Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits... Recherche mots ou phrases tous azimuts... Outil de précision sémantique et de réflexion communautaire... Voir aussi la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats ... Lire la suite >>
Résultat(s): 5318
Temps de recherche: 0.0434s

neuroscience

On sait enfin pourquoi le cerveau consomme autant d'énergie

La faute a des petites pompes "cachées". 

Les scientifiques le savent: le cerveau humain est une véritable machine insatiable en énergie. Au total, il en engloutit jusqu'à 10 fois plus que le reste du corps. Et même lorsque nous nous reposons, 20% de notre consommation de carburant est directement utilisé pour son fonctionnement. Un phénomène inexpliqué sur lequel nombre de scientifiques se sont cassés les dents. Jusqu'à aujourd'hui.

Publiée dans la revue Science Advances, une nouvelle étude explique l'origine du processus. Un processus qui se déroule dans ce que l'on appelle les vésicules synaptiques.

Entre deux neurones se trouve une synapse, zone qui assure la transmission des informations entre ces deux cellules nerveuses. Quand un signal est envoyé d'un neurone à un autre, un groupe de vésicules aspire les neurotransmetteurs à l'intérieur du premier neurone, au bout de sa queue. Le message est ainsi bien enveloppé, comme une lettre prête à être postée.

L'information est ensuite amenée jusqu'au bord du neurone, où elles fusionne avec la membrane, avant de relâcher les neurotransmetteurs dans la fameuse synapse. Dans cette zone, les neurotransmetteurs finissent leur course en entrant en contact avec les récepteurs du deuxième neurone. Et hop! Le message est passé.

Facile direz-vous. Certes, mais tout ceci nécessite beaucoup d'énergie cérébrale, ont découvert les scientifiques. Et ce, que le cerveau soit pleinement actif ou non.

En effectuant plusieurs expériences sur les terminaisons nerveuses, les membres de l'étude ont observé le comportement de la synapse lorsqu'elle est active ou non. Résultat: même quand les terminaisons nerveuses ne sont pas stimulées, les vésicules synaptiques, elles, ont toujours besoin de carburant. La faute à une sorte de petite pompe "cachée" qui est notamment en charge de pousser les protons hors de la vésicule. Chargée de pousser les protons hors de la vésicule et d'aspirer ainsi les neurotransmetteurs elle ne semble jamais se reposer et a donc besoin d'un flux constant d'énergie. En fait, cette pompe "cachée" est responsable de la moitié de la consommation métabolique de la synapse au repos.

Selon les chercheurs, cela s'explique par le fait que cette pompe a tendance à avoir des fuites. Ainsi, les vésicules synaptiques déversent constamment des protons via leurs pompes, même si elles sont déjà pleines de neurotransmetteurs et si le neurone est inactif.

Étant donné le grand nombre de synapses dans le cerveau humain et la présence de centaines de vésicules synaptiques à chacune de ces terminaisons nerveuses, ce coût métabolique caché, qui consiste à conserver les synapses dans un état de "disponibilité", se fait au prix d'une importante dépense d'énergie présynaptique et de carburant, ce qui contribue probablement de manière significative aux exigences métaboliques du cerveau et à sa vulnérabilité métabolique", concluent les auteurs.

Des recherches supplémentaires sont nécessaires pour déterminer comment les différents types de neurones peuvent être affectés par des charges métaboliques aussi élevées, car ils ne réagissent pas tous de la même manière.

Certains neurones du cerveau, par exemple, peuvent être plus vulnérables à la perte d'énergie, et comprendre pourquoi pourrait nous permettre de préserver ces messagers, même lorsqu'ils sont privés d'oxygène ou de sucre.

"Ces résultats nous aident à mieux comprendre pourquoi le cerveau humain est si vulnérable à l'interruption ou à l'affaiblissement de son approvisionnement en carburant", explique le biochimiste Timothy Ryan, de la clinique Weill Cornell Medicine à New York.

"Si nous avions un moyen de diminuer en toute sécurité cette fuite d'énergie et donc de ralentir le métabolisme cérébral, cela pourrait avoir un impact clinique très important." 

Auteur: Internet

Info: Science Advances, 3 déc 2021

[ cervelle énergivore ]

 

Commentaires: 0

Ajouté à la BD par miguel

exomonde

Cassini livre de nouvelles informations sur l’océan liquide de Titan

(Photo : La plus grande lune de Saturne, Titan, visible aux côtés de la planète et de ses anneaux.")

Lancée en 1997, la sonde spatiale Cassini-Huygens de la NASA a passé 20 ans à explorer le système saturnien avant de plonger dans l’atmosphère de la géante gazeuse en 2017. Bien que terminée, la mission continue de fournir des données cruciales sur Saturne et ses lunes. Les informations recueillies sur Titan, la plus grande lune de Saturne, révèlent notamment de nouveaux détails sur ses océans d’hydrocarbures.

Un monde fascinant

Titan, la plus grande lune de Saturne, est un monde unique dans notre système solaire. Avec un diamètre d’environ 5 150 kilomètres, elle est plus grande que la planète Mercure et est la seule lune connue à posséder une atmosphère dense. Cette dernière est composée principalement d’azote, avec une petite quantité de méthane. Elle réunit des conditions météorologiques semblables à celles de la Terre, avec des vents et des pluies, mais à base de méthane.

Titan est particulièrement intéressante pour les scientifiques en raison de ses vastes lacs et mers d’hydrocarbures principalement composés de méthane et d’éthane, ainsi que de ses possibilités de chimie prébiotique qui pourrait fournir des indices sur les origines de la vie.

Grâce aux données radar collectées par Cassini il y a plusieurs années, une équipe d’astronomes de l’Université Cornell a récemment analysé ces réserves d’hydrocarbures.

Dans le détail, grâce à un " radar balistique ", l’équipe de Cassini avait dirigé un faisceau radio vers Titan qui avait ensuite été réfléchi vers la Terre. Ces opérations, réalisées lors de quatre survols entre 2014 et 2016, avaient alors permis de collecter des données précieuses sur l’océan polaire de cette lune de Saturne. Plus précisément, en examinant les réflexions de surface lorsque Cassini s’approchait et s’éloignait de Titan, les chercheurs ont pu déduire la composition et la rugosité des mers.

Des mers calmes de méthane

Les données collectées lors de cette opération ont aujourd’hui révélé que les mers de Titan, notamment Kraken Mare, Ligeia Mare et Punga Mare, sont étonnamment calmes avec des vagues ne dépassant pas 5,2 millimètres.

Cette tranquillité, que les examens antérieurs n’avaient pas révélée, ouvre de nouvelles perspectives sur la dynamique des mers d’hydrocarbures de Titan. De plus, les observations ont montré que la composition des couches superficielles des mers varie en fonction de la latitude et de l’emplacement. Par exemple, les données radar ont indiqué que les régions méridionales de Kraken Mare réfléchissent particulièrement bien les signaux radar, ce qui pourrait être dû à des variations dans la composition chimique ou à des différences dans la rugosité de la surface.

Les données montrent également que les rivières qui alimentent les mers de Titan sont composées de méthane pur jusqu’à leur embouchure, où elles se mélangent à l’éthane des mers. Ce phénomène est similaire à celui observé sur Terre, où les rivières d’eau douce se mélangent à l’eau salée des océans.

Ces découvertes confirment enfin les modèles météorologiques de Titan qui prédisent des pluies principalement composées de méthane avec de petites quantités d’éthane et d’autres hydrocarbures.

L’équipe de Cornell continue de travailler avec les vastes données collectées par Cassini au cours de ses treize années d’étude sur Titan, ce qui promet de nouvelles découvertes à venir.

Les informations recueillies pourraient également avoir des implications pour la recherche de vie extraterrestre. Les océans d’hydrocarbures de Titan offrent en effet un environnement unique pour étudier les processus chimiques et les conditions qui pourraient soutenir la vie.



 

Auteur: Internet

Info: https://sciencepost.fr/, Brice Louvet, 22 juillet 2024

[ exoplanète ] [ exo-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

quanticité

Accélération quantique découverte pour une vaste classe de problèmes difficiles

Il a toujours été difficile de trouver des questions importantes auxquelles les ordinateurs quantiques peuvent répondre plus rapidement que les machines classiques, mais un nouvel algorithme semble le faire pour certaines tâches d'optimisation critiques.

Les chercheurs en informatique quantique ont développé un nouvel algorithme, Decoded Quantum Interferometry (DQI), capable de résoudre une vaste classe de problèmes d'optimisation plus rapidement que toutes les méthodes classiques connues. Cette avancée marque une rupture dans la compétition entre approches quantiques et classiques, où les avantages quantiques restaient jusqu'ici éphémères ou contestés.

Fonctionnement clé de DQI

Inspiration et méthode

1 Traduction quantique :

- Les solutions potentielles sont converties en ondes quantiques via une transformée de Fourier quantique.

- Les meilleures solutions correspondent aux amplitudes quantiques les plus élevées.

2 Intégration de techniques de décodage :

L'algorithme s'appuie sur des méthodes de correction d'erreurs (décodage) issues de la cryptographie, initialement conçues pour identifier et corriger des messages bruités.

3 Optimisation par interférences :

Les interférences constructives/destructrices des ondes quantiques amplifient les bonnes solutions tout en atténuant les mauvaises.

Avantages par rapport aux méthodes classiques

Aspect                         Approche classique                     DQI (Quantique)

Complexité                  Sous-exponentielle                      Polynomiale

Exploration                  Séquentielle                                 Parallèle 

                                    (méthodes heuristiques)              (superposition quantique)

Applications clés          Cryptographie, logistique            Cryptographie post-quantique, correction d'erreurs

Validations et limites

Vérifications : 

- L'équipe a collaboré avec Mary Wootters (experte en théorie des codes) pour exclure l'existence d'un équivalent classique efficace.

- Extension réussie à une classe étendue de problèmes d'optimisation (ex. : chemins optimaux).

Défis persistants :

- Matériel quantique insuffisant : Aucun ordinateur quantique actuel ne peut exécuter DQI en raison du nombre élevé de qubits requis.

- Risque de "déquantisation" : Possibilité qu'un algorithme classique égalisant DQI soit découvert ultérieurement.

Implications et réactions

Impact scientifique

Cryptographie : Menace accrue sur les systèmes RSA actuels, accélérant la transition vers des standards post-quantiques.

Théorie de l'information : Nouveaux outils pour l'encodage résilient aux erreurs dans les communications quantiques.

Réactions de la communauté

Gil Kalai (sceptique historique) : Qualifie DQI de "percée", soulignant sa rareté dans le domaine.

Ronald de Wolf (CWI) : Optimiste mais prudent, rappelant que la supériorité quantique reste à prouver empiriquement.

Ewin Tang (UC Berkeley) : Encourage les chercheurs classiques à étudier DQI pour inspirer de nouveaux algorithmes.

Perspectives

Bien que théorique, DQI ouvre des pistes pour :

- Concevoir des algorithmes hybrides (quantique-classique) exploitables sur les ordinateurs NISQ actuels.

- Repenser l'optimisation dans des domaines comme la logistique ou la chimie quantique.

- Stimuler l'innovation matérielle en identifiant des cas d'usage concrets pour les futurs qubits topologiques ou photoniques.

Conclusion : DQI représente une avancée majeure vers des avantages quantiques incontestables, tout en illustrant la nécessité de collaborations interdisciplinaires (physique, théorie des codes, IA) pour matérialiser le potentiel quantique.

Auteur: Internet

Info: https://www.quantamagazine.org/, stephen ornes, 17 mars 2025, réssumé par Deepseek

[ quantumness ]

 

Commentaires: 0

Ajouté à la BD par miguel

système Gaïa

Les fleuves atmosphériques migrent vers les pôles, transformant le climat mondial

(Photo : Un satellite capture une vue du Pacifique avec des nuages ​​illustrant le mouvement de la rivière atmosphérique " Pineapple Express " se dirigeant vers la côte ouest des États-Unis. )

Les fleuves atmosphériques, de puissants courants de vapeur d’eau en suspension dans l’atmosphère, se déplacent de façon inattendue depuis plusieurs décennies, modifiant ainsi les régimes de précipitations et le climat à l’échelle mondiale. 

Qu’est-ce qu’un fleuve atmosphérique ?

Ce sont de vastes courants de vapeur d’eau qui circulent dans l’atmosphère et transportent des quantités d’humidité comparables aux plus grands fleuves terrestres, comme le Mississippi. Ces rivières célestes peuvent s’étendre sur plusieurs milliers de kilomètres de long et jusqu’à quelques centaines de kilomètres de large, concentrant l’humidité sur des bandes étroites de l’atmosphère.

Ces structures atmosphériques jouent un rôle essentiel dans la redistribution de l’eau autour de la planète. En effet, elles captent l’humidité au-dessus des océans tropicaux et la transportent vers des régions terrestres situées à des latitudes plus élevées. Lorsque ces flux d’humidité entrent en contact avec une barrière naturelle telle qu’une chaîne de montagnes ou une zone côtière, ils se condensent et libèrent alors leur humidité sous forme de pluie ou de neige. En agissant comme une pompe naturelle, les rivières atmosphériques contribuent ainsi non seulement à alimenter les sols et les rivières, mais influencent aussi les écosystèmes locaux et les pratiques agricoles, tout en régulant les niveaux d’eau souterraine et les ressources disponibles pour les habitants.

En raison de leur impact majeur sur la répartition des précipitations, un changement dans leur trajectoire ou leur intensité pourrait avoir des conséquences profondes sur les écosystèmes et les sociétés qui en dépendent, ce qui nous ramène à cette étude.

Un changement de trajectoire inattendu

Dans le cadre de travaux récents, des chercheurs de l’Université de Californie à Santa Barbara ont analysé les données des quarante dernières années et ont observé un déplacement de ces rivières vers les pôles d’environ six à dix degrés dans chaque hémisphère. Cela signifie que les zones habituellement traversées par ces courants de vapeur d’eau se situent maintenant plus au nord dans l’hémisphère nord et plus au sud dans l’hémisphère sud.

Les scientifiques estiment que le refroidissement du Pacifique tropical oriental, constaté sur la même période, pourrait être une des causes de ce déplacement, bien que les mécanismes précis derrière ce phénomène restent encore largement inconnus.

Quels impacts pour notre climat ?

Le changement de trajectoire des rivières atmosphériques pourrait avoir des effets profonds sur les régimes de précipitations mondiaux. En déplaçant leurs trajets vers les pôles, les régions traditionnellement alimentées en eau par ces structures pourraient connaître une diminution des précipitations, tandis que d’autres régions plus au nord ou plus au sud pourraient voir leurs précipitations augmenter de manière significative.

L’effet de ces rivières atmosphériques n’est également pas limité aux terres : les chercheurs indiquent en effet que ces changements pourraient aussi modifier les océans. La redistribution des précipitations et des courants d’air pourrait notamment affecter la température de l’eau et les courants marins qui jouent un rôle clé dans la régulation du climat mondial. Cela pourrait avoir des répercussions imprévues sur la biodiversité marine et même sur les écosystèmes terrestres qui dépendent des courants océaniques pour leur climat local.

Ce changement de trajectoire des fleuves atmosphériques est un phénomène complexe et encore largement méconnu. Les chercheurs s’efforcent encore d’en comprendre les causes et les conséquences à long terme. Étudier le comportement de ces structures sera essentiel pour mieux anticiper les variations climatiques et préparer les communautés aux impacts de ce déplacement.

Auteur: Internet

Info: Brice Louvet, 28 octobre 2024

[ rivières volantes ] [ pompe biotique ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

amour

Des mots pour le dire
Un jour, un enseignant demanda à ses étudiants d'écrire les noms des autres étudiants dans la classe sur deux feuilles de papier et de laisser un espace entre chaque nom.
Puis, il leur dit de penser à la chose la plus agréable qu'ils pourraient dire de chacun de leurs camarades et de la noter.
Ça a pris le reste du cours pour finir leur tâche, et chaque étudiant quitta la salle en remettant leurs feuilles à l'enseignant.
Ce samedi-là, l'enseignant nota le nom de chaque étudiant sur une feuille individuelle et inscrivit ce que tout le monde avait dit de chacun.
Le lundi, elle a donné à chaque étudiant sa liste respective. Avant longtemps, la classe entière souriait. "Vraiment?" qu'elle entendit chuchoter. "Je ne savais pas que j'avais autant d'importance pour qui que ce soit!" et, "Je ne savais pas que les autres m'aimaient autant." furent la plupart des commentaires.
Personne n'a plus jamais parlé de ces papiers dans la classe à nouveau. Elle n'a jamais su s'ils en avaient discutés après la classe ou avec leurs parents, mais peu importe. L'exercice était arrivé à son but. Les étudiants étaient contents l'un de l'autre. Ce groupe d'étudiants termina finalement l'année.
Plusieurs années plus tard, un des étudiants fut tué au Viêt-nam et l'enseignant assista aux funérailles de cet étudiant spécial. Elle n'avait jamais vu un homme dans un cercueil militaire avant. Il avait l'air si élégant, si mature. L'église fut remplie par ses amis. Un à un, ceux qui l'avaient aimé sont allés pour une dernière fois le voir.
L'enseignant fut le dernier à y aller. Comme il se tenait là, un des soldats qui était porteur du cercueil est venu vers lui. Il lui demanda : "Étiez-vous l'enseignant de maths de Marc?". Il hocha la tête en signe de "oui." Alors il lui dit: "Marc m'a beaucoup parlé de vous."
Après les funérailles, la plupart des anciens camarades de classe de Marc sont allés déjeuner ensemble. Les parents de Marc étaient là, attendant de parler avec son enseignant de toute évidence. "Nous voulons vous montrer quelque chose," dit son père en sortant un portefeuille de sa poche. "Ils ont trouvé ça sur Marc quand il a été tué. Nous avons pensé que vous pourriez le reconnaître."
En ouvrant le portefeuille, il a soigneusement enlevé deux morceaux de papier qui avaient évidemment été collés, pliés et repliés plusieurs fois. L'enseignant a su sans même regarder que les papiers étaient ceux où il avait énuméré toutes les bonnes choses que chacun des camarades de Marc avait dit de lui. "Merci beaucoup pour avoir fait cela," dit la mère de la Marc. "Comme vous pouvez le voir, Marc l'a gardé précieusement."
Tous les anciens camarades de classe de Marc ont commencé à se rassembler autour de l'enseignant. Charlie (l'enseignant) sourit d'une façon plutôt gênée et dit, "J'ai toujours ma liste dans le tiroir du haut de mon bureau à la maison." La femme de Chulo (un ancien étudiant) dit : "Chuck m'a demandé de mettre le sien dans notre album de mariage." "J'ai le mien aussi," dit Marilyne. "Il est dans mon journal intime." Alors Vicky, une autre camarade de classe, prit son livre de poche, en sortit son fragile morceau de papier contenant la liste et le montra au groupe. Puis elle dit : "Je porte ceci avec moi tout le temps" et sans battre de l'oeil, elle poursuivit: "Je pense que nous avons tous gardé notre liste."
C'est à ce moment que l'enseignant s'est finalement assis et s'est mis à pleurer.

Auteur: Internet

Info:

[ communication ] [ émotion ] [ école ]

 

Commentaires: 0

ADN

Elles ressemblent aux personnages de la bande dessinée Marvel Hulk, dont le corps réagit au stress en augmentant de taille. Avec leur énorme tête oblongue et de redoutables mandibules géantes, ce sont des fourmis super soldates du genre hyper diversifié Pheidole. Normalement, elles n'existent naturellement que dans certaines régions limitées géographiquement. Or, de concert avec des collègues, le professeur de biologie Ehab Abouheif de l'Université McGill de Montréal a repéré, dans des régions inattendues, des fourmis qui sont en fait des anomalies biologiques dotées de caractéristiques analogues à celles de super soldats. Qui plus est, les chercheurs ont découvert qu'ils peuvent induire des fourmis super soldates chez des espèces de Pheidole n'en ayant jamais compté.
Les anomalies de super soldates représentent un potentiel ancestral latent pouvant être actualisé par des changements dans l'environnement. Elles représentent une source de matériel génétique brut que la sélection naturelle peut exploiter. Cette conclusion, publiée dans la plus récente édition de Science, est une avancée importante dans notre compréhension des processus évolutifs.
"Des oiseaux munis de dents, des serpents dotés de doigts et des humains poilus comme des singes - voilà des traits ancestraux qui se manifestent régulièrement dans la nature", explique le professeur Abouheif. "Pendant très longtemps, les théoriciens de l'évolution ont cru que ces traits ne menaient nulle part, qu'ils étaient de simples ratés du système de développement révélant des vestiges du passé, à l'image de figurants du cirque Barnum & Bailey de l'évolution. En fait, il s'agit d'une source négligée de variation de l'évolution."
Les colonies de fourmis Pheidole (à grosse tête) comptent des millions d'ouvrières, notamment des ouvrières mineures et des soldates. En règle générale, le menu alimentaire des fourmis module certaines hormones chez les larves pour qu'elles deviennent soit des soldates, soit des ouvrières mineures. Après avoir repéré inopinément des anomalies analogues à celles de super soldats chez des espèces de Pheidole de Long Island, où on ne les observe pas généralement, le professeur Abouheif et son équipe ont su qu'il s'agissait d'un phénomène inhabituel. "J'y collectionne des échantillons depuis près de 15 ans. En voyant ces fourmis, je les ai trouvées monstrueuses! Elles ressemblent à celles qui sont produites naturellement dans le Sud-ouest américain", de dire le professeur Abouheif.
Dirigés par le doctorant Rajee Rajakumar, des chercheurs du laboratoire du professeur Abouheif et des collaborateurs de l'Université d'Arizona ont alors entrepris d'induire la production artificielle de ces super soldates. Pour ce faire, ils ont appliqué une hormone juvénile aux larves à des étapes cruciales de leur développement. Le succès a été instantané. Ils ont réussi à produire des sous-castes de super soldates dans au moins trois espèces du genre, où l'on n'en a jamais observé avant - des espèces très éloignées dans l'arbre de l'évolution de la colonie Pheidole.
Selon le professeur Abouheif, ces travaux ont une portée considérable pour la théorie de l'évolution, car ils montrent l'existence d'un potentiel génétique à l'état latent verrouillé depuis très longtemps. "Les agents stressants environnementaux qui activent ce potentiel latent sont toujours présents - si bien qu'en cas de besoin, la sélection naturelle peut en éveiller le potentiel et l'actualiser", précise le professeur. "Le corollaire est que nous attestons l'importance du stress environnemental pour l'évolution, car il peut faciliter le développement de phénotypes novateurs. Toute discordance entre l'environnement normal de l'organisme et son potentiel génétique peut être libéré - même si cela prend 30 ou 65millions d'années."
Ces travaux ont étés financés par le Conseil de recherches en sciences naturelles et en génie du Canada, la Chaire de Recherche du Canada en évolution et développement, la Fondation nationale des sciences des États-Unis et une bourse de recherche de l'Institut Konrad Lorenz.

Auteur: Internet

Info:

[ potentiel ] [ sciences ]

 

Commentaires: 0

exobiologie

Une nouvelle étude suggère que la vie extraterrestre pourrait ne pas être basée sur le carbone

L’étude de l’autocatalyse* permet de mieux cerner la potentialité de la vie au-delà des formes carbonées que nous connaissons. De récentes recherches mettent en lumière l’existence de cycles autocatalytiques inorganiques, suggérant la possibilité de formes de vie dans des environnements abiotiques. Ces avancées élargissent le champ des possibles en astrobiologie, incitant à repenser les critères de la vie dans notre quête extraterrestre.

Aux vues de la multitude d’études, la quête visant à comprendre les origines de la vie et son existence potentielle au-delà de notre planète est un enjeu central de la recherche scientifique contemporaine. Ce sujet, loin d’être un simple exercice de spéculation, interroge nos connaissances fondamentales en biologie, chimie et astrobiologie.

Dans ce contexte, l’étude de l’autocatalyse, mécanisme réactionnel où le produit final agit comme catalyseur, offre un nouveau regard sur les mécanismes qui pourraient permettre l’émergence de la vie dans des environnements inorganiques et abiotiques. Les recherches récentes menées par des scientifiques de l’Université du Wisconsin-Madison explorent cette possibilité, élargissant ainsi le spectre de recherche en envisageant des formes de vie extraterrestres non basées sur le carbone. Les résultats sont publiés dans la revue Journal of the American Chemical Society.

Diversité chimique et origine de la vie

Betül Kaçar, astrobiologiste soutenu par la NASA, professeur de bactériologie à l’UW-Madison et auteur principal de l’étude, explique dans un communiqué : " L’origine de la vie est un processus ne partant de rien. Mais il ne peut pas se produire qu’une seule fois. La vie se résume à la chimie et aux conditions qui peuvent générer un schéma de réactions auto-reproductibles ".

Les réactions chimiques qui produisent des molécules encourageant la même réaction à se reproduire encore et encore sont appelées réactions autocatalytiques. Zhen Peng, chercheur postdoctoral au laboratoire Kaçar, et ses collaborateurs, ont compilé 270 combinaisons de molécules — impliquant des atomes de tous les groupes et séries du tableau périodique — avec le potentiel d’autocatalyse soutenue.

(Photo : Schéma explicatif des réactions autocatalytiques. )

Ces cycles sont particulièrement remarquables car ils ne dépendent pas de molécules organiques, contrairement aux formes de vie connues sur Terre, qui sont principalement basées sur le carbone. Kaçar souligne : " On pensait que ce genre de réactions était très rare. Nous montrons que c’est en réalité loin d’être rare. Il suffit de chercher au bon endroit ".

Les chercheurs ont concentré leurs recherches sur ce que l’on appelle les réactions de proportionnalité. Dans ces réactions, deux composés comprenant le même élément avec un nombre différent d’électrons (ou états réactifs) se combinent pour créer un nouveau composé dans lequel l’élément se trouve au milieu des états réactifs de départ.

Pour être autocatalytique, le résultat de la réaction doit également fournir des matières premières pour que la réaction se reproduise, de sorte que le résultat devient un nouvel intrant, explique Zach Adam, co-auteur de l’étude. Les réactions de proportionnalité aboutissent à des copies multiples de certaines des molécules impliquées, fournissant ainsi des matériaux pour les prochaines étapes de l’autocatalyse. " Chaque fois qu’un cycle est effectué, au moins une sortie supplémentaire est produite, ce qui accélère la réaction et la rend encore plus rapide ", ajoute Adam.

Implications pour la recherche de signes de vie

La mise en évidence de cycles autocatalytiques inorganiques a jeté une lumière nouvelle sur les possibilités d’existence de la vie dans l’Univers. Cette avancée suggère que la vie, sous des formes inconnues et inorganiques, pourrait être présente dans une multitude d’environnements extraterrestres, y compris ceux qui sont radicalement différents de la Terre et qui, jusqu’à présent, étaient considérés comme inhospitaliers. 

Auteur: Internet

Info: https://trustmyscience.com/ - Laurie Henry·29 septembre 2023 - * réaction autocatalytique est une réaction chimique dont le catalyseur figure parmi les produits de la réaction.

[ astrobiologie ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

interdépendances

La découverte d’un enfant de 8 ans dans son jardin sur les fourmis a transformé les sciences de la Terre

Dans le monde fascinant de la nature, des connexions imprévues peuvent chambouler notre vision des écosystèmes. Depuis un bail, les chercheurs s’intéressent aux fourmis qui transportent des graines. Ces graines ont souvent une petite attache grasse que les fourmis adorent trimballer sous terre, un phénomène qu’on appelle la myrmécochorie. Mais voilà qu’une découverte récente remet tout en question grâce à l’œil aiguisé d’un enfant de huit ans, Hugo.

L’observation d’Hugo change la donne

En se promenant, Hugo a vu des fourmis porter ce qu’il pensait être des graines. Son père, Andrew Deans, a vite compris que c’étaient en fait des galles de chêne. Ces galles sont des excroissances créées par certaines guêpes pour abriter leurs larves. Cette trouvaille accidentelle a ouvert la porte à une série d’études sur comment les guêpes pourraient berner les fourmis pour protéger leurs petits.

Les chercheurs ont donc décidé de scruter de près la structure et la composition chimique des galles de chêne pour voir si elles imitent ces fameuses attaches grasses qui plaisent tant aux fourmis.

Fourmis et chimie : pourquoi ça matche ?

On sait bien que les fourmis sont attirées par les acides gras présents sur certaines graines. Le truc dingue, c’est que plusieurs galles de chêne ont un revêtement similaire avec ces mêmes molécules alléchantes. Les fourmis mangent cette partie grasse sans toucher au reste, offrant ainsi un abri sûr aux larves de guêpes.

Cette imitation chimique a bluffé pas mal d’entomologistes. John Tooker, prof d’entomologie à l’Université de Pennsylvanie, a dit : " C’est incroyable comment ces structures copient le profil chimique des insectes morts, qui sont l’une des sources alimentaires principales pour les fourmis ". Ça montre bien toute la complexité et l’ingéniosité du monde naturel.

Un débat animé chez les scientifiques

Cette similitude entre graines et galles a créé pas mal de remous dans le milieu scientifique. Il se pourrait bien que ces capuchons de galles simulent l’odeur d’insectes morts, attirant irrésistiblement les fourmis. Ça pose plein de questions sur l’évolution et l’adaptation dans cet écosystème particulier.

Les archives fossiles montrent que les galles existaient avant même qu’on s’intéresse à leur rôle écologique. La vieille relation entre guêpes et chênes est bien documentée, mais on ne sait toujours pas trop quand exactement les fourmis ont rejoint ce processus complexe. Certaines théories disent que ce sont peut-être d’abord les guêpes qui ont incité les chênes à fabriquer ces structures protectrices avant d’attirer ensuite les fourmis avec leurs techniques chimiques astucieuses.

Ces interactions compliquées entre espèces montrent bien comment différentes formes de vie peuvent tisser des liens vitaux pour leur survie mutuelle. Les chercheurs soulignent combien il est important de préserver ces écosystèmes pour maintenir ces équilibres fragiles (d’autant plus que les chênes et les guêpes font face à plusieurs menaces comme la réduction de leur habitat naturel ou le changement climatique).

L’observation innocente d’Hugo prouve qu’un simple moment peut enrichir notre compréhension du monde naturel autour de nous. Les scientifiques se demandent maintenant si d’autres insectes utilisent aussi ce genre de stratégie pour influencer le comportement alimentaire des fourmis.

Cette découverte ajoute sans conteste une nouvelle page au récit fascinant sur la biodiversité terrestre tout en nous rappelant combien il reste encore à apprendre sur nos environnements naturels complexes mais fragiles. Comme le dit Andrew Deans : " Cela devrait nous faire réfléchir à tout ce qu’on ignore encore sur nos écosystèmes et pourquoi il faut absolument préserver cette biodiversité ".


 

Auteur: Internet

Info: https://armees.com/, Laurène Meghe. 12 janvier 2025

[ insectes ] [ camouflage ] [ apparence ] [ biomimétisme ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

humain miroir

La perception humaine de l'espace s'étend tout comme l'univers réel !

Le cerveau humain a une façon intéressante d'évaluer la proximité ou la distance d'un objet dans l'espace. Si vous regardez la nuit depuis votre voiture, il y a de fortes chances que la Lune vous paraisse se déplacer à vos côtés. Une nouvelle étude neuroscientifique a permis de découvrir pourquoi la zone de la mémoire de notre cerveau perçoit les images proches et lointaines et comment ces exagérations peuvent créer davantage de connexions cérébrales à mesure que nous vieillissons.

L'hippocampe est une zone du cerveau impliquée dans l'apprentissage et la mémoire. Dans l'étude actuelle, les auteurs ont constaté que les neurones associés à la planification, à la mémoire et à la navigation spatiale transforment l'espace en une forme géométrique hyperbolique non linéaire - pensez à un sablier en expansion qui grossit à mesure que vous vous en éloignez. Pour en revenir à l'exemple de la lune, les jeunes enfants ont pu constater que la lune les suivait ou qu'elle était suffisamment proche pour qu'ils l'attrapent.

Bien sûr, la Lune ne se déplace pas et sa taille est déformée par sa distance. Les résultats ont montré que la taille de l'image augmente avec le temps passé dans un lieu. La taille perçue par notre cerveau est également directement liée à la quantité d'informations qu'il peut traiter : les jeunes cerveaux sont peut-être plus enclins à naviguer et à percevoir l'espace de manière linéaire. Avec de nouvelles expériences, l'hippocampe est capable d'affiner ses connexions neuronales et de traiter davantage d'informations sur l'image.

Le cerveau "s'élargit" avec l'expérience

Comprendre comment les réseaux neuronaux du cerveau traitent la navigation spatiale pourrait aider à étudier les troubles neurocognitifs. La maladie d'Alzheimer, par exemple, est une maladie dans laquelle l'hippocampe est l'une des premières zones du cerveau à être détruite, ce qui affecte la mémoire de la personne.

"Notre étude démontre que le cerveau n'agit pas toujours de manière linéaire. Au contraire, les réseaux neuronaux fonctionnent le long d'une courbe en expansion, qui peut être analysée et comprise à l'aide de la géométrie hyperbolique et de la théorie de l'information", explique l'auteur principal, Tatyana Sharpee, professeur à l'Institut Salk et titulaire de la chaire Edwin K. Hunter, dans un communiqué de presse. "Il est passionnant de constater que les réponses neuronales dans cette région du cerveau forment une carte qui s'élargit avec l'expérience, en fonction du temps passé dans un lieu donné. L'effet s'est même maintenu pour des écarts de temps minuscules, lorsque l'animal courait plus lentement ou plus rapidement dans l'environnement."

L'équipe de recherche a utilisé des méthodes informatiques avancées pour comprendre le fonctionnement du cerveau. L'une de ces techniques consiste à utiliser la géométrie hyperbolique pour disséquer les signaux biologiques. Des travaux antérieurs ont utilisé la géométrie hyperbolique pour étudier le fonctionnement des molécules odorantes et de la perception des odeurs.

La géométrie hyperbolique s'est avérée efficace pour comprendre les réponses neuronales et pour cartographier les molécules et les événements sensoriels. Les chercheurs ont recueilli leurs informations auprès de rats qui ont passé du temps à explorer un nouvel environnement. Plus le rat passe de temps dans une zone, plus il acquiert d'informations sur l'espace qui l'entoure. Cela a permis à leur carte neuronale de s'étendre et de se développer.

"Ces résultats offrent une nouvelle perspective sur la manière dont les représentations neuronales peuvent être modifiées par l'expérience", explique Huanqiu Zhang, étudiant diplômé du laboratoire de M. Sharpee. "Les principes géométriques identifiés dans notre étude peuvent également guider les futurs efforts de compréhension de l'activité neuronale dans divers systèmes cérébraux.

Auteur: Internet

Info: Nature Neuroscience, repris par Jocelyn Solis-Moreira ,7 janvier 2023

[ horizon grégaire intégré ] [ vieillir grandir ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

L'origine quantique de l'effet de serre

En 1896, le physicien suédois Svante Arrhenius a découvert que le dioxyde de carbone (CO₂) piège la chaleur dans l'atmosphère terrestre, un phénomène maintenant appelé l'effet de serre. Depuis, des modèles climatiques de plus en plus sophistiqués ont confirmé que chaque doublement de la concentration de CO₂ dans l'atmosphère entraîne une augmentation de la température de la Terre de 2 à 5 degrés Celsius. Cependant, la raison physique pour laquelle le CO₂ se comporte ainsi est restée un mystère jusqu'à récemment.En 2022, des physiciens ont résolu une dispute sur l'origine de la "mise à l'échelle logarithmique" de l'effet de serre. Puis, au printemps 2024, une équipe dirigée par Robin Wordsworth de l'Université Harvard a découvert pourquoi la molécule de CO₂ est si efficace pour piéger la chaleur. Ils ont identifié une particularité de la structure quantique de la molécule qui explique pourquoi elle est un gaz à effet de serre si puissant.

Découvertes anciennes et récentes

Joseph Fourier,  mathématicien et physicien français, a montré il y a 200 ans que l'atmosphère de la Terre isole la planète du froid spatial. Ensuite, Eunice Foote et John Tyndall ont montré que le CO₂ absorbe bien le rayonnement infrarouge. Arrhenius a utilisé ces découvertes pour conclure que l'ajout de CO₂ réchaufferait la surface de la planète.Cependant, le physicien suédois Knut Ångström a contesté cette théorie en affirmant que le CO₂ n'absorbe qu'une longueur d'onde spécifique de 15 microns et que la quantité de CO₂ dans l'atmosphère était déjà suffisante pour piéger toute cette lumière. Ce qu'il lui a échappé, c'est que le CO₂ peut également absorber des longueurs d'onde légèrement plus courtes ou plus longues, bien que moins efficacement. Lorsque la concentration de CO₂ double, la lumière infrarouge a plus de molécules à traverser avant de s'échapper, ce qui ralentit le flux de chaleur.

Explication quantique

L'équipe de Wordsworth a utilisé la mécanique quantique pour expliquer pourquoi le CO₂ est si efficace pour piéger la chaleur. Les molécules de CO₂ peuvent absorber des photons lorsque ceux-ci ont exactement la bonne quantité d'énergie pour faire passer la molécule à un état quantique différent. Le CO₂ a un état de base où ses trois atomes forment une ligne, et des états excités où les atomes oscillent. Un photon de lumière de 15 microns contient l'énergie exacte nécessaire pour faire tourbillonner l'atome de carbone autour du point central dans une sorte de mouvement de hula-hoop.  Les climatologues ont longtemps imputé l'effet de serre à cet état de hula-hoop, mais, comme l'avait prévu Ångström, l'effet nécessite une quantité d'énergie trop précise, a constaté Wordsworth et son équipe. L'état de hula-hoop ne peut pas expliquer le déclin relativement lent du taux d'absorption des photons au-delà de 15 microns, et ne peut donc pas expliquer à lui seul le changement climatique.

La clé est un autre type de mouvement où les atomes d'oxygène oscillent vers et loin du centre de carbone, comme un ressort. Ce mouvement a une énergie proche du double de celle du mouvement de "hula-hoop", permettant aux deux états de se mélanger. Ce phénomène, appelé résonance de Fermi, explique pourquoi le CO₂ est si efficace pour piéger la chaleur.

Conclusion

Ces découvertes montrent que le changement climatique est directement lié aux principes de la mécanique quantique, renforçant ainsi les arguments en faveur de la réalité du réchauffement climatique. La concentration de CO₂ dans l'atmosphère a atteint un niveau record de 419,3 parties par million en 2023, entraînant une augmentation estimée de 1 degré Celsius de la température globale jusqu'à présent. 







 

Auteur: Internet

Info: https://www.quantamagazine.org, Joseph Howlett, 7 aout 2024

[ environnementalisme ]

 

Commentaires: 0

Ajouté à la BD par miguel