Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 67
Temps de recherche: 0.1325s

idiot utile du système

Pratiquement cela signifie que dans les sociétés modernes, toute action n’est qu’une réaction, tout moment historique n’est qu’un effort pour lutter contre les excès – et les manques – du moment précédent. Il y a là une régulation cybernétique par excès et défaut qui dépasse de beaucoup les démarches conscientes et volontaires des individus.

C’est bien l’exemple qu’offre le socialisme qui, à tout prendre, n’est qu’un anticapitalisme, ou un contre-capitalisme, mais qui ne parvient guère à se définir positivement et en dehors de la référence au capital [...].

Autrement dit, on peut craindre que le socialisme, quel qu’il soit, ne vise rien d’autre qu’à remédier aux imperfections du système capitaliste, et qu’il ne soit rien d’autre qu’un capitalisme mieux organisé – par exemple sans capitaliste : au capitalisme industriel succèdera le socialisme industriel. Le révolutionnaire est ainsi prisonnier de sa propre révolution. Le résultat de ses efforts le trahit toujours : ce n’est pas ce qu’il croyait faire, mais c’est ce qu’il faisait effectivement. [...] On sait bien confusément dans cette "société bloquée" qu’il faudrait inventer une société différente. Mais on ne saurait y parvenir précisément parce qu’on en a primitivement éliminé la condition principale : en effet seul le transcendant, seuls des principes supérieurs à l’homme et au monde peuvent être, par eux-mêmes, la source et le modèle de cette "société autre".

La puissance majeure du capitalisme, c’est son efficacité industrielle – technique et économique. Son défaut majeur, c’est son anarchie qui découle du caractère libéraliste de l’entreprise. Le socialisme n’est d’abord et nécessairement qu’une utopie, une idéologie, un mouvement politique, un combat. En ce sens il se perçoit comme nouveau. Mais dans la mesure où, perdant son caractère utopique, il devient une réalité politique et sociale, la production anarchique, sous sa direction, fait place à une production organisée, puisque tous les défauts, toutes les "contradictions" à partir desquels s’est éveillée la conscience socialiste et qui prédéterminent la nature de sa visée sont imputables au désordre de l’appropriation individuelle des moyens de production. Lui substituer une appropriation collective, ou sociale, c’est donc organiser et planifier la production puisque la société, dans sa structure essentielle, est organisation. Le socialisme, c’est donc bien la doctrine de la société comme telle, considérée indépendamment de toutes les finalités qui la dépassent. Et c’est ce qu’a fort bien compris en son temps le communisme soviétique et chinois – qui est un régime policier, car le pouvoir policier, c’est l’essence même de l’ordre social – formellement envisagé. [...]

Voilà quel est le socialisme vers lequel nous allons ou plutôt dans lequel nous sommes déjà entrés. [...] L’interconnexion des techniques et des économies, l’interdépendance des décisions et, couronnant le tout, l’usage "colonisateur" de l’informatique, dans la gestion ou plutôt dans le fonctionnement des structures, accroissant la densité sociale des réseaux culturels. L’anticapitalisme "généreux " n’est que l’alibi "idéologique" de cette transformation qui s’accomplit sous nos yeux.

Auteur: Borella Jean

Info: "Situation du catholicisme aujourd'hui", éditions L'Harmattan, Paris, 2023, pages 32 à 34

[ critique ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

nom-du-père

Le père est une fonction dans un sens en tous points analogue à ce qui s'appelle fonction en mathématique.

y = f(x)

Il s'agit de la mise en relation de deux éléments. Reliant ces deux éléments la fonction implique leur distinction. En logique, au 1 succède le 3 duquel se déduit le 2. Autrement dit, la fonction est un "lien de séparation", un saut du contigu au discontinu. Sigmund Freud a rarement employé le terme de progrès cependant il l'emploie pour qualifier le passage de la civilisation matriarcale à la civilisation patriarcale. La liaison de l'enfant et de la mère est possible puisque précisément ils auront, au préalable, été indexés comme distincts, séparés et, par conséquent, "partiellisés" l'un pour l'autre. Ils ne sont pas tout l'un pour l'autre { y ≠ x }, mais sont aussi fils/fille de et épouse de.

Une autre façon de dire qu'il n'y a de mère et d'enfant que par rapport à un père. Complétons alors Winnicott dans son affirmation qu'un bébé seul ça n'existe pas en ajoutant qu'une mère et un enfant seuls ça n'existe pas. Il n'y ni mère ni enfant s'il n'y a pas de père (ou de fonction paternelle), mais une entité (con)fusionnelle dévorante et destructice autant pour l'enfant que pour la mère. Françoise Dolto ne disait rien d'autre lorsqu'elle affirmait qu'une femme ne pouvait être mère que si, par ailleurs, elle désirait un homme.

L'enfant et la mère sont liés symboliquement par le père en tant que nom (fonction), ce qui implique que la présence réelle du père, bien que souhaitable, peut être compensée si la mère parvient à faire fonctionner du manque. Céder l'objet afin de ne pas céder sur son désir — unique rempart à la jouissance —, autrement dit, produire/élire un objet de désir différent de son enfant. Ce qui, il faut le dire, est un cas de figure de plus en plus rare. Puisque, comme le disait Dolto dès 1960, si le sens de la paternité est à peu près perdu, il l'est pour l'homme ET pour la femme — ce "ET" est aujourd'hui systématiquement oublié pour faire de cette défaillance paternelle l'appanage de l'homme.

Nuançons aussi l'affirmation issue d'une incompréhension de l'œuvre lacanienne qui voudrait que le père, comme nom, ne soit qu'effet du désir maternel. Ceci est bien souvent une ex-cuse (hors de cause) pour le géniteur afin de se cacher dans l'ombre de la mère de sa progéniture (et dans les jupes de la sienne) ou, "au mieux", pour devenir une seconde mère, une mère bis, ou une mère de substitution en cas de défaillance maternelle de la génitrice. Bien entendu l'attitude de la mère vis-à-vis de son époux, du père de son enfant, importe beaucoup, et surtout la façon dont elle parle de lui à son enfant et à d’autres, et notamment, en son absence. Ceci dit, la "personne du père", en tant qu'élément tiers dans la structure de la parenté, relativement à la dyade mère-enfant, a à occuper cette place d'exception, au sens premier du terme, absolument indispensable au déploiement de la parole.

Auteur: Goubet-Bodart Rudy

Info: Publication facebook du 25.01.2022

[ triade ] [ parentalité ] [ psychanalyse ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

végétalo-ésotérisme

Ethnobiologiste et baroudeur en Amazonie, Romuald goûta de l'amer breuvage de l'ayahuasca (aujourd'hui courue par les avant-gardistes de la défonce chic) sous la tutelle du chant Icaros d'un chaman. "Son goût était extrêmement amer, et je sentis le liquide descendre dans mon estomac, occasionnant hauts de coeur et nausées. J'espérais ne pas être aussi malade que les autres fois où j'avais cru me vider littéralement de mes organes". Mais bientôt, la douleur s'atténue, laissant place aux visions. Des serpents se dessinent dans le ciel et la conscience éjacule du corps, vaquant au-dessus d'une forêt aux arbres souples comme des flagelles.

Plusieurs questions animent ce livre : les plantes psychotropes trouvent-elles un quelconque intérêt à offrir le plaisir hallucinatoire aux hommes ? Les visions qu'elles procurent ont-elles un sens, et si oui, lequel ? Ces questions étranges se sont imposées à Romuald lorsqu'il remarqua que les hallucinations suscitées par la consommation de DMT végétale sont constituées surtout par des motifs naturels alors que la consommation de DMT synthétique laisse plutôt voir des motifs abstraits. 

Les molécules psychotropes de ces plantes permettent-elles d'accéder à ce qui serait une "mémoire collective de l'espèce" ? On devinera sans mal que cette question est influencée par une lecture quelque peu distraite des hypothèses de l'inconscient collectif de Jung. Mais ne nous arrêtons pas à cette réticence théorique.

Romuald part de l'hypothèse pas inintéressante que les alcaloïdes des plantes psychotropes pourraient être considérés comme des exophéromones* qui annulent la barrière entre les espèces. Un peu comme l'orchidée qui ressemble à s'y méprendre à une abeille et qui dégage des phéromones sexuelles d'abeille pour se faire polliniser par le mâle (il ne suffit donc pas d'être bourré pour baiser n'importe quoi). 

De la même façon, nous dit Romuald, "les esprits des plantes que l'on nomme mères des végétaux sont, pour moi, la résultante de processus mimétiques biochimiques". Il se pourrait même qu'une plante condense en elle l'esprit de plusieurs autres plantes, comme l'ayahuasca que les indigènes considèrent comme l'esprit encyclopédique de la forêt vierge. Si vous avez lu cet incroyable illuminé qu'est Rupert Sheldrake, on peut avancer la notion de champ morphogénétique pour se faire une idée de ce que ça pourrait être, enfin c'est pas sûr non plus. 

Viennent ensuite les arguments proprement biochimiques. L'intentionnalité exophéromonale des plantes psychotropes à destination de l'esprit humain a pu être favorisée, ce qu'expliquent les bien pratiques lois de l'évolution darwinienne : "sous la forme des alcaloïdes messagers, qui lorsqu'ils se connectent à l'ADN neuronal se synchronisent avec un savoir homogène situé dans l'ADN non codant (ADN camelote). Cette mémoire et ce savoir s'expriment à la conscience par une mise en résonance de la stimulation de l'ADN des milliards de neurones de notre cerveau. Ce qui a pour effet de rendre conscient ce savoir sous forme d'images mentales et d'enseignements linguistiques conjoints avec notre cognition".

On en vient à une vision délirante de la réalité. Délirante, mais ô combien réjouissante, ne vous égarez pas ! Ce livre a connu un beau succès dans son milieu et on comprend aisément pourquoi. Les plantes auraient quelque chose à nous dire. Elles auraient traversé des temps immémoriaux pour nous transmettre leur secret – qui est aussi le secret de la vie, car quel citadin ne s'imagine pas aujourd'hui que la nature est la seule chose qui soit vraie ? Grâce à ces plantes, quelque chose comme le savoir universel et absolu deviendrait accessible. Rendez-vous compte ! Une perspective se dessine, la fin d'un égarement apparaît. Plus besoin de perdre du temps et de se fatiguer des vies entières pour creuser, chercher et comprendre dans des voies bien incertaines. le savoir est là et il ne demande, pour se laisser percer, rien d'autre que des investigations en biochimie et en psychologie jungienne, que l'on aura entre-temps redéfinie comme outil de traduction archétypale pour la communication transspéciste, qui succède bien logiquement aux joies asexuées de la réunion transsexiste. 

Les plantes psychotropes tenteraient-elles de réaliser ce que l'homme n'a jamais eu, ne serait-ce que l'idée, de réaliser : comprendre et s'unir à l'esprit des autres espèces vivantes de ce monde, réalisant ce vaste mensonge qu'est l'Unus Mundus ? Ce n'est pas parce que nous préférons ne pas manger de ce pain-là qu'il ne faut pas se poser sérieusement la question, ne serait-ce que pour rire aux larmes des espoirs touchants que nourrit parfois l'humanité.

Auteur: Arcé Alexandra

Info: Critique de l'ouvrage de R.Leterrier : Les plantes psychotropes et la conscience : L'enseignement de l'Ayahuasca. *langage des plantes, inventé par T. McKenna

[ résonances biophysiques ] [ épigénétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

Notre cerveau: un chaos bien organisé. Une équipe de l'UNIGE décrypte un des mécanismes de la conscience Déchiffrer le mystère de la conscience est le défi majeur des neurosciences actuelles. Dans ce contexte, l'équipe vient de mettre en lumière une caractéristique importante de la pensée consciente. Grâce aux technologies de pointe en neuroimagerie du Brain & Behaviour Laboratory (BBL) et à des méthodes d'analyses mathématiques, cette équipe a montré que la pensée consciente peut se décomposer en une succession de micro-états cérébraux ou "atomes de la pensée". La séquence temporelle de ces micro-états n'est ni aléatoire, ni déterminée, mais chaotique, ce qui signifie qu'elle a une structure, mais qui ne peut pas être anticipée. Cette organisation chaotique de l'activité cérébrale apparaît comme la clef permettant au cerveau de réagir rapidement à des événements inattendus. Cette étude, qui fait l'objet d'une publication dans la revue PNAS, constitue un pas en avant sur la piste de la compréhension de la conscience, ainsi que de certaines maladies mentales. Le fonctionnement de la conscience reste une question encore très mal comprise des scientifiques. Beaucoup ont essayé d'en saisir les fondements en élaborant des modèles théoriques, mais peu ont réellement tenté d'en comprendre l'organisation cérébrale à partir de mesures de l'activité neuronale. Les prof. Dimitri Van De Ville et Christoph Michel, de la Faculté de médecine et du Centre de neurosciences de l'UNIGE, en collaboration avec l'Institut de Bio-ingénierie de l'Ecole polytechnique fédérale de Lausanne (EPFL), ont mis en place une expérience pour mieux saisir comment la pensée spontanée et consciente s'organise. En effet, les chercheurs ont mesuré l'activité cérébrale de volontaires en utilisant simultanément deux méthodes de neuroimagerie du Brain & Behaviour Laboratory (BBL) de l'UNIGE: l'électro-encéphalographie (EEG), qui permet d'obtenir des mesures à des échelles de temps de l'ordre de la milliseconde, et l'imagerie par résonance magnétique fonctionnelle (IRMf), qui permet de suivre l'activité du cerveau sur des échelles de temps de l'ordre de la seconde. Durant les enregistrements, les volontaires devaient laisser libre cours à leurs pensées, sans se focaliser sur une idée particulière. Les signaux provenant de ces enregistrements ont été analysés à l'aide d'outils mathématiques. Les atomes de la pensée A la suite de ces expériences, les scientifiques ont d'abord remarqué que l'activité cérébrale s'organise en une succession de micro-états. Ces micro-états, considérés comme les "atomes de la pensée", sont les éléments constitutifs de la cognition, un peu comme des "morceaux" de pensée. Chaque micro-état correspond à une configuration particulière de l'activité des neurones dans le cerveau. Les chercheurs ont mis en évidence quatre micro-états distincts qui correspondent aux aspects visuels, auditifs, introspectifs et attentionnels de la pensée. Une pensée apparaît donc comme une alternance de composantes visuelles, auditives, introspectives et attentionnelles. Des fractales dans notre cerveau En outre, en appliquant une analyse mathématique avancée sur les mesures faites au moyen de l'EEG et de l'IRMf, les chercheurs ont fait une découverte surprenante: les atomes ou morceaux de pensée se succèdent avec une structure temporelle semblable aux deux échelles de temps. La même structure est ainsi observée tant à l'échelle de l'ordre du dixième de seconde (avec l'EEG) qu'à celle de l'ordre de la dizaine de secondes (avec IRMf). Cette propriété est la caractéristique principale des fractales dans la théorie du chaos. Un objet fractal présente le même motif lorsqu'il est regardé au microscope, à la loupe ou à l'oeil nu. Il semblerait que la durée des micro-états joue un rôle prédominant dans cette organisation fractale de la pensée. "Prenons l'analogie du livre dans lequel les lettres représentent les atomes de la pensée. Ceux-ci se combinent pour former des mots, qui eux-mêmes se combinent pour former des phrases ; les phrases se combinent en paragraphes, et ainsi de suite jusqu'à obtenir un livre, tout cela avec toujours les mêmes règles syntaxiques" explique Christoph Michel, un des auteurs de l'étude. "Ce que nous avons mis en évidence, c'est une syntaxe de la pensée". Fonctionnel grâce au chaos Ce serait donc grâce à cette organisation "chaotique" de la pensée que le cerveau peut se réorganiser et s'adapter très rapidement selon les besoins. Des perturbations dans les micro-états pourraient être à l'origine de certaines maladies mentales. Par exemple, on a observé chez les schizophrènes des micro-états de durée plus courte que la normale, suggérant la présence de pensées inabouties. Suite à cette découverte, les chercheurs vont maintenant pouvoir s'attacher à comprendre cette syntaxe neuronale chez des patients neurologiques et chez des sujets sains qui subissent un changement de l'état de conscience, comme pendant le sommeil.

Auteur: Internet

Info: Université de Genève 21 octobre 2010

[ réflexion ] [ hologramme ] [ désordre ] [ citation s'appliquant à ce logiciel ]

 

Commentaires: 0

épigénétique

"Percer les secrets du vivant grâce à la biologie quantique"

En primeur pour notre magazine, Birgitta Whaley, qui dirige le Berkeley Quantum Information and Computation Center de l'université de Californie, a accepté d'expliquer en quoi les "mécanismes quantiques à l'oeuvre chez les organismes vivants" pouvaient révolutionner le monde. D'autant qu'ils ne sont qu'une cinquantaine de scientifiques à travers la planète à poursuivre ces travaux fondamentaux.

Sciences et Avenir : Quand on évoque l’information quantique, on pense en premier lieu à la physique et aux particules de matière ou de lumière. Or, vous travaillez sur le vivant ?

Birgitta Whaley : Nous étudions tout un éventail d'organismes, des plantes vertes aux bactéries, qu'il s'agisse d'unicellulaires ou de feuilles. Mais aussi des oiseaux ou d'autres animaux. Nous voulons apporter la preuve qu'il existe un comportement quantique chez ces organismes vivants, à toute petite échelle, impliquant des "grains de lumière" (photons).

Avez-vous découvert ce comportement quantique ? Oui, il est tout à fait évident que des effets quantiques sont au coeur, en particulier, de ce qu’on appelle la photosynthèse. Nous les observons dans les premiers stades de ce mécanisme essentiel à la vie qui permet l’absorption de la lumière, puis sa transformation en énergie électronique, les électrons déclenchant ensuite les réactions chimiques qui permettent la formation de glucides [constituants essentiels des êtres vivants].

Outre la connaissance fondamentale, pourquoi est-ce important de comprendre ce mécanisme ?

Parce qu’il est essentiel à la production de nourriture et donc à notre vie. Mais imaginez aussi que nous parvenions à réaliser une photosynthèse artificielle qui capture l’énergie solaire aussi bien que le font les plantes, dont le processus a été hautement optimisé après 3,6 milliards d’années d’évolution. Ce ne serait plus 15 % de rendement que l’on obtiendrait, comme cela se pratique avec le photovoltaïque aujourd’hui, mais presque 100 % !

Qu’ont donc réussi à faire les plantes, et pas nous ?

Chez les plantes vertes, des récepteurs composés de chlorophylle sont capables d’absorber des photons alors même que la lumière reçue est très faible. Chacun d’eux ne reçoit en moyenne qu’un photon toutes les dix secondes. Il faut que la plante soit vraiment très efficace pour réaliser cette absorption avec si peu de lumière. Il y a même des bactéries marines qui n’absorbent qu’un photon (dans l’infrarouge) toutes les vingt minutes.

Qu’est-il important de mesurer ?

Les détails de ce processus d’absorption, en particulier sa dynamique… Nous connaissons très bien la chlorophylle, nous savons quelle partie de la molécule absorbe le photon et à quel niveau. Le problème vient de ce que cette chlorophylle est enchâssée dans un échafaudage complexe de protéines- pigments qui se mettent à leur tour à vibrer, à entrer en rotation… Nos expériences suggèrent fortement que ces vibrations oeuvrent en conjonction avec l’excitation électronique déclenchée par l’arrivée du photon. Elles aident au transfert des électrons qui déclencheront ultérieurement des réactions chimiques. Ce mécanisme d’absorption, facilité par des effets quantiques, peut avoir jusqu’à 99 % d’efficacité. Un photon arrive, un électron est produit. Finement réglé, il répond à une nécessité de survie de l’organisme.

Quel genre d’appareillages utilisez-vous pour les mesures ?

Nous employons des faisceaux laser pulsés, qui permettent de préciser la dynamique d’excitation des molécules. Par exemple, avec trois pulses qui se succèdent [arrivée de photons d’une certaine fréquence], nous pouvons voir, lors du premier, la molécule réceptrice amorcer son passage vers un état " excité", puis, lors du deuxième pulse, la molécule devenir entièrement excitée, le troisième pulse permettant d’apporter des précisions sur la durée de cette excitation.

Cela ne semble pas évident…

En biologie, vous ne savez pas où s’arrête le système quantique et où commence son environnement. La plupart des spécialistes haussent les épaules en disant que tout cela est trop compliqué, qu’ils ne veulent même pas en entendre parler !

Dans combien de temps pensez-vous comprendre ce qui se passe ?

Peut-être dans vingt ans… Mais d’ici à dix ans, grâce à la biologie synthétique, nous devrions pouvoir élaborer une structure qui fasse progresser notre compréhension.

"COMPORTEMENT. La fascinante intelligence spatiale des oiseaux.

La migration des oiseaux et leur capacité à déterminer la bonne direction à prendre sont aussi un domaine "très tendance" en biologie quantique ! Birgitta Whaley le trouve d’autant plus fascinant que "les effets quantiques ne sont pas du tout évidents. Est peut-être impliquée ici ce qu’on nomme l’intrication quantique" [deux objets qui peuvent être spatialement séparés mais doivent être traités globalement, comme un seul]. La lumière est en effet absorbée par une molécule à l’arrière de la rétine de chaque oeil de l’oiseau, qui produit puis transfère un électron. On se demande alors quel est le comportement quantique des deux électrons (entre eux) qui pénètrent dans le cerveau de l’oiseau, ce qui lui délivre un message particulier. Mais il ne s’agit pour l’instant que "d’une belle hypothèse et il nous faudrait des données expérimentales".)

Auteur: Internet

Info: www.sciencesetavenir.fr, Dominique Leglu, 7.11.2016

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

paliers évolutionnaires

Des chercheurs découvrent une extinction de masse jusqu’alors inconnue de l’histoire de la Terre

Une extinction de masse désigne un événement ayant entraîné la disparition d’au moins 75 % des espèces présentes sur Terre. Les paléobiologistes affirment que notre planète a déjà connu cinq principaux épisodes de ce type ; certains estiment que nous sommes en train de vivre la sixième extinction. Mais la liste ne s’arrête pas là : des chercheurs de Virginia Tech ont découvert que la Terre aurait subi une extinction de masse il y a environ 550 millions d’années. Ce serait ainsi la toute première extinction que notre planète ait connu.

À ce jour, l’extinction de l’Ordovicien-Silurien, survenue il y a environ 440 millions d’années, est considérée comme la première extinction massive de notre planète. Celle-ci s’est vraisemblablement produite à la suite d’une grande glaciation, à laquelle auraient succombé près de 85% des espèces, faute de réussir à s’adapter à ces nouvelles conditions. Mais des preuves suggèrent aujourd’hui qu’un autre événement d’extinction l’aurait précédée : une diminution de la disponibilité mondiale d’oxygène aurait entraîné la perte d’une majorité d’animaux présents vers la fin de l’Édiacarien, il y a environ 550 millions d’années.

La première extinction de l’histoire de la Terre

Le déclin soudain de la diversité fossile il y a 550 millions d’années est connu depuis longtemps, mais les scientifiques n’avaient pas pu en déterminer la cause avec certitude. Il était possible que les espèces en présence soient entrées en compétition pour la survie, s’éliminant les unes les autres, ou simplement que les conditions environnementales de l’époque n’étaient pas propices à la préservation des fossiles édiacariens. Une nouvelle étude publiée dans Proceedings of the National Academy of Sciences permet aujourd’hui d’affirmer que ce déclin résulte bel et bien d’une extinction de masse.

Notre planète compte cinq extinctions de masse connues, les "Big Five", selon Shuhai Xiao, professeur de géobiologie à Virginia Tech : l’extinction de l’Ordovicien-Silurien (il y a 440 millions d’années), l’extinction du Dévonien tardif (il y a 370 millions d’années), l’extinction du Permien-Trias (il y a 250 millions d’années), l’extinction du Trias-Jurassique (il y a 200 millions d’années) et enfin, l’extinction du Crétacé-Paléogène (il y a 65 millions d’années), qui a anéanti environ 75 % des plantes et des animaux, y compris les dinosaures non aviens.

Toutes sont liées à des changements environnementaux majeurs et à grande échelle. Un changement climatique ou un événement de désoxygénation peuvent entraîner une extinction massive d’animaux, ainsi qu’une perturbation et une réorganisation profondes des écosystèmes. Ce premier événement d’extinction survenu lors de l’Édiacarien n’échappe pas à la règle : lui aussi a été induit par une modification significative de l’environnement.

Près de 80 % des animaux vivant sur Terre auraient disparu lors de cette première extinction massive. "Cela comprenait la perte de nombreux types d’animaux différents, mais ceux dont les plans corporels et les comportements indiquent qu’ils dépendaient d’importantes quantités d’oxygène semblent avoir été particulièrement touchés", explique Scott Evans, chercheur postdoctoral au Département des géosciences de Virginia Tech et premier auteur de l’étude décrivant l’événement.

Un "coup de pouce" à l’évolution ?

Les fossiles à corps mou du biote d’Ediacara – du nom des collines situées au sud de l’Australie où ont été découverts ces fossiles en 1946 – font partie des plus anciens organismes pluricellulaires complexes connus. Les empreintes fossiles datant de la période édiacarienne – soit d’environ -635 à -539 millions d’années – montrent que les animaux qui ont péri lors de cette extinction de masse avaient une apparence très étrange, en forme de feuille, de plume ou de tube.

Selon Evans, les organismes de l’époque semblaient expérimenter différentes façons de construire leurs grands corps multicellulaires. Par conséquent, les fossiles mis au jour datant d’avant l’extinction, ne correspondent pas toujours aux classifications actuelles des animaux. "Cette extinction a peut-être contribué à ouvrir la voie à l’évolution des animaux tels que nous les connaissons", conclut le chercheur. À savoir que la plupart des plans d’organisation animaux existant aujourd’hui sont apparus au cours du Cambrien (soit la période qui succède à l’Édiacarien).

Evans et ses collègues ont scrupuleusement examiné et catalogué l’ensemble des fossiles de la période édiacarienne décrits dans la littérature. Ils ont ainsi identifié 70 genres d’animaux, dont seuls 14 existaient encore quelque 10 millions d’années plus tard. L’équipe n’a toutefois trouvé aucun signe suggérant que ces animaux étaient en concurrence avec les premiers animaux du Cambrien, ni rien qui pouvait expliquer la non-préservation des fossiles.

En revanche, les animaux qui ont survécu arboraient tous un plan d’organisation favorisant la survie en cas d’anoxie : une surface corporelle relativement élevée par rapport à leur volume. Des preuves géochimiques confirment par ailleurs une faible disponibilité d’oxygène dans les océans il y a 550 millions d’années.

Une anoxie dont la cause reste à éclaircir

Qu’est-ce qui a causé cette baisse de la disponibilité globale de l’oxygène ? "La réponse courte à la façon dont cela s’est produit est que nous ne savons pas vraiment", a déclaré Evans. En réalité, plusieurs événements, individuels ou combinés, pourraient être à l’origine du phénomène explique le scientifique : éruptions volcaniques, mouvements de plaques tectoniques, impact d’astéroïde, etc. Des changements dans les niveaux de nutriments des océans pourraient être une autre cause possible. 

 Dans tous les cas, cette extinction a largement influencé l’évolution de la vie sur Terre et cette étude nous donne un aperçu de l’impact à long terme du manque d’oxygène sur la vie aquatique. Il se trouve que dans une autre étude, les scientifiques de Virginia Tech ont récemment découvert que les lacs d’eaux douces du monde perdaient actuellement rapidement de l’oxygène.

Ce phénomène est lié non seulement au réchauffement des eaux induit par le changement climatique, mais aussi à l’excès de ruissellement de substances polluantes (phosphore, azote) lié aux pratiques agricoles : "le réchauffement des eaux diminue la capacité de l’eau douce à retenir l’oxygène, tandis que la dégradation des nutriments dans le ruissellement par les microbes d’eau douce engloutit l’oxygène", expliquent les chercheurs.

En d’autres termes, la découverte de cette nouvelle extinction donne un aperçu des dangers de la crise climatique actuelle pour la vie animale.

Auteur: Internet

Info: https://www.science-et-vie.com, 7 déc 2022  Fleur Brosseau

[ stases ] [ Gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Une nouvelle approche du calcul réinvente l'intelligence artificielle

Par l'imprégnation d'énormes vecteurs de sens sémantique, nous pouvons amener les machines à raisonner de manière plus abstraite et plus efficace qu'auparavant.

M
algré le succès retentissant de ChatGPT et d'autres grands modèles de langage, les réseaux de neurones artificiels (ANN) qui sous-tendent ces systèmes pourraient être sur la mauvaise voie.

D'une part, les ANN sont "super gourmands en énergie", a déclaré Cornelia Fermüller , informaticienne à l'Université du Maryland. "Et l'autre problème est [leur] manque de transparence." De tels systèmes sont si compliqués que personne ne comprend vraiment ce qu'ils font, ou pourquoi ils fonctionnent si bien. Ceci, à son tour, rend presque impossible de les amener à raisonner par analogie, ce que font les humains - en utilisant des symboles pour les objets, les idées et les relations entre eux.

Ces lacunes proviennent probablement de la structure actuelle des RNA et de leurs éléments constitutifs : les neurones artificiels individuels. Chaque neurone reçoit des entrées, effectue des calculs et produit des sorties. Les RNA modernes sont des réseaux élaborés de ces unités de calcul, formés pour effectuer des tâches spécifiques.

Pourtant, les limites des RNA sont évidentes depuis longtemps. Considérez, par exemple, un ANN qui sépare les cercles et les carrés. Une façon de le faire est d'avoir deux neurones dans sa couche de sortie, un qui indique un cercle et un qui indique un carré. Si vous voulez que votre ANN discerne également la couleur de la forme - bleu ou rouge - vous aurez besoin de quatre neurones de sortie : un pour le cercle bleu, le carré bleu, le cercle rouge et le carré rouge. Plus de fonctionnalités signifie encore plus de neurones.

Cela ne peut pas être la façon dont notre cerveau perçoit le monde naturel, avec toutes ses variations. "Vous devez proposer que, eh bien, vous avez un neurone pour toutes les combinaisons", a déclaré Bruno Olshausen , neuroscientifique à l'Université de Californie à Berkeley. "Donc, vous auriez dans votre cerveau, [disons,] un détecteur Volkswagen violet."

Au lieu de cela, Olshausen et d'autres soutiennent que l'information dans le cerveau est représentée par l'activité de nombreux neurones. Ainsi, la perception d'une Volkswagen violette n'est pas codée comme les actions d'un seul neurone, mais comme celles de milliers de neurones. Le même ensemble de neurones, tirant différemment, pourrait représenter un concept entièrement différent (une Cadillac rose, peut-être).

C'est le point de départ d'une approche radicalement différente de l'informatique connue sous le nom d'informatique hyperdimensionnelle. La clé est que chaque élément d'information, comme la notion d'une voiture, ou sa marque, son modèle ou sa couleur, ou tout cela ensemble, est représenté comme une seule entité : un vecteur hyperdimensionnel.

Un vecteur est simplement un tableau ordonné de nombres. Un vecteur 3D, par exemple, comprend trois nombres : les coordonnées x , y et z d'un point dans l'espace 3D. Un vecteur hyperdimensionnel, ou hypervecteur, pourrait être un tableau de 10 000 nombres, par exemple, représentant un point dans un espace à 10 000 dimensions. Ces objets mathématiques et l'algèbre pour les manipuler sont suffisamment flexibles et puissants pour amener l'informatique moderne au-delà de certaines de ses limites actuelles et favoriser une nouvelle approche de l'intelligence artificielle.

"C'est ce qui m'a le plus enthousiasmé, pratiquement de toute ma carrière", a déclaré Olshausen. Pour lui et pour beaucoup d'autres, l'informatique hyperdimensionnelle promet un nouveau monde dans lequel l'informatique est efficace et robuste, et les décisions prises par les machines sont entièrement transparentes.

Entrez dans les espaces de grande dimension

Pour comprendre comment les hypervecteurs rendent le calcul possible, revenons aux images avec des cercles rouges et des carrés bleus. Nous avons d'abord besoin de vecteurs pour représenter les variables SHAPE et COLOR. Ensuite, nous avons également besoin de vecteurs pour les valeurs pouvant être affectées aux variables : CERCLE, CARRÉ, BLEU et ROUGE.

Les vecteurs doivent être distincts. Cette distinction peut être quantifiée par une propriété appelée orthogonalité, ce qui signifie être à angle droit. Dans l'espace 3D, il existe trois vecteurs orthogonaux entre eux : un dans la direction x , un autre dans la direction y et un troisième dans la direction z . Dans un espace à 10 000 dimensions, il existe 10 000 vecteurs mutuellement orthogonaux.

Mais si nous permettons aux vecteurs d'être presque orthogonaux, le nombre de ces vecteurs distincts dans un espace de grande dimension explose. Dans un espace à 10 000 dimensions, il existe des millions de vecteurs presque orthogonaux.

Créons maintenant des vecteurs distincts pour représenter FORME, COULEUR, CERCLE, CARRÉ, BLEU et ROUGE. Parce qu'il y a tellement de vecteurs presque orthogonaux possibles dans un espace de grande dimension, vous pouvez simplement assigner six vecteurs aléatoires pour représenter les six éléments ; ils sont presque garantis d'être presque orthogonaux. "La facilité de créer des vecteurs presque orthogonaux est une raison majeure d'utiliser la représentation hyperdimensionnelle", a écrit Pentti Kanerva , chercheur au Redwood Center for Theoretical Neuroscience de l'Université de Californie à Berkeley, dans un article influent de 2009.

L'article s'appuyait sur des travaux effectués au milieu des années 1990 par Kanerva et Tony Plate, alors étudiant au doctorat avec Geoff Hinton à l'Université de Toronto. Les deux ont développé indépendamment l'algèbre pour manipuler les hypervecteurs et ont fait allusion à son utilité pour le calcul en haute dimension.

Étant donné nos hypervecteurs pour les formes et les couleurs, le système développé par Kanerva et Plate nous montre comment les manipuler à l'aide de certaines opérations mathématiques. Ces actions correspondent à des manières de manipuler symboliquement des concepts.

La première opération est la multiplication. C'est une façon de combiner les idées. Par exemple, multiplier le vecteur FORME par le vecteur CERCLE lie les deux en une représentation de l'idée "LA FORME est CERCLE". Ce nouveau vecteur "lié" est presque orthogonal à la fois à SHAPE et à CIRCLE. Et les composants individuels sont récupérables - une caractéristique importante si vous souhaitez extraire des informations à partir de vecteurs liés. Étant donné un vecteur lié qui représente votre Volkswagen, vous pouvez dissocier et récupérer le vecteur pour sa couleur : VIOLET.

La deuxième opération, l'addition, crée un nouveau vecteur qui représente ce qu'on appelle une superposition de concepts. Par exemple, vous pouvez prendre deux vecteurs liés, "SHAPE is CIRCLE" et "COLOR is RED", et les additionner pour créer un vecteur qui représente une forme circulaire de couleur rouge. Là encore, le vecteur superposé peut être décomposé en ses constituants.

La troisième opération est la permutation ; cela implique de réorganiser les éléments individuels des vecteurs. Par exemple, si vous avez un vecteur tridimensionnel avec des valeurs étiquetées x , y et z , la permutation peut déplacer la valeur de x vers y , y vers z et z vers x. "La permutation vous permet de construire une structure", a déclaré Kanerva. "Ça permet de gérer des séquences, des choses qui se succèdent." Considérons deux événements, représentés par les hypervecteurs A et B. Nous pouvons les superposer en un seul vecteur, mais cela détruirait les informations sur l'ordre des événements. La combinaison de l'addition et de la permutation préserve l'ordre ; les événements peuvent être récupérés dans l'ordre en inversant les opérations.

Ensemble, ces trois opérations se sont avérées suffisantes pour créer une algèbre formelle d'hypervecteurs permettant un raisonnement symbolique. Mais de nombreux chercheurs ont été lents à saisir le potentiel de l'informatique hyperdimensionnelle, y compris Olshausen. "Cela n'a tout simplement pas été pris en compte", a-t-il déclaré.

Exploiter le pouvoir

En 2015, un étudiant d'Olshausen nommé Eric Weiss a démontré un aspect des capacités uniques de l'informatique hyperdimensionnelle. Weiss a compris comment représenter une image complexe comme un seul vecteur hyperdimensionnel contenant des informations sur tous les objets de l'image, y compris leurs propriétés, telles que les couleurs, les positions et les tailles.

"Je suis pratiquement tombé de ma chaise", a déclaré Olshausen. "Tout d'un coup, l'ampoule s'est allumée."

Bientôt, d'autres équipes ont commencé à développer des algorithmes hyperdimensionnels pour reproduire des tâches simples que les réseaux de neurones profonds avaient commencé à effectuer environ deux décennies auparavant, comme la classification d'images.

Considérons un ensemble de données annotées composé d'images de chiffres manuscrits. Un algorithme analyse les caractéristiques de chaque image en utilisant un schéma prédéterminé. Il crée ensuite un hypervecteur pour chaque image. Ensuite, l'algorithme ajoute les hypervecteurs pour toutes les images de zéro pour créer un hypervecteur pour l'idée de zéro. Il fait ensuite la même chose pour tous les chiffres, créant 10 hypervecteurs "de classe", un pour chaque chiffre.

Maintenant, l'algorithme reçoit une image non étiquetée. Il crée un hypervecteur pour cette nouvelle image, puis compare l'hypervecteur aux hypervecteurs de classe stockés. Cette comparaison détermine le chiffre auquel la nouvelle image ressemble le plus.

Pourtant, ce n'est que le début. Les points forts de l'informatique hyperdimensionnelle résident dans la capacité de composer et de décomposer des hypervecteurs pour le raisonnement. La dernière démonstration en date a eu lieu en mars, lorsqu'Abbas Rahimi et ses collègues d'IBM Research à Zurich ont utilisé l'informatique hyperdimensionnelle avec des réseaux de neurones pour résoudre un problème classique de raisonnement visuel abstrait - un défi important pour les RNA typiques, et même certains humains. Connu sous le nom de matrices progressives de Raven, le problème présente des images d'objets géométriques dans, disons, une grille 3 par 3. Une position dans la grille est vide. Le sujet doit choisir, parmi un ensemble d'images candidates, l'image qui correspond le mieux au blanc.

"Nous avons dit:" C'est vraiment ... l'exemple qui tue pour le raisonnement abstrait visuel, allons-y "", a déclaré Rahimi.

Pour résoudre le problème à l'aide de l'informatique hyperdimensionnelle, l'équipe a d'abord créé un dictionnaire d'hypervecteurs pour représenter les objets dans chaque image ; chaque hypervecteur du dictionnaire représente un objet et une combinaison de ses attributs. L'équipe a ensuite formé un réseau de neurones pour examiner une image et générer un hypervecteur bipolaire - un élément peut être +1 ou -1 - aussi proche que possible d'une superposition d'hypervecteurs dans le dictionnaire ; l'hypervecteur généré contient donc des informations sur tous les objets et leurs attributs dans l'image. "Vous guidez le réseau de neurones vers un espace conceptuel significatif", a déclaré Rahimi.

Une fois que le réseau a généré des hypervecteurs pour chacune des images de contexte et pour chaque candidat pour l'emplacement vide, un autre algorithme analyse les hypervecteurs pour créer des distributions de probabilité pour le nombre d'objets dans chaque image, leur taille et d'autres caractéristiques. Ces distributions de probabilité, qui parlent des caractéristiques probables à la fois du contexte et des images candidates, peuvent être transformées en hypervecteurs, permettant l'utilisation de l'algèbre pour prédire l'image candidate la plus susceptible de remplir l'emplacement vacant.

Leur approche était précise à près de 88 % sur un ensemble de problèmes, tandis que les solutions de réseau neuronal uniquement étaient précises à moins de 61 %. L'équipe a également montré que, pour les grilles 3 par 3, leur système était presque 250 fois plus rapide qu'une méthode traditionnelle qui utilise des règles de logique symbolique pour raisonner, car cette méthode doit parcourir un énorme livre de règles pour déterminer la bonne prochaine étape.

Un début prometteur

Non seulement l'informatique hyperdimensionnelle nous donne le pouvoir de résoudre symboliquement des problèmes, mais elle résout également certains problèmes épineux de l'informatique traditionnelle. Les performances des ordinateurs d'aujourd'hui se dégradent rapidement si les erreurs causées, par exemple, par un retournement de bit aléatoire (un 0 devient 1 ou vice versa) ne peuvent pas être corrigées par des mécanismes de correction d'erreurs intégrés. De plus, ces mécanismes de correction d'erreurs peuvent imposer une pénalité sur les performances allant jusqu'à 25 %, a déclaré Xun Jiao , informaticien à l'Université de Villanova.

Le calcul hyperdimensionnel tolère mieux les erreurs, car même si un hypervecteur subit un nombre important de retournements de bits aléatoires, il reste proche du vecteur d'origine. Cela implique que tout raisonnement utilisant ces vecteurs n'est pas significativement impacté face aux erreurs. L'équipe de Jiao a montré que ces systèmes sont au moins 10 fois plus tolérants aux pannes matérielles que les ANN traditionnels, qui sont eux-mêmes des ordres de grandeur plus résistants que les architectures informatiques traditionnelles. "Nous pouvons tirer parti de toute [cette] résilience pour concevoir du matériel efficace", a déclaré Jiao.

Un autre avantage de l'informatique hyperdimensionnelle est la transparence : l'algèbre vous indique clairement pourquoi le système a choisi la réponse qu'il a choisie. Il n'en va pas de même pour les réseaux de neurones traditionnels. Olshausen, Rahimi et d'autres développent des systèmes hybrides dans lesquels les réseaux de neurones cartographient les éléments du monde physique en hypervecteurs, puis l'algèbre hyperdimensionnelle prend le relais. "Des choses comme le raisonnement analogique vous tombent dessus", a déclaré Olshausen. "C'est ce que nous devrions attendre de tout système d'IA. Nous devrions pouvoir le comprendre comme nous comprenons un avion ou un téléviseur.

Tous ces avantages par rapport à l'informatique traditionnelle suggèrent que l'informatique hyperdimensionnelle est bien adaptée à une nouvelle génération de matériel extrêmement robuste et à faible consommation d'énergie. Il est également compatible avec les "systèmes informatiques en mémoire", qui effectuent le calcul sur le même matériel qui stocke les données (contrairement aux ordinateurs von Neumann existants qui transfèrent inefficacement les données entre la mémoire et l'unité centrale de traitement). Certains de ces nouveaux appareils peuvent être analogiques, fonctionnant à très basse tension, ce qui les rend économes en énergie mais également sujets aux bruits aléatoires. Pour l'informatique de von Neumann, ce caractère aléatoire est "le mur que vous ne pouvez pas franchir", a déclaré Olshausen. Mais avec l'informatique hyperdimensionnelle, "vous pouvez simplement percer".

Malgré ces avantages, l'informatique hyperdimensionnelle en est encore à ses balbutiements. "Il y a un vrai potentiel ici", a déclaré Fermüller. Mais elle souligne qu'il doit encore être testé contre des problèmes du monde réel et à des échelles plus grandes, plus proches de la taille des réseaux de neurones modernes.

"Pour les problèmes à grande échelle, cela nécessite un matériel très efficace", a déclaré Rahimi. "Par exemple, comment [faites-vous] une recherche efficace sur plus d'un milliard d'articles ?"

Tout cela devrait venir avec le temps, a déclaré Kanerva. "Il y a d'autres secrets [que] les espaces de grande dimension détiennent", a-t-il déclaré. "Je vois cela comme le tout début du temps pour le calcul avec des vecteurs."

Auteur: Ananthaswamy Anil

Info: https://www.quantamagazine.org/ Mais 2023

[ machine learning ]

 

Commentaires: 0

Ajouté à la BD par miguel