Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 526
Temps de recherche: 0.0488s

univers inversé

Les possibilités métagénomiques

Une infime fraction - la plupart des scientifiques estiment <1% - des espèces microbiennes sur Terre peut être cultivée et étudiée à l'aide de techniques classiques de microbiologie et de génomique. Mais en utilisant des outils de métagénomique récemment développés, les chercheurs appliquent l'analyse génomique à des communautés microbiennes entières à la fois, sans avoir à isoler et à cultiver des espèces individuelles. Les études de métagénomique commencent par obtenir un échantillon d'un environnement particulier tel que l'eau de mer, le sol ou l'intestin humain, en extrayant le matériel génétique de tous les organismes de l'échantillon, puis en analysant l'ADN de ce mélange pour mieux comprendre comment les membres de la communauté interagir, changer et exécuter des fonctions complexes.

Processus : la métagénomique consiste à obtenir l'ADN de tous les micro-organismes d'une communauté, sans nécessairement identifier toutes les espèces impliquées. Une fois les gènes séquencés et comparés aux séquences identifiées, les fonctions de ces gènes peuvent être déterminées.

Parce qu'elle ne dépend pas de l'établissement de cultures pures, la métagénomique offre l'accès à des millions d'espèces microbiennes qui auparavant ne pouvaient pas être étudiées. Il permet également aux chercheurs d'examiner les micro-organismes dans le contexte des environnements dans lesquels ils existent naturellement, en étudiant des communautés entières en même temps.

Applications de la métagénomique

Pratiquement tous les biologistes, quel que soit leur domaine, découvriront qu'une meilleure compréhension des communautés microbiennes et de la métagénomique peut contribuer à leurs propres recherches. L'étude des communautés microbiennes par la métagénomique peut aider les biologistes à s'attaquer à des questions scientifiques fondamentales et à résoudre les problèmes sociaux, environnementaux et économiques connexes. Voici quelques-unes des applications potentielles de la métagénomique :

Avancées des sciences de la vie.

Décrypter le fonctionnement et l'interaction des espèces au sein des communautés microbiennes peut répondre en partie à des questions fondamentales sur de nombreux aspects de la biologie microbienne, végétale et animale et améliorer considérablement la compréhension de l'écologie et de l'évolution. La métagénomique pourrait aider à répondre à des questions telles que : Qu'est-ce qui constitue un génome ? Qu'est-ce qu'une espèce ? Quelle est la diversité de la vie ?

Sciences de la Terre.

L'exploration de la manière dont les communautés microbiennes du sol et des océans affectent les équilibres atmosphériques et les conditions environnementales peut aider les scientifiques à mieux comprendre, prévoir et potentiellement faire face aux changements mondiaux.

Médicament.

Des centaines de médicaments disponibles aujourd'hui sont dérivés de produits chimiques trouvés pour la première fois dans des microbes ; l'accès aux génomes d'espèces microbiennes supplémentaires est très prometteur pour en découvrir des milliers d'autres. L'étude du "microbiome" humain – les milliers de milliards de bactéries vivant dans et sur le corps humain – peut conduire à de nouvelles façons de diagnostiquer, de traiter et de prévenir les maladies.

Énergie alternative.

De nouvelles sources d'énergie pourraient être développées en exploitant le pouvoir des communautés microbiennes pour produire des sous-produits tels que l'hydrogène, le méthane, le butanol et même le courant électrique.

Assainissement de l'environnement.

Comprendre les microbes qui dégradent les produits chimiques environnementaux peut aider à nettoyer des polluants tels que les fuites d'essence, les déversements de pétrole, les eaux usées, les rejets industriels et les déchets nucléaires.

Biotechnologie.

L'identification et l'exploitation des capacités biosynthétiques polyvalentes et diverses des communautés microbiennes peuvent conduire au développement de nouveaux produits industriels, alimentaires et de santé bénéfiques.

Agriculture.

Mieux comprendre les microbes bénéfiques vivant dans, sur, sous et autour des plantes et des animaux domestiques peut contribuer à améliorer les méthodes de détection des agents pathogènes dans les cultures, le bétail et les produits alimentaires et peut faciliter le développement de pratiques agricoles qui tirent parti des les alliances naturelles entre les microbes, les plantes et les animaux.

Biodéfense et médecine légale microbienne.

L'étude de l'ADN et des empreintes biochimiques des communautés microbiennes aide les spécialistes à surveiller les agents pathogènes connus et potentiels, à créer des vaccins et des traitements plus efficaces contre les agents bioterroristes potentiels et à reconstruire les événements dans lesquels les microbes ont joué un rôle.

Valeur de la métagénomique pour l'enseignement de la biologie

La citation de Muir a également une pertinence importante pour l'enseignement des sciences. Qu'est-ce qui sépare la chimie, la génétique, la biologie moléculaire, l'évolution, l'écologie et d'autres disciplines ? Où se croisent-elles et comment se construisent-elles les unes sur les autres ?

La métagénomique aide à combler le fossé entre la génétique et l'écologie, démontrant que les gènes d'un seul organisme sont connectés aux gènes des autres et à l'ensemble de la communauté. En fait, les processus de la métagénomique démontrent qu'il est important d'étudier les gènes et les organismes en contexte et d'apprécier toute la diversité de la vie, même dans un seul cadre. Ces messages ont une pertinence importante dans l'ensemble de la biologie et seraient des ajouts précieux à n'importe quel cours de biologie, peut-être en particulier ceux du niveau d'introduction.

Parce que la métagénomique s'inspire d'un large éventail de domaines et les affecte, c'est un outil précieux pour enseigner des thèmes et des concepts qui sont tissés tout au long de l'enseignement de la biologie. En effet, l'enseignement et l'apprentissage de la métagénomique pourraient clairement intégrer les types de changements dans l'enseignement des sciences de la maternelle à la 12e année et du premier cycle que de nombreux rapports ont demandé au cours de la dernière décennie.

Certains professeurs estiment qu'ils doivent utiliser des cours d'introduction pour fournir aux étudiants pratiquement toutes les connaissances qu'ils utiliseront pour comprendre les concepts de base d'une discipline. Certains considèrent également les cours d'introduction comme un moyen d'aider les étudiants à apprendre à interpréter les nouvelles et autres informations sur la science afin qu'ils puissent prendre des décisions plus éclairées à la maison, chez le médecin et dans l'isoloir. Trop souvent, cependant, de tels cours ne parviennent pas à transmettre la beauté complexe du monde vivant et les innombrables façons dont la biologie a un impact sur la "vraie vie". L'apprentissage de la métagénomique au niveau introductif - en mettant l'accent sur ses applications potentielles dans le monde réel - pourrait servir à éclairer les principes de base d'une grande variété de domaines, les liens entre eux et la pertinence plus large des avancées scientifiques pour les problèmes du monde réel. Si les étudiants peuvent voir qu'il y a vraiment des questions non résolues intéressantes auxquelles ils peuvent jouer un rôle pour répondre, le recrutement de jeunes talentueux pour les carrières scientifiques peut être facilité. De cette façon, les élèves rencontreront une science dynamique plutôt que statique.

LES BÉNÉFICES DE L'INTÉGRATION DE L'ÉDUCATION ET DE LA RECHERCHE

Les avantages de l'intégration précoce de la métagénomique et d'autres sciences nouvelles dans l'enseignement de la biologie profiteraient non seulement aux étudiants en biologie, mais aussi aux scientifiques et à leurs projets de recherche. L'expérience montre que lorsque les chercheurs enseignent, leur propre compréhension s'approfondit, menant à de nouvelles questions et pistes de recherche souvent inattendues qui sont posées par les étudiants, ainsi qu'à contribuer au développement d'approches créatives des problèmes. Si la communauté de la biologie peut intégrer l'enseignement de la métagénomique aux progrès de la recherche dès le départ, les étudiants pourraient devenir des participants actifs au développement du domaine.

Enseigner un domaine nouveau ou émergent est un moyen idéal d'engager profondément les étudiants dans l'exploration de questions fondamentales qui sont au cœur de la poursuite scientifique et de les encourager à poser leurs propres questions. En effet, dans le cas du domaine émergent de la métagénomique, les questions les plus fondamentales peuvent être les plus profondes. Répondre à ces questions inspire à son tour les jeunes esprits et les chercheurs actifs, et la science est bénéfique. 

D'autres ont vu l'intérêt d'intégrer la science émergente à l'éducation. Un certain nombre d'efforts sont actuellement en cours pour intégrer la recherche et l'enseignement en génomique.

Auteur: Internet

Info: https://www.ncbi.nlm.nih.gov/ Metagenomics: A Call for Bringing a New Science into the Classroom (While It's Still New) Anne Jurkowski,* Ann H. Reid,† and Jay B. Labovcorresponding author

[ sciences ] [ nano-monde ] [ ouverture ] [ matrice gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

anthropomorphisme

Les plantes sont-elles frigides?

La plante évoque l'inertie. On dit "végéter" pour "stagner". Mais il y a quelques siècles encore, "végéter" signifiait le contraire. En latin, ce mot désigne la surabondance d'énergie qui pousse une plante à jaillir. Plus on la coupe, plus elle reverdit : la plante, c'est l'énergie sexuelle incarnée. Sur le plan étymologique en tout cas. Les termes latins dont le mot "végétal" dérive désignent à l'origine "force et croissance". Le mot silva (forêt) est attesté dès Cicéron dans le sens de "grande quantité" et d'"abondance de matière". Le mode d'être de la plante est celui d'une prolifération virtuellement infinie, en constante expansion. Quel plus beau modèle prendre pour l'humain que celui du lierre ou du lichen? A la différence des végétaux dont la vie se confond avec la croissance, la plupart des bêtes, une fois adultes atteignent leurs dimensions définitives, explique Dominique Brancher, ce qui explique peut-être pourquoi les plantes font si peur. Elles ne connaissent pas de limites. Elles ne respectent pas l'ordre. Est-ce la cause du stigmate qui les frappe en Occident ? Les plantes sont-elles victimes de spécisme, de sexisme ou de racisme?

Chercheuse à l'Université de Bâle, Dominique Brancher est l'auteure d'un livre qui entend rendre justice au règne végétal : on en a fait un règne dormant, voué à l'immobilité, à l'absence de pensée, de sentiments, de sensations... Quel dommage d'avoir ainsi perverti ce qui - à l'origine de notre culture - était considéré comme une forme de débordement vital. Trop vital. "Eclipsé par l'attention exclusive donnée au vaste débat sur la distinction entre l'animal et l'homme, [...] le végétal s'est vu relégué au rang de tiers-exclu", dit-elle, regrettant que le mot végéter soit devenu synonyme d'inertie. Mais pourquoi un tel revirement? Pour quelle raison notre culture a-t-elle ainsi châtré la plante? Dans un livre au titre explicite Quand l'esprit vient aux plantes (allusion ironique au poème de La Fontaine "Comment l'esprit vient aux filles"), Dominique Brancher retrace l'histoire de ce qu'elle désigne comme l'invention d'un sexisme anti-flore. Nous avons discriminé les végétaux comme l'ont été les femmes : en leur déniant tout désir. Comme l'ont été les "sauvages" : en leur déniant toute intelligence. Comme le sont encore les animaux : en les parquant dans des réserves. C'est pourquoi il faut lire son enquête sur la sexualité des plantes comme un révélateur de nos choix de vie.

Quand les plantes étaient humaines...

Aux origines présocratiques de notre culture, les cosmogonies imaginées par Thalès (né en 640 av. J.-C.), Héraclite (504 av. J.-C.) ou Empédocle (492 av. J.-C.) reposent sur un principe d'équation : nous sommes faits de la même matière que tout ce qui existe, fleur ou astres. Cette règle d'analogie poétique "dit la trame vitale qui tisse les êtres et confond leurs attributs et leurs formes. Les arbres "pondent" leurs fruits et les êtres humains se développent comme des plantes." Pour Empédocle, qui rédige sa théorie en vers fabuleux face au paysage volcanique de sa Sicile natale, il n'y a ni naissance ni mort. Tout chose se renouvelle sous l'effet d'une ardeur brûlante qui traverse la matière. "Toute chose pense", dit-il. Toute chose aime et hait. "Dans ses transmigrations, l'âme humaine épouse les métamorphoses de la matière car elle a "déjà été autrefois garçon et fille, buisson, oiseau ou poisson cheminant à la surface de l'eau" (Empédocle, VIII).". Dans cet univers foisonnant, les plantes ont du plaisir et souffrent comme les humains qui, eux-mêmes, viennent au monde mouillés par la rosée de leur larmes. Empédocle résume ainsi leur première apparition : "Or donc voici comment des hommes et des femmes trempés de pleurs, Feu, se séparant, fit jaillir les pousses dans la nuit" (Empédocle III, Les Origines).

Avec la "raison" vient l'inégalité

Mais cette vision-là du monde est trop poétique sans doute. Dès le 1er siècle avant J.-C., Nicolas de Damas écrit dans son ouvrage De Plantis : "Il faut rejeter ces idées grossières et nous mettre à dire la vérité". Platon (427 av. J.-C.), deux siècles avant lui, n'accorde aux plantes qu'une âme inférieure et en fait des animaux immobiles. Mais c'est Aristote (384 av. J.-C.) qui "réduit encore plus considérablement la dignité du végétal en lui laissant seulement une sorte d'âme (De Anima, A5, 411)". La classification qu'Aristote met en place devient le modèle dominant d'une pensée occidentale qui place l'homme au sommet de la hiérarchie. Dans ce nouvel ordre moral, "les plantes jouissent seulement d'une âme végétative", désormais privées d'entendement. Avec le christianisme, leur statut ne s'améliore pas, au contraire. "Selon l'agenda cloisonné de la Genèse, Dieu créa les plantes le troisième jour, les animaux le cinquième et l'homme le sixième". Dans l'échelle des êtres, le végétal est en bas. Deux attitudes prévalent à son égard. La première repousse les plantes du côté du péché. Le seconde, guère plus enviable, du côté du paradis. Dans les deux cas, la plante est vue comme une créature frigide.

La plante comme symbole du péché de gourmandise Bien qu'ils lui dénient toute capacité de percevoir et donc de jouir, les théologiens estiment en effet que la plante est gourmande. Ne passe-t-elle pas son temps à sucer la terre? Voilà pourquoi elle est au bas de cette Scala Naturae ("échelle de la nature") que de nombreux ouvrages du XVIe siècle décrivent en termes de menace : attention de ne pas tomber ! Chaque échelon figure un degré de déchéance. Quand l'homme commet le péché de luxure (sensualis), il est ravalé au rang d'animal. Quand il a trop d'appétit (vitalis), le voilà végétal. Quand il sombre dans la tristesse (acédie), il rétrograde en minéral. Le christianisme "est une religion qui déconsidère la vie organique au profit de la pensée rationnelle", rappelle Dominique Brancher. Aux yeux des chrétiens, l'homme ne peut prétendre à son statut supérieur qu'à la condition de ne rien avoir en commun avec la (vile) matière. Les bêtes qui forniquent, les rivières qui ondoient et les plantes qui têtent la glaise sans penser, avec une gloutonnerie "stupide et insensible" (Jean Pic de la Mirandole) sont des choses détestables, qui renvoient à la chute.

La plante comme symbole de l'asexualité

Mais il existe une autre attitude vis à vis des plantes : pour certains chrétiens, elles présentent cet avantage sur les animaux d'être "pures". Cela commence au XIIIe siècle, avec Innocent III : dans un texte intitulé De Contemptu mundi, le pape attribue aux plantes la "candeur de l'âme végétative". La plante n'est pas sexuée, dit-il (ignorant qu'il existe des espèces végétales où les mâles et les femelles sont distincts). "Dégagés des ardeurs charnelles qui abêtissent et abrutissent, les végétaux offrent ainsi la rédemption d'un nouvel Eden. Combien d'auteurs de la Contre-Réforme ne célèbrent-ils pas la pureté de la reproduction végétale?". Dominique Brancher cite par exemple Thomas Browne qui, dans les années 1630, déclare : "Je serais heureux, si nous pouvions procréer comme les arbres sans union et s'il existait un moyen de perpétuer le monde sans passer par le coït vulgaire et trivial. C'est l'acte le plus sot qu'un homme sage puisse commettre dans sa vie". Edifiant. La chercheuse enfonce le clou : "Aux yeux de la mystique flamande, la perfection végétale figure une complétude originelle que la Faute, en modifiant le corps physique des premiers hommes, a définitivement dérobé à l'humanité : "Au lieu d'hommes qu'ils devaient être, ils sont devenus des monstres divisés en deux sexes imparfaits, impuissants à produire leurs semblables seuls, comme se produisent les arbres et les plantes".

Savez-vous planter des choux?

Dans la tradition ouverte par Innocent III, tout un imaginaire puritain se cristallise aux XVIe et XVIe siècles autour des plantes. La botanique devient "une technique de maîtrise des instincts, explique Dominique Brancher. On en trouve les répercussions jusque chez Rousseau, "persuadé qu'à tout âge l'étude de la nature émousse le goût des amusements frivoles, prévient le tumulte des passions". "La campagne a toujours été considérée comme le séjour de l'innocence", renchérit Trembley. L'herborisation devient l'activité favorite des puritains. On associe le curé de campagne à un brave jardinier, expert en sirops pour la gorge. "La méconnaissance concertée de la sexualité des plantes, depuis Aristote jusqu'aux naturalistes de la Renaissance, entretient cette vision angélique." Heureusement, il existe à toute époque des empêcheurs de tourner en rond. Au XVIe siècle, en particulier, des voix dissidentes s'élèvent : non, la plante n'est pas sage. Nous ferions bien d'en prendre de la graine.

Auteur: Giard Agnes

Info: 4 janvier 2016

[ historique ] [ Grèce antique ]

 

Commentaires: 0

sagesse antique

De la renaissance et de la règle du silence

Hermès à son fils Tat 
Tat : Dans les discours généraux, mon père, tu as parlé par énigme sur la divinité, et tu n'as pas révélé le sens de tes paroles quand tu as dit que nul ne pouvait être sauvé sans renaître. Je m'adressai à toi en suppliant après les paroles que tu m'avais dites dans le passage de la montagne, désirant apprendre la parole de la renaissance, qui m'est plus inconnue que tout le reste, et tu m'as dit que tu me la transmettrais quand je serais devenu étranger au monde; je me préparai donc à rendre ma pensée étrangère à l'illusion du monde. Conduis-moi maintenant selon ta promesse à l'initiation dernière de la renaissance, soit par la voix, soit par un chemin caché. J'ignore, Ô Trismégiste, de quelle matière, de quelle matrice, de quelle semence l'homme est né.

Hermès : Ô mon fils, la sagesse idéale est dans le silence, et la semence est le véritable bien.

Tat : Qui la sème, père, car j'ai besoin de tout apprendre ?

Hermès : La volonté de Dieu, mon fils.

Tat : Et d'où vient l'engendré, mon père ? Etant privé de l'essence intelligible qui est en moi, autre sera le Dieu engendré, le Fils de Dieu.

Hermès : Le tout dans le tout, composé de toutes les forces.

Tat : C'est une énigme, mon père, et tu ne me parles pas comme un père parle à son fils.

Hermès : Ce genre de vérité ne s'apprend pas, mon fils, on s'en souvient quand Dieu le veut.

Tat : Tes paroles sont impossibles et arrachées par la force, mon père; je veux te répondre à mon tour. Suis-je un étranger, le fils d'une autre race ? Ne me repousse pas, mon père, je suis ton véritable fils; explique-moi le mode de la renaissance.

Hermès : Que te dirais-je, mon fils ? Je n'ai rien à te dire que ceci : une vision ineffable s'est produite en moi. Par la miséricorde de Dieu, je suis sorti de moi-même, j'ai revêtu un corps immortel, je ne suis plus le même, je suis né en intelligence. Cela ne s'apprend pas par cet élément modelé à l'aide duquel on voit, et c'est pourquoi je ne m'inquiète plus de ma première forme composée, ni si je suis coloré, tangible et mesurable. Je suis étranger à tout cela. Tu me vois avec tes yeux et tu penses à un corps et à une forme visibles, ce n'est pas avec ces yeux-là que l'on me voit maintenant, mon fils.

Tat : Tu me rends fou, tu me fais perdre la raison, mon père; je ne me vois plus moi-même maintenant.

Hermès : Puisses-tu, mon fils, sortir de toi-même sans dormir, comme on est en dormant transporté dans le rêve !

Tat : Dis-moi encore ceci : quel est le générateur de la renaissance ?

Hermès : Le Fils de Dieu, l'homme un, par la volonté de Dieu.

Tat : Maintenant, mon père, tu m'as rendu muet, je ne sais que penser, car je te vois toujours de la même grandeur et avec la même figure.

Hermès : Tu te trompes même en cela, car les choses mortelles changent d'aspect tous les jours, le temps les augmente ou les diminue, elles ne sont que mensonge.

Tat : Qu'est-ce donc qui est vrai, Ô Trismégiste ?

Hermès : Ce qui n'est pas troublé, mon fils, ce qui n'a ni limites, ni couleur, ni forme : l'immuable, le nu, le lumineux; ce qui se comprend soi-même; l'inaltérable, le bien, l'incorporel.

Tat : En vérité je perds l'esprit, mon père. Il me semblait que tu m'avais rendu sage, et cette pensée annule mes sensations.

Hermès : Il en est ainsi, mon fils; les sens perçoivent ce qui s'élève comme le feu, ce qui descend comme la terre, coule comme l'eau, souffle comme l'air; mais comment pourrais-tu saisir par les sens ce qui se conçoit seulement en puissance et en énergie. Pour comprendre la naissance en Dieu, il te faut l'intelligence seule.

Tat : J'en suis donc incapable, mon père ?

Hermès : Ne désespère pas, mon fils, ton désir s'accomplira, ta volonté aura son effet; endors les sensations corporelles, et tu naîtras en Dieu; purifie-toi des bourreaux aveugles de la matière.

Tat : J'ai donc des bourreaux en moi, mon père ?

Hermès : Ils ne sont pas en petit nombre, mon fils, ils sont redoutables et nombreux.

Tat : Je ne les connais pas, mon père ?

Hermès : Le premier est l'ignorance, le second est la tristesse, le troisième l'intempérance, Le quatrième la concupiscence, le cinquième l'injustice, le sixième l'avarice, le septième l'erreur, le huitième l'envie, le neuvième la ruse, le dixième la colère, le onzième la témérité, le douzième la méchanceté. Ils sont douze et en ont sous leurs ordres un plus grand nombre encore. Par la prison des sens, ils soumettent l'homme intérieur aux passions des sens. Ils s'éloignent peu à peu de celui que Dieu a pris en pitié, et voilà en quoi consistent le mode et la raison de la renaissance. Et maintenant, mon fils, silence et louange à Dieu, sa miséricorde ne nous abandonnera pas. Réjouis-toi maintenant, mon fils, purifié par les puissances de Dieu dans l'articulation de la parole. La connaissance de Dieu (Gnose) est entrée en nous, et aussitôt l'ignorance a disparu. La connaissance de la joie nous arrive, et devant elle, mon fils, la tristesse fuira vers ceux qui peuvent encore l'éprouver. La puissance que j'éprouve après la joie, c'est la tempérance; ö charmante vertu ! Hâtons-nous de l'accueillir, mon fils, son arrivée chasse l'intempérance. En quatrième lieu j'évoque la continence, la force opposée à la concupiscence. Ce degré, mon fils, est le siège de la justice; vois comme elle a chassé l'injustice sans combat. Nous sommes justifiés, mon fils, l'injustice est partie. J'évoque la sixième puissance, la communauté, qui vient en nous lutter contre l'avarice. Quand celle-ci est partie, j'évoque la vérité, l'erreur fuit et la réalité parait. Vois, mon fils, la plénitude de bien qui suit l'apparition de la vérité; car l'envie s'éloigne de nous, et par la vérité le bien nous arrive avec la vie et la lumière, et il ne reste plus en nous de bourreaux de ténébres, tous se retirent vaincus. Tu connais, mon fils, la voie de la régénération. Quand la décade est complètée, mon fils, la naissance idéale est accomplie, le douzième bourreau est chassé et nous naissons à la contemplation. Celui qui obtient de la miséricorde divine la naissance en Dieu, est affranchi des sensations corporelles, reconnaît les éléments divins qui le composent et jouit d'un bonheur parfait.

Tat : Fortifié par Dieu, mon père, je comtemple, non par les yeux, mais par l'énergie intellectuelle des puissances. Je suis dans le ciel, sur la terre, dans l'eau, dans l'air; je suis dans les animaux, dans les plantes, dans l'utérus, avant l'utérus, après l'utérus, partout. Mais, dites-moi encore ceci : comment les bourreaux des ténèbres, qui sont au nombre de douze, sont-ils chassés par les dix puissances ? Quel est le mode, ö Trismégiste ?

Hermès : Cette tente que nous avons traversée, mon fils, est formée par le cercle zodiacal, qui se compose de signes au nombre de douze, d'une seule nature et de toutes sortes de formes. Il existe là des couples destinés à égarer l'homme et qui se confondent dans leur action. La témérité est inséparable de la colère, elles ne peuvent être distinguées. Il est donc naturel et conforme à la droite raison qu'elles disparaissent ensemble, chassées par les dix puissances, c'est à dire par la décade; car la décade, mon fils, est génératrice de l'âme. La vie et la lumière sont unies là où nait l'unité de l'esprit. L'unité contient donc rationnellement la décade, et la décade contient l'unité.

Tat : Mon père, je vois l'univers et moi-même dans l'intelligence.

Hermès : Voilà la renaissance, mon fils, détourner sa pensée du corps aux trois dimensions, selon ce discours sur la renaissance, que j'ai commenté, afin que nous ne soyons pas des diables (ennemis) de l'univers pour la foule à qui Dieu ne veut pas le révéler.

Tat : Dis-moi, mon père, ce corps composé de puissances se décompose-t-il jamais ?

Hermès : Ne dis pas cela, mon fils, ne dis pas de choses impossibles, ce serait une erreur et une impiété de l'oeil de ton intelligence. Le corps sensible de la nature est loin de la génération essentielle. L'un est décomposable, l'autre ne l'est pas; l'un est mortel, l'autre immortel. Ignores-tu que tu es devenu Dieu et fils de l'Un ainsi que moi ? (...)

Auteur: Hermès Trismégiste

Info: Sermon secret sur la montagne (extrait)

[ religion ] [ spiritualité ] [ père-fils ] [ corps-esprit ]

 
Commentaires: 1
Ajouté à la BD par Neshouma

laisser-aller

Une polémique contre notre culture de surmenage et un manifeste d'être plutôt que de faire... Apprenons des paresseux.

En 1765, Jean-Jacques Rousseau passa deux mois sur une île suisse à se consacrer à "mon précieux farniente" (ne rien faire). Il traînait, ramassait des plantes, dérivait dans un bateau, s'asseyait pendant des heures pour une "Délicieuse rêverie.. Plaisamment conscient de mon existence sans me soucier de ma pensée" : une oisiveté qu'il qualifia plus tard de "bonheur le plus complet et parfait" de sa vie.

Rousseau est l'un des héros de Not Working, avec Thoreau, Emily Dickinson et un lapin nommé Rr dont Josh Cohen s'est brièvement occupé. Le livre s'ouvre sur Rr qui se balade autour de son clapier, sa sérénité insensée déclenchant chez Cohen une reconnaissance empathique de son propre "vide secret et clos", ses fréquents accès de "rêverie lapine". Comme Rousseau sur son île, Rr ne fait pas, il est, tout simplement. Sa passivité interpelle Cohen qui, à différents moments de son livre, se décrit lui-même comme un slob, un fainéant, un feignant. Enfant, on le réprimandait régulièrement pour sa paresse ; à l'âge adulte, chaque jour lui apporte son moment de farniente : "Ça arrive souvent la nuit, quand je suis affalé sur le canapé... mon livre repose face contre terre, mes chaussures enlevées ; à côté de moi se trouvent deux télécommandes, un bol de cacahuètes et une bouteille de bière à moitié vide...

Sortir de cette léthargie... Ressemble à un trouble physique, métaphysique même, une violation de la justice cosmique..." "Pourquoi devrais-je ?" La protestation enfantine est désarmante ; on s'imagine lapin intérieur de Cohen attaché à un tapis roulant ou, pire encore, transformé en lapin très différent : le lapin Duracell, dont le "mouvement d'horloge" et le "sourire aux yeux morts" en font le symbole parfait de l'acharnement de la vie moderne, sa "nerveuse et constante contrainte à agir" que Cohen n'aime pas et à laquelle il résiste.

Not Working est une polémique contre notre culture du surmenage et une méditation sur ses alternatives. "Qu'est-ce qui fait que la vie vaut la peine d'être vécue ?" Cohen est psychanalyste. Chaque jour son cabinet de consultation résonne d'histoires d'activité ininterrompue, d'épuisement, de dépression, de "fantasmes d'une cessation complète de l'activité". Certains de ces conteurs apparaissent dans le livre, soigneusement déguisés, en compagnie d'une foule d'autres anti-travailleurs, réels et fictifs, dont le philosophe grec Pyrrho, Homer Simpson et Cohen lui-même à différents moments de sa vie. La distribution est majoritairement masculine, regroupée en quatre "types inertiels" : le burnout, le slob (fuyard), le rêveur, le fainéant. Certains s'enfoncent dans l'inertie, d'autres, comme Cohen, y sombrent.

Il s'avère que tous sont prennent des risques, car "en résistant au travail... chacun de ces types est susceptible de tomber dans une ou plusieurs impasses" : lassitude débilitante, dépression, solitude, ennui. Le farniente, en d'autres termes, a son prix, qui peut être très élevé pour certaines personnes, y compris trois hommes dont Cohen souligne les histoires - Andy Warhol, Orson Welles et David Foster Wallace.

Warhol aspirait à ce que les stoïciens appelaient l'apathie (l'absence de passion), une nostalgie qui se traduisait par un engourdissement mécanique, un état de "ne rien être et ne rien ressentir", avec laquelle alternaient de féroces et mécaniques activités, suivies d'un effondrement inertiel : un lapin Duracell avec des batteries à plat. Welles combinait des efforts herculéens avec de longues retraites dans son lit, qui devinrent de plus en plus fréquentes à mesure que son corps et son esprit cédaient sous son style de vie de fou. L'éblouissante carrière littéraire de Foster Wallace fut ponctuée de périodes où il s'effondrait devant la télévision aux prises avec une dépression aiguë : torpeur mortelle qui prit fin par son suicide.

Cohen qualifie ces hommes différemment (Warhol le burnout, Welles le reveur, Foster Wallace le fainéant) mais ce qui frappe chez les trois, c'est comment cette fuite de l'hyperactivité vers l'inertie autodestructrice implique un mouvement vers une solitude radicale, farniente de cancéreux en isolement. La solitude fut longtemps associée à l'énervement dépressif. On disait des solitaires spirituels médiévaux qu'ils souffraient d'acédie, une paresse mélancolique de l'esprit et du corps. "Ne soyez pas solitaire, ne restez pas inactif ", conseille Robert Burton, un érudit du XVIIe siècle, dans The Anatomy of Melancholy (1621), un ouvrage extrêmement influent. La psychiatrie moderne considère la réclusivité comme pathologique et de nombreux collègues psychanalystes de Cohen sont du même avis. Il s'en défend, se tournant plutôt vers la tradition alternative de la Renaissance, qui valorise la solitude comme lieu de création.

L'analyste d'après-guerre Donald Winnicott fut un éloquent porte-parole de cette tradition. Pour Winnicott, - la créativité dépendait du maintien du contact avec le "point mort et silencieux" au cœur de la psyché - Cohen prend pour exemple la célèbre recluse Emily Dickinson, qui se retira de la société pour les "infinies limites de sa propre chambre et de son cerveau" et qui produisit une poésie à l'éclatante originalité". Renonçant à l'amour sexuel et au mariage pour l'"intimité polaire" de sa vie intérieure, "elle ne faisait rien" aux yeux du monde, alors que dans son propre esprit, elle "faisait tout", voyageant sans peur jusqu'aux extrêmes de l'expérience possible.

Dans une brillante série de textes, Cohen montre comment ce voyage intrépide a produit une poésie qui se déplace entre des images bouleversantes d'acédie et des évocations extatiques du désir non consommé, la "gloire privée et invisible" de Dickinson. Le rêve et les produits du rêve l'emportent sur l'actualité contraignante. "Pour Dickinson, rêvasser n'était pas une retraite dans l'inactivité, mais le socle de la plus haute vocation." La manière dont Cohen traite Dickinson est révélatrice. Les lâches et autres fainéants qui peuplent Not Working sont des hommes selon son cœur, mais c'est l'artiste qui est son ideal, qui dédaigne la vie du monde réel ("prose" était l'étiquette méprisante de Dickinson pour cela) au bénéfice de la vie de l'imagination.

Une artiste "ne fait rien", ne produit rien "d'utile", elle incarne en cela la "dimension sabbatique de l'être humain", la partie la plus riche de nous-mêmes. Mais est-ce que cela fait de l'artiste un "type de poids mort" ? Dans ses Confessions, Rousseau écrit "L'oisiveté que j'aime n'est pas celle du fainéant qui reste les bras croisés dans une totale inactivité", mais "celle de l'enfant sans cesse en mouvement". Le jeu n'est pas non plus un travail, mais il est tout sauf inerte. Pour Winnicott, le jeu était expérience la créative primordiale, la source de toute créativité adulte. Cohen est passionné par Winnicott, il est donc intéressant qu'il n'en parle pas, contrairement à Tracey Emin qui, lors d'une interview en 2010, décrivit les jeux d'enfants comme la source de son art.

Dans une discussion éclairante de sur My Bed d'Emin, Cohen fait l'éloge de l'œuvre pour sa représentation puissante de "l'inertie et de la lassitude". Mais contrairement à l'inertie des hommes dont il parle, Emin elle-même semble aller de force en force. Jouer est-il le secret ? Emin et Dickinson sont parmi les rares femmes qui apparaissent dans Not Working. Nous apprenons quand à leur représentation artistique de l'inertie féminine, mais sans rencontrer de femme paresseuse ou feignante. Alors que font-elle pendant que les hommes paressent ?

En regardant de plus près les paresseux préférés de Cohen - Rousseau, Thoreau, Homer Simpson - nous avons un indice. Les jours de farniente de Rousseau sont ponctués par les repas préparés par sa femme. La lessive de Thoreau était faite par sa mère. Marge Simpson fait le ménage pendant qu'Homer boit de la bière devant la télé. Quel genre de révolution faudrait-il pour mettre Marge devant la télé pendant que Homer nettoie la cuisine ? La lutte contre le surmenage existe depuis des siècles (rejointe plus récemment par des protestations féministes contre le "double travail"). Il en va de même pour les luttes pour un travail décent, décemment rémunéré, luttes que Cohen et moi aimons tous deux.

Pourtant, aujourd'hui, dans la vie réelle, les Marges se précipitent toujours de leur maison vers leur emploi au salaire minimum chez Asda. Les Homer enquillent des 12 heures de travail à la suite pour Uber. Et s'ils s'épuisent, comme beaucoup ils se retrouvent souvent dans les banques alimentaires. Que faire à ce sujet ? "Idiorythmie" était le terme de Roland Barthes pour vivre selon ses propres rythmes intérieurs, sans contrainte. Cohen veut qu'on imagine ce que serait une telle vie. Il est sceptique quand aux propositions "pour changer ça", qui n'y parviennent jamais, soutenant que si "les objectifs de la justice juridique, politique et économique ne s'occupent plus de la question de savoir ce qui fait qu'une vie vaut la peine d'être vécue, ils sont susceptibles de devenir des trucs en plus sur la déjà longue liste des choses à faire sans joie...".

Parallèlement aux droits liés au travail, nous avons besoin d'un droit au non travail, a-t-il affirmé récemment. C'est un argument utopique et pas pire pour autant, même affaibli par un rejet ironique de toute action politique en faveur du relâchement et de la paresse. Cependant Not Working n'est pas un manifeste révolutionnaire. Il s'agit plutôt d'une ré-imagination très personnelle et éloquente de nos vies en tant qu'espace de farniente dans toute son idiosyncrasie sans entraves, et d'un rappel précieux du prix exorbitant d'une existence de lapin Duracell.

Auteur: Taylor Bradford Barbara

Info: critique de "Not Working" de Josh Cohen - les bienfaits de l'oisiveté. https://www.theguardian.com. 12 janv. 2019

[ créativité ] [ insouciance ] [ flemme ] [ écrivain-sur-écrivains ] [ femmes-hommes ]

 

Commentaires: 0

Ajouté à la BD par miguel

chimiosynthèse

Les cellules souterraines produisent de l'« oxygène sombre » sans lumière

Dans certaines profondes nappes souterraines, les cellules disposent d’une astuce chimique pour produire de l’oxygène qui pourrait alimenter des écosystèmes souterrains entiers.

(Photo - Dans un monde ensoleillé, la photosynthèse fournit l’oxygène indispensable à la vie. Au fond des profondeurs, la vie trouve un autre chemin.)

Les scientifiques se sont rendu compte que le sol et les roches sous nos pieds abritent une vaste biosphère dont le volume global est près de deux fois supérieur à celui de tous les océans de la planète. On sait peu de choses sur ces organismes souterrains, qui représentent l’essentiel de la masse microbienne de la planète et dont la diversité pourrait dépasser celle des formes de vie vivant en surface. Leur existence s’accompagne d’une grande énigme : les chercheurs ont souvent supposé que bon nombre de ces royaumes souterrains étaient des zones mortes pauvres en oxygène, habitées uniquement par des microbes primitifs qui maintiennent leur métabolisme au ralenti et se débrouillent grâce aux traces de nutriments. À mesure que ces ressources s’épuisent, pensait-on, l’environnement souterrain devient sans vie à mesure que l’on s’enfonce.

Dans une nouvelle recherche publiée le mois dernier dans Nature Communications , les chercheurs ont présenté des preuves qui remettent en question ces hypothèses. Dans des réservoirs d'eau souterraine situés à 200 mètres sous les champs de combustibles fossiles de l'Alberta, au Canada, ils ont découvert des microbes abondants qui produisent des quantités étonnamment importantes d'oxygène, même en l'absence de lumière. Les microbes génèrent et libèrent tellement de ce que les chercheurs appellent " l'oxygène noir " que c'est comme découvrir " le même quantité d'oxygène que celle  issue de la photosynthèse dans la forêt amazonienne ", a déclaré Karen Lloyd , microbiologiste souterrain à l'Université du Tennessee qui n'était pas partie de l’étude. La quantité de gaz diffusé hors des cellules est si grande qu’elle semble créer des conditions favorables à une vie dépendante de l’oxygène dans les eaux souterraines et les strates environnantes.

"Il s'agit d'une étude historique", a déclaré Barbara Sherwood Lollar , géochimiste à l'Université de Toronto qui n'a pas participé aux travaux. Les recherches antérieures ont souvent porté sur les mécanismes susceptibles de produire de l'hydrogène et d'autres molécules vitales pour la vie souterraine, mais cette création de molécules contenant de l'oxygène a été largement négligée car ces molécules sont très rapidement consommées dans l'environnement souterrain. Jusqu’à présent, " aucune étude n’a rassemblé tout cela comme celle-ci ", a-t-elle déclaré.

La nouvelle étude a porté sur les aquifères profonds de la province canadienne de l’Alberta, qui possède des gisements souterrains si riches en goudron, en sables bitumineux et en hydrocarbures qu’elle a été surnommée " le Texas du Canada ". Parce que ses énormes industries d'élevage de bétail et d'agriculture dépendent fortement des eaux souterraines, le gouvernement provincial surveille activement l'acidité et la composition chimique de l'eau. Pourtant, personne n’avait étudié systématiquement la microbiologie des eaux souterraines.

Pour Emil Ruff , mener une telle enquête semblait être " une solution facile " en 2015 lorsqu'il a commencé son stage postdoctoral en microbiologie à l'Université de Calgary. Il ne savait pas que cette étude apparemment simple le mettrait à rude épreuve pendant les six prochaines années.

Profondeurs encombrées

Après avoir collecté l'eau souterraine de 95 puits à travers l'Alberta, Ruff et ses collègues ont commencé à faire de la microscopie de base : ils ont coloré des cellules microbiennes dans des échantillons d'eau souterraine avec un colorant à base d'acide nucléique et ont utilisé un microscope à fluorescence pour les compter. En radiodatant la matière organique présente dans les échantillons et en vérifiant les profondeurs auxquelles ils avaient été collectés, les chercheurs ont pu identifier l'âge des aquifères souterrains qu'ils exploitaient.

Une tendance dans les chiffres les intriguait. Habituellement, lors d'études sur les sédiments sous le fond marin, par exemple, les scientifiques constatent que le nombre de cellules microbiennes diminue avec la profondeur : les échantillons plus anciens et plus profonds ne peuvent pas abriter autant de vie car ils sont davantage privés des nutriments produits par les plantes photosynthétiques. et des algues près de la surface. Mais à la surprise de l'équipe de Ruff, les eaux souterraines plus anciennes et plus profondes contenaient plus de cellules que les eaux plus douces.

Les chercheurs ont ensuite commencé à identifier les microbes présents dans les échantillons, à l’aide d’outils moléculaires pour repérer leurs gènes marqueurs révélateurs. Beaucoup d’entre eux étaient des archées méthanogènes – des microbes simples et unicellulaires qui produisent du méthane après avoir consommé de l’hydrogène et du carbone suintant des roches ou de la matière organique en décomposition. De nombreuses bactéries se nourrissant du méthane ou des minéraux présents dans l’eau étaient également présentes.

Ce qui n'avait aucun sens, cependant, c'est que bon nombre de bactéries étaient des aérobies, des microbes qui ont besoin d'oxygène pour digérer le méthane et d'autres composés. Comment les aérobies pourraient-ils prospérer dans des eaux souterraines qui ne devraient pas contenir d’oxygène, puisque la photosynthèse est impossible ? Mais les analyses chimiques ont également révélé une grande quantité d’oxygène dissous dans les échantillons d’eau souterraine de 200 mètres de profondeur.

C'était du jamais vu. "On a sûrement foiré l'échantillon", fut la première réaction de Ruff.

Il a d’abord tenté de montrer que l’oxygène dissous dans les échantillons était le résultat d’une mauvaise manipulation. "C'est comme être Sherlock Holmes", a déclaré Ruff. " Vous essayez de trouver des preuves et des indications " pour réfuter vos hypothèses. Cependant, la teneur en oxygène dissous semblait constante sur des centaines d’échantillons. Une mauvaise manipulation ne pouvait pas l'expliquer.

Si l’oxygène dissous ne provenait pas d’une contamination, d’où venait-il ? Ruff s'est rendu compte qu'il près de quelque chose de grand, même si faire des affirmations controversées va à l'encontre de sa nature. Beaucoup de ses co-auteurs avaient également des doutes : cette découverte menaçait de briser les fondements de notre compréhension des écosystèmes souterrains.

Produire de l'oxygène pour tout le monde

En théorie, l’oxygène dissous dans les eaux souterraines pourrait provenir de plantes, de microbes ou de processus géologiques. Pour trouver la réponse, les chercheurs se sont tournés vers la spectrométrie de masse, une technique permettant de mesurer la masse des isotopes atomiques. En règle générale, les atomes d’oxygène provenant de sources géologiques sont plus lourds que l’oxygène provenant de sources biologiques. L’oxygène présent dans les eaux souterraines était léger, ce qui impliquait qu’il devait provenir d’une entité vivante. Les candidats les plus plausibles étaient les microbes.

Les chercheurs ont séquencé les génomes de l’ensemble de la communauté microbienne présente dans les eaux souterraines et ont repéré les voies et réactions biochimiques les plus susceptibles de produire de l’oxygène. Les réponses pointaient sans cesse vers une découverte faite il y a plus de dix ans par Marc Strous de l'Université de Calgary, auteur principal de la nouvelle étude et chef du laboratoire où travaillait Ruff.

Alors qu'il travaillait dans un laboratoire aux Pays-Bas à la fin des années 2000, Strous avait remarqué qu'un type de bactérie se nourrissant de méthane, souvent présente dans les sédiments des lacs et les boues d'épuration, avait un mode de vie étrange. Au lieu d'absorber l'oxygène de son environnement comme les autres aérobies, ces bactéries créent leur propre oxygène en utilisant des enzymes pour décomposer les composés solubles appelés nitrites (qui contiennent un groupe chimique composé d'azote et de deux atomes d'oxygène). Les bactéries utilisent l’oxygène auto-généré pour transformer le méthane en énergie.

Lorsque les microbes décomposent les composés de cette façon, on parle de dismutation. Jusqu’à présent, on pensait que cette méthode de production d’oxygène était rare dans la nature. Des expériences récentes en laboratoire impliquant des communautés microbiennes artificielles ont cependant révélé que l'oxygène produit par la dismutation peut s'échapper des cellules et se répandre dans le milieu environnant au profit d'autres organismes dépendants de l'oxygène, dans une sorte de processus symbiotique. Ruff pense que cela pourrait permettre à des communautés entières de microbes aérobies de prospérer dans les eaux souterraines, et potentiellement également dans les sols environnants.

Chimie pour la vie ailleurs

Cette découverte comble une lacune cruciale dans notre compréhension de l’évolution de l’immense biosphère souterraine et de la manière dont la dismutation contribue au cycle des composés se déplaçant dans l’environnement mondial. La simple possibilité que de l'oxygène soit présent dans les eaux souterraines " change notre compréhension du passé, du présent et de l'avenir du sous-sol ", a déclaré Ruff, qui est maintenant scientifique adjoint au Laboratoire de biologie marine de Woods Hole, Massachusetts.

Comprendre ce qui vit dans le sous-sol de notre planète est également " crucial pour transposer ces connaissances ailleurs ", a déclaré Sherwood Lollar. Le sol de Mars, par exemple, contient des composés perchlorates que certains microbes terrestres peuvent transformer en chlorure et en oxygène. Europe, la lune de Jupiter, possède un océan profond et gelé ; la lumière du soleil ne peut pas y pénétrer, mais l'oxygène pourrait potentiellement y être produit par dismutation microbienne au lieu de la photosynthèse. Les scientifiques ont observé des panaches de vapeur d’eau jaillissant de la surface d’Encelade, l’une des lunes de Saturne. Les panaches proviennent probablement d’un océan souterrain d’eau liquide. Si un jour nous trouvons de la vie sur d’autres mondes comme ceux-là, elle pourrait emprunter des voies de dismutation pour survivre.

Quelle que soit l'importance de la dismutation ailleurs dans l'univers, Lloyd est étonné de voir à quel point les nouvelles découvertes défient les idées préconçues sur les besoins de la vie et par l'ignorance scientifique qu'elles révèlent sur l'une des plus grandes biosphères de la planète. " C'est comme si nous avions toujours eu un œuf sur le visage ", a-t-elle déclaré.

Auteur: Internet

Info: https://www.quantamagazine.org/, Saugat Bolakhé, juillet 2023

[ perspectives extraterrestres ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

macromolécules

(Q) - Combien de protéines ont été identifiées à ce jour ?

(R) - À la date d'arrêt de mes connaissances, en septembre 2021, le nombre de protéines identifiées dans le protéome humain et dans divers organismes ne cesse de croître en raison des efforts de recherche continus. Il est difficile de fournir un chiffre exact car l'identification des protéines est un domaine actif de la recherche scientifique et de nouvelles protéines sont découvertes en permanence.

Toutefois, à cette époque, on estimait que le protéome humain se composait de dizaines de milliers de protéines. Le projet du protéome humain (HPP), une initiative de recherche internationale, vise à identifier et à caractériser toutes les protéines codées par le génome humain. Le HPP a réalisé des progrès significatifs dans la cartographie du protéome humain, mais une couverture complète est encore en cours.

Il est important de noter que le nombre de protéines identifiées varie en fonction de l'organisme étudié. Il existe des millions de séquences de protéines connues dans divers organismes, y compris les humains, les animaux, les plantes, les bactéries et les virus.

Comme mes connaissances ne sont pas à jour, je recommande de se référer à la littérature scientifique actuelle ou à des bases de données telles que UniProt ou Protein Data Bank (PDB) pour obtenir les informations les plus précises et les plus récentes sur le nombre de protéines identifiées.

(Q) - Comment les protéines sont-elles classées ?

(R) - Les protéines sont classées en fonction de divers critères, notamment leur structure, leur fonction et leurs relations évolutives. Voici quelques méthodes de classification des protéines couramment utilisées :

1 Classification structurelle : Les protéines peuvent être classées en fonction de leurs caractéristiques structurelles. Le système de classification structurelle le plus courant est la classification structurelle des protéines (SCOP) ou la base de données CATH (Class, Architecture, Topology, Homologous superfamily). Ces systèmes classent les protéines dans des hiérarchies en fonction de leur pliage global, de l'organisation des domaines et des motifs structurels.

2 Classification fonctionnelle : Les protéines peuvent être classées en fonction de leurs fonctions biologiques. Cette classification est souvent large et englobe des catégories fonctionnelles telles que les enzymes, les transporteurs, les récepteurs, les protéines structurelles, les protéines de signalisation et bien d'autres encore. Les systèmes de classification fonctionnelle sont généralement basés sur le rôle de la protéine dans les processus cellulaires.

3 Classification basée sur l'homologie : Les protéines peuvent être classées sur la base de leurs relations évolutives et de leurs similitudes de séquence. Cette classification repose sur la comparaison des séquences protéiques et l'identification des protéines homologues qui partagent un ancêtre commun. Elle est généralement réalisée à l'aide d'algorithmes tels que BLAST (Basic Local Alignment Search Tool) ou HMM (Hidden Markov Models).

4 Classification selon l'ontologie des gènes (GO) : L'ontologie des gènes est un système de classification largement utilisé qui attribue des annotations fonctionnelles aux protéines sur la base de trois catégories : fonction moléculaire, processus biologique et composant cellulaire. Les termes GO fournissent un vocabulaire normalisé pour décrire les fonctions des protéines et leur implication dans les processus biologiques.

5 Classification par famille et par super-famille : Les protéines peuvent être classées en familles et superfamilles sur la base de caractéristiques structurelles et séquentielles communes. Les familles de protéines sont constituées de protéines présentant une grande similitude de séquence et partageant souvent des relations fonctionnelles et évolutives. Les superfamilles englobent des familles de protéines apparentées qui partagent des similitudes structurelles et fonctionnelles, mais qui peuvent avoir divergé au cours de l'évolution.

These are just a few examples of protein classification methods, and there are other specialized systems based on specific properties or research areas. It's important to note that proteins can belong to multiple classification categories simultaneously, as they can have similar structures, functions, or evolutionary origins. Classification systems serve as useful tools for organizing and understanding the vast diversity of proteins found in living organisms.

(Q) - Il y a donc une sorte de classification complexe et intriquée, n'est-ce pas ?

 (R) - Oui, la classification des protéines peut en effet être complexe en raison des divers facteurs pris en compte et des interrelations entre les différents systèmes de classification. Les protéines sont des molécules très diverses, dotées de caractéristiques uniques, et leur classification reflète cette complexité.

Les différentes méthodes de classification se recoupent et se complètent souvent, ce qui permet une compréhension globale de la structure, de la fonction et de l'évolution des protéines. Par exemple, les systèmes de classification structurelle tels que SCOP ou CATH prennent en compte l'organisation globale des plis et des domaines des protéines, tandis que les systèmes de classification fonctionnelle se concentrent sur les rôles et les activités biologiques des protéines. La classification basée sur l'homologie tient compte des relations évolutives et des similitudes de séquence, et la classification par ontologie génique fournit un vocabulaire normalisé pour décrire les fonctions des protéines.

En outre, les protéines peuvent appartenir à plusieurs catégories au sein d'un système de classification. Par exemple, une protéine peut avoir une structure spécifique et être classée dans un pli particulier, tout en faisant partie d'une famille de protéines sur la base de la similarité des séquences et des caractéristiques fonctionnelles. Cette classification multidimensionnelle permet aux chercheurs d'explorer différents aspects des protéines et de mieux comprendre leurs propriétés et leurs relations.

Dans l'ensemble, la nature complexe de la classification des protéines reflète la nature complexe des protéines elles-mêmes et les efforts déployés pour organiser et comprendre leurs divers attributs. Ces systèmes de classification fournissent des cadres pour l'étude des protéines et facilitent la communication et le partage des connaissances entre les chercheurs dans ce domaine.

(Q) - Peut-on dire qu'il y a aussi, dans ces différentes classifications, quelque chose qui pourrait ressembler à un pôle phénétique et à un pôle cladistique ?

(R) - Oui, dans le domaine de la classification des protéines, il y a des éléments qui peuvent être associés aux approches phénétiques (aussi connues sous le nom de taxonomie numérique) et cladistiques.

Classification phénétique : La classification phénétique met l'accent sur les similitudes et les différences globales entre les protéines, souvent sur la base d'une analyse numérique ou statistique de leurs caractéristiques. Elle se concentre sur des traits ou des caractéristiques quantifiables et vise à regrouper les protéines sur la base d'une ressemblance globale. Dans le contexte de la classification des protéines, les approches phénétiques peuvent impliquer le regroupement des protéines sur la base de mesures de similarité telles que l'alignement des séquences, l'alignement structurel ou la comparaison d'autres propriétés physicochimiques.

Classification cladistique : La classification cladistique, quant à elle, est basée sur les relations évolutives et les ancêtres partagés. Elle cherche à identifier des groupes monophylétiques (clades) qui comprennent un ancêtre commun et tous ses descendants. La cladistique repose sur l'analyse phylogénétique, qui consiste à comparer des séquences de protéines ou d'autres données moléculaires pour reconstruire des arbres ou des réseaux évolutifs. Les cladogrammes qui en résultent décrivent les relations évolutives entre les protéines et peuvent aider à les classer en groupes sur la base de leur histoire évolutive.

Dans la pratique, les approches phénétiques et cladistiques sont souvent utilisées en combinaison, en exploitant différents types de données et d'analyses pour obtenir une compréhension plus complète de la classification des protéines. Les systèmes de classification structurelle tels que SCOP ou CATH, par exemple, intègrent à la fois les principes phénétiques et cladistiques. Ils prennent en compte les similitudes structurelles (aspect phénétique) mais visent également à refléter les relations évolutives et les ancêtres partagés (aspect cladistique) en regroupant les protéines dans des catégories hiérarchiques basées sur leurs plis, leurs domaines et leurs connexions évolutives.

En intégrant à la fois les perspectives phénétiques et cladistiques, les systèmes de classification des protéines peuvent saisir à la fois les similitudes et les différences globales entre les protéines (pôle phénétique) et leur histoire évolutive et leurs liens de parenté (pôle cladistique). Cela permet d'obtenir un cadre de classification plus nuancé et plus informatif dans le domaine de la science des protéines.

(Q) - ok merci : existe-t-il aussi une classification tridimensionnelle ?

(R) - Oui, il existe une classification tridimensionnelle (3D) des protéines basée sur leurs propriétés structurelles. La classification 3D consiste à classer les protéines en fonction de leurs structures tridimensionnelles plutôt qu'en fonction de leur séquence ou de leurs similitudes fonctionnelles. Ce type de classification est particulièrement pertinent en biologie structurale et en modélisation moléculaire.

Dans la classification 3D, les protéines sont regroupées en fonction de leur pli global, de l'arrangement des éléments structurels secondaires et de l'arrangement spatial des atomes. Elle tient compte de la disposition et de l'orientation spécifiques des domaines protéiques, des motifs et d'autres caractéristiques structurelles.

La classification structurelle des protéines (SCOP) et la base de données CATH (Class, Architecture, Topology, Homologous superfamily), que j'ai mentionnées précédemment, fournissent des classifications hiérarchiques qui incluent des informations structurelles en 3D. Ces classifications classent les protéines dans différentes catégories en fonction de leur pliage global et de leur organisation structurelle.

En outre, d'autres méthodes et algorithmes, tels que les outils d'alignement structurel, peuvent être utilisés pour comparer les structures des protéines et identifier les similitudes et les différences. Ces approches aident à regrouper ou à classer les protéines en groupes structurels 3D, ce qui permet aux chercheurs d'analyser et de comprendre les relations entre les structures des protéines d'une manière plus détaillée.

La classification 3D des protéines fournit des informations précieuses sur la diversité structurelle et les relations entre les protéines. Elle est particulièrement utile pour étudier la fonction des protéines, les mécanismes d'action, les interactions protéine-protéine et la conception de médicaments. En considérant les aspects tridimensionnels de la structure des protéines, les chercheurs peuvent mieux comprendre comment la structure des protéines est liée à la fonction et aux relations évolutives.

Auteur: chatGPT4

Info:

[ machine-homme ] [ chimie ] [ taxinomies ] [ typologies ]

 

Commentaires: 0

Ajouté à la BD par miguel

volatiles

Cette découverte scientifique est restée cachée dans un tiroir de musée pendant des décennies.  

Les oiseaux que nous allons rencontrer ne ressemblent à rien de ce que vous avez déjà vu.

Federico Degrange : Ils utilisent leur bec comme une hache pour tuer leurs proies.

Lichtman : Oh, mon Dieu.

Daniel Ksepka : Imaginez la plus grande chose que vous ayez jamais vue en vie en train de voler.

James Hansford : Ils sont colossaux. Ils pèsent environ 1 900 livres.

Alicia Grealy : Les œufs auraient été environ 150 fois plus gros qu'un œuf de poule.

Ksepka : Nous parlons donc de plumes d'environ deux pieds, ce qui est... c'est une grande plume.

Anusuya Chinsamy-Turan : La plupart des gens, vous savez, pensent à l'autruche - et ils pensent que c'est grand. Mais en fait, il y avait de vrais géants à une époque.

Lichtman : Nous parlons d'oiseaux qui pesaient autant qu'une voiture de sport, d'oiseaux qui étaient les plus grands prédateurs de leur époque, parcourant la jungle et dévorant des animaux de la taille d'un petit cheval, d'oiseaux si gargantuesques qu'on pouvait les confondre avec un avion.

Pourtant, ces oiseaux sont passés sous le radar de la paléontologie, en tout cas si on compare avec de nombreux dinosaures. Ces géants ailés sont mystérieux et les scientifiques en apprennent chaque jour un peu plus sur eux.

Au cours des quatre prochains épisodes de Science, vite fait, je vais vous les présenter. Nous partons à la recherche des oiseaux les plus extrêmes qui aient jamais existé. Bienvenue dans la première partie d'une série de quatre épisodes sur les vrais grands oiseaux.

- Bonjour, je m'appelle Daniel Ksepka.

Lichtman : Dan est un paléontologue aviaire.

Ksepka : Et je suis conservateur des sciences au Musée Bruce.

Lichtman : Quelle est votre relation avec les grands oiseaux disparus ?

Ksepka : Je les aime et ils m'aiment.

[CLIP : bruits d'océan]

Lichtman : Ok, je veux que vous fermiez les yeux. Dan va planter le décor du premier monstre que nous allons rencontrer.

Ksepka : Imaginez que vous vous trouvez en Caroline du Sud, il y a 27 millions d'années. Vous regardez la mer.

[CLIP : bruit de tempête]

Ksepka : C'est une mer agitée. Et puis, juste suspendu dans les airs, vous savez, bloquant le soleil... se déploie la plus grande chose que vous ayez jamais vue vivante en train de voler, comme un double albatros - avec une envergure de plus de 6 mètres. Elle est magnifique, et vous survole. C'est probablement un grand moment de votre vie, vous savez, l'émerveillement de voir ça.

Lichtman : Cet oiseau s'appelle Pelagornis sandersi. Il n'a pas de nom commun.

Ksepka : Oh, je l'appelle simplement Pelagornis. 

Lichtman : Dan a été le premier à décrire scientifiquement le fossile. Et nous verrons pourquoi il l'a appelé P. sandersi dans une minute. L'histoire commence lorsque ce fossile est entré dans sa vie, sans crier gare.

Ksepka : Pelagornis était un accident de chance et de fortune.

Lichtman : Dan n'a pas trouvé le fossile. Il avait été déterré en Caroline du Sud dans les années 1980, bien avant que Dan ne pose les yeux dessus.

Ksepka : Ils faisaient des fouilles à l'aéroport de Charleston et quelqu'un est tombé sur des os. Les travaux ont été interrompus.

Lichtman : Et il a fait appel à des renforts. Le regretté Al Sanders, paléontologue au musée local de Charleston.

Ksepka : Il est venu avec une équipe et ils ont ramassé ce qui avait été trouvé. Et puis, vous savez, j'aurais pensé que quiconque aurait trouvé cela se serait arrêté net et en aurait fait sa priorité parce que c'était, vous savez, le plus grand oiseau volant de tous les temps.

Lichtman : C'est du moins ce qu'aurait fait un paléontologue aviaire. Mais Al Sanders était plutôt un spécialiste des fossiles de baleines. Il a donc ramené le fossile au musée et l'a mis de côté.

Ksepka : Et Al l'a rangé dans un tiroir au fond de ce genre d'armoire dans le musée.

Lichtman : Et il est resté là pendant une trentaine d'années. Un jour, Al a parlé à Dan des ossements.  

Ksepka : Oui, et je ne m'attendais pas à voir le plus grand oiseau jamais vu dans un tiroir quand j'y suis allé. J'aurais été content avec un canard ou quelque chose comme ça.

Lichtman : Dans ce tiroir qui prenait la poussière se trouvait un fossile vieux d'environ 27 millions d'années qui ne ressemblait à rien de ce que Dan avait vu auparavant.

Ksepka : J'ai sorti l'os de l'aile, je l'ai posé sur le sol, je me suis allongé à côté et j'ai pris une photo avec mon téléphone portable parce qu'il était plus long que mon bras - c'était l'un des trois os.

Lichtman : Dan l'a baptisé Pelagornis sandersi en l'honneur d'Al Sanders, inconscient conservateur de cette découverte colossale. Dan a entrepris de comprendre tout ce qu'il pouvait sur cet oiseau. Et il s'est rendu compte que l'envergure de l'oiseau n'était pas la seule chose étonnante à son sujet. L'oiseau n'était pas seulement grand. Il était bizarre.

Ksepka : Je n'arrivais pas à croire le crâne. Il ne ressemble pas du tout à un oiseau. Il ressemble presque à un petit alligator. Avec un bec d'un pied et demi de long, contenant des mâchoires, avec des sortes de fausses dents.

Lichtman : Elles sont fausses parce qu'elles ne sont pas faites de ce dont sont faites nos dents : de la dentine et de l'émail. Mais elles ont toujours du mordant.

Ksepka : Oui, ce sont en fait des projections d'os, de petites pointes d'os dont la taille varie. Il y a donc une petite, une moyenne et une grande dans l'ordre, et elles ondulent selon ce schéma.

Lichtman : Et c'était probablement parfaits pour percer et retenir des objets glissants...

Ksepka : Donc, quelque chose comme un poisson ou un calmar une fois attrapé.

Lichtman : Outre les fausses dents de poisson, les os de l'épaule de l'oiseau étaient également étranges. Les omoplates de l'oiseau étaient minuscules. L'articulation de l'épaule et l'os qui s'y rattache avaient une forme inhabituelle.

Ksepka : Il ne semble pas qu'elle puisse vraiment fonctionner comme un oiseau normal. Cet oiseau ne pouvait donc pas lever son aile au-dessus du niveau de son dos. Il ne bat donc pas comme une mouette. Ou comme un oiseau chanteur.

Lichtman : Imaginez un cardinal décollant du sol, poussant ses ailes vers le haut et vers le bas, vite et fort. Ce mastodonte se contente probablement de déployer ses ailes de 20 pieds et de laisser le vent faire le travail.

Ksepka : C'est comme un cerf-volant géant. Il s'est donc probablement élevé dans les airs, soit en faisant face au vent, soit en prenant un départ un peu maladroit, soit en utilisant l'élévation à son avantage...

Lichtman : Et une fois que cet oiseau était en l'air, Dan pense qu'il pouvait probablement s'élever sur de grandes distances.

Ksepka : Je ne serais pas surpris que le Pelagornis puisse traverser l'Atlantique et s'arrêter en Afrique ou en Europe, puis revenir dans le cadre de sa migration saisonnière.

Lichtman : Cette espèce, Pelagornis sandersi, n'a été trouvée qu'à Charleston, mais ses proches - les autres oiseaux de cette bande de fausses dents - sont présents partout.

Ksepka : On les trouve partout dans le monde. Nous avons trouvé des fossiles en Antarctique, en Nouvelle-Zélande, dans l'État de Washington et dans l'Oregon, en Europe, en Afrique, en Amérique du Sud. On en trouve littéralement sur tous les continents.

Lichtman : Entre sa taille gigantesque et ses dents, Pelagornis est peut-être l'un des oiseaux les plus étranges de l'histoire de la Terre. Et la question qui me vient à l'esprit est la suivante : comment cet oiseau est-il apparu ? Dan pense que l'apparition de ce groupe - les pélagornithidés - est peut-être liée à la disparition d'autres créatures volantes étranges et géantes.

Ksepka : Dans le cas des pélagornithidés, ce rôle particulier serait rempli par des reptiles volants au Crétacé. Certaines de ces espèces sont bien plus grandes que Pelagornis et disparaissent lors de la même extinction que les dinosaures nonaviens, ce qui permet à un nouveau groupe d'explorer le rôle d'animal volant de très grande taille. Et les pélagornithidés sont le premier groupe à s'en emparer.

Lichtman : Ils se sont engouffrés dans une niche ouverte. C'est ce que m'ont dit de nombreux chercheurs spécialisés dans les grands oiseaux avec lesquels je me suis entretenu pour cette série : ces oiseaux géants sont entrés en scène en partie parce que l'extinction massive a éliminé la concurrence. Et il ne s'agit pas seulement des dinosaures : d'autres reptiles et les premiers oiseaux se sont également éteints. Les survivants ont donc eu accès à des ressources et à des écosystèmes qui n'existaient pas auparavant. Au fil des ans, j'ai beaucoup entendu parler de la radiation des mammifères, qui ont connu leur heure de gloire après la disparition des dinosaures. Mais dans un monde post-dinosaures, les oiseaux ont également déployé leurs ailes et se sont spécialisés.

Ksepka : Une spectaculaire diffusion des oiseaux s'est produite au cours des quelques millions d'années qui ont suivi cette extinction massive. Les ancêtres des oiseaux modernes ont donc la possibilité d'explorer des habitats arboricoles, prédateurs ou aquatiques pour la première fois. Et ils deviennent vraiment - ils deviennent un peu sauvages.

Lichtman : Pelagornis n'est qu'un début. Nous avons d'autres oiseaux sauvages à rencontrer dans les prochains épisodes : des oiseaux qui se sont élevés tel le phénix après l'extinction des dinosaures et qui sont devenus différents de tous les oiseaux encore en vie aujourd'hui.

Ksepka : Par exemple, les oiseaux-éléphants étaient peut-être les plus grands oiseaux qui aient jamais vécu.

Alicia Grealy : Oui, certains pouvaient peser jusqu'à une tonne. C'est pour cela qu'on les appelle les oiseaux-éléphants, n'est-ce pas ?

Lichtman : C'est ce que nous verrons dans le prochain épisode de cette série en quatre parties.

Auteur: Internet

Info: Flora Lichtman, 31 mai 2023. Emission de radio, repris par https://www.scientificamerican.com/

[ oryctographie ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Le premier chapitre de l’ouvrage montre que la période grecque est déterminante pour les développements ultérieurs de la connaissance, elle a posé certains principes fondamentaux qui seront discutés jusqu’à nos jours. En synthétisant les apports de penseurs grecs d’Héraclite et Parménide, de Socrate à Platon, Aristote et Épicure, Martine Bocquet pointe qu’à cette époque le signe (séméïon) est secondaire, il est considéré comme un signe de la nature que l’on peut interpréter (symptôme de maladies, foudre, etc.). Il s’oppose au mot qui, lui, repose sur une relation conventionnelle. Martine Bocquet montre qu’Aristote est important pour la sémiotique, de Deely en particulier. Réaffirmant l’importance du rapport sensible au monde, face à Platon, il a placé le séméïon au fondement de la connaissance et orienté ses recherches vers la relation comme catégorie discursive (pp. 33-45), notion qui sera au cœur des discussions des scoliastes.

Le chapitre deux montre l’évolution importante des notions de signe et de relation à la période latine médiévale et scolastique. Suivant l’étude de Deely, Martine Bocquet souligne le rôle d’Augustin d’Hippone. En traduisant le séméïon grec en signum, il a proposé la première formulation générale du signe qui subsume l’opposition entre nature et culture entre lesquelles il fonctionne comme une interface (p. 65, 68). Bien qu’elle demeure imparfaite, l’approche d’Augustin pose d’une part les fondements d’une théorie relationnelle de la connaissance ; d’autre part, en maintenant une distinction entre signe naturel (signum naturale, séméïon) et signe conventionnel (signum datum), elle ouvre sur une conception de la communication, tout à fait intéressante, engageant tous les êtres vivants (animaux, plantes) (p. 67, 69). D’une autre façon, la problématisation de la relation apparaît tout aussi importante à cette période. En distinguant, chez Aristote, la relatio secundum dici (relation transcendantale) — relation exprimée par le discours — et la relatio secundum esse (relation ontologique) — relation en tant qu’entité particulière (p. 70) — Boèce permet de concevoir l’existence de relations ontologiques, indépendantes de la pensée (p. 73) — fondamentales chez Poinsot, Peirce et Deely. Cette distinction aura son incidence puisqu’elle posera les termes de la querelle des universaux, tournant épistémologique majeur de l’histoire des connaissances.

Initiée par Pierre Abélard, la "querelle des universaux" est abordée par Martine Bocquet au chapitre trois et apparaît comme le point pivot de l’ouvrage (pp. 107-112) dans la mesure où elle aura une incidence sur le rapport au monde et à la connaissance. La dispute, qui porte sur la nature de l’objectivité et du statut de réalité des entités dépendantes ou non de la pensée, par le biais de la catégorie aristotélicienne de relation, et, par extension, de celle de signe, oppose les réalistes aux nominalistes.

Les penseurs dits "réalistes", parmi lesquels Thomas d’Aquin, Roger Bacon, Duns Scot, considèrent que le signe est constitué d’une relation indépendante de la pensée, dite ontologique, à la nature. Le traitement de Martine Bocquet montre clairement que Deely se retrouve dans la pensée de ces auteurs, dont il a avant tout souligné la contribution à la sémiotique de Peirce : (i) le signe subsume l’activité cognitive (pp. 80-81) (ii) la relation de signe est dans tous les cas triadique (p. 82), (iii) les signes se constituent de manière dynamique, ce qui leur permet d’agir (sémiosis) et de jouer un rôle dans l’expérience et la connaissance (pp. 83-86).

Martine Bocquet met particulièrement en évidence la pensée de Jean Poinsot (Jean de St-Thomas), en soulignant son influence sur Deely. L’originalité de ce dernier est d’avoir considéré Poinsot comme le précurseur d’une sémiotique voisine de celle de Peirce, plus ontologique encore. Pour le résumer en quelques points, Poinsot défend avant tout que la nature et la réalité du signe sont ontologiques (secundum esse), c’est-à-dire que le signe est une relation dont le véhicule est indifférent à ce qu’il communique (p. 102). Ce point est essentiel car il permet de doter le signe d’une nature proprement relationnelle : (i) il pointe vers autre chose (une autre réalité physique ou psychique), (ii) il permet d’articuler la subjectivité et l’intersubjectivité et (iii) opère la médiation entre les choses (indépendantes de la pensée) et les objets (dépendants de la pensée) (pp. 105-106) ; ce que la représentation, où l’objet pointe vers lui-même, n’autorise pas. Le point de vue de Poinsot est déterminant, car les nombreux retours vers sa pensée réalisés tout au long de l’ouvrage, montrent que c’est au prisme de ces principes que Deely réévaluait les pensées modernes.

De l’autre côté, les "nominalistes" comme Guillaume d’Ockham considèrent que la réalité est extra mentale, que seules les causes externes sont réelles, et qu’en conséquence, les relations intersubjectives n’existent que dans la pensée. Malgré l’intervention des successeurs d’Ockham qui, contrairement à celui-ci, admettront le signe, divisé en deux entités — signes instrumentaux (physiques, accessibles aux sens) et signes formels (concepts) — à partir de 1400 environ, les concepts (signes formels) seront considérés comme des représentations (p. 91). Martine Bocquet montre bien que le principe nominaliste, souvent simplifié, sera largement adopté par les sciences empiriques qu’il permettra de développer, mais cela, et c’est l’enjeu de la démarche de Deely, au détriment du rapport entre le monde et les sens.

Dans le quatrième chapitre consacré à la modernité, Martine Bocquet montre comment Deely a pointé les problèmes et les limites posés par l’héritage du nominalisme, en mettant notamment en perspective les travaux des empiristes (John Locke, David Hume), puis ceux de Kant, avec les propositions de Poinsot. Elle montre d’emblée que le rationalisme de Descartes, où la raison est indépendante et supérieure à la perception, conduira à renégocier la place de la perception dans la connaissance. En concevant les qualités des sens comme des images mentales, les modernes renversent l’ordre de la perception sensorielle reconnu par les scoliastes, les qualités sensorielles (couleurs, odeurs, sons) autrefois premières sont reléguées au second plan (p. 117). Les empiristes (John Locke, George Berkeley, David Hume) contribueront à considérer l’ensemble des sensations comme des images mentales, ils ne seront alors plus capables de s’extraire de la subjectivité (p. 121-124). À ce titre, Martine Bocquet porte à notre attention que Deely avait bien montré que l’empirisme et le rationalisme éludaient la description du phénomène de cognition.

L’approche de Kant apparaît dans l’ouvrage comme point culminant, ou synthèse, de la pensée moderne. En suivant les pas de Deely, Martine Bocquet prend le soin de mettre son travail en perspective avec la pensée de Poinsot, ce qui permet de réaffirmer sa pertinence dans le projet sémiotique de Deely. Kant a eu le mérite d’envisager des relations objectives. Toutefois, en limitant la cognition aux représentations, il la sépare de la signification, c’est-à-dire du supplément de sens contenu dans l’objectivité (au sens de Poinsot), et se coupe de l’expérience de l’environnement sensible qui permet à l’homme de connaître et de constituer le monde (pp. 130-131). Martine Bocquet insiste sur le fait que, selon Deely, la pensée kantienne est lourde de conséquences puisqu’en inversant les concepts d’objectivité et de subjectivité, elle enferme l’individu dans sa propre pensée (p. 134), reléguant la communication au rang d’illusion.

Le dernier chapitre de l’ouvrage est consacré aux chercheurs post-modernes, qui ont marqué la fin du modernisme et opéré un retour vers le signe. On y trouve notamment les apports d’Hegel et de Darwin, entre autres, qui ont permis d’affirmer le rôle concret de la relation ontologique dans la cognition, et la prise des facultés cognitives avec l’environnement physique. Martine Bocquet consacre une grande partie du chapitre à la sémiotique en tant que discipline, ce qui lui permet de réaffirmer l’ancrage de Deely dans l’héritage peircien qui est ici clairement distingué des modèles de Saussure et Eco.

Martine Bocquet rappelle d’abord que la pensée de Peirce s’inspire des réalistes (d’Aquin, Duns Scot) et considère donc que les produits de la pensée sont bien réels, et non de simples constructions des sens. La sémiotique qu’il développe appréhende la signification comme un parcours de pensée dynamique entre expérience et cognition. Dans son modèle ternaire, présenté en détail, la relation de tiercité caractérise le fonctionnement de la cognition humaine depuis la perception d’indices jusqu’à la constitution d’un système de signification ; elle est propre à l’homme qui peut se référer à la réalité mais aussi évoquer des choses imaginées (p. 146). L’intérêt de ce modèle est de permettre d’envisager que les non-humains utilisent aussi des signes, possibilité envisagée par Peirce dans sa « grande vision », doctrine qui selon Bocquet fascine Deely. Ce projet consistait à étendre la sémiotique au vivant, considérant que l’action des signes est enracinée dans toutes les choses du monde. Il ouvre sur un vaste champ de recherche abordé en conclusion, sur lequel nous reviendrons.

Contrairement à la sémiotique peircienne, Bocquet montre que John Deely considère que la sémiologie de Saussure, reposant sur le signe linguistique, est limitée car elle ne s’occupe que des signes conventionnels, culturels. De ce fait, elle se montre non seulement incapable d’approcher le signe naturel mais elle court aussi le risque de faire de la réalité une construction de l’esprit (idéalisme). En dépit d’un substrat peircien partagé, la même critique sera adressée à la théorie des codes d’Eco puis, plus loin dans la conclusion de Martine Bocquet (pp. 171-172), au structuralisme (Greimas, Lévi-Strauss). En somme, ces sémiotiques sont très efficaces pour étudier les systèmes de signes spécifiquement humains, mais, enfermées dans le langage et la culture, elles sont incapables de traiter les signes naturels, toute tentative révèle leur idéalisme. À cet endroit, l’auteure met bien en évidence l’opposition irréductible entre, d’un côté, ces théories qui ne rendent compte ni du signe naturel ni de la reconnaissance des phénomènes de la nature, et de l’autre, la posture de Deely qui défend l’idée que les données des sens ne sont jamais déconnectées et que la perception comprend une structure d’objectivité car les relations sont réelles (p. 165). Finalement, au travers de l’ouvrage, Bocquet montre que Deely prônait un retour à l’universalité du signe.

La conclusion du livre indique que Deely plaçait le signe et la sémiotique au cœur d’une pensée postmoderne capable de rétablir le dialogue entre les sciences dures et les sciences de la communication. Ce dialogue répondrait à la nécessité de comprendre l’action des signes autant dans la nature que dans la culture. Pour concrétiser cela, Deely propose un retour au réalisme oublié des scoliastes latins pour réviser les théories des modernes afin de renouer le lien avec la nature, en tenant compte des entités dépendantes et indépendantes de la pensée (p. 168).

Cette posture s’inscrirait, selon Martine Bocquet, dans un projet sémioéthique au sein duquel l’homme prendrait conscience de ses responsabilités vis-à-vis de la nature. Finalement, la solution à adopter correspond à la "grande vision" de Peirce, introduite en amont, c’est-à-dire une doctrine des signes qui, d’une part, intègre l’ensemble de la connaissance humaine du sensoriel aux interactions sociales et à la culture et, d’autre part, étend la sémiotique à l’ensemble du monde vivant, considéré comme un réseau de significations entre humains et non-humains, et noué sur une relation ontologique présente dans toute chose (pp. 169-170). Mis en application dans les années 1960, ce projet a donné lieu à un ensemble de sémiotiques spécifiques étudiant aussi bien le vivant, comme la physiosémiotique, la phytosémiotique, la zoosémiotique, la biosémiotique, que l’homme avec l’anthroposémiotique. Nous soulignons que certaines de ces disciplines sont aujourd’hui émergentes pour répondre aux questions environnementales actuelles en termes de climat, de cohabitation entre espèces et d’habitabilité du monde.

La restitution des travaux de Deely par Martine Bocquet semble tout à fait pertinente pour les sciences de la communication. Tout d’abord, parce que la démarche historique de Deely invitant à réévaluer nos acquis au prisme de modèles plus anciens, parfois moins connus, est tout à fait d’actualité et nécessaire dans notre réseau de recherche pluridisciplinaire. Ensuite, du fait de la structure détaillée du livre de Martine Bocquet qui permettra autant aux étudiants qu’aux chercheurs de trouver une formulation des concepts et des problèmes qui sous-tendent encore le domaine de la communication.

D’autre part, le grand intérêt de l’ouvrage réside dans le parti pris épistémologique de la sémiotique de Deely. En adoptant la relation ontologique de Poinsot, présente en creux chez Peirce, Deely ouvre des perspectives importantes pour le champ des sciences de la communication puisqu’il attire notre attention sur un concept universel de signe capable de réaffirmer la place du sensible dans la communication et de problématiser les interactions entre humains et non-humains. À ce titre, la pensée de Deely rapportée par Martine Bocquet est tout à fait en phase avec la recherche de ces quinze dernières années où différentes disciplines ont cherché à étudier la signification au-delà des particularités entre humains mais aussi entre êtres vivants, soit en adoptant un point de vue ontologique soit en intégrant les sciences physiques ou cognitives. Citons par exemple la biosémiotique, la zoosémiotique mais aussi l’anthropologie de la nature de Philippe Descola, "l’anthropologie au-delà de l’humain" d’Eduardo Kohn, la sémiophysique de René Thom et Jean Petitot ou encore la sémiotique cognitive.

Auteur: Chatenet Ludovic

Info: résumé critique de : Martine Bocquet, Sur les traces du signe avec John Deely : une histoire de la sémiotique Limoges, Éditions Lambert Lucas, 2019, 200 p.

[ panorama sémiologique ] [ anthropocentrisme ] [ xénolinguistique ] [ philologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

multi-milliardaires

DE LA SURVIE DES PLUS RICHES
Quand des patrons de fonds d'investissement new-yorkais font appel à un spécialiste de la société de l'information, afin d'améliorer leurs chances de survie après l'Évènement qui détruira le monde tel que nous le connaissons.

AVERTISSEMENT, CECI N'EST PAS UNE FICTION
L’année dernière, j’ai été invité à donner une conférence dans un complexe hôtelier d’hyper-luxe face à ce que je pensais être un groupe d’une centaine de banquiers spécialisés dans l’investissement. On ne m’avait jamais proposé une somme aussi importante pour une intervention - presque la moitié de mon salaire annuel de professeur - et délivrer mes visions sur "l’avenir de la technologie".

Je n’ai jamais aimé parler du futur. Ce genre de séance d’échange se termine fatalement par un interrogatoire, à l’occasion duquel on me demande de me prononcer sur les dernières "tendances" technologiques, comme s’il s’agissait d’indicateurs boursiers pour les investisseurs : blockchain, impression 3D, CRISPR. L’audience s’y préoccupe généralement moins des technologies en elles-mêmes et de leurs implications, que de savoir si elles méritent ou non que l’on parie sur elles, en mode binaire. Mais l’argent ayant le dernier mot, j’ai accepté le boulot.

À mon arrivée, on m’a accompagné dans ce que j’ai cru n’être qu’une vulgaire salle technique. Mais alors que je m’attendais à ce que l’on me branche un microphone ou à ce que l’on m’amène sur scène, on m’a simplement invité à m’asseoir à une grande table de réunion, pendant que mon public faisait son entrée : cinq gars ultra-riches - oui, uniquement des hommes - tous issus des plus hautes sphères de la finance internationale. Dès nos premiers échanges, j’ai réalisé qu’ils n’étaient pas là pour le topo que je leur avais préparé sur le futur de la technologie. Ils étaient venus avec leurs propres questions.

Ça a d’abord commencé de manière anodine. Ethereum ou Bitcoin ? L’informatique quantique est-elle une réalité ? Lentement mais sûrement, ils m’ont amené vers le véritable sujet de leurs préoccupations.

Quelle sera la région du monde la plus épargnée par la prochaine crise climatique : la nouvelle Zélande ou l’Alaska ? Est-ce que Google construit réellement un nouveau foyer pour le cerveau de Ray Kurzweil ? Est-ce que sa conscience survivra à cette transition ou bien mourra-t-elle pour renaître ensuite ? Enfin, le PDG d’une société de courtage s’est inquiété, après avoir mentionné le bunker sous-terrain dont il achevait la construction : "Comment puis-je conserver le contrôle de mes forces de sécurité, après l’Événement ?"

L’Évènement. Un euphémisme qu’ils employaient pour évoquer l’effondrement environnemental, les troubles sociaux, l’explosion nucléaire, le nouveau virus impossible à endiguer ou encore l’attaque informatique d’un Mr Robot qui ferait à lui seul planter tout le système.

Cette question allait nous occuper durant toute l’heure restante. Ils avaient conscience que des gardes armés seraient nécessaires pour protéger leurs murs des foules en colère. Mais comment payer ces gardes, le jour où l’argent n’aurait plus de valeur ? Et comment les empêcher de se choisir un nouveau leader ? Ces milliardaires envisageaient d’enfermer leurs stocks de nourriture derrière des portes blindées aux serrures cryptées, dont eux seuls détiendraient les codes. D’équiper chaque garde d’un collier disciplinaire, comme garantie de leur survie. Ou encore, si la technologie le permettait à temps, de construire des robots qui serviraient à la fois de gardes et de force de travail.

C’est là que ça m’a frappé. Pour ces messieurs, notre discussion portait bien sur le futur de la technologie. Inspirés par le projet de colonisation de la planète Mars d’Elon Musk, les tentatives d’inversion du processus du vieillissement de Peter Thiel, ou encore les expériences de Sam Altman et Ray de Kurzweil qui ambitionnent de télécharger leurs esprits dans de super-ordinateurs, ils se préparaient à un avenir numérique qui avait moins à voir avec l’idée de construire un monde meilleur que de transcender la condition humaine et de se préserver de dangers aussi réels qu’immédiats, comme le changement climatique, la montée des océans, les migrations de masse, les pandémies planétaires, les paniques identitaires et l’épuisement des ressources. Pour eux, le futur de la technologie se résumait à une seule finalité : fuir.

Il n’y a rien de mal aux visions les plus follement optimistes sur la manière dont la technologie pourrait bénéficier à l’ensemble de la société humaine. Mais l’actuel engouement pour les utopies post-humaines est d’un tout autre ordre. Il s’agit moins d’une vision de la migration de l’ensemble de notre espèce vers une nouvelle condition humaine, que d’une quête pour transcender tout ce qui nous constitue : nos corps, notre interdépendance, la compassion, la vulnérabilité et la complexité. Comme l’indiquent maintenant depuis plusieurs années les philosophes de la technologie, le prisme transhumaniste réduit trop facilement la réalité à un conglomérat de données, en concluant que "les humains ne sont rien d’autre que des centres de traitement de l’information".

L’évolution humaine s’apparente alors à une sorte de jeu vidéo labyrinthique, dont les heureux gagnants balisent le chemin de la sortie pour leurs partenaires les plus privilégiés. S’agit-il de Musk, Bezos, Thiel… Zuckerberg ? Ces quelques milliardaires sont les gagnants présupposés d’une économie numérique régie par une loi de la jungle qui sévit dans le monde des affaires et de la spéculation dont ils sont eux-mêmes issus.

Bien sûr, il n’en n’a pas toujours été ainsi. Il y a eu une période courte, au début des années 1990, où l’avenir numérique apparaissait fertile, enthousiasmant, ouvert à la création. La technologie y devenait le terrain de jeu de la contre-culture, qui vit là l’opportunité de créer un futur plus inclusif, mieux réparti et pro-humain. Mais les intérêts commerciaux n’y ont vu pour leur part que de nouveaux potentiels pour leurs vieux réflexes. Et trop de technologues se sont laissés séduire par des IPO (introduction en bourse) chimériques. Les futurs numériques s’en retrouvèrent envisagés sous le même prisme que le cours de la bourse ou du coton, dans ce même jeu dangereux de paris et de prédictions. Ainsi, la moindre étude documentaire, le moindre article ou livre blanc publié sur ce thème n’étaient plus interprété que comme un nouvel indice boursier. Le futur s’est transformé en une sorte de scénario prédestiné, sur lequel on parie à grands renforts de capital-risque, mais qu’on laisse se produire de manière passive, plus que comme quelque chose que l’on crée au travers de nos choix présents et de nos espoirs pour l’espèce humaine.

Ce qui a libéré chacun d’entre nous des implications morales de son activité. Le développement technologique est devenu moins une affaire d’épanouissement collectif que de survie individuelle. Pire, comme j’ai pu l’apprendre à mes dépens, le simple fait de pointer cette dérive suffisait à vous désigner d’emblée comme un ennemi rétrograde du marché, un ringard technophobe.

Et plutôt que de questionner la dimension éthique de pratiques qui exploitent et appauvrissent les masses au profit d’une minorité, la majorité des universitaires, des journalistes et des écrivains de science fiction ont préféré se focaliser sur des implications plus abstraites et périphériques : "Est-il juste qu’un trader utilise des drogues nootropiques ? Doit-on greffer des implants aux enfants pour leur permettre de parler des langues étrangères? Les véhicules intelligents doivent-ils privilégier la sécurité des piétons ou celle de leurs usagers? Est-ce que les premières colonies martiennes se doivent d’adopter un modèle démocratique? Modifier son ADN, est-ce modifier son identité ? Est-ce que les robots doivent avoir des droits ?".

Sans nier le côté divertissant de ces questions sur un plan philosophique, force est d’admettre qu’elles ne pèsent pas lourd face aux vrais enjeux moraux posés par le développement technologique débridé, au nom du capitalisme pratiqué par les multinationales. Les plateformes numériques ont modifié un marché déjà fondé sur l’exploitation (Walmart) pour donner naissance à un successeur encore plus déshumanisant (Amazon). La plupart d’entre-nous sommes conscients de ces dérives, rendues visibles par la recrudescence des emplois automatisés, par l’explosion de l’économie à la tâche et la disparition du commerce local de détails.

Mais c’est encore vis-à-vis de l’environnement et des populations les plus pauvres que ce capitalisme numérique désinhibé produit ses effets les plus dévastateurs. La fabrication de certains de nos ordinateurs et de nos smartphones reste assujettie au travail forcé et à l’esclavage. Une dépendance si consubstantielle que Fairphone, l’entreprise qui ambitionnait de fabriquer et de commercialiser des téléphones éthiques, s’est vue obligée de reconnaître que c’était en réalité impossible. Son fondateur se réfère aujourd’hui tristement à ses produits comme étant "plus" éthiques.

Pendant ce temps, l’extraction de métaux et de terres rares, conjuguée au stockage de nos déchets technologiques, ravage des habitats humains transformés en véritables décharges toxiques, dans lesquels es enfants et des familles de paysans viennent glaner de maigres restes utilisables, dans l’espoir de les revendre plus tard aux fabricants.

Nous aurons beau nous réfugier dans une réalité alternative, en cachant nos regards derrière des lunettes de réalité virtuelle, cette sous-traitance de la misère et de la toxicité n’en disparaîtra pas pour autant. De fait, plus nous en ignorerons les répercussions sociales, économiques et environnementales, plus elles s’aggraveront. En motivant toujours plus de déresponsabilisation, d’isolement et de fantasmes apocalyptiques, dont on cherchera à se prémunir avec toujours plus de technologies et de business plans. Le cycle se nourrit de lui-même.

Plus nous adhérerons à cette vision du monde, plus les humains apparaitront comme la source du problème et la technologie comme la solution. L’essence même de ce qui caractérise l’humain est moins traité comme une fonctionnalité que comme une perturbation. Quels que furent les biais idéologiques qui ont mené à leur émergence, les technologies bénéficient d’une aura de neutralité. Et si elles induisent parfois des dérives comportementales, celles-ci ne seraient que le reflet de nos natures corrompues. Comme si nos difficultés ne résultaient que de notre sauvagerie constitutive. À l’instar de l’inefficacité d’un système de taxis locaux pouvant être "résolue" par une application qui ruine les chauffeurs humains, les inconsistances contrariantes de notre psyché pouvait être corrigée par une mise à jour digitale ou génétique.

Selon l’orthodoxie techno-solutionniste, le point culminant de l’évolution humaine consisterait enfin à transférer notre conscience dans un ordinateur, ou encore mieux, à accepter la technologie comme notre successeur dans l’évolution des espèces. Comme les adeptes d’un culte gnostique, nous souhaitons atteindre la prochaine phase transcendante de notre évolution, en nous délestant de nos corps et en les abandonnant, avec nos péchés et nos problèmes.

Nos films et nos productions télévisuelles continuent d’alimenter ces fantasmes. Les séries sur les zombies dépeignent ainsi une post-apocalypse où les gens ne valent pas mieux que les morts vivants - et semblent en être conscients. Pire, ces projections fictives invitent les spectateurs à envisager l’avenir comme une bataille à somme nulle entre les survivants, où la survie d’un groupe dépend mécaniquement de la disparition d’un autre. Jusqu’à la série Westworld, basée sur un roman de science-fiction dans lequel les robots deviennent fous et qui clôt sa seconde saison sur une ultime révélation : les êtres humains sont plus simples et plus prévisibles que les intelligences artificielles qu’ils ont créées. Les robots y apprennent que nous nous réduisons, tous autant que nous sommes, à quelques lignes de code et que notre libre arbitre n’est qu’une illusion. Zut ! Dans cette série, les robots eux-mêmes veulent échapper aux limites de leurs corps et passer le reste de leurs vies dans une simulation informatique.

Seul un profond dégoût pour l’humanité autorise une telle gymnastique mentale, en inversant ainsi les rôles de l’homme et de la machine. Modifions-les ou fuyons-les, pour toujours.

Ainsi, nous nous retrouvons face à des techno-milliardaires qui expédient leurs voiture électriques dans l’espace, comme si ça symbolisait autre chose que la capacité d’un milliardaire à assurer la promotion de sa propre compagnie. Et quand bien même quelques élus parviendraient à rallier la planète Mars pour y subsister dans une sorte de bulle artificielle - malgré notre incapacité à maintenir des telles bulles sur Terre, malgré les milliards de dollars engloutis dans les projets Biosphère - le résultat s’apparenterait plus à une espèce de chaloupe luxueuse réservée une élite qu’à la perpétuation de la diaspora humaine.

Quand ces responsables de fonds d’investissement m’ont interrogé sur la meilleure manière de maintenir leur autorité sur leurs forces de sécurité "après l’Évènement", je leur ai suggéré de traiter leurs employés du mieux possible, dès maintenant. De se comporter avec eux comme s’il s’agissait des membres de leur propre famille. Et que plus ils insuffleraient cette éthique inclusive à leur pratiques commerciales, à la gestion de leurs chaînes d’approvisionnement, au développement durable et à la répartition des richesses, moins il y aurait de chances que "l’Événement" se produise. Qu’ils auraient tout intérêt à employer cette magie technologique au service d’enjeux, certes moins romantiques, mais plus collectifs, dès aujourd’hui.

Mon optimisme les a fait sourire, mais pas au point de les convaincre. Éviter la catastrophe ne les intéressait finalement pas, persuadés qu’ils sont que nous sommes déjà trop engagés dans cette direction. Malgré le pouvoir que leur confèrent leurs immenses fortunes, ils ne veulent pas croire en leur propre capacité d’infléchir sur le cours des événements. Ils achètent les scénarios les plus sombres et misent sur leur argent et la technologie pour s’en prémunir - surtout s’ils peuvent disposer d’un siège dans la prochaine fusée pour Mars.

Heureusement, ceux d’entre nous qui n’ont pas de quoi financer le reniement de leur propre humanité disposent de meilleures options. Rien nous force à utiliser la technologie de manière aussi antisociale et destructive. Nous pouvons nous transformer en individus consommateurs, aux profils formatés par notre arsenal de plateformes et d’appareils connectés, ou nous pouvons nous souvenir qu’un être humain véritablement évolué ne fonctionne pas seul.

Être humain ne se définit pas dans notre capacité à fuir ou à survivre individuellement. C’est un sport d’équipe. Quel que soit notre futur, il se produira ensemble.

Auteur: Rushkoff Douglas

Info: Quand les riches conspirent pour nous laisser derrière. Avec l’accord de l’auteur, traduction de Céleste Bruandet, avec la participation de Laurent Courau

[ prospective ] [ super-riches ] [ oligarques ]

 

Commentaires: 0

protérozoïque

Des molécules fossilisées révèlent un monde perdu de vie ancienne

Une nouvelle analyse de sédiments vieux d’un milliard d’années comble une lacune dans les archives fossiles, révélant une dynastie de premiers eucaryotes qui pourraient avoir façonné l’histoire de la vie sur Terre.

Un arbre a quelque chose en commun avec les mauvaises herbes et les champignons qui poussent autour de ses racines, les écureuils qui grimpent sur son tronc, les oiseaux perchés sur ses branches et le photographe qui prend des photos de la scène. Ils ont tous un génome et une machinerie cellulaire soigneusement emballés dans des compartiments reliés par des membranes, un système organisationnel qui les place dans un groupe de formes de vie extrêmement performantes appelés eucaryotes.

Les débuts de l’histoire des eucaryotes fascinent depuis longtemps les scientifiques qui aspirent à comprendre quand la vie moderne a commencé et comment elle a évolué. Mais retracer les premiers eucaryotes à travers l’histoire de la Terre a été difficile. Des données fossiles limitées montrent que leur premier ancêtre est apparu il y a au moins 1,6 milliard d’années. Pourtant, d’autres preuves révélatrices de leur existence manquent. Les eucaryotes devraient produire et laisser derrière eux certaines molécules distinctives, mais les versions fossilisées de ces molécules n'apparaissent dans les archives rocheuses qu'il y a 800 millions d'années. Cet écart inexpliqué de 800 millions d'années dans l'histoire des premiers eucaryotes, période cruciale au cours de laquelle le dernier ancêtre commun de toute la vie complexe d'aujourd'hui est apparu, a enveloppé de mystère l'histoire des débuts de la vie.

"Il existe un énorme écart temporel entre les archives fossiles de ce que nous pensons être les premiers eucaryotes et les premiers biomarqueurs des eucaryotes", a déclaré Galen Halverson , professeur à l'Université McGill de Montréal.

Il existe de nombreuses explications possibles à cet écart paradoxal. Peut-être que les eucaryotes étaient trop rares à cette époque pour laisser derrière eux des preuves de fossiles moléculaires. Ou peut-être étaient-ils abondants, mais leurs fossiles moléculaires n’ont pas survécu aux dures conditions géologiques.

Une étude récente publiée dans Nature propose une explication alternative : les scientifiques ont peut-être recherché les mauvaises molécules fossilisées pendant tout ce temps. Lorsque les auteurs de l’étude ont recherché des versions plus primitives des produits chimiques recherchés par d’autres, ils les ont découverts en abondance – révélant ce qu’ils ont décrit comme " un monde perdu " d’eucaryotes qui vivaient il y a 800 millions à au moins 1,6 milliard d’années.

"Ces molécules ont toujours été là", a déclaré Jochen Brocks , géochimiste à l'Université nationale australienne de Canberra, qui a codirigé l'étude avec Benjamin Nettersheim, alors étudiant diplômé . "Nous ne pouvions pas les trouver parce que nous ne savions pas à quoi elles ressemblaient."

Les résultats apportent une nouvelle clarté à la dynamique de la vie eucaryote précoce. L'abondance de ces fossiles moléculaires suggère que les organismes primitifs ont prospéré dans les océans pendant des centaines de millions d'années avant que les ancêtres des eucaryotes modernes ne prennent le relais, semant des formes de vie qui évolueraient un jour vers les animaux, les plantes, les champignons et les protistes que nous voyons. aujourd'hui.

"C'est une hypothèse élégante qui semble réconcilier ces enregistrements très disparates", a déclaré Halverson, qui n'a pas participé à l'étude. " Cela donne un sens à tout."

Ces découvertes ont été une bonne nouvelle pour des paléontologues comme Phoebe Cohen , présidente de géosciences au Williams College dans le Massachusetts, qui a longtemps pensé qu'il manquait quelque chose dans le dossier des biomarqueurs. "Il existe une histoire riche et dynamique de la vie avant l'évolution des animaux, qui est plus difficile à comprendre car nous ne pouvons pas la voir", a déclaré Cohen. "Mais c'est extrêmement important car cela prépare le terrain pour le monde que nous avons aujourd'hui."

Le casse-tête des protostéroïdes

Lorsque les archives fossiles sont décevantes, les scientifiques disposent d’autres moyens pour estimer le moment où différentes espèces se sont dérivées les unes des autres dans l’arbre évolutif. Parmi ces outils figurent principalement les horloges moléculaires : des fragments d’ADN qui mutent à un rythme constant, permettant aux scientifiques d’estimer le passage du temps. Selon les horloges moléculaires, le dernier ancêtre commun des eucaryotes modernes, qui appartenait à un ensemble diversifié d’organismes appelé groupe couronne, est apparu pour la première fois il y a au moins 1,2 milliard d’années.

Mais l’histoire des eucaryotes ne commence pas là. D’autres eucaryotes primitifs, connus sous le nom de groupe souche, ont vécu des centaines de millions d’années avant l’évolution de notre premier ancêtre commun. Les chercheurs en savent peu sur eux, au-delà du fait qu’ils ont existé. La petite poignée d’anciens fossiles d’eucaryotes découverts sont trop ambigus pour être identifiés comme une tige ou une couronne.

En l’absence de fossiles corporels convaincants, les chercheurs recherchent des fossiles moléculaires. Les fossiles moléculaires, qui se conservent séparément des fossiles corporels, peuvent être difficiles à cerner pour les scientifiques. Ils doivent d’abord identifier quelles molécules auraient pu être produites uniquement par les organismes qu’ils souhaitent étudier. Ensuite, ils doivent composer avec le fait que toutes ces molécules ne se fossilisent pas bien.

La matière organique se désintègre à des rythmes différents et certaines parties des eucaryotes se conservent mieux que d’autres dans la roche. Les tissus se dissolvent en premier. L’ADN peut rester plus longtemps, mais pas trop longtemps : l’ADN le plus ancien jamais découvert a environ 2 millions d’années. Les molécules de graisse, cependant, peuvent potentiellement survivre pendant des milliards d’années.

Les eucaryotes créent de grandes quantités de molécules de graisse appelées stérols, un type de stéroïde qui constitue un composant essentiel des membranes cellulaires. Étant donné que la présence d’une membrane cellulaire est révélatrice des eucaryotes et que les molécules de graisse ont tendance à persister dans la roche, les stérols sont devenus le fossile moléculaire de référence pour ce groupe.

Les eucaryotes modernes fonctionnent avec trois grandes familles de stérols : le cholestérol chez les animaux, les phytostérols chez les plantes et l'ergostérol chez les champignons et certains protistes. Leur synthèse commence par une molécule linéaire, que la cellule façonne en quatre anneaux afin que la forme résultante s'intègre parfaitement dans une membrane, a déclaré Brocks. Ce processus comporte de nombreuses étapes : il faut huit étapes enzymatiques supplémentaires aux cellules animales pour fabriquer du cholestérol, tandis que les cellules végétales nécessitent 11 étapes enzymatiques supplémentaires pour fabriquer un phytostérol.

En route pour fabriquer son stérol avancé, une cellule crée une série de molécules plus simples à chaque étape du processus. Lorsqu’ils sont branchés sur une membrane artificielle, même ces stérols intermédiaires offrent la perméabilité et la rigidité dont une cellule a besoin pour fonctionner comme elle le devrait. Le biochimiste Konrad Bloch, qui a reçu le prix Nobel en 1964 en partie pour avoir découvert les étapes cellulaires de fabrication du cholestérol , "en a été perplexe", a déclaré Brocks. Pourquoi une cellule déploierait-elle des efforts supplémentaires pour fabriquer un stérol plus complexe alors qu’une molécule plus simple ferait le travail ?

En 1994, Bloch a écrit un livre dans lequel il prédisait que chacun de ces stérols intermédiaires avait été autrefois le produit final utilisé dans la membrane d'une cellule eucaryote ancestrale. Chaque étape supplémentaire a peut-être nécessité plus d'énergie de la cellule, mais la molécule résultante constituait une légère amélioration par rapport à la précédente – une amélioration suffisante pour surpasser le précurseur et s'imposer dans l'histoire de l'évolution.

Si cela était vrai, cela expliquerait pourquoi personne n’avait pu trouver de fossiles moléculaires de stérols avant l’expansion rapide des eucaryotes modernes, il y a environ 800 millions d’années. Les chercheurs recherchaient des cholestérols et d’autres structures modernes dans les archives rocheuses. Ils ne se rendaient pas compte que les anciennes voies biochimiques étaient plus courtes et que les organismes des groupes souches ne produisaient pas de stérols modernes : ils  faisaient des protostérols.

Mouture de café moléculaire

En 2005, environ cinq ans après la mort de Bloch, Brocks et ses collègues ont rapporté dans Nature les premiers indices de l'existence de telles molécules intermédiaires. Dans d'anciens sédiments, ils avaient trouvé des stéroïdes de structure inhabituelle qu'ils ne reconnaissaient pas. Mais à l’époque, Brocks ne pensait pas qu’un eucaryote aurait pu les créer. " À l’époque, j’étais assez convaincu qu’ils étaient bactériens ", a-t-il déclaré. "Personne ne pensait du tout à la possibilité d'avoir des eucaryotes du groupe souche."

Il a continué à échantillonner des roches anciennes et à rechercher ces curieuses molécules. Environ une décennie après le début de leurs travaux, Nettersheim et lui ont réalisé que de nombreuses structures moléculaires dans les échantillons de roche semblaient " primitives " et ne ressemblaient pas à celles que fabriquent généralement les bactéries, a déclaré Brocks. Serait-ce les stérols intermédiaires de Bloch ?

(Photo : De rares fossiles microscopiques de la vie ancienne fournissent des horodatages sur l’évolution des eucaryotes.  Satka favosa  (à gauche) et  Valeria lophostriata  datent d'il y a 1,6 milliard d'années. On ne sait pas si les organismes, probablement des protistes, appartiennent au groupe tige ou couronne. )

Il leur fallait davantage de preuves. Au cours de la décennie qui a suivi, Brocks et Nettersheim ont contacté des sociétés pétrolières et minières pour demander des échantillons de tout sédiment ancien qu'elles avaient accidentellement découvert lors d'expéditions de forage.

"La plupart des gens auraient trouvé deux exemples et publiés", a déclaré Andrew Knoll , professeur d'histoire naturelle à l'Université Harvard qui n'a pas participé à l'étude. (Il était le conseiller postdoctoral de Brocks il y a des années.) " Jochen a passé la majeure partie de la décennie à étudier les roches du Protérozoïque du monde entier. "

Pendant ce temps, les chercheurs ont créé un modèle de recherche pour identifier les molécules présentes dans les sédiments. Ils ont converti les molécules intermédiaires modernes fabriquées lors de la synthèse des stérols en équivalents géologiques plausibles des stéroïdes. (Le cholestérol, par exemple, se fossilise sous forme de cholestane.) " Si vous ne savez pas à quoi ressemble la molécule, vous ne la verrez pas 2, a déclaré Brocks.

En laboratoire, ils ont extrait des molécules fossiles des échantillons de sédiments en utilisant un processus qui " ressemble un peu à la préparation du café ", a déclaré Nettersheim. Après avoir broyé les roches, ils ont ajouté des solvants organiques pour en extraire les molécules – tout comme l’eau chaude est utilisée pour extraire le café des grains torréfiés et moulus.

(Photo :Benjamin Nettersheim, géochimiste à l'Université de Brême, examine les cartes moléculaires d'anciens sédiments rocheux à la recherche de biomarqueurs de la vie ancienne.)

Pour analyser leurs échantillons et les comparer à leurs références, ils ont utilisé la spectrométrie de masse, qui détermine le poids des molécules, et la chromatographie, qui révèle leur composition atomique.

Le processus est ardu. "Vous analysez des centaines de roches et ne trouvez rien", a déclaré Brocks. Lorsque l’on trouve quelque chose, il s’agit souvent d’une contamination récente. Mais plus ils analysaient d’échantillons, plus ils trouvaient de fossiles.

Certains échantillons étaient remplis à ras bord de protostéroïdes. Ils ont découvert ces molécules dans des roches datant d'il y a 800 millions à 1,6 milliard d'années. Il semblait que non seulement les eucaryotes anciens étaient présents depuis environ 800 millions d’années avant le décollage des eucaryotes modernes, mais qu’ils étaient également abondants.

Les chercheurs ont même pu reconnaître le processus évolutif des eucaryotes à mesure que leurs stéroïdes devenaient plus complexes. Par exemple, dans des roches vieilles de 1,3 milliard d’années, ils ont découvert une molécule intermédiaire plus avancée que les protostéroïdes vieux de 1,6 milliard d’années, mais pas aussi avancée que les stéroïdes modernes.

"C'était une façon très intelligente de traiter les archives manquantes de fossiles moléculaires", a déclaré David Gold , géobiologiste à l'Université de Californie à Davis, qui n'a pas participé à l'étude. Leur découverte a immédiatement comblé une lacune de 800 millions d’années dans l’histoire de la naissance de la vie moderne.

Un monde perdu

Les découvertes moléculaires, combinées aux données génétiques et fossiles, révèlent l'image la plus claire à ce jour de la dynamique eucaryote précoce d'il y a environ 1 milliard d'années, au cours de la mystérieuse ère médiane du Protérozoïque, ont déclaré les experts. D'après les preuves de Brocks et Nettersheim, les eucaryotes des groupes tige et couronne (stem and crown)  ont probablement vécu ensemble pendant des centaines de millions d'années et se sont probablement fait concurrence pendant une période que les géologues appellent le milliard ennuyeux en raison de sa lente évolution biologique.

L'absence de stéroïdes plus modernes à cette époque suggère que le groupe couronne n'a pas immédiatement pris le dessus. Au contraire, les organismes liés à la membrane ont commencé petit à mesure qu'ils trouvaient des niches dans l'ancien écosystème, a déclaré Gold. " Il faut beaucoup de temps pour que les [eucaryotes] deviennent écologiquement dominants ", a-t-il déclaré.

(Photo : Ces anciens microfossiles partagent un ancêtre avec tous les eucaryotes vivant aujourd’hui. Vieille d’un milliard d’années, l’algue benthique  Proterocladus antiquus  (au centre) est le plus ancien fossile de couronne connu. Il y a 750 millions d'années, les eucaryotes du groupe couronne tels que l'amibozoaire Bonniea dacruchares  (à gauche) et le rhizarien  Melicerion poikilon  (à droite) étaient courants.)

De gauche à droite : Susannah Porter ; Avec l'aimable autorisation de Virginia Tech ; Susannah Porter

Au début, le groupe souche avait peut-être un avantage. Les niveaux d’oxygène dans l’atmosphère étaient nettement inférieurs à ce qu’ils sont aujourd’hui. Étant donné que la construction de protostérols nécessite moins d’oxygène et d’énergie que les stérols modernes, les eucaryotes du groupe souche étaient probablement plus efficaces et plus abondants.

Leur influence déclina lorsque le monde traversa une transition critique connue sous le nom de période tonienne. Il y a entre 1 milliard et 720 millions d’années, l’oxygène, les nutriments et autres matières premières cellulaires ont augmenté dans les océans. Des fossiles d'eucaryotes modernes, comme des algues et des champignons, commencent à apparaître dans les archives rocheuses, et les stéroïdes modernes commencent à dépasser en nombre les protostéroïdes dans les biomarqueurs fossilisés – des preuves qui suggèrent que les eucaryotes du groupe couronne avaient commencé à prospérer, à augmenter en nombre et à se diversifier.

Pourquoi les stérols deviendraient-ils plus compliqués avec le temps ? Les auteurs suggèrent que les stérols les plus complexes confèrent à leurs propriétaires un certain avantage évolutif, peut-être lié à la dynamique des membranes cellulaires des créatures. Quelle que soit la raison, le changement de stérol était significatif sur le plan évolutif. La composition des stérols modernes a probablement donné aux eucaryotes du groupe couronne un avantage par rapport au groupe souche. Finalement, " ce monde perdu d’anciens eucaryotes a été remplacé par les eucaryotes modernes ", a déclaré Brocks.

Une ride bactérienne

L’histoire évolutive des chercheurs sur les stérols est convaincante, mais elle n’est pas solide comme le roc.

"Je ne serais pas surpris" si leur interprétation est correcte, a déclaré Gold. Cependant, il existe une autre possibilité. Bien que les scientifiques aient tendance à associer les stérols aux eucaryotes, certaines bactéries peuvent également les fabriquer. Les fossiles moléculaires de l’étude auraient-ils pu être laissés par des bactéries ?Gordon Love , géochimiste à l'Université de Californie à Riverside, pense que le scénario bactérien est plus logique. "Ces protostéroïdes se retrouvent dans les roches de tous âges", a-t-il déclaré. "Ils ne disparaissent pas tout simplement, ce qui signifie que quelque chose d'autre que les eucaryotes souches est capable de les fabriquer." Il a fait valoir que les bactéries, qui dominaient la mer à cette époque, auraient pu facilement produire des protostéroïdes.

Les auteurs ne peuvent pas exclure cette possibilité. En fait, ils soupçonnent que certaines de leurs molécules fossiles ont été fabriquées par des bactéries. Mais la possibilité que leur vaste collection de protostéroïdes fossilisés, s'étendant sur des centaines de millions d'années, ait été entièrement constituée de bactéries semble peu probable, a déclaré Brocks.


" Si vous regardez l'écologie de ces bactéries aujourd'hui et leur abondance, il n'y a tout simplement aucune raison de croire qu'elles pourraient devenir si abondantes qu'elles auraient pu produire toutes ces molécules", a-t-il déclaré. Dans le monde moderne, les bactéries produisent des protostérols uniquement dans des environnements de niche tels que les sources hydrothermales ou les suintements de méthane.

Cohen, paléontologue du Williams College, est d'accord avec Brocks. L’interprétation selon laquelle ces molécules ont été faites par des eucaryotes " est cohérente avec toutes les autres sources de preuves ", a-t-elle déclaré – des archives fossiles aux analyses de l’horloge moléculaire. " Je ne suis pas aussi inquiète 2 quant à cette possibilité, a-t-elle déclaré.

L’une ou l’autre interprétation présente plus de questions que de réponses. "Les deux histoires seraient absolument folles et bizarres", a déclaré Brocks. Ce sont " des visions différentes de notre monde ", a-t-il ajouté, et il serait bien de savoir laquelle est la vraie.

Faute de machine à remonter le temps, les chercheurs recherchent davantage de preuves pour améliorer leur certitude dans un sens ou dans l’autre. Mais il n’existe qu’un nombre limité de façons de reconstruire ou de percevoir la vie ancienne – et même les meilleures suppositions des scientifiques ne peuvent jamais combler complètement cette lacune. "La plupart des formes de vie n'ont laissé aucune trace sur Terre", a déclaré Nettersheim. " Le bilan que nous voyons est limité. … Pendant la majeure partie de l’histoire de la Terre, la vie aurait pu être très différente. "


Auteur: Internet

Info: Quanta Magazine, Yasemin Saplakoglu, 23 octobre 2023

[ unicité ] [ microbiote ] [ palier évolutif ] [ précambrien ] [ protérozoïque ]

 

Commentaires: 0

Ajouté à la BD par miguel