", comme l'écrivent les chercheurs dans leur étude, que le média The Conversation a relayée.

Ce travail de recherche approfondit notre compréhension des mécanismes cérébraux propres au flux. Il montre que cet état demande une certaine maîtrise technique. Lorsque l'on est plongé dans le flux, les choses semblent se dérouler avec facilité. On a l'impression de maîtriser totalement ce que l'on fait. Ce sentiment de maîtrise est d'ailleurs ce qui rend les moments de flux si agréables. 

​​​​​​​Pour en faire l'expérience régulièrement, il faut s'évertuer à devenir meilleur dans ce que l'on fait en se fixant, par exemple, des défis stimulants à relever. Mais attention à ce qu'ils ne soient pas irréalistes. Sinon, le stress se substituera au flux.

Auteur: Internet

Info: https://www.futura-sciences.com/ 24 avril 2024

[ concentration ] [ absorption ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

physique théorique

Des physiciens ont transformé un ordinateur quantique en un cristal temporel* pour la première fois

Les cristaux temporels, à la différence des cristaux traditionnels tels que le diamant ou le quartz, présentent une structure atomique qui se répète non seulement dans l’espace, mais également dans le temps, sans intervention de forces externes. Ce concept, théorisé par le lauréat du prix Nobel Frank Wilczek en 2012, a captivé la communauté scientifique, qui s’emploie désormais à tenter d’exploiter cette caractéristique unique pour des applications en informatique quantique. Récemment, une percée majeure a été réalisée : la transformation d’un processeur quantique en cristal temporel, une avancée susceptible de redéfinir les standards de performance de cette technologie.

Depuis l’introduction de cette notion, physiciens et mathématiciens s’efforcent de fusionner ces idées avec des modèles théoriques existants. En 2016, des chercheurs américains ont tracé une voie prometteuse en s’appuyant sur les principes de la mécanique quantique. Depuis, la définition du cristal temporel s’est affinée pour mieux décrire la régularité des oscillations des particules constituant les atomes.

Au début de cette année, une équipe de l’Université de Dortmund, dirigée par le Dr Alex Greilich, a réussi un exploit scientifique en créant un cristal temporel avec une durée de vie d’au moins 40 minutes, soit dix millions de fois supérieure à celle des précédents cristaux. Pour parvenir à ce résultat, l’équipe a utilisé un cristal composé d’arséniure d’indium et de gallium, découvrant notamment que la polarisation des spins nucléaires pouvait induire des oscillations spontanées.

Vers une nette réduction des erreurs dans le calcul quantique

En juillet, des scientifiques des universités de Vienne et de Tsinghua sont parvenus à produire un cristal temporel à partir d’atomes géants. Cette avancée pourrait notamment servir au développement de capteurs d’une précision accrue.

Dans le cadre de l’informatique quantique, l’un des défis majeurs réside dans la préservation de l’état de cohérence des qubits (l’équivalent quantique des bits classiques). Ces derniers, en interagissant avec leur environnement, introduisent des variables supplémentaires qui perturbent le programme, ce phénomène étant amplifié à mesure que le nombre de qubits augmente. Un système inspiré des cristaux temporels pourrait atténuer ces erreurs en augmentant la cohérence et la stabilité des qubits.

Récemment, une équipe interuniversitaire, impliquant des chercheurs des universités de Tsinghua, du Maryland, de Harvard et de l’Iowa State, a progressé dans ce domaine en transformant un processeur quantique en cristal temporel. Au centre de cette avancée se trouvent les cristaux temporels topologiques et leur oscillation pendulaire distinctive.

Ce caractère permet au cristal temporel topologique de mieux résister aux interférences locales. Ainsi, l’oscillation pendulaire maintient un mouvement stable même lorsque des parties du système quantique subissent des perturbations. En passant de la théorie à la pratique, les chercheurs ont programmé une forme d’informatique quantique supraconductrice avec une cohérence hautement stable pour illustrer le comportement topologique du cristal. Cette réalisation a démontré qu’il est tout à fait possible de créer un système quantique encore moins sensible aux interférences variées.

Nous rapportons l’observation des signatures d’un tel phénomène — un cristal temporel topologiquement ordonné préthermique — avec des qubits supraconducteurs programmables disposés sur un réseau carré ", écrivent les chercheurs dans leur étude, publiée dans Nature Communications. En soumettant leur système quantique à divers tests, ils ont constaté qu’il gérait efficacement un niveau raisonnable de bruit environnant tout en maintenant une excellente stabilité.

Nos résultats montrent le potentiel d’explorer des phases exotiques de la matière topologiquement ordonnées hors équilibre avec des processeurs quantiques bruyants à échelle intermédiaire ", souligne l’équipe. Selon ces scientifiques, cette découverte ouvre la voie à l’utilisation des circuits supraconducteurs pour explorer d’autres domaines, notamment le mouvement hors équilibre des cristaux temporels.

 

Auteur: Internet

Info: https://trustmyscience.com/, Kareen Fontaine & J. Paiano·25 novembre 2024 *état exotique de la matière où les particules adoptent une structure qui se répète non seulement dans l'espace (comme un cristal ordinaire), mais aussi dans le temps. Cela signifie qu'il oscille spontanément entre différentes configurations à intervalles réguliers sans nécessiter d'énergie externe. Ces oscillations temporelles sont stables et robustes face à certaines perturbations, ce qui en fait un phénomène unique lié à la mécanique quantique. Les cristaux temporels ont des applications potentielles en informatique quantique, notamment pour améliorer la stabilité et la cohérence des qubits.

[ répétition structurelle ] [ durabilité technologique ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

biogenèse

La durée des réponses épigénétiques qui sous-tendent l'héritage transgénérationnel est déterminée par un mécanisme actif reposant sur la production de petits ARN et la modulation de facteurs ARNi, dictant si les réponses ARNi* ancestrales seroent mémorisées ou oubliées.

Selon l'épigénétique - l'étude des changements héritables dans l'expression des gènes qui ne sont pas directement codés dans notre ADN - nos expériences de vie peuvent être transmises à nos enfants et aux enfants de nos enfants. Des études menées sur des survivants d'événements traumatiques suggèrent que l'exposition au stress peut effectivement avoir des effets durables sur les générations suivantes.

Mais comment exactement ces "souvenirs" génétiques sont-ils transmis ?

Une nouvelle étude de l'université de Tel Aviv (TAU), publiée la semaine dernière dans Cell, met en évidence le mécanisme précis qui permet d'activer ou de désactiver la transmission de ces influences environnementales.

Jusqu'à présent, on supposait qu'une dilution ou une décroissance passive régissait l'héritage des réponses épigénétiques", a déclaré Oded Rechavi, PhD, de la Faculté des sciences de la vie et de l'École de neurosciences Sagol de l'UAT. "Mais nous avons montré qu'il existe un processus actif qui régule l'héritage épigénétique au fil des générations".

Les scientifiques ont découvert que des gènes spécifiques, qu'ils ont nommés "MOTEK" (Modified Transgenerational Epigenetic Kinetics), étaient impliqués dans l'activation et la désactivation des transmissions épigénétiques.

"Nous avons découvert comment manipuler la durée transgénérationnelle de l'héritage épigénétique chez les vers en activant et désactivant les petits ARN que les vers utilisent pour réguler ces gènes", a déclaré Rechavi*.

Ces commutateurs sont contrôlés par une interaction en retour entre les petits ARN régulateurs de gènes, qui sont héritables, et les gènes MOTEK qui sont nécessaires pour produire et transmettre ces petits ARN à travers les générations.

Cette rétroaction détermine si la mémoire épigénétique se transmet ou non à la descendance, et combien de temps dure chaque réponse épigénétique.

Les chercheurs prévoient maintenant d'étudier les gènes MOTEK pour savoir exactement comment ces gènes affectent la durée des effets épigénétiques, et si des mécanismes similaires existent chez l'homme.

 Rechavi et son équipe avaient précédemment identifié un mécanisme d'"héritage de petits ARN" par lequel des molécules d'ARN produisaient une réponse aux besoins de cellules spécifiques et comment elles étaient régulées entre les générations.

"Nous avons précédemment montré que les vers héritaient de petits ARN suite à la famine et aux infections virales de leurs parents. Ces petits ARN aidaient à préparer leur progéniture à des épreuves similaires", a déclaré le Dr Rechavi. "Nous avons également identifié un mécanisme qui amplifiait les petits ARN héréditaires à travers les générations, afin que la réponse ne soit pas diluée. Nous avons découvert que des enzymes appelées RdRPs sont nécessaires pour recréer de nouveaux petits ARN afin de maintenir la réponse dans les générations suivantes."

On a constaté que la plupart des réponses épigénétiques héritables chez les vers C.elegans ne persistaient que pendant quelques générations. Cela a donné lieu à l'hypothèse que les effets épigénétiques s'effaçaient simplement au fil du temps, par un processus de dilution ou de désintégration.

"Mais cette hypothèse ne tenait pas compte de la possibilité que ce processus ne s'éteigne pas tout bonnement, mais qu'il soit au contraire régulé", a déclaré Rechavi, qui, dans cette étude, a traité des vers C.elegans avec de petits ARN qui ciblent la GFP (protéine fluorescente verte), un gène rapporteur couramment utilisé dans les expériences. "En suivant les petits ARN héréditaires qui régulaient la GFP - qui "réduisaient au silence" son expression - nous avons révélé un mécanisme d'héritage actif et réglable qui peut être activé ou désactivé."

Auteur: Internet

Info: https://www.kurzweilai.net/onoff-button-for-passing-along-epigenetic-memories-to-our-children-discovered. 29 mars 2016. *ARN interférant

[ bio-machine ] [ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel