Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits... Recherche mots ou phrases tous azimuts... Outil de précision sémantique et de réflexion communautaire... Voir aussi la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats ... Lire la suite >>
Résultat(s): 5330
Temps de recherche: 0.046s

origine du vivant

Le débat sur l’émergence de la vie

Jeremy England veut utiliser les lois physiques pour expliquer l’apparition de la vie et l’évolution des espèces. Ses théories divisent les spécialistes.

Comment la vie est-elle apparue, il y a 3,85 milliards d'années ? La question reste l'un des plus grands mystères de la science. En 1970, dans Le Hasard et la Nécessité, le biologiste français Jacques Monod, qui a reçu le prix Nobel de physiologie-médecine en 1965, avance l'idée que la vie a surgi grâce à un concours de circonstances exceptionnel, si improbable qu'elle n'a pas pu émerger ailleurs dans l'univers. Cette conception, largement répandue depuis, est battue en brèche par les travaux de Jeremy England et de son équipe de l'Institut de technologie du Massachusetts, qui cherchent à faire de la vie la conséquence de lois physiques.

Jeremy England avance deux idées révolutionnaires. La première stipule que dans certaines conditions, un groupe d'atomes plongé dans un environnement à une température donnée, et soumis à une source extérieure d'énergie (de la lumière par exemple), aura tendance à s'organiser spontanément pour adopter la forme la plus propice à capter cette énergie. Or la capacité à utiliser efficacement l'énergie est l'une des caractéristiques des êtres vivants. Cette théorie n'explique pas directement comment la vie est apparue, mais elle précise les conditions de son émergence. Autre point fondamental : elle rapproche le vivant du non-vivant. " Je ne prétends pas changer la liste de ce qui est vivant ou inanimé. Mais parmi les choses sans vie, certaines pourraient avoir plus de propriétés en commun avec le vivant que nous ne l'avions imaginé. Il pourrait y avoir plus d'étapes que nous ne le pensions entre ce que nous imaginons inerte et ce que nous estimons vivant ", suggère Jeremy England.

Sa seconde idée forte consiste à proposer une explication physique à la théorie de l'évolution de Charles Darwin. Selon le naturaliste britannique du XIXe siècle, les espèces qui survivent sont les plus douées pour s'adapter à leur environnement. C'est la " sélection naturelle ". England propose de placer derrière cette apparente sélection naturelle un facteur physique : la capacité à absorber l'énergie et à la dissiper sous forme de chaleur. " Toutes choses égales par ailleurs, les organismes qui arrivent le mieux à se répliquer (se reproduire, NDLR) sont ceux qui dissipent le plus de chaleur dans leur environnement ", déclare le jeune chercheur américain. Or une bonne capacité de reproduction assure plus de chances de survie à l'espèce. Le talent d'un organisme pour absorber et rejeter l'énergie autour de lui pèserait donc sur la survie de son espèce.

Les idées avancées par Jeremy England sont pour l'instant des pistes, dont les interprétations restent " spéculatives ", de son propre aveu. Une partie de ses travaux est en cours de vérification. Des expérimentations sont aussi prévues. Certains, comme Carl Franck, professeur de physique à l'université américaine Cornell (Etat de New York), sont enthousiastes. " Cela pourrait être un bouleversement comme la science n'en connaît que tous les trente ans ", a-t-il déclaré au magazine américain Ozy. D'autres sont plus sceptiques. " Je pense que Jeremy England surinterprète le caractère général de ses arguments ", rétorque Thomas Oulridge, de l'Imperial College à Londres.

" C'est très intéressant, estime, de son côté, Antonino Marco Saitta, physicien à l'université Pierre-et-Marie-Curie, à Paris. Mais à mon avis, la dissipation de l'énergie est plutôt une conséquence de la reproduction (et pas une cause, NDLR). Je me sens plus proche des idées de Robert Pascal. " Pour ce grand chimiste français, directeur de recherche au CNRS, qui travaille lui aussi sur l'origine de la vie, " on ne peut pas tout comprendre avec la dissipation de l'énergie, il manque la dimension chimique ". Une conviction, toutefois, fait consensus : grâce à l'apport croisé de la physique, de la chimie et de la biologie, et aux possibilités ouvertes par les simulations numériques, la science est plus proche que jamais de percer le mystère de la création.







 



 



 

Auteur: Internet

Info: https://www.leparisien.fr/week-end. Stéphane Loignon, 29 avril 2016

[ rationnelle ] [ expliquée ]

 

Commentaires: 0

Ajouté à la BD par miguel

thérapie

Musique du cerveau - chaque cerveau a une bande sonore, probablement plusieurs. Pouvons-nous la faire travailler pour nous ?
Chaque cerveau a une bande sonore. Son tempo et tonalité changent, selon l'humeur, l'armature de l'esprit et autres dispositifs du cerveau lui-même. Quand cette bande sonore est enregistrée et rejouée - avec les premiers secours, ou les pompiers - elle peut affiner leurs réflexes pendant une crise, et calmer leurs nerfs après.
Lors de la dernière décennie, l'influence de la musique sur le développement cognitif et les études, avec le bien-être émotif, est devenue un champ très couru d'étude scientifique. Pour explorer la pertinence potentielle de la musique avec ces réponses d'urgence, le Dept of Homeland Security's Science & Technology Directorate (S&T) a commencé une étude sous forme d'entrainement neurologique appelée "musique de cerveau" qui utilise de la musique créée à l'avance à partir des propres ondes cérébrales des auditeurs afin de les aider à traiter des maux comme l'insomnie, la fatigue, et les maux de tête provenant d'environnements stressants. Le concept de "musique de cerveau" est d'utiliser la fréquence, l'amplitude, et la durée de sons musicaux pour déplacer le cerveau d'un état impatient vers un état plus détendu.
"La tension vient d'une réponse d'urgence au travail, aussi nous sommes intéressés à trouver des moyens pour aider les ouvriers à rester au top de leur job au travail et d'obtenir un repos de qualité quand ils subissent la pression" dit le manager du S&T Program Robert Burns. "notre but est de trouver de nouveaux moyens pour aider les gens des premiers secours à exécuter leurs tâche au meilleur niveau possible, sans augmenter les tâches, la formation, ou leur niveaux de stress."
Si le cerveau "compose" la musique, le premier travail des scientifiques et d'"attraper" les notes, et c'est exactement ce que le Human Bionics LLC of Purcellville fait. Chaque enregistrement est converti en deux compositions musicales uniques, conçues pour déclencher les réponses naturelles du corps, par exemple en améliorant la productivité au travail, ou pour aider à s'ajuster à des horaires changeant constamment au travail.
Les compositions sont médicalement démontrées comme favorisant un de ces deux états mentaux chez chaque individu : la relaxation - pour réduire le stress et améliorer le sommeil ; et la vigilance - pour améliorer la concentration et la prise de décision. Chaque musique de 2-6 minutes est une composition exécutée sur un instrument simple, habituellement un piano. La musique de relaxation peut ressembler à "une sonate mélodique genre Chopin," tandis que la partie pour la vigilance peut avoir "plutôt le genre Mozart" dit Burns. (il semble donc qu'il y ait un génie classique - ou peut-être deux - en chacun de nous. Écouter une musique d'alerte instrumentale ici : www.dhs.gov/xlibrary/multimedia/snapshots/st_brain_music_active.mp3.
Après que leurs ondes cérébrales aient été mises en musique, on donne à chaque personne un programme d'écoute spécifique, personnalisé à son environnement et besoins de travail. Si elle est utilisée correctement, la musique peut amplifier la productivité et les forces, ou déclencher des réponses naturelles du corps à l'effort.
La musique créée par le Human Bionics LLCest testée comme partie du programme de S&T Readiness Optimization Program (ROP), est un programme de bien-être qui combine l'enseignement de la nutrition et l'entrainement cérébral afin d'évaluer une population de gens de premier secours, d'agents fédéraux, de la police, et des sapeurs-pompiers. Un groupe choisi de sapeurs-pompiers locaux sera le premier à participer au projet.
Ce composant de "musique de cerveau" ou dispositif de protection en cas de renversement, est dérivé d'une technologie brevetée et développée à l'université de Moscou pour employer les ondes cérébrales comme mécanisme de rétroaction afin de corriger certaines conditions physiologiques.
Dans les termes de John Locke, le philosophe britannique, la "musique de cerveau" apporterait une nouvelle signification à son expression célèbre :"un esprit sain dans un corps sain, constitue une courte, mais complète description, de l'état de bonheur en ce monde."
Reste alors Cervantes, qui a écrit : "Celui qui chante effraye et éloigne ses ennuis."

Auteur: Internet

Info:

 

Commentaires: 0

végétaux

Selon une nouvelle étude, les plantes peuvent réellement "écouter" ce qui se passe autour d’elles, notamment entendre le bourdonnement des abeilles et produire un nectar plus sucré en réponse, pour attirer les insectes volants. Et les fleurs sont littéralement leurs "oreilles".

Sur la base d’observations effectuées sur des primevères du soir (Oenothera drummondii), l’équipe responsable de la nouvelle étude, a découvert qu’en quelques minutes à peine après avoir détecté les ondes sonores des ailes d’abeilles voisines à travers les pétales de fleurs, la concentration de sucre dans le nectar de la plante avait augmenté de 20%. De plus, les fleurs semblaient même capables d’ignorer certains bruits de fond nuisants, tel que le vent.

Selon les scientifiques, cette capacité pourrait bien conférer à certaines plantes un avantage évolutif, en maximisant de ce fait leurs chances de disséminer le pollen. "Nos résultats montrent pour la toute première fois que les plantes peuvent réagir rapidement aux sons des pollinisateurs d’une manière écologiquement pertinente", écrivent les chercheurs, de l’Université de Tel-Aviv en Israël.

Ils ont alors effectué des expériences en se basant sur l’hypothèse suivante : les plantes peuvent effectivement capter les vibrations provoquées par les ondes sonores, ce qui pourrait en partie expliquer la raison pour laquelle les fleurs de nombreuses plantes ont la forme d’une cuvette (cela leur permettrait donc de mieux capturer les sons).

Au cours de plusieurs expériences impliquant plus de 650 fleurs d’onagre, la production de nectar a été mesurée en réponse au silence, en réponse à un son à trois niveaux de fréquence, ainsi qu’à l’enregistrement du bourdonnement des abeilles.

L’enregistrement du bourdonnement des abeilles, ainsi que les sons de basse fréquence (qui correspondaient étroitement à l’enregistrement des abeilles), ont suffi pour provoquer la modification de la composition du nectar, et cela en trois minutes seulement. Par contre, le silence et les sons de haute et moyenne fréquence n’ont eu aucun effet sur les plantes.

L’équipe a également tenté ces expériences avec des plantes dont certains pétales avaient été enlevés. Résultat : aucun changement dans la production de nectar n’a été notée, indiquant ainsi que ce sont bien les fleurs qui font office "d’oreilles" !

Ces tests de laboratoire ont été complétés par des observations effectuées sur des fleurs à l’état sauvage. "Les plantes ont beaucoup d’interactions avec les animaux, et les animaux font et entendent des bruits", a déclaré l’un des membres de l’équipe, Lilach Hadany. "Il serait inadapté pour les plantes de ne pas utiliser le son pour la communication. Nous avons essayé de faire des prédictions claires pour tester cela et avons été assez surpris lorsque cela a fonctionné", a ajouté Hadany.

Pour les plantes, produire un nectar plus sucré pourrait avoir comme conséquence que l’abeille reste sur la fleur plus longtemps (et se nourrisse plus longtemps de ladite fleur), ce qui augmenterait ses chances de récolter du pollen. Et pour la plante, les chances de voir d’autres insectes revenir sur les fleurs de la même espèce à l’avenir, sont également plus nombreuses. Il faut cependant que cette poussée de douceur sucrée soit parfaitement synchronisée, pour que les fleurs en vaillent la peine et que les abeilles s’y arrêtent. C’est exactement ce qui semble se produire.

À l’heure actuelle, le travail des chercheurs n’a pas encore été revu par des pairs, et nous ne savons pas exactement comment les vibrations sont décodées par les plantes. Nous ne savons pas non plus comment ces vibrations sont devenues un élément déclencheur de la production de nectar plus sucré. Mais, dans tous les cas, il s’agit d’un premier pas pour le moins intriguant dans le domaine des études concernant la compréhension des plantes et de leurs réactions face aux sons qui les entourent. "Certaines personnes peuvent se demander comment font les plantes pour entendre, ou sentir ? J’aimerais que les gens comprennent que l’audition n’est pas seulement pour les oreilles", explique Marine Veits, une des auteures de l’étude.

Quant à la suite, les chercheurs souhaitent comprendre comment les plantes réagissent à d’autres sons et à d’autres animaux (y compris à l’Homme).

Auteur: Internet

Info: https://trustmyscience.com. 21 janv. 2019. Sources : bioRxiv, National Geographic

[ musique ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences physiques

Le CERN relance la recherche des " particules fantômes " de l'Univers

Les scientifiques européens du CERN vont lancer la construction d'un nouvel accélérateur de particules, dans l'espoir d'identifier enfin les "particules cachées" de l'Univers.

Les scientifiques du plus grand accélérateur de particules du monde vont disposer d'un nouvel outil qui, selon les chercheurs, pourrait les aider à découvrir la face cachée de l'Univers.

L'Organisation européenne pour la recherche nucléaire (CERN) va entamer la construction d'un nouveau supercollisionneur, le "Futur collisionneur circulaire", qui sera 1 000 fois plus sensible aux particules dites "cachées", ou "fantômes", que l'équipement actuel utilisé par l'organisation.

Les accélérateurs de particules permettent aux scientifiques de recréer les conditions du Big Bang, la théorie physique qui décrit l'apparition de l'Univers.

Dans ce nouvel appareil, les particules seront projetées contre une surface solide, et non plus les unes contre les autres comme dans les accélérateurs actuels

Le collisionneur fait partie du projet SHiP (Search for Hidden Particles) du CERN, un projet en gestation depuis dix ans qui permettra d'étudier certaines des particules les plus discrètes de l'espace.

Richard Jacobsson, physicien principal au CERN, affirme que ce projet pourrait constituer une "avancée considérable" qui redéfinirait la compréhension de la création de l'Univers.

" SHiP est l'une de ces expériences qui pourraient changer le paradigme scientifique et nous faire entrer dans un tout nouveau domaine de connaissances, non seulement sur notre Univers, mais aussi sur notre position dans celui-ci", avance Richard Jacobsson lors d'une interview.

"La plupart des hypothèses que nous avons formulées jusqu'à présent pourraient être réévaluées".

Selon le physicien, les scientifiques n'ont jamais réussi à détecter ce type de particules, car ils ne disposaient pas de la technologie adéquate.

Que sont les particules fantômes ?

D'après Richard Jacobsson, tout ce que nous pouvons voir à l'œil nu depuis l'espace, y compris les étoiles et les planètes, représente environ 5 % de la matière réelle de l'Univers.

Les 95 % restants se répartissent, selon les connaissances actuelles, entre environ 26 % de matière noire et 69 % d'énergie noire, selon le physicien.

Les scientifiques utilisent actuellement le "modèle standard", qui comprend 17 particules différentes, pour expliquer la composition de l'Univers.

En 2012, les scientifiques du CERN ont découvert une nouvelle particule du modèle standard, le boson de Higgs, grâce au Grand collisionneur de hadrons, une découverte qui leur a valu le prix Nobel de physique un an plus tard.

Depuis, les tentatives d'utiliser ce même collisionneur pour mesurer les particules cachées - qui pourraient également constituer la matière noire et l'énergie noire, mais ne font pas partie du modèle standard - se sont toutes soldées par des échecs.

" La découverte du boson de Higgs a comblé un vide sans pour autant prédire quelque chose de nouveau", déclare Richard Jacobsson.

"L'idée de ce projet est née presque par hasard, d'un partenariat entre des personnes issues de différents domaines et désireuses d'explorer la physique sous un autre angle".

Les particules "cachées" ou "fantômes" sont invisibles et ont des connexions physiques plus faibles que les particules déjà découvertes, ce qui les rend difficiles à détecter.

Le Grand collisionneur de hadrons du CERN peut détecter les particules jusqu'à un mètre du site de la collision, mais les particules cachées restent invisibles beaucoup plus longtemps avant de se révéler.

Les détecteurs du nouveau collisionneur du projet SHiP seront donc placés plus loin et produiront davantage de collisions sur une toile de fond fixe afin d'identifier plus facilement ces particules.

La construction des nouvelles installations souterraines du SHiP débutera en 2026 et les premières expériences pourraient avoir lieu vers 2032.

Le futur collisionneur circulaire, quant à lui, sera mis en service dans le courant des années 2040, mais n'atteindra son plein potentiel qu'en 2070, selon des informations rapport de la BBC.

Auteur: Internet

Info: https://fr.euronews.com/ - Anna Desmarais,  26 mars 2024

[ infra-monde ] [ sub-particules élémentaires ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

météore

L’astéroïde dévié par une mission de la Nasa est devenu un " tas de décombres " !

Pour la première fois en septembre 2022, un engin spatial, la mission Dart, a frappé un astéroïde, Dimorphos. Objectif : le dévier de sa trajectoire. Mais la collision n’a pas eu que ce seul effet, nous apprennent aujourd’hui des chercheurs. Elle a carrément remodelé la forme de l’astéroïde. 

(EN VIDÉO - Le film capture par Hubble de l’impact de Dart sur l’astéroïde Dimosphos Le 26 septembre 2022, la mission Dart — pour Double Asteroid Redirection Test — s’écrasait...)

En novembre 2021, la Nasa lançait une mission inédite. La mission Double Asteroid Redirection Test, plus connue sous son acronyme Dart. Son objectif : heurter l'astéroïde Dimorphos pour évaluer la capacité de l'humanité à dévier la trajectoire d'un tel objet qui pourrait présenter des risques de collision avec la Terre. Le choc, à grande vitesse et frontal, a bien eu lieu à plusieurs millions de kilomètres. C'était en septembre 2022.

Pour la première fois, l'humanité était parvenue à dévier un astéroïde. Et pas qu'un peu. Avant la collision avec Dart, il fallait à Dimorphos 11 heures et 55 minutes pour faire le tour de son astéroïde parent - car l'objet visé fait partie d'un système binaire. Une modification de cette durée de 73 secondes constituerait un véritable succès, confiaient les scientifiques à ce moment-là. Mais après l'impact, Dimorphos s'était mis à tourner en seulement 11 heures et 23 minutes !

Dart sur Dimorphos, un impact aux lourdes conséquences

Aujourd'hui, la publication de nouveaux résultats de la mission Dart dans la revue Nature Astronomy révèle quelques détails surprenants de l'opération. L'impact - pourtant comparable, en masse, à celui d'une fourmi sur deux bus - ne semble pas seulement avoir laissé un cratère sur l'astéroïde. Dimorphos pourrait en réalité avoir complètement changé de forme.

Quelques semaines après la collision, l'un des pères de la mission et directeur de recherche au CNRS à l'Observatoire de la Côte d'Azur, Patrick Michel, nous confiait avoir pensé un instant que Dart avait pulvérisé Dimorphos. Il n'était donc peut-être pas si loin de la vérité. Car, sur la base de simulations et de différentes observations, les astronomes estiment aujourd'hui que l'astéroïde de quelque 5 millions de tonnes a tout de même perdu dans l'opération environ 20 millions de kilos. C'est l'équivalent de six fusées Saturn V qui ont emmené les astronautes du programme Apollo sur la Lune !

Des simulations qui révèlent la nature de l’astéroïde

Ces résultats, les astronomes les ont obtenus grâce à un algorithme qui a déjà fait ses preuves par ailleurs. Il décompose l'impact entre deux corps en millions de particules dont le comportement est déterminé par l'interaction de diverses variables reconfigurables, telles que la gravité, la densité ou la résistance du matériau de l'astéroïde. En quelque 250 simulations, les chercheurs ont eu tout le loisir de visualiser les effets de variations sur les paramètres qui leur restent inconnus.

En comparant les résultats de toutes ces simulations aux données recueillies par quelques satellites, les télescopes spatiaux James-Webb et Hubble et par des instruments sur le sol terrestre, les chercheurs concluent que  Dimorphos est un astéroïde " tas de décombres " maintenu par une gravité extrêmement faible plutôt que par sa force de cohésion.  De quoi expliquer l'efficacité étonnante de la déviation orbitale provoquée par Dart.

En attendant confirmation, la défense planétaire progresse

Les astronomes s'attendent donc désormais à ce que la mission Hera, menée par l'ESA, l'Agence spatiale européenne, et qui devrait atteindre Dimorphos fin 2026, trouve un astéroïde de forme très différente. Comme si quelqu'un avait mordu dans le M&M's qu'il était avant sa rencontre avec Dart.

Si cela devait se confirmer, les astronomes notent que Dimorphos, comme Ryugu et Bennu semblent finalement présenter un manque de cohésion certain. Alors même que le premier astéroïde est riche en silicates et les deux autres, en carbone. " Il est intrigant d'imaginer que tous les petits astéroïdes manquent de cohésion. Mais ce serait une bonne nouvelle pour la défense planétaire, car si nous connaissons à l'avance la réaction d'un corps, cela facilitera la conception des outils nécessaires à notre protection ", conclut Patrick Michel dans un communiqué de l’ESA.

Auteur: Internet

Info: https://www.futura-sciences.com/, Nathalie Mayer, 28 fév. 2024

[ gravitation faible ]

 

Commentaires: 0

Ajouté à la BD par miguel

pesanteur

Pourquoi la gravité nous tire-t-elle vers le bas et non vers le haut

La gravité est une force omniprésente qui façonne notre expérience quotidienne, nous maintenant solidement sur Terre et régissant les mouvements des planètes dans l’espace. Cependant, une question demeure : pourquoi sommes-nous attirés vers le bas plutôt que repoussés vers le haut par cette force fondamentale ?

Une toile en 4 dimensions

La gravité, telle que décrite par la théorie de la relativité générale d’Albert Einstein, repose sur une compréhension profonde de l’espace-temps, une toile invisible qui enveloppe notre univers. Pour visualiser cette idée complexe, imaginez l’espace-temps comme une entité à quatre dimensions qui combine les trois dimensions de  l’espace (longueur, largeur, et hauteur) avec la quatrième dimension, le temps.

Einstein a révolutionné notre compréhension de la gravité en montrant que les objets massifs, tels que la Terre, ne se contentent pas d’attirer d’autres objets vers eux comme on le pensait auparavant, mais qu’ils courbent l’espace-temps qui les entoure.

La matière crée des puits gravitationnels, pas des collines gravitationnelles

Pour simplifier cette idée, imaginez un trampoline. Si vous placez une masse comme une boule au centre du trampoline, il va créer une déformation autour de lui, formant un puits gravitationnel. Si vous placez une petite balle à proximité, elle roulera naturellement vers la boule plus massive au centre du trampoline. Cette analogie en deux dimensions reflète comment la masse déforme l’espace-temps en créant une attraction gravitationnelle.

Plus un objet est massif, plus la courbure de l’espace-temps est prononcée. Le Soleil crée par exemple une courbure plus importante que la Terre en raison de sa masse supérieure. Cette courbure de l’espace-temps est ce que nous percevons comme la force gravitationnelle.

En ce qui concerne la Terre, nous ne sommes donc pas attirés vers le centre géométrique de cette dernière, mais vers le fond du puits gravitationnel induit par sa présence dans l’espace-temps.

(Image : La masse et l’énergie créent des puits gravitationnels, non des collines.)

Mais alors, pourquoi la Terre ne tombe pas vers le Soleil ?

Notre planète ne tombe pas directement vers le Soleil grâce à un équilibre subtil entre l’attraction gravitationnelle de ce dernier et la vitesse de rotation de la Terre autour de lui. C’est une sorte de danse délicate entre la force gravitationnelle qui attire la Terre vers le Soleil et la force centrifuge générée par le mouvement orbital de la Terre.

La Terre est en effet en chute constante vers le Soleil en raison de la gravité, mais sa vitesse orbitale lui permet de rester en équilibre, ce qui lui évite de s’effondrer directement vers le Soleil. Cette combinaison de la force gravitationnelle et de la vitesse orbitale crée un mouvement orbital stable qui maintient la Terre sur son orbite autour du Soleil. La même chose se produit entre la Terre et la Lune.

Ainsi, la théorie de la relativité générale fournit une explication unifiée de la gravité en reliant la masse, l’énergie, et la géométrie de l’espace-temps. Cette perspective révolutionnaire nous permet de comprendre pourquoi les objets dans l’univers sont attirés les uns vers les autres et offre une vision profonde de la façon dont la réalité physique fonctionne à une échelle cosmique.

En conclusion, la gravité, loin d’être simplement une force qui nous attire vers le bas, est en réalité une manifestation de la courbure de l’espace-temps causée par la masse des objets, comme l’a décrit Albert Einstein. Notre perception de cette force fondamentale repose sur l’idée que la Terre, en déformant l’espace-temps, crée un puits gravitationnel dans lequel nous sommes naturellement attirés. Cette compréhension révolutionnaire nous montre non seulement pourquoi nous restons sur Terre, mais aussi comment les planètes, étoiles et galaxies interagissent à travers cette toile cosmique en perpétuelle déformation. La gravité, dans toute sa simplicité apparente, nous rappelle à quel point l’univers est complexe et interconnecté, révélant des mystères fascinants qui continuent de captiver notre imagination.







 



 

Auteur: Internet

Info: https://sciencepost.fr/, Brice Louvet,  6 septembre 2024

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Les bras de la pieuvre sont capables de prendre des décisions sans l'apport de leur cerveau.

Avec la capacité d'utiliser des outils, de résoudre des énigmes complexes et même de jouer des tours aux humains juste pour le plaisir, les poulpes sont extrêmement intelligents.
Mais leur intelligence est assez bizarrement construite, puisque les céphalopodes à huit bras ont évolué différemment de presque tous les autres types d'organismes sur Terre.

Plutôt qu'un système nerveux centralisé comme celui des vertébrés, les deux tiers des neurones d'une pieuvre sont répartis dans tout son corps, dans ses bras. Dorénavant les scientifiques ont déterminé que ces neurones peuvent prendre des décisions sans l'apport du cerveau.

"L'une des grandes questions que nous nous posions est de savoir comment fonctionnerait un système nerveux réparti, surtout lorsqu'il essaie de faire quelque chose de compliqué, comme se déplacer dans un liquide et trouver de la nourriture sur un fond océanique complexe", a déclaré le neuroscientifique David Gire de l'Université de Washington.

Il y a beaucoup de questions ouvertes sur la façon dont ces nodules du système nerveux sont reliés les uns aux autres.

La recherche a été menée sur des poulpes géants du Pacifique (Enteroctopus dofleini) et des poulpes rouges du Pacifique Est (Octopus rubescens), tous deux originaires du Pacifique Nord.

Ces poulpes ont environ 500 millions de neurones, dont environ 350 millions le long des bras, disposés en groupes appelés ganglions. Ils permettent de traiter l'information sensorielle à la volée, ce qui permet à la pieuvre de réagir plus rapidement aux facteurs externes.

"Les bras de la pieuvre ont un anneau neural qui contourne le cerveau, et donc les bras peuvent s'envoyer de l'information sans que le cerveau s'en rende compte", a déclaré le neuroscientifique comportemental Dominic Sivitilli de l'Université de Washington.

"Le cerveau ne sait pas exactement où sont les bras dans l'espace, mais les bras savent où sont les autres, ce qui leur permet de coordonner leurs actions, comme la locomotion à quatre pattes."

L'équipe a donné aux céphalopodes une variété d'objets tels que des blocs de cendres, des roches texturées, des pièces de Lego et des labyrinthes complexes contenant des friandises, et les a filmés.

Les chercheurs ont également utilisé des techniques de suivi comportemental et d'enregistrement neuronal. Il s'agissait de déterminer comment l'information circule dans le système nerveux d'une pieuvre au fur et à mesure qu'elle se nourrit ou est sondée/étudiée, selon que les bras fonctionnent soit en synchronisation, ce qui suggère un contrôle central, ou seuls, ce qui signifie une prise de décision indépendante.

Ils ont constaté que lorsque les ventouses de la pieuvre acquièrent de l'information sensorielle et motrice de leur environnement, les neurones du bras peuvent la traiter et passer à l'action. Le cerveau n'a rien à faire.

"On voit beaucoup de petites décisions prises par ces ganglions distribués, simplement en regardant le bras bouger, donc une des premières choses que nous faisons est d'essayer de décomposer à quoi ressemble réellement ce mouvement, d'un point de vue informatique", dit M. Gire.

"Ce que nous examinons, plus que ce qui a été étudié dans le passé, c'est comment l'information sensorielle est intégrée dans ce réseau pendant que l'animal prend des décisions complexes."

Tout ceci est conforme aux recherches antérieures, qui ont révélé que non seulement les bras de la pieuvre se nourrissent indépendamment du cerveau, mais qu'ils peuvent continuer à répondre aux stimuli même après avoir été séparés d'un animal mort.

C'est tellement étonnant que les poulpes sont souvent considérés comme aussi proches de l'extraterrestre qu'une intelligence terrestre puisse l'être (et dans certaines propositions, peut-être même carrément extraterrestre).
Il est donc considéré comme non seulement utile de les étudier pour comprendre l'intelligence sur Terre, mais peut-être aussi comme un moyen de se préparer à la rencontre avec des aliens intelligents - si cela arrive un jour.

"C'est un modèle alternatif pour une intelligence" dit Sivitilli. "Qui nous donne une compréhension de la diversité des cognitions dans le monde, et peut-être dans l'Univers.

Les recherches de l'équipe ont été présentées à la Conférence scientifique d'astrobiologie 2019.

Auteur: Internet

Info: Michelle Starr, 26 juin 2019, https://www.sciencealert.com

[ externalisation cérébrale ]

 

Commentaires: 0

Ajouté à la BD par miguel

cosmologie

Une fusion de trous noirs “interdits” abasourdit les astrophysiciens

Le 21 mai 2019, les vibrations de l'espace nées de la fusion des deux plus gros trous noirs stellaires connus ont traversé le Système solaire. D'où viennent ces trous noirs si massifs ? Une étude récente montre que le mystère est plus profond que nous ne le croyions.

(image : GW190521 : fusion des deux plus gros trous noirs stellaires jamais observés.)

Quand deux trous noirs se rencontrent, ils se tournent autour en un genre de tango gravitationnel, puis leurs horizons des événements respectifs finissent par se toucher : c'est ce que les astrophysiciens nomment la coalescence et la fusion. Un plus gros trou noir est né, mais dans ce cas-là, 2 masses solaires + 3 masses solaires = 4 masses solaires !

En effet, le trou noir fusionné possède alors une masse inférieure aux deux autres cumulées, la masse “perdue” étant convertie justement en ondes gravitationnelles que nous savons percevoir depuis bientôt 10 ans.

Le 21 mai 2019, les détecteurs LIGO (Washington) et VIRGO (Italie) détectèrent donc un signal très, très puissant, la plus grosse fusion de trous noirs stellaires jamais captée. Un trou noir de 66 masses solaires s'accouplait avec un autre de 85 masses solaires, créant un monstre de 142 masses solaires ! Tous les records étaient battus, mais les scientifiques furent sidérés, car ils considéraient cet épisode cosmique impossible. 

Un tel trou noir stellaire ne devrait pas exister !

Rappelons que les trous noirs dont nous savons détecter la fusion par ondes gravitationnelles n'ont rien à voir avec ceux de millions ou milliards de masses solaires qui logent au centre des galaxies. Ceux-là sont des trous noirs dits supermassifs et nous ne savons toujours pas comment ils se forment.

Les trous noirs dont il est ici question sont les plus communs et nous les connaissons très bien. Ils sont dits stellaires, c'est-à-dire que pour les former, il faut l'effondrement d'une étoile d'une masse d'au moins huit fois celle de notre Soleil. À l'article de sa mort, le cœur de l'étoile se charge d'éléments ultra lourds comme le fer et cette dernière explose en supernova, sauf le cœur justement qui, lui, s'effondre sous sa propre masse et devient un trou noir.

Mais un problème théorique s'est posé ce 21 mai 2019. Effectivement, les très, très grosses étoiles de plus de 65 masses solaires n'explosent pas comme les autres et ne devraient pas laisser de trou noir ! Sans trop entrer dans les détails, elles produisent de l'antimatière et se désintègrent dans ce qu'on appelle une supernova par instabilité de paires. Bref, pas de trou noir.

Ces trous noirs ne peuvent être nés que près d'un centre galactique...

Si on veut avoir l'esprit un peu ouvert et considérer que le premier trou noir de 66 masses solaires était à la limite de la théorie, alors pour lui ça va. Mais le second, celui de 85 masses solaires, était en plein dans la plage théoriquement interdite. Il faudrait donc le considérer déjà lui-même comme le produit de fusion d'autres trous noirs.

C'est ce qu'ont fait les chercheurs de l'étude en question, qui ont voulu déterminer les caractéristiques de ces ancêtres. Or ils se sont rendu compte que des trous noirs aussi massifs auraient donné une vitesse de recul très importante (un “kick”), et le seul moyen d'expliquer pourquoi ils ne se sont pas éjectés l'un l'autre est de les placer près d'un centre galactique, là où l'intense densité de matière les maintiendraient.

Ces trous noirs trop massifs se seraient donc formés près d'un noyau galactique. Alors, mystère résolu ? Pas vraiment… Jusqu'à maintenant, les astrophysiciens pensaient que le seul endroit où des trous noirs d'environ 100 à 10 000 masses solaires pouvaient se former était au sein des amas globulaires comme celui-ci :

Ces trous noirs de masse intermédiaire sont décidément bien, bien mystérieux. Et comme souvent, si ce n'est toujours, d'une observation naissent de multiples — et passionnantes — nouvelles interrogations

(Source : Kicking Time Back in Black Hole Mergers: Ancestral Masses, Spins, Birth Recoils, and Hierarchical-formation Viability of GW190521)



 

Auteur: Internet

Info: https://www.lesnumeriques.com/, Brice Haziza, 20 déc 2024, source : https://iopscience.iop.org/

[ puits gravitationnels ]

 

Commentaires: 0

Ajouté à la BD par miguel

incarnations

Fondements théoriques de l'énaction* : la précarité

Nous explorons en profondeur le concept de précarité au sein de l'énaction, une approche influente de la cognition issue des travaux de Maturana et Varela sur l'autopoïèse. L'objectif principal est de clarifier ce concept fondamental et de contribuer à un fondement théorique plus rigoureux pour l'énaction, applicable à divers phénomènes, y compris l'individualité sensorimotrice et sociale.


Introduction à l'énaction et à l'autonomie

L'énaction s'appuie sur le cadre conceptuel de l'autopoïèse développé par Maturana et Varela, qui met l'accent sur l'organisation des systèmes vivants en termes de processus auto-entretenus. L'autonomie, un concept central de l'énaction, est constituée de deux composantes : la clôture opérationnelle et la précarité.

- Clôture opérationnelle : Décrit un réseau de processus se soutenant mutuellement, où chaque processus est activé par d'autres processus du réseau, créant une boucle d'auto-organisation.

- Précarité : Se réfère à la fragilité et à la vulnérabilité inhérentes à ces systèmes autonomes, qui sont constamment menacés de désintégration. 

Types de précarité

Nous distinguons trois types de précarité, chacun reflétant différents aspects de la vulnérabilité des systèmes autonomes :

1 - Précarité systémique : La capacité d'un système à perdre son intégrité en tant que système. Si le réseau de processus se désintègre, l'identité du système est perdue. Cette forme de précarité est la plus fondamentale et souligne la menace constante d'extinction qui pèse sur les systèmes autonomes.

2 - Précarité processuelle : Non seulement le système est fragile, mais les processus mêmes qui le constituent sont également fragiles. Même si l'organisation du système est perdue, les processus constitutifs peuvent continuer à fonctionner de manière isolée.

3 - Précarité thermodynamique : S'applique aux systèmes physiquement instanciés dont la forme dépend des conditions thermodynamiques. Les relations temporelles strictes entre les processus, les flux d'énergie et les taux de réaction sont essentiels au maintien de l'organisation.

Le "Jeu de la Vie" de Conway comme modèle

Pour illustrer ces différents types de précarité, nous utilisons le "Jeu de la Vie" de Conway comme modèle-jouet. Dans ce modèle, un planeur (une configuration de cellules qui se déplace à travers la grille) est utilisé pour représenter un système autonome. Les perturbations du planeur peuvent entraîner sa désintégration, illustrant ainsi la précarité systémique. De même, la dépendance du planeur à des processus spécifiques pour son maintien illustre la précarité processuelle.

Importance théorique et implications

L'analyse de la précarité vise à clarifier les fondements théoriques de l'énaction et à fournir un cadre plus formel pour comprendre les phénomènes liés à l'autonomie et à la cognition. En distinguant différents types de précarité,  nous mettons en évidence la complexité et la richesse du concept, soulignant la nécessité d'une analyse approfondie pour une application cohérente et rigoureuse.

Conclusion

Nous soulignons  l'importance d'une analyse systématique des concepts fondamentaux de l'énaction, tels que la précarité. L'utilisation de modèles-jouets permet de concrétiser l'analyse et d'explorer les différentes significations de la précarité. Les auteurs suggèrent que cette approche peut contribuer à une compréhension plus approfondie de l'autonomie et de la cognition, et ouvrent des pistes pour de futurs travaux de recherche.


 

 

Auteur: Internet

Info: https://www.sciencedirect.com/science/article/abs/pii/S0303264722002040 *théorie de la cognition qui considère que l'esprit et l'organisme se construisent en interaction avec l'environnement. Randall D. Beer a, Ezequiel A. Di Paolo

[ cognitions émergées ]

 

Commentaires: 0

Ajouté à la BD par miguel

procréation

Insolite : quand les spermatozoïdes défient la troisième loi de Newton

Découvrez comment les spermatozoïdes défient les lois de la physique ! Une étude récente révèle que ces cellules microscopiques nagent à contre-courant des principes newtoniens. Plongez dans le monde captivant de la reproduction, où la nature repousse les limites de la science. Comment ces minuscules nageurs parviennent-ils à se déplacer dans des fluides visqueux ? La réponse pourrait changer la robotique et notre compréhension du vivant.

-  Le défi microscopique : nager contre vents et marées

-  Une danse complexe au cœur de la vie

-  Des implications révolutionnaires pour la science et la technologie

La troisième loi de Newton, pilier fondamental de la physique classique, se trouve bousculée par un acteur inattendu : le spermatozoïde. Cette cellule reproductrice, essentielle à la perpétuation de l'espèce, semble défier les principes établis il y a plus de trois siècles. Une équipe de chercheurs dirigée par Kenta Ishimoto de l'Université de Kyoto a récemment mis en lumière ce phénomène intrigant, ouvrant la voie à de nouvelles perspectives dans le domaine de la microrobotique et de la biologie cellulaire.

Le défi microscopique : nager contre vents et marées

Les spermatozoïdes, ces nageurs microscopiques, évoluent dans un environnement qui devrait, en théorie, les immobiliser. Pourtant, ils parviennent à se propulser efficacement grâce à leur flagelle, cette queue en forme de fouet qui les caractérise. Comment expliquent-ils cet exploit ?

La clé réside dans ce que les scientifiques appellent l'élasticité impaire. Cette propriété unique permet aux flagelles de se déformer sans perdre d'énergie dans le fluide environnant. Par voie de conséquence, les spermatozoïdes peuvent avancer sans provoquer de réaction égale et opposée de leur milieu, contournant astucieusement la troisième loi de Newton.



Voici un tableau comparatif des caractéristiques de mouvement :



Objet                      Milieu                    Comportement



Bille                        Air                         Respect de la 3e loi de Newton



Spermatozoïde      Fluide visqueux    Défi de la 3e loi de Newton



Une danse complexe au cœur de la vie

L'étude, publiée dans PRX Life ne s'est pas limitée aux spermatozoïdes humains. Les chercheurs ont également modélisé le comportement d'algues vertes unicellulaires, les Chlamydomonas. Ces organismes utilisent également des flagelles pour se déplacer, offrant de ce fait un point de comparaison intéressant.

Les scientifiques ont découvert que le mouvement ondulatoire des flagelles ne s'expliquait pas uniquement par leur élasticité impaire. Ils ont dû introduire un nouveau concept : le module élastique impair. Ce terme décrit les mécanismes internes complexes qui permettent aux flagelles de générer leur mouvement propulsif sans succomber aux forces de viscosité.

Cette découverte ouvre de nouvelles perspectives pour :

- la compréhension de la fertilité humaine ;

-  le développement de microrobots biomimétiques ;

-  l'étude des comportements collectifs à l'échelle microscopique.

Des implications révolutionnaires pour la science et la technologie

La capacité des spermatozoïdes à défier la loi de Newton n'est pas qu'une curiosité scientifique. Elle pourrait avoir des répercussions majeures dans divers domaines. En médecine reproductive, une meilleure compréhension du mouvement des spermatozoïdes pourrait améliorer les techniques de fécondation in vitro et le traitement de l'infertilité masculine.

Dans le domaine de la robotique, ces découvertes inspirent déjà la conception de micro-nageurs artificiels. Ces minuscules robots pourraient un jour naviguer dans le corps humain pour délivrer des médicaments de manière ciblée ou effectuer des interventions chirurgicales microscopiques.

En addition, les modèles mathématiques développés pour cette étude pourraient s'appliquer à d'autres systèmes biologiques complexes, comme le mouvement des oiseaux en vol ou le comportement des particules dans les fluides. Par suite, cette recherche sur les spermatozoïdes pourrait paradoxalement nous aider à mieux comprendre des phénomènes à plus grande échelle.

La nature, une fois à cela s'ajoute que, nous montre qu'elle recèle encore de nombreux secrets. En défiant nos lois physiques les plus établies, les spermatozoïdes nous rappellent que la frontière entre l'impossible et le possible n'est souvent qu'une question de perspective et d'échelle.



 

Auteur: Internet

Info: https://www.futura-sciences.com/, 4 février 2025. Ajout de MG : les spirochètes utilisent leur flagelle axial pour se déplacer dans des environnements complexes, tels que le sang ou les tissus tout comme les spermatozoïdes utilisent leur flagelle pour nager dans le tractus reproducteur féminin. Les deux types de cellules ont développé des mécanismes sophistiqués pour optimiser leur mouvement dans des milieux visqueux, ce qui pourrait être un sujet de recherche intéressant. Il est de plus possible d'envisager des applications biomimétiques inspirées des spirochètes et des spermatozoïdes pour la conception de microrobots.

[ gamètes mâles ] [ semence ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste