Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 127
Temps de recherche: 0.0722s

théorie du tout

Notre réalité est pure information. Information géométrique. L'information étant le sens, sous forme de symbolisme. 

D'où la question, quel type d'information pour exprimer un langage géométrique ?

Information implique signification. Mais que veut dire signification ?

C'est une comparaison, c'est à dire la perception de quelque chose relativement à quelque chose d'autre. Ainsi, pour pouvoir exister une chose doit être perçue, ou mesurée, par quelque forme de conscience. 

Einstein a montré que passé et futur existent simultanément dans un objet géométrique ; de fait tous les temps existent conjointement (les mathématiques le montrent de plein de manières). Donc : passé et futur s'influençant sans cesse, tout est toujours dans l'instant présent. Alors, si chaque moment influence et co-crée chaque autre moment dans quelque sens que ce soit, la réalité ne peut qu'être un massif  réseau neuronal qui sillonne l'espace et le temps.

Réseau doté d'une spécificité étonnante. Il serait son propre créateur.

Parallèlement, comme l'a démontré la mécanique quantique, le futur n'est pas prédéterminé. Conséquemment existe le libre-arbitre.

Comment marche le libre-arbitre ? La physique quantique montre que la réalité n'existe que lorsqu'elle est observée. Wheeler déclara en son temps que la réalité est constitué d'informations, elles-mêmes créées par l'observation. Frank Wilczec ajouta ensuite que la physique quantique reste obscure et sujette à débat. Et qu'elle le restera tant qu'on aura pas défini, au sein du formalisme quantique, un observateur, entité moderne dont les conditions et/ou contours correspondent à une caricature reconnaissable de la conscience consciente. C'est à dire une entité, pas nécessairement terrestre, capable d'observer et mesurer.

Mais comment pourrait être cette entité ? Je suis, nous sommes... tous conscient, mais qu'est-.ce que cela veut dire ?

On sait juste que la conscience est liée de manière proche à  la science physique mais personne ne sait dire ce qu'elle hors de l'idée qu'elle joue un rôle central dans l'existence du réel.

Est-elle juste l'émergence d'une boucle de rétroaction de causalité ? Heisenberg développa en son temps les maths matricielles, arrivant à la conclusion que la réalité est pixelliseé en nano unités tridimensionnelles insécables, de la taille la plus petite dans l'échelle de Planck. Chacune (nommée tétrahedron, c'est à dire un polyèdre composé de quatre faces triangulaires) fonctionnant comme nos pixels sur les écrans TV.

Hélas ce qui précède n'apporte aucune preuve que cet espace, le notre, soit un tel ensemble uniforme, homogène, fluide, etc.  Malgré tout, mathématiquement, tout converge vers la consolidation de cette idée d'une pixellisation de la réalité.

Du coup quel code géométrique sera-t'il à même de modéliser cette réalité pixellisée ?

Les recherches au CERN ou ailleurs  sur la physique des particules conduisent toutes vers ce que les physiciens nomment "transformation de symétrie de jauge", chacune menant vers une notion de forme, géomètrique donc.

Mais ici apparait une forme, et pas n'importe laquelle. Il s'agit d'un modèle géométrique à 8 dimensions, plus précisément un crystal 8 D (Rappelons que crystal signifie motif périodique), modèle qu'on pourra se représenter tel un "treillis à 8  dimensions" (E8 lattice), structure 8 D qui présente 240 noeuds, ou points tournants (vertex-vertices), que nous nommons gosset polytope.

Lorsque ce gosset polytope est projeté en 4 dimensions il se métamorphose en deux formes identiques de tailles différentes, dont le ratio est précisément 0,618, c'est à dire celui du nombre d'or, constante fondamentale de la nature qui apparait à toutes les échelles de l'univers connu (par exemple il détermine le moment précis ou un trou noir passe de positif à négatif en étant partie de l'équation qui précise la limite inférieure de son entropie). Il se rapporte aussi à la gravité de la boucle quantique.

Ainsi ce ratio de Fibonnaci unifie les limites inférieures et supérieures (cosmiques - quantique) de la préhension du réel par les scientifiques, physiciens pour grande partie.

Et, si on revient aux maths matricielles qui fonctionnent à partir d'eigen values (Valeur propre, vecteur propre et espace propre) indiquées comme triviales (1,2 ou 0) ou non triviales (pour les nombres plus complexes.) on arrive à la partie intéressante : les deux plus grandes probabilités d'eigenvalues non triviales qui apparaissent dans une matrice binaire sont :

-  le golden ratio  et

-1 sur (over) le nombre d'or.

Tel est le lien très profond qui unit mécanique quantique et cosmologie. Ce ratio, qui est apparu dans un grand nombre d'observations, a cependant toujours été appréhendé par les scientifiques comme un truc d'amateurs. Et maintenant on constate, une fois de plus, que ce nombre d'or apparait vraiment partout.

Pour terminer résumons ici les sept indices que nous donne la nature pour contruire cette théorie du tout (emergence theory)

information

indéterminisme

boucle de causalité

conscience

pixellisation

cristal E 8  (à 8 dimensions)

nombre d'or

Auteur: Anonyme

Info: Youtube - Quantum Gravity Research, What Is Reality? Official Film. https://www.youtube.com/watch?v=w0ztlIAYTCU

[ sciences ] [ septénaire ] [ miroir anthropocentrique ] [ monde humain consensuel ] [ atemporalité ] [ programme de langlands ]

 

Commentaires: 0

Ajouté à la BD par miguel

nano-monde

2 000 atomes existent à deux endroits à la fois dans une expérience quantique sans précédent.

Une expérience a démontré un effet quantique bizarre de l'expérience de la double fente à une nouvelle échelle.

Des molécules géantes peuvent se trouver à deux endroits à la fois, grâce à la physique quantique. Les scientifiques savent depuis longtemps qu'il s'agit d'une vérité théorique fondée sur quelques faits : Chaque particule ou groupe de particules dans l'univers est également une onde - même les grandes particules, même les bactéries, même les êtres humains, même les planètes et les étoiles. Et les ondes occupent plusieurs endroits de l'espace à la fois. Ainsi, tout morceau de matière peut également occuper deux endroits à la fois. Les physiciens appellent ce phénomène "superposition quantique" et, pendant des décennies, ils l'ont démontré en utilisant de petites particules.

Mais ces dernières années, les physiciens ont augmenté l'échelle de leurs expériences, démontrant la superposition quantique en utilisant des particules de plus en plus grandes. Dans un article publié le 23 septembre dans la revue Nature Physics, une équipe internationale de chercheurs a réussi à faire en sorte qu'une molécule composée de 2 000 atomes occupe deux endroits en même temps.

Pour y parvenir, les chercheurs ont construit une version compliquée et modernisée d'une série d'anciennes expériences célèbres qui ont démontré pour la première fois la superposition quantique.

Les chercheurs savaient depuis longtemps que la lumière, envoyée à travers une feuille comportant deux fentes, créait un motif d'interférence, c'est-à-dire une série de franges claires et sombres, sur le mur situé derrière la feuille. Mais la lumière était considérée comme une onde sans masse, et non comme un élément constitué de particules, ce qui n'était donc pas surprenant. Cependant, dans une série d'expériences célèbres réalisées dans les années 1920, les physiciens ont montré que les électrons tirés à travers des films ou des cristaux minces se comportaient de manière similaire, formant des motifs comme la lumière sur le mur derrière le matériau diffractant.

Si les électrons étaient de simples particules, et ne pouvaient donc occuper qu'un seul point de l'espace à la fois, ils formeraient deux bandes, ayant à peu près la forme des fentes, sur le mur derrière le film ou le cristal. Mais au lieu de cela, les électrons frappent cette paroi selon des motifs complexes qui suggèrent que les électrons interfèrent avec eux-mêmes. C'est un signe révélateur d'une onde : à certains endroits, les pics des ondes coïncident, créant des régions plus lumineuses, tandis qu'à d'autres endroits, les pics coïncident avec des creux, de sorte que les deux s'annulent et créent une région sombre. Comme les physiciens savaient déjà que les électrons avaient une masse et étaient définitivement des particules, l'expérience a montré que la matière agit à la fois comme des particules individuelles et comme des ondes. 

Mais c'est une chose de créer un schéma d'interférence avec des électrons. Le faire avec des molécules géantes est beaucoup plus délicat. Les molécules plus grosses produisent des ondes moins faciles à détecter, car les objets plus massifs ont des longueurs d'onde plus courtes qui peuvent donner lieu à des motifs d'interférence à peine perceptibles. Or, ces particules de 2 000 atomes ont des longueurs d'onde inférieures au diamètre d'un seul atome d'hydrogène, de sorte que leur schéma d'interférence est beaucoup moins spectaculaire.

Pour réaliser l'expérience de la double fente sur des objets de grande taille, les chercheurs ont construit une machine capable de projeter un faisceau de molécules (d'énormes objets appelés "oligo-tétraphénylporphyrines enrichies de chaînes fluoroalkylsulfanyles", dont certains ont une masse plus de 25 000 fois supérieure à celle d'un simple atome d'hydrogène) à travers une série de grilles et de feuilles comportant plusieurs fentes. Le faisceau mesurait environ 2 mètres de long. C'est suffisamment grand pour que les chercheurs aient dû tenir compte de facteurs tels que la gravité et la rotation de la Terre dans la conception de l'émetteur du faisceau, expliquent les scientifiques dans leur article. Ils ont également gardé les molécules assez chaudes pour une expérience de physique quantique, et ont donc dû tenir compte de la chaleur qui bouscule les particules.

Pourtant, lorsque les chercheurs ont allumé la machine, les détecteurs situés à l'extrémité du faisceau ont révélé une figure d'interférence. Les molécules occupaient plusieurs points de l'espace à la fois.

C'est un résultat stimulant, disent  les chercheurs, qui prouve l'interférence quantique à des échelles plus grandes que celles qui avaient été détectées auparavant. "La prochaine génération d'expériences sur les ondes de matière permettra des essais à un niveau supérieur", écrivent les auteurs.

De telles démonstrations d'interférence quantique sont donc à venir, même s'il ne sera probablement pas possible de le faire nous-même à travers un interféromètre de sitôt. (Déjà le vide dans la machine nous tuerait.) Nous, les êtres géants, devrons simplement rester assis et regarder les particules s'amuser.

Auteur: Internet

Info: https://www.livescience.com/, Rafi Letzter, 04 octobre 2019

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

technologie

Comment Internet modifie le cerveau
L'écran aspire-t-il notre cerveau ?
À force de passer des milliers d'heures à naviguer sur Internet, Nicholas Carr en est arrivé à une conclusion : Internet modifie l'esprit. Dans son dernier livre, Internet rend-il bête ?*, le journaliste et écrivain américain constate, comme de nombreux " travailleurs de l'écran ", qu'il a de plus en plus de mal à se concentrer sur une tâche complexe, ou même à ne faire qu'une seule chose à la fois. La vie en mode zapping fait des dégâts. " J'ai le sentiment désagréable que quelqu'un, ou quelque chose, bricole avec mon cerveau ", explique-t-il. Amoureux du Net, l'auteur a d'autant plus de difficultés à en dire du mal : Internet " est un si bon serviteur qu'il serait déplacé de remarquer qu'il est aussi notre maître ", s'amuse-t-il.
Ce qui importe, selon Nicholas Carr, ce n'est pas tant le contenu diffusé par les médias que la façon de les diffuser. " Les médias opèrent leur magie, ou leurs méfaits, sur le système nerveux lui-même ", explique-t-il. Notre cerveau est enfermé dans la boîte crânienne, ce qui nous laisse penser - à tort - qu'il serait insensible aux événements extérieurs ; qu'il les capterait et les analyserait sans en subir les influences. Mais " le cerveau est et sera toujours un chantier en cours ", rappelle l'auteur.
L'esprit devient affamé
Reprenant la thèse selon laquelle l'activité du cerveau le modèle et le façonne en permanence, comme l'eau qui coule dans le sable crée des chemins qu'elle empruntera toujours par la suite, Nicholas Carr tire la sonnette d'alarme. Les " médias électriques " ont changé notre façon de percevoir le monde. Radio, télévision, Internet : tous nous crient l'urgence de les consulter, au contraire des journaux papier et des " livres poussiéreux " d'antan, qui nous chuchotaient qu'on avait tout le temps pour les consulter au calme.
Résultat : "Le plongeur qui, naguère, explorait l'océan des mots, en rase maintenant la surface à la vitesse de l'éclair." Dans un clin d'oeil à Descartes, Nicholas Carr affirme même que " nous devenons ce que nous pensons ". L'effet est pire sur les jeunes, qui sont nés avec Internet. Selon une étude citée dans l'ouvrage, certains enfants trop habitués aux pages web ne sauraient plus vraiment lire une page de haut en bas et de gauche à droite. L'addiction est aussi présente : " Mon esprit n'était pas seulement à la dérive, il avait faim. Il demandait à être alimenté comme le Net le nourrit - et plus il était nourri, plus il avait faim. " La " surcharge cognitive " est telle que la capacité à réfléchir est menacée.
Nouvelle ère
Un constat alarmant ? Pas forcément. Nicholas Carr entrevoit une nouvelle ère pour la pensée, qui nous sortirait définitivement des Lumières et du rationalisme. En jeu, de nouveaux mécanismes cognitifs, dont on ne sait pas encore s'ils sont meilleurs ou moins bons que ceux que nous avions tous il y a encore vingt ans.
L'habitude du zapping, par exemple, permet de traiter plusieurs tâches à la fois de façon plus efficace, mais réduit la capacité à résoudre des problèmes complexes, et à mémoriser des souvenirs. Autre exemple : la généralisation du guidage GPS atrophie la partie du cerveau chargée de l'orientation dans l'espace, mais libère du temps et des neurones pour d'autres activités. Pour le moment, nous savons simplement que nous avons " sacrifié des parties de notre cerveau " au profit d'autres apports, que nous commençons tout juste à entrevoir. Reste à savoir si nous serons perdants. Le bilan semble négatif aujourd'hui, mais Carr veut être optimiste : peut-être l'homme apprendra-t-il bientôt a tirer profit de sa nouvelle capacité à ne jamais se concentrer...
Commentaire : Euh... pardon? Sa "nouvelle capacité"?
Demain, tous transformés
Ceux qui passent des heures sur leur écran et qui, le soir venu, se demandent ce qu'ils ont fait de leur journée, se reconnaîtront bien dans le livre de Nicholas Carr. Certains passages les feront sourire, notamment le récit de sa tentative de désintoxication durant la rédaction du livre. " Le démantèlement de ma vie en ligne ne s'est pas fait sans douleur [...] De temps en temps, je m'offrais une journée entière d'orgie sur le Net ", raconte-t-il.
Seul regret, la traduction depuis l'anglais du vocabulaire technique n'est pas toujours parfaite. Par exemple, le sigle ISP, qui signifie " Internet Service Provider ", c'est-à-dire fournisseur d'accès à Internet, n'est ni expliqué ni traduit. L'abonnement (account) qui va avec est traduit par " compte ". Quelques lignes plus loin, c'est la connexion broadband (haut-débit) qui est traduite par " large bande ". Mais ces petits détails ne sont pas gênants pour la compréhension. Internet rend-il bête ? n'en est pas moins un ouvrage ambitieux, qui essaie de cerner les évolutions du cerveau et de la pensée à l'ère numérique, et de nous préparer à ce qui nous attend dans le monde encore plus connecté de demain. Un livre à recommander à tous les forçats du Web !

Auteur: Internet

Info: Science de l'Esprit, Le Point 10 novembre 2011

[ sociologie ] [ lecture ]

 

Commentaires: 0

pesanteur

Nouvelles preuves : les ondes sonores transporteraient réellement de la masse

En général, lorsque nous pensons aux ondes sonores, nous imaginons des vibrations invisibles se déplaçant en apesanteur dans les airs, et sans masse. Mais cela pourrait bien être sur le point de changer. Des physiciens viennent de fournir une preuve supplémentaire que les"particules" sonores peuvent réellement transporter des petites quantités de masse. Ces preuves impliquent donc également que les ondes sonores peuvent produire leurs propres champs gravitationnels, ou un équivalent se comportant comme tel.

Mais avant d’approfondir le sujet, reprenons tout d’abord la base. Par exemple, si vous frappez un ballon avec votre pied, vous y transmettez de l’énergie. Einstein ajouterait que vous avez également contribué un peu à la masse du ballon, en l’accélérant. Mais si ce ballon est une particule minuscule et que le coup de pied est une onde sonore, vous pouvez imaginer la même chose. Pourtant, depuis des décennies, les physiciens se disputent pour savoir si l’élan d’une vague de particules représente une masse nette, ou pas.

L’année dernière, le physicien Alberto Nicolis de l’Université Columbia à New York a travaillé avec un collègue de l’Université de Pennsylvanie à Philadelphie pour étudier la manière dont différentes ondes se désintègrent et se dispersent dans un fluide à l’hélium extrêmement froid. Non seulement l’équipe de chercheurs a montré que les sons peuvent en réalité générer une valeur non nulle concernant la masse, mais cette dernière pourrait également"flotter" de manière étrange, le long des champs gravitationnels, dans un sens anti-gravitationnel.

Bien que les chercheurs aient affirmé cette possibilité, leur étude était tout de même limitée à un ensemble spécifique de conditions. De ce fait, Nicolis a utilisé un ensemble de techniques différentes pour montrer que les sons ont une masse dans les fluides et les solides ordinaires, et qu’ils peuvent même créer leur propre champ gravitationnel faible.

Leur nouvelle conclusion contredit les affirmations selon lesquelles les phonons sont sans masse. À présent, selon cette nouvelle recherche, nous savons que ces derniers ne répondent pas simplement à un champ de gravitation, mais qu’ils sont également une source de champ gravitationnel.

Dans un sens newtonien, telle est la définition même de la masse. Alors pourquoi y a-t-il tant de confusion sur cette question ? En fait, le problème réside dans la manière dont les ondes se déplacent dans un milieu donné. Tout comme une onde lumineuse est appelée un photon, une onde vibratoire (du son) peut être considérée comme une unité appelée"phonon".

Imaginez-vous immobile lors d’un concert, et que vous profitez du spectacle. La masse de votre corps est la même que lorsque vous vous êtes levés le matin. Puis vient une musique plus entraînante et votre voisin vous pousse, accélérant de ce fait votre corps. Selon la loi d’Einstein, qui dit que l’énergie est égale à la masse multipliée par la vitesse de la lumière au carré : le peu d’énergie que vous gagnez avec la poussée, est également de la masse.

Donc, en entrant en collision avec une autre personne, l’énergie y est transférée avec un peu de masse, de manière imperceptible. (Dans cet exemple imagé, les corps se heurtant à d’autres corps, représentent les phonons). Dans ces conditions simples, le mouvement de va-et-vient parfait des corps et le transfert direct de la quantité de mouvement peuvent être décrits comme une forme de dispersion linéaire. Tandis que les niveaux d’énergie peuvent fluctuer pendant ledit va-et-vient, votre corps se réinitialise pour ne pas donner de masse au cycle de phonons complet.

Mais la réalité n’est pas toujours aussi simple… Les ondes lumineuses se déplaçant dans le vide et les phonons dans un matériau théoriquement parfait pourraient bien être linéaires, mais les solides et les fluides se bousculant obéissent à diverses autres lois en fonction de certains champs et influences. Et ces conditions sont bien complexes : ainsi, à l’aide d’approximations connues sous le nom de théorie des champs effectifs, Angelo Esposito et Rafael Krichevsk, de l’Université Columbia et collègues de Nicoli, ont pu comprendre comment le phonon se déplace à travers de tels supports et comment calculer leur réponse à un champ gravitationnel.

Ces derniers ont pu démontrer que, même dans des conditions dites désordonnées du"monde réel", les ondes sonores pouvaient effectivement transporter une certaine masse. Bien entendu, cette masse n’est pas vraiment conséquente et reste minime, comme on peut s’y attendre. Nous parlons plutôt d’une quantité d’énergie contenue dans le phonon, mais divisée par le carré de la vitesse de la lumière. C’est donc une masse… minuscule.

Avec cette étude, il est également important de garder à l’esprit que les mathématiques sur lesquelles repose l’allégation n’ont pas encore été mises à l’épreuve. À présent, les scientifiques devront mesurer les changements gravitationnels d’atomes refroidis à une température proche du zéro absolu, ce qui pourrait être possible si nous explorons de tels condensats dans l’espace.

Mais grâce à ces découvertes, les chercheurs suggèrent qu’il serait également, et notamment, plus simple de "peser" un séisme. En effet, le son généré par un grand tremblement de terre pourrait représenter une masse conséquente.

Dans tous les cas, nous attendons les résultats des prochaines recherches dans ce domaine avec grande impatience !

Auteur: Internet

Info: Stéphanie Schmidt 7 mars 2019, https://trustmyscience.com

[ fréquences ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Des chercheurs japonais ont eu la brillante idée de confronter des pigeons à des photographies de tableaux de grands maîtres, comme Monet et Picasso. Et les oiseaux sont parvenus à différencier les toiles cubistes des impressionnistes.

On prend souvent les oiseaux pour des animaux plutôt stupides. Pourtant, comme le montre cette étude, les pigeons peuvent différencier un tableau de Monet de celui de Picasso. Ce n'est malgré tout qu'une piètre prestation à côté des corvidés (corbeaux, pies, geais...) capables de résoudre des tâches très complexes. Des corneilles se servent d'outils tandis que les pies se reconnaissent dans le miroir. 

Pourquoi obliger des pigeons à contempler une toile de maître ? L'idée des scientifiques de l'université Keio, au Japon, paraît complètement délirante. Pour preuve, cette recherche leur a valu un prix : le fameux IgNobel de psychologie en 1995.  

Monet et Picasso figurent parmi les peintres les plus célèbres. Le premier est devenu le fer de lance de l'impressionnisme, dont l'un des tableaux le plus célèbre, Impression soleil levant, a donné le nom au mouvement pictural. Celui-ci se caractérise par des scènes quotidiennes mises en image d'une manière personnelle, sans rétablir la stricte vérité du paysage mais en mettant en lumière la beauté et la surprise de la nature.

Il tranche nettement avec le cubisme, apparu quelques décennies plus tard, sous le pinceau de deux génies, Georges Braque et Pablo Picasso. Ce courant en termine avec le réalisme et y préfère la représentation de la nature par des formes étranges et inconnues.

Une simple éducation picturale permet à n'importe quel être humain de différencier les deux mouvements. Mais qu'en est-il des pigeons ? 

Ce n'est pas tout à fait avec cette idée que des chercheurs de l'université de Keiro, au Japon, se sont lancés dans une expérience troublante, à savoir si ces oiseaux à la mauvaise réputation pouvaient différencier un Monet d'un Picasso. Ils souhaitaient simplement étudier la discrimination visuelle chez ces volatiles et tester leur perception du monde. Les résultats sont livrés dans Journal of the Experimental Analysis of Behaviour daté de mars 1995.

L’étude : les pigeons sont-ils impressionnistes ou cubistes ?

Pour le bon déroulement de l'expérience, les scientifiques disposaient de pigeons dits "naïfs", c'est-à-dire que leurs sujets n'avaient jamais suivi des études d'art appliqué. Il fallait donc les trouver. Malgré la difficulté de la tâche, huit cobayes ont participé aux tests.

Les oiseaux étaient classés en deux groupes. Dans l'un d'eux, les quatre volatiles recevaient des graines de chanvre (la plante à partir de laquelle on tire le cannabis) dès qu'une peinture de Monet apparaissait, mais rien face à une œuvre de Pablo Picasso. Bien évidemment, le même renforcement positif existait pour les quatre autres pigeons, cette fois quand on les confrontait à une toile du maître cubiste. Les scientifiques ont eu la gentillesse d'éviter les pièges et de choisir des peintures caractéristiques de chaque courant pictural.

La deuxième partie est intéressante car elle vise à généraliser le concept. Ainsi on confrontait nos nouveaux critiques d'art à des tableaux de leur maître préféré qu'ils n'avaient encore jamais vus. Les volatiles ne se sont pas laissé impressionner et ont de suite compris le stratagème. En appuyant du bec sur une touche située devant eux, ils pouvaient manifester leur choix et être récompensés le cas échéant.

Quasiment aucune erreur dès le premier essai. De même pour les suivants. Mieux, les adeptes du cubisme réclamaient à manger quand ils voyaient un tableau de Georges Braque tandis que les autres appuyaient frénétiquement sur le bouton à la vue d'un tableau de Cézanne ou Renoir, deux autres impressionnistes. 

Enfin, l'épreuve ultime. Qu'est-ce que ça donne si on met Monet et Picasso la tête à l'envers ? Cette fois, il faut reconnaître que les résultats sont plus mitigés. Si l'expérience n'a pas affecté les performances des pigeons cubistes, il n'en a pas été de même pour l'autre groupe, incapable d'y voir les œuvres pour lesquelles ils avaient tant vibré.

Les auteurs de ce travail suggèrent alors que leurs cobayes à plumes impressionnistes reconnaissaient dans les toiles des objets réels et devenaient incompétents quand leur univers était représenté à l'envers. De l'autre côté, les fans de Pablo Picasso s'habituaient à discriminer des formes inédites, qui le restaient même retournées. La preuve que les pigeons maîtrisent eux aussi l'art de la catégorisation. 

L’œil extérieur : de l'intérêt de l’art chez les pigeons

Certes, cette découverte ne révolutionnera pas le monde mais en dit davantage sur les performances cognitives des pigeons. Après tout, il n'y a pas que notre intelligence qui compte ! Voyons-le comme une manière de sortir de l'anthropocentrisme, même si le parallèle avec l'être humain se fait toujours.

Cette recherche s'inscrit surtout dans un contexte où les oiseaux étaient testés dans leur sensibilité à l'art. Car si ce travail focalise son attention sur les génies de la peinture, d'autres scientifiques avaient affirmé en 1984 que ces mêmes animaux pouvaient différencier du Bach et du Stravinsky (évidemment, on parle de musique). D'autres études (tout aussi passionnantes...) montrent la façon dont les scientifiques ont habitué les pigeons à l'image de Charlie Brown, un personnage de bande dessiné inventé en 1950.

Est-ce vraiment mieux ? La seule différence est qu'à cette époque, les prix IgNobel n'existaient pas encore...

Auteur: Internet

Info: https://www.futura-sciences.com/, Janlou Chaput, juin 2012

[ vision ] [ identification de modèles ] [ cognition ]

 

Commentaires: 0

Ajouté à la BD par miguel

origine de la vie

Pouvons-nous créer les molécules de la vie ? 

Des chercheurs de l’Université de Floride exploitent toute la puissance du supercalculateur HiPerGator pour montrer que des molécules peuvent se former naturellement dans le bon environnement.

Les manuels de biologie de base vous diront que toute vie sur Terre est constituée de quatre types de molécules : les protéines, les glucides, les lipides et les acides nucléiques. Et chaque groupe est vital pour tout organisme vivant.  

Mais quoi si les humains pouvaient réellement montrer que ces " molécules de la vie ", telles que les acides aminés et les bases de l’ADN, peuvent se former naturellement dans le bon environnement ?  Des chercheurs de l’Université de Floride utilisent HiPerGator – le superordinateur le plus rapide de l’enseignement supérieur américain – pour tester cette expérience.

HiPerGator – avec ses modèles d’IA et sa vaste capacité d’unités de traitement graphique, ou GPU (processeurs spécialisés conçus pour accélérer les rendus graphiques) – transforme le jeu de la recherche moléculaire. Jusqu'à il y a dix ans, mener des recherches sur l'évolution et les interactions de vastes collections d'atomes et de molécules ne pouvait se faire qu'à l'aide de simples expériences de simulation informatique ; la puissance de calcul nécessaire pour gérer les ensembles de données n’était tout simplement pas disponible.

C'est maintenant le cas, grâce à HiPerGator. À l'aide de ce supercalculateur, UF Ph.D. L'étudiant Jinze Xue (du Roitberg Computational Chemistry Group) a pu mener une expérience à grande échelle sur la chimie de la Terre pendant les vacances d'hiver 2023. Xue a utilisé plus de 1 000 GPU A100 sur HiPerGator et a réalisé une expérience de dynamique moléculaire sur 22 millions d'atomes qui a identifié 12 acides aminés, trois bases nucléiques, un acide gras et deux dipeptides. La découverte de molécules plus grosses,  qui n’aurait pas été possible dans des systèmes informatiques plus petits, a constitué une réussite importante.

" Nos précédents succès nous ont permis d'utiliser l'apprentissage automatique et l'IA pour calculer les énergies et les forces sur les systèmes moléculaires, avec des résultats identiques à ceux de la chimie quantique de haut niveau mais environ 1 million de fois plus rapides ", a déclaré Adrian Roitberg, Ph.D. , professeur au département de chimie de l'UF qui utilise l'apprentissage automatique pour étudier les réactions chimiques depuis six ans. " Ces questions ont déjà été posées mais, en raison de limitations informatiques, les calculs précédents utilisaient un petit nombre d’atomes et ne pouvaient pas explorer la plage de temps nécessaire pour obtenir des résultats. Mais avec HiPerGator, nous pouvons le faire. "

Erik Deumens, Ph.D., directeur principal d'UFIT Research Computing, a expliqué comment l'utilisation complète d'HiPerGator a été possible.

" HiPerGator a la capacité unique d'exécuter de très grands calculs (‘hero) qui utilisent la machine entière, avec le potentiel de conduire à des percées scientifiques et scientifiques ", a déclaré Deumens. " Lorsque nous avons découvert le travail effectué par le groupe du Dr Roitberg, , nous l'avons approché pour essayer un run 'héros' avec le code qu'il a développé. "

L’émergence de l’IA et des GPU puissants pourra permettre de réaliser de telles simulations scientifiques gourmandes en données – des calculs que les scientifiques ne pouvaient imaginer il y a seulement quelques années. 

"En utilisant des méthodes d'apprentissage automatique, nous avons créé une simulation en utilisant l'ensemble complet de GPU HiPerGator", a déclaré Roitberg. " Nous avons pu observer en temps réel la formation de presque tous les acides aminés (alanine, glycine, etc.) et de nombreuses molécules très complexes. C’était très excitant à vivre.

Ce projet fait partie d'un effort continu visant à découvrir comment des molécules complexes peuvent se former à partir d'éléments de base et à rendre le processus automatique grâce à de grandes simulations informatiques. Roitberg et son groupe de recherche ont passé de nombreuses heures à travailler avec les membres de l'UFIT. Ying Zhang, responsable du support IA d'UFIT, a dirigé l'expérience. 

" Ying a constitué une équipe composée du personnel de Research Computing et du personnel de NVIDIA pour aider à faire évoluer les calculs, fournir des conseils et une aide inestimables et accélérer l'analyse des données au point où les analyses ont été effectuées en seulement sept heures (au lieu des  heures  jours que nous pensions initialement que cela prendrait) ", a déclaré Roitberg. " Nous nous sommes rencontrés chaque semaine, de la conception initiale aux résultats finaux, dans le cadre d’une collaboration très fructueuse. "

Les résultats, et le peu de temps avec lequel HiPerGator a pu les fournir, ont été révolutionnaires, rapprochant les chercheurs de la réponse aux questions sur la formation des molécules complexes. Et le fait que Roitberg ait pu exécuter ce calcul montre que l'UF a la capacité de prendre en charge des " exécutions de héro " ou des " moonshot calculations " qui font avancer les projets scientifiques, d'ingénierie et universitaires.

"C'est une excellente opportunité pour les professeurs de l'UF", a déclaré Roitberg. " Avoir HiPerGator en interne – avec un personnel incroyable prêt à aller au-delà des attentes pour aider les chercheurs à produire une science révolutionnaire comme celle-ci – est quelque chose qui rend mes collègues non-UF très jaloux. "

Auteur: Internet

Info: https://news.ufl.edu/2024/02/molecules-of-life/ *Les travaux de calcul informatique qui nécessitent plus de 256 nœuds sont définis comme travaux de "héro". ** Moonshot projects : projet ambitieux, exploratoire et novateur, entrepris sans garantie de rentabilité ou d'avantages à court terme et, peut-être, sans une étude complète des risques et des avantages potentiels.

 

Commentaires: 0

Ajouté à la BD par miguel

sodomie

L'art et la manière. Un certain nombre de femmes hésitent, voire refusent, à la pratiquer. Pour certaines il s'agit d'une pratique déplaisante, pour d'autres c'est la crainte d'avoir mal et pour la plupart c'est le fait de penser qu'elles n'en tireront aucun plaisir si ce n'est le fait de complaire à leur amant. Certains hommes (pas les meilleurs amants) utilisent des mots grossièrement excitants, pour en parler : enculade, fourre-cul, bourrage, etc. Grossièreté qui n'est, pour moi, que la crainte inavouée d'un fantasme enfui en eux de se faire enculer eux-mêmes, craignant de ce fait une perte de leur virilité tout en ayant le souhait trouble que cela leur arrive. Trivialité qui ne me dérange pas et même m'amuse, surtout quand j'utilise ces mots pour le demander de me prendre par derrière. Je me suis aperçue que cela les faisait souvent bander comme des cerfs, ce dont je profitais bien évidemment ensuite ! N'hésitez pas, mesdames, à utiliser sans complexes les mots les plus crus, ces messieurs adoreront. Cette pratique est vieille comme le monde, utilisée dans toutes les civilisations et présente également dans la nature avec certaines espèces d'animaux. Exclusivement masculine du fait même de sa nature cette pratique n'est ni déplaisante, ni douloureuse et procure une jouissance certaine à qui sait en faire usage. En tant que femme, amoureuse du sexe et pratiquante résolue, je pense que toutes les pratiques sexuelles sont honorables tant qu'elles sont faites entre adultes consentants. Elle est également le seul moyen pour un homme de ressentir un peu la sensation que perçoit une femme qui se fait prendre. Tous les gays vous le diront, ils en tirent une grande jouissance. Enfin elle permet à tous ceux qui ont des problèmes d'érection d'arriver à la jouissance, même avec une femme, si celle-ci utilise un godemiché-ceinture. Je l'ai fait pour un ou deux de mes amants qui souhaitaient avoir une sensation homosexuelle mais préféraient ne pas coucher avec un homme (je pense et dis qu'ils avaient tort, une bonne vraie queue d'homme c'est vraiment autre chose qu'un engin en latex, n'est-ce pas mesdames !). Je la pratique et la sollicite de mon partenaire chaque fois que possible. Il suffit de la pratiquer plusieurs fois pour en tirer ensuite un plaisir incomparable et totalement différent de la pénétration vaginale. Votre amant sera délicieusement surpris si vous lui proposez la sodomie et ravi si vous lui dites "et maintenant je voudrais bien que tu m'encules ! J'adore ça !". Son étonnement fera place à une ardeur renouvelée dont vous n'aurez pas à vous plaindre et cela vous entraînera peut-être vers d'autres chemins érotiques qui vous raviront. Une préparation s'impose, surtout les premières fois. Ce que je pourrais conseiller c'est de se préparer dans sa baignoire, avec sa douchette. Vous dévisser d'abord la douchette pour ne conserver que le flexible, ensuite vous ouvrez l'eau à une température chaude mais non brûlante, vous vous adossez au fond de la baignoire, vous relevez et écartez vos cuisses. Vous pouvez à ce moment diriger doucement le jet chaud vers votre anus(et ce n'est pas le moment de jouer avec votre petite chatte, coquines !) et vous laissez un moment l'eau vous caresser. Caresse que vous prolongez ensuite avec un doigt que vous faites tourner gentiment autour de votre oeillet, puis vous précisez la caresse en forçant doucement l'entrée de votre réduit intime, faites aller et venir doucement ce doigt. Vous commencez à ressentir une sensation agréable. Introduisez ensuite, toujours avec douceur, un deuxième puis un troisième doigt. Votre passage commence à être prêt. Renouvelez cette opération chaque fois que possible et votre première sodomie (et les autres) seront un vrai plaisir !. Si vous devez faire l'amour dans les heures qui suivent je vous recommande : lorsque vous serez suffisamment élargie et si votre flexible n'a pas d'aspérités gênantes (impératif), introduisez-le délicatement dans votre cul, avec un jet très faible et rincez ainsi votre passage, l'eau sera très vite claire et votre partenaire appréciera, surtout s'il viendra vous humecter le passage avec sa langue, ce qui est, là aussi, follement délicieux. Avec votre amant utilisez sans complexe un gel intime ou un lait de toilette car l'anus n'a pas de lubrification naturelle comme son petit veinard de voisin ! Cette lubrification peut devenir un jeu sexuel très excitant ! J'ai connu des hommes qui éjaculaient sans contact rien qu'en me préparant de la sorte ! C'était frustrant sur le moment mais ma bouche savait bien les revigorer et ils n'en étaient que plus longs à jouir et donc à me donner du plaisir ensuite !. Ressentir un membre chaud, dur et doux à la fois, qui lentement vous rentre entre les reins, sentir la pulsation sanguine qui l'irrigue et le doux va-et-vient qui vous remplit le cul, provoque au fur et à mesure une excitation grandissante qui me mène à l'orgasme, orgasme qui éclate en feu d'artifice quand le jet brûlant de sperme s'éclate au plus profond de moi. Si au même moment une main, la sienne ou la mienne, qu'importe, joue avec mon minou au même moment, là il y a plaisir intense. L'anus est un muscle délicat et sensible, de même nature que les lèvres, dont la forte irrigation nerveuse peut et doit être une source de plaisir. Il est cependant un peu fragile et doit être utilisé avec délicatesse même si c'est avec passion !. Bien entendu si vous ne connaissez pas très bien votre partenaire (ou que vous le connaissiez trop bien !) l'usage d'un préservatif s'impose alors, l'absence d'explosion chaude du sperme dans votre ventre sera compensée par de la sécurité. Foutu SIDA !

Auteur: Internet

Info: Frédérique, http://vassilia.net/frederique06.htm

[ femmes-hommes ] [ éloge ]

 

Commentaires: 0

horizon anthropique

Qu'est-ce que le paradoxe cérébral de Boltzmann ? Le cerveau est-il l'univers ultime ?

Avez-vous déjà contemplé la nature de votre existence et vous êtes-vous demandé si vous étiez vraiment une personne ayant vécu une vie, ou simplement un cerveau récemment formé avec des souvenirs artificiels, développant momentanément une réalité qui n'est pas réelle ? Cette question, connue sous le nom de paradoxe du cerveau de Boltzmann, peut sembler absurde, mais elle trouble les cosmologistes depuis des générations.

Le paradoxe tire son nom de Ludwig Boltzmann, un éminent physicien du XIXe siècle qui a apporté des contributions significatives au domaine de la thermodynamique. À son époque, les scientifiques étaient engagés dans des débats passionnés sur la question de savoir si l'univers a une durée infinie ou finie. Boltzmann a révolutionné notre compréhension de l'entropie, qui mesure le désordre au sein d'un système. Par exemple, un verre est considéré comme ordonné, alors qu'un verre brisé est dans un état de désordre. La deuxième loi de la thermodynamique affirme que les systèmes fermés tendent à devenir plus désordonnés avec le temps ; un verre brisé ne se reconstitue pas spontanément dans son état originel.

Boltzmann a introduit une nouvelle interprétation de l'entropie en appliquant un raisonnement statistique pour expliquer le comportement des systèmes. Il a mis en évidence que les systèmes évoluent vers un état plus désordonné parce qu'une telle transformation est la plus probable. Cependant, si la direction opposée n'est pas impossible, elle est incroyablement improbable. Par exemple, nous ne verrons jamais des œufs brouillés redevenir des œufs crus. Néanmoins, dans un univers infiniment vieux, où le temps s'étend sans limites, des événements hautement improbables, tels que la formation spontanée de structures complexes à partir de combinaisons aléatoires de particules, finiraient par se produire.

Qu'est-ce que cela signifie dans le contexte d'un univers hypothétique qui existe depuis un temps infini ? Imaginez une étendue apparemment banale de quasi-néant, où environ huit octillions* d'atomes convergent fortuitement pour créer le "Le Penseur" de Rodin, sauf qu'elle est cette fois entièrement constituée de pâtes alimentaires. Cependant, cette sculpture de pâtes se dissout rapidement en ses particules constitutives. Ailleurs dans cette vaste toile cosmique, les particules s'alignent spontanément pour former une structure ressemblant à un cerveau. Ce cerveau est rempli de faux souvenirs, simulant une vie entière jusqu'au moment présent où il perçoit une vidéo véhiculant ces mêmes mots. Pourtant, aussi rapidement qu'il est apparu, le cerveau se décompose et se dissipe. Enfin, en raison de fluctuations aléatoires, toutes les particules de l'univers se concentrent en un seul point, déclenchant l'émergence spontanée d'un univers entièrement nouveau.

De ces deux derniers scénarios, lequel est le plus probable ? Étonnamment, la formation du cerveau est nettement plus probable que la création spontanée d'un univers entier. Malgré sa complexité, le cerveau est minuscule par rapport à l'immensité d'un univers entier. Par conséquent, si l'on suit ce raisonnement, il apparaît très probable que tout ce que nous croyons exister n'est rien d'autre qu'une illusion fugace, destinée à disparaître rapidement.

Bien que Boltzmann lui-même n'ait pas approfondi ces conclusions, les cosmologistes qui se sont inspirés de ses travaux ont introduit le concept des cerveaux de Boltzmann. Il est intéressant de noter que ces cosmologistes, comme la majorité des individus, étaient raisonnablement certains de ne pas être eux-mêmes des cerveaux éphémères. D'où le paradoxe suivant : comment pouvaient-ils avoir raison dans leur hypothèse tout en postulant l'existence d'un univers éternel ?

Le paradoxe a trouvé sa résolution dans un concept communément accepté aujourd'hui : notre univers n'existe pas de manière infinie mais a eu un commencement connu sous le nom de Big Bang. On pourrait donc penser que le paradoxe a été résolu une fois pour toutes. Or, ce n'est peut-être pas le cas. Au cours du siècle dernier, les scientifiques ont découvert des preuves substantielles à l'appui de la théorie du Big Bang, mais la question de savoir ce qui l'a précédé et causé reste sans réponse. Que l'univers soit apparu dans un état extrêmement ordonné et improbable ? Notre univers pourrait-il faire partie d'un cycle sans fin de création et d'effondrement, ou sommes-nous simplement l'un des innombrables univers en expansion dans un vaste multivers ?

Dans ce contexte intrigant, le paradoxe de Boltzmann a suscité un regain d'intérêt chez les cosmologistes contemporains. Certains affirment que les modèles dominants de l'univers suggèrent encore que les cerveaux de Boltzmann ont plus de chances d'exister que les cerveaux humains, ce qui soulève des inquiétudes quant à la validité de ces modèles. Cependant, d'autres réfutent ces arguments en proposant de légères modifications des modèles cosmologiques qui élimineraient le problème ou en affirmant que les cerveaux de Boltzmann ne peuvent pas se manifester physiquement.

Dans le but d'explorer les probabilités impliquées, certains chercheurs ont même tenté de calculer la probabilité qu'un cerveau émerge spontanément à partir de fluctuations quantiques aléatoires et survive suffisamment longtemps pour générer une seule pensée. Le résultat de leurs calculs a donné un nombre étonnamment grand, avec un dénominateur dépassant 10 élevé à une puissance environ un septillion de fois plus grande que le nombre d'étoiles dans l'univers.

Malgré sa nature apparemment absurde, le paradoxe du cerveau de Boltzmann est utile. Il place la barre très haut pour les modèles cosmologiques. Si l'état actuel de l'univers semble excessivement improbable par rapport à des nombres d'une telle ampleur, cela indique que quelque chose ne va pas dans le modèle. Ce paradoxe nous pousse à remettre en question notre compréhension de la réalité et nous incite à rechercher une représentation plus complète et plus précise de l'univers.

Alors que nous continuons à explorer les mystères du cosmos, la nature énigmatique de notre existence reste une source de fascination et un catalyseur pour la poursuite de la recherche scientifique. Dans notre quête de réponses, nous pourrons peut-être découvrir des vérités profondes qui nous éclaireront sur la nature de notre réalité et sur la tapisserie complexe de l'univers.

Auteur: Sourav Pan

Info: *un octillion = 10 puissance 48)

[ humain miroir ] [ monde consensuel ]

 

Commentaires: 0

Ajouté à la BD par miguel

biophysique

La photosynthèse des plantes utilise un tour de passe-passe quantique

Des chercheurs ont observé des similitudes étonnantes entre la photosynthèse des plantes vertes et le fameux "cinquième état de la matière" en mettant le doigt sur un curieux phénomène; ils ont trouvé des liens entre le processus de photosynthèse, qui permet aux végétaux d’exploiter la lumière du soleil, et les condensats de Bose-Einstein, des matériaux dans un état très particulier qui fait intervenir la physique quantique.

"Pour autant que je sache, ces deux disciplines n’ont jamais été connectées auparavant, donc ce résultat nous a semblé très intrigant et excitant", explique David Mazziotti, co-auteur de l’étude.

Son laboratoire est spécialisé dans la modélisation des interactions complexes de la matière. Ces derniers temps, son équipe s’est intéressée aux mécanismes de la photosynthèse à l’échelle des atomes et des molécules. Plus précisément, les chercheurs se sont penchés sur le siège de cette réaction : les chloroplastes, les petites structures chlorophylliennes qui donnent leur couleur aux plantes vertes.

Lorsqu’un photon vient frapper une structure bien précise à la surface de ces chloroplastes (le photosystème II, ou PSII), cela a pour effet d’arracher un électron — une particule élémentaire chargée négativement. Ce dernier devient alors l’acteur principal d’une réaction en chaîne complexe. Le mécanisme est déjà relativement bien connu. Il a été étudié en profondeur par des tas de spécialistes, et c’est aujourd’hui l’une des pierres angulaires de la biologie végétale.

Mais le départ de cet électron laisse aussi ce que les physiciens appellent un trou. Il ne s’agit pas d’une particule à proprement parler. Mais cette structure chargée positivement est aussi capable se déplacer au sein d’un système. Elle peut donc se comporter comme un vecteur d’énergie.

Ensemble, l’électron éjecté et le trou qu’il laisse derrière lui forment un couple dynamique appelé exciton. Et si le rôle du premier est bien documenté, le comportement du second dans le cadre de la photosynthèse n’a quasiment pas été étudié.

C’est quoi, un condensat de Bose-Einstein ?

Pour combler cette lacune, Mazziotti et ses collègues ont réalisé des modélisations informatiques du phénomène. Et en observant les allées et venues de ces excitons, ces spécialistes des interactions de la matière ont rapidement remarqué quelques motifs qui leur ont semblé familiers ; ils rappelaient fortement un concept proposé par Einstein en 1925.

Imaginez un gaz où des particules se déplacent aléatoirement les uns par rapport aux autres, animées par leur énergie interne. En le refroidissant (ce qui revient à retirer de l’énergie au système), on force les atomes à s’agglutiner ; le gaz passe à l’état liquide, puis solide dans certains cas.

Lorsqu’on le refroidit encore davantage pour s’approcher du zéro absolu, les atomes arrivent dans un état où ils n’ont quasiment plus d’énergie à disposition ; ils sont presque entièrement figés dans un état ultra-condensé, séparés par une distance si minuscule que la physique newtonienne traditionnelle ne suffit plus à l’expliquer.

Sans rentrer dans le détail, dans ces conditions, les atomes (ou plus précisément les bosons) qui composent certains matériaux deviennent quasiment indiscernables. Au niveau quantique, ils forment un système unique, une sorte de super-particule où chaque constituant est exactement dans le même état (voir la notion de dualité onde-corpuscule pour plus de détails). On appelle cela un condensat de Bose-Einstein.

Ces objets ne suivent pas les règles de la physique traditionnelle. Ils affichent des propriétés très particulières qui n’existent pas dans les gaz, les liquides, les solides ou le plasma. Pour cette raison, ces condensats sont parfois considérés comme les représentants du "cinquième état de la matière". (après le solide, le liquide, le gaz et le plasma)

De la biologie végétale à la physique quantique

La plus remarquable de ces propriétés, c’est que les condensats de Bose-Einstein sont de vraies autoroutes à particules. D’après la physicienne américaine Louise Lerner, l’énergie s’y déplace librement, sans la moindre résistance. Même si les mécanismes physiques sous-jacents sont différents, on se retrouve dans une situation comparable à ce que l’on trouve dans les supraconducteurs.

Or, d’après les modèles informatiques créés par Mazziotti et ses collègues, les excitons générés par la photosynthèse peuvent parfois se lier comme dans les condensats de Bose-Einstein. C’est une observation particulièrement surprenante, car jusqu’à présent, cela n’a été documenté qu’à des températures proches du zéro absolu. Selon Louise Lerner, c’est aussi étonnant que de voir "des glaçons se former spontanément dans une tasse de café chaud".

Le phénomène n’est pas aussi marqué chez les plantes que dans les vrais condensats de Bose-Einstein. Mais d’après les auteurs de l’étude, cela aurait quand même pour effet de doubler l’efficacité des transferts énergétiques indispensables à la photosynthèse.

De la recherche fondamentale aux applications pratiques

Les implications de cette découverte ne sont pas encore parfaitement claires. Mais il y en a une qui met déjà l’eau à la bouche des chercheurs : ces travaux pourraient enfin permettre d’utiliser les formidables propriétés des condensats de Bose-Einstein dans des applications concrètes.

En effet, même si ces matériaux sont très intéressants sur le papier, le fait de devoir atteindre une température proche du zéro absolu limite grandement leur intérêt pratique. Aujourd’hui, ils sont utilisés exclusivement en recherche fondamentale. Mais puisqu’un phénomène comparable a désormais été modélisé à température ambiante, les chercheurs vont pouvoir essayer d’utiliser ces mécanismes pour concevoir de nouveaux matériaux aux propriétés très intéressantes.

"Un condensat d’excitons parfait est très sensible et nécessite des conditions très spécifiques", précise Mazziotti. "Mais pour les applications réalistes, c’est très excitant de voir que ce phénomène qui augmente l’efficacité du système peut survenir à température ambiante", se réjouit-il.

A long terme, cette découverte va sans doute contribuer à la recherche fondamentale, en biologie végétale mais aussi en physique quantique pure. Cela pourrait aussi faire émerger une nouvelle génération de composants électroniques très performants. Il sera donc très intéressant de suivre les retombées de ces travaux encore balbutiants, mais exceptionnellement prometteurs.

Auteur: Internet

Info: https://www.journaldugeek.com/, Antoine Gautherie le 05 mai 2023

[ recherche fondamentale ]

 

Commentaires: 0

Ajouté à la BD par miguel

prospective technologique

9 Tendances de l'intelligence artificielle que vous devriez surveiller en 2019

1) Les puces activées par l'intelligence artificielle seront généralisées
Contrairement à d'autres technologies et outils logiciels, l'IA dépend fortement de processeurs spécialisés. Pour répondre aux exigences complexes de l'IA, les fabricants de puces créeront des puces spécialisées capables d'exécuter des applications compatibles avec l'IA.
Même les géants de la technologie comme Google, Facebook et Amazon dépenseront plus d'argent pour ces puces spécialisées. Ces puces seraient utilisées à des fins comme le traitement du langage naturel, la vision par ordinateur et la reconnaissance vocale.

2) L'IA et l'IdO (Internet des objets) se rencontrent
2019 sera l'année de la convergence des différentes technologies avec l'IA. L'IdO se joindra à l'IA sur la couche informatique de pointe. L'IdO industriel exploitera la puissance de l'IA pour l'analyse des causes profondes, la maintenance prédictive des machines et la détection automatique des problèmes.
Nous verrons la montée de l'IA distribuée en 2019. Le renseignement sera décentralisé et situé plus près des biens et des dispositifs qui effectuent les vérifications de routine. Des modèles d'apprentissage machine hautement sophistiqués, alimentés par des réseaux neuronaux, seront optimisés pour fonctionner à la fine pointe de la technologie.

3) Dites "Bonjour" à AutoML.
L'une des plus grandes tendances qui domineront l'industrie de l'IA en 2019 sera l'apprentissage automatique automatisé (AutoML). Grâce à ces capacités les développeurs seront en mesure de modifier les modèles d'apprentissage machine et de créer de nouveaux modèles prêts à relever les défis futurs de l'IA.
AutoML (Cloud AutoMLB, modèles de machine learning personnalisés de haute qualité) trouvera le juste milieu entre les API cognitives et les plates-formes d'apprentissage sur mesure. Le plus grand avantage de l'apprentissage automatique sera d'offrir aux développeurs les options de personnalisation qu'ils exigent sans les forcer à passer par un flux de travail complexe. Lorsque vous combinez les données avec la portabilité, AutoML peut vous donner la flexibilité que vous ne trouverez pas avec d'autres technologies AI.

4) Bienvenue chez AIOps (intelligence artificielle pour les opérations informatiques)
Lorsque l'intelligence artificielle est appliquée à la façon dont nous développons les applications, elle transforme la façon dont nous gérions l'infrastructure. DevOps sera remplacé par AIOps et permettra au personnel de votre service informatique d'effectuer une analyse précise des causes profondes. De plus, cela vous permettra de trouver facilement des idées et des modèles utiles à partir d'un vaste ensemble de données en un rien de temps. Les grandes entreprises et les fournisseurs de cloud computing bénéficieront de la convergence de DevOps avec AI.

5) Intégration du réseau neuronal
L'un des plus grands défis auxquels les développeurs d'IA seront confrontés lors du développement de modèles de réseaux neuronaux sera de choisir le meilleur framework. Mais, avec des douzaines d'outils d'IA disponibles sur le marché, choisir le meilleur outil d'IA pourrait ne pas être aussi facile qu'avant. Le manque d'intégration et de compatibilité entre les différentes boîtes à outils des réseaux de neurones entrave l'adoption de l'IA. Des géants technologiques tels que Microsoft et Facebook travaillent déjà au développement d'un réseau neuronal ouvert (ONNX). Cela permettra aux développeurs de réutiliser les modèles de réseaux neuronaux sur plusieurs frameworks.

6) Les systèmes d'IA spécialisés deviennent une réalité.
La demande de systèmes spécialisés augmentera de façon exponentielle en 2019. Les organisations ont peu de données à leur disposition, mais ce qu'elles veulent, ce sont des données spécialisées.
Cela obligera les entreprises à se doter d'outils qui peuvent les aider à produire des données d'IA de grande qualité à l'interne. En 2019, l'accent sera mis sur la qualité des données plutôt que sur la quantité. Cela jettera les bases d'une IA qui pourra fonctionner dans des situations réelles. Les entreprises se tourneront vers des fournisseurs de solutions d'IA spécialisés qui ont accès à des sources de données clés et qui pourraient les aider à donner du sens à leurs données non structurées.

7) Les compétences en IA détermineront votre destin.
Même si l'IA a transformé toutes les industries auxquelles vous pouvez penser, il y a une pénurie de talents avec des compétences en IA. Pat Calhoun, PDG d'Espressive a déclaré : " La plupart des organisations souhaitent intégrer l'IA dans leur transformation numérique, mais n'ont pas les développeurs, les experts en IA et les linguistes pour développer leurs propres solutions ou même former les moteurs des solutions préconçues pour tenir leurs promesses ".
Rahul Kashyap, PDG d'Awake Security, ajoute : "Avec autant de solutions'AI-powered' disponibles pour répondre à une myriade de préoccupations commerciales, il est temps que les entreprises deviennent plus intelligentes sur ce qui se passe dans la 'boîte noire' de leurs solutions AI". La façon dont les algorithmes d'IA sont formés, structurés ou informés peut conduire à des différences significatives dans les résultats, poursuit-il. La bonne équation pour une entreprise ne sera pas la bonne pour une autre."

8) L'IA tombera dans de mauvaises mains
Tout comme une pièce de monnaie à deux faces, l'IA a un côté positif et un côté négatif. Les professionnels de la sécurité informatique utiliseront l'intelligence artificielle pour détecter rapidement les activités malveillantes. Vous pouvez réduire les faux positifs de 90 % à l'aide d'algorithmes de réponse et d'apprentissage machine pilotés par l'intelligence artificielle.
L'intelligence artificielle tombera entre de mauvaises mains et les cybercriminels aux desseins malveillants en abuseront pour réaliser leurs objectifs. Avec l'automatisation, les armées de cyberattaquants peuvent lancer des attaques mortelles avec plus de succès. Cela obligera les entreprises à combattre le feu par le feu et à investir dans des solutions de sécurité alimentées par l'IA capables de les protéger contre de telles attaques.

9) Transformation numérique alimentée par l'IA
En 2019, l'IA sera partout. Des applications Web aux systèmes de soins de santé, des compagnies aériennes aux systèmes de réservation d'hôtels et au-delà, nous verrons des nuances de l'IA partout et elle sera à l'avant-garde de la transformation numérique.
Tung Bui, président du département informatique et professeur à l'Université d'Hawaii a déclaré : "Contrairement à la plupart des prédictions et des discussions sur la façon dont les véhicules et les robots autonomes finiront par affecter le marché du travail - ceci est vrai mais prendra du temps pour des raisons institutionnelles, politiques et sociales - je soutiens que la tendance principale en IA sera une accélération dans la transformation numérique, rendant plus intelligent les systèmes commerciaux existants".

Auteur: Internet

Info: zero hedge, 1 mars 2019

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel