Les cellules de l'arbre de vie échangent des " messages texte " à l'aide de l'ARN
Connu depuis longtemps comme un messager au sein des cellules, l’ARN est de plus en plus considéré comme le système de communication moléculaire de la vie, même entre des organismes largement séparés par l’évolution.
( photo) Les cellules de l’arbre de la vie peuvent échanger des messages de courte durée codés par l’ARN – des missives qui ressemblent à un texte rapide plutôt qu’à une note formelle sur papier à en-tête.
Pour une molécule d’ARN, le monde est un endroit dangereux. Contrairement à l’ADN, qui peut persister pendant des millions d’années sous sa forme à double brin remarquablement stable, l’ARN n’est pas conçu pour durer, pas même dans la cellule qui l’a créé. À moins d’être attaché de manière protectrice à une molécule plus grosse, l’ARN peut se dégrader en quelques minutes, voire moins. Et à l’extérieur d’une cellule ? Oubliez ça. Les enzymes voraces qui détruisent l’ARN sont partout, sécrétées par toutes les formes de vie pour se défendre contre les virus qui écrivent leur identité génétique dans un code ARN.
L’ARN peut survivre indemne à l’extérieur d’une cellule d’une manière ou d’une autre : dans une minuscule bulle protectrice. Depuis des décennies, les chercheurs ont remarqué que les cellules libèrent ces bulles de membrane cellulaire, appelées vésicules extracellulaires (VE), remplies d’ARN dégradé, de protéines et d’autres molécules. Mais ces sacs étaient considérés comme de simples sacs poubelles qui évacuent les déchets moléculaires décomposés d’une cellule lors d’un nettoyage de routine.
Puis, au début des années 2000, des expériences menées par Hadi Valadi, biologiste moléculaire à l'université de Göteborg, a révélé que l'ARN à l'intérieur de certaines EV ne ressemblait pas à des déchets. Le cocktail de séquences d'ARN était considérablement différent de celui trouvé à l'intérieur de la cellule, et ces séquences étaient intactes et fonctionnelles. Lorsque l’équipe de Valadi a exposé des cellules humaines à des EV provenant de cellules de souris, ils ont été choqués d’observer que les cellules humaines absorbaient les messages d’ARN et les " lisaient " pour créer des protéines fonctionnelles qu’elles n’auraient pas pu fabriquer autrement.
Valadi a conclu que les cellules empaquetaient des brins d’ARN dans des vésicules spécifiquement pour communiquer entre elles. " Si je suis sorti et que je vois qu’il pleut, dit-il, je peux vous dire : si vous sortez, prenez un parapluie avec vous. " De la même manière, a-t-il suggéré, une cellule pourrait avertir ses voisines d’une exposition à un agent pathogène ou à un produit chimique nocif avant qu’elles ne soient elles-mêmes confrontées au danger.
Depuis, de nombreuses preuves ont été avancées pour étayer cette théorie, grâce aux progrès de la technologie de séquençage qui permettent aux scientifiques de détecter et de décoder des segments d’ARN de plus en plus petits. Depuis que Valadi a publié ses expériences, d’autres chercheurs ont également observé des EV remplis de combinaisons d’ARN complexes. Ces séquences d’ARN peuvent contenir des informations détaillées sur la cellule qui les a créées et déclencher des effets spécifiques dans les cellules réceptrices. Ces résultats ont conduit certains chercheurs à suggérer que l’ARN pourrait être une lingua franca moléculaire qui transcende les frontières taxonomiques traditionnelles et peut donc coder des messages qui restent intelligibles dans tout l’arbre de la vie.
En 2024, de nouvelles études ont révélé des couches supplémentaires de cette histoire, montrant, par exemple, qu'avec les bactéries et les cellules eucaryotes, les archées échangent également. L'ARN lié aux vésicules confirme que le phénomène est universel dans les trois domaines de la vie. Une autre étude a élargi notre compréhension de la communication cellulaire entre les règnes en montrant que les plantes et les champignons infectieux peuvent utiliser des paquets d'ARN dévastateurs comme une forme de guerre de l’information coévolutionnaire : une cellule ennemie lit l’ARN et construit des protéines autodestructrices avec sa propre machinerie moléculaire.
" J'ai été impressionnée par ce que l'ARN peut faire ", a déclaré Amy Buck, biologiste spécialiste de l’ARN à l’Université d’Édimbourg, qui n’a pas participé à la nouvelle recherche. Pour elle, comprendre l’ARN comme moyen de communication " va au-delà de l’appréciation de la sophistication et de la nature dynamique de l’ARN au sein de la cellule ". La transmission d’informations au-delà de la cellule pourrait être l’un de ses rôles innés.
Livraison dans des délais serrés
La microbiologiste Susanne Erdmann étudie les infections virales chez Haloferax volcanii , un organisme unicellulaire qui prospère dans des environnements incroyablement salés comme la mer Morte ou le Grand Lac Salé. On sait que les bactéries unicellulaires échangent largement des VE, mais H. volcanii n'est pas une bactérie - c'est un archéen , un membre de la troisième branche évolutive de la vie, qui présente des cellules construites différemment des bactéries ou des eucaryotes comme nous.
Comme les EV ont la même taille et la même densité que les particules virales étudiées par l'équipe d'Erdmann à l'Institut Max Planck de microbiologie marine en Allemagne, ils " apparaissent toujours lorsque vous isolez et purifiez des virus ", a-t-elle déclaré. Finalement, son groupe est devenu curieux et a décidé de jeter un œil à ce qu'il y avait à l'intérieur.
" Je m’attendais à de l’ADN ", se souvient Erdmann, après avoir appris que d’autres espèces d’archées intégraient de l’ADN dans des EV. Au lieu de cela, son laboratoire a découvert tout un assortiment d’ARN – en particulier des ARN non codants, de mystérieux fragments de nucléotides sans fonction connue dans les archées. Ces séquences d’ARN non codantes étaient beaucoup plus abondantes dans les EV que dans les cellules archéennes elles-mêmes. " C’était la première fois que nous trouvions de l’ARN dans des EV chez des archées ", a-t-elle déclaré.
Erdmann s'est demandé si les vésicules archaïques avaient une utilité. Une cellule peut produire spontanément des vésicules lorsque sa membrane se resserre sur elle-même pour former une petite bulle qui se détache ensuite. Cependant, d'autres mécanismes impliquent des processus plus actifs et délibérés, similaires à ceux qui déplacent les molécules à l'intérieur de la cellule. Le groupe d'Erdmann a identifié une protéine archaïque essentielle à la production d'EV contenant de l'ARN.
Cela lui a permis de penser que l’ARN ne se retrouvait pas dans les vésicules par hasard et que le processus n’était pas simplement une question d’élimination des déchets. " Il est très probable que les archées les utilisent pour communiquer entre cellules ", a-t-elle déclaré. " Sinon, pourquoi investir autant d’énergie à éliminer de l’ARN aléatoire dans des vésicules ? "
Erdmann ne sait pas exactement pourquoi les microbes Haloferax remplissent leurs vésicules d'ARN alors que d'autres espèces d'archées préfèrent l'ADN. Mais elle soupçonne que cela est lié à la sensibilité temporelle du message moléculaire. " L'ARN est un langage différent de l'ADN ", a-t-elle déclaré, et il remplit une fonction fondamentalement différente à l'intérieur comme à l'extérieur des cellules.
L'acide ribonucleique est mieux connu comme molécule messagère qui copie des recettes de protéines à partir de l'ADN. Cependant sa structure chimique lui permet de se plier en des formes complexes qui jouent des rôles variés dans la cellule.
1. Support de l'information génétique (ARN messager, ARNm) L'ARNm est une copie temporaire d'un gène de l'ADN qui est utilisée pour produire des protéines. Il sert de pont entre l'ADN (qui reste dans le noyau) et les ribosomes, les machines de production des protéines dans le cytoplasme.
2. Rôle dans la traduction des protéines (ARN de transfert, ARNt et ARN ribosomal, ARNr) ARNt : L'ARN de transfert joue un rôle crucial dans la traduction de l'ARNm en protéines. Il transporte les acides aminés spécifiques vers le ribosome en fonction du codon présent sur l'ARNm. ARNr : L'ARN ribosomal constitue une partie essentielle des ribosomes, les structures où la synthèse des protéines a lieu. Il catalyse les réactions qui relient les acides aminés entre eux.
3. Régulation de l’expression génétique (microARN, ARN interférents, etc.) Les microARN (miARN) et les petits ARN interférents (siARN) sont des régulateurs de l'expression génétique. Ils agissent en ciblant des ARNm spécifiques pour inhiber leur traduction ou favoriser leur dégradation, jouant ainsi un rôle dans le contrôle de la stabilité et de la quantité des protéines produites dans la cellule.
4. ARN catalytiques (ribozymes) Contrairement à la croyance traditionnelle que seuls les protéines peuvent catalyser des réactions biochimiques, certains ARN, appelés ribozymes, ont des capacités catalytiques. Ils peuvent catalyser des réactions chimiques, telles que la liaison ou la coupure de liaisons phosphodiester dans l'ARN lui-même, jouant ainsi un rôle dans des processus comme l'épissage.
5. Épissage alternatif et régulation post-transcriptionnelle L'ARN pré-messager subit souvent un processus appelé épissage, où certaines parties (introns) sont éliminées et les parties restantes (exons) sont réunies pour former l'ARNm final. L'épissage alternatif permet à un même gène de produire plusieurs variantes d'ARNm, ce qui conduit à la production de protéines différentes à partir du même gène.
6. ARNs non codants (ARNnc) En dehors de leur rôle dans la synthèse des protéines, de nombreux ARN ne codent pas pour des protéines, mais assurent des fonctions régulatrices et structurales dans la cellule. Par exemple, les longs ARN non codants (lncRNA) sont impliqués dans la régulation de l'expression génique, la structure chromatinienne et d'autres processus biologiques complexes.
7. ARN circulaires (circRNA) Les ARN circulaires sont une classe d'ARNs non codants qui forment une boucle continue. Ils jouent un rôle dans la régulation génique, notamment en séquestrant les miARN, en stabilisant d'autres ARN ou en servant de matrice pour la traduction non conventionnelle.
8. Rôle dans la défense immunitaire (ARN viraux) - Certains virus, comme les virus à ARN (par exemple, le virus de la grippe ou le SARS-CoV-2), utilisent l'ARN comme matériel génétique. Les cellules hôtes utilisent des mécanismes d'interférence à ARN pour détecter et dégrader l'ARN viral, soulignant le rôle de l'ARN dans l'immunité innée.
En résumé, l'ARN est une molécule extraordinairement versatile qui remplit des rôles multiples dans les cellules, allant de la traduction de l'information génétique à la régulation et la catalyse. Cette diversité fonctionnelle fait de l'ARN un acteur clé dans presque tous les aspects de la biologie moléculaire.
L'ADN d'un organisme doit être stable et relativement immuable au cours de sa vie. Il peut subir des mutations spontanées ou même des gènes supplémentaires, mais il faut des générations de sélection naturelle pour que des changements temporaires dans les séquences d'ADN s'installent dans une population. L'ARN, en revanche, est en constante évolution, réagissant aux conditions dynamiques à l'intérieur et à l'extérieur de la cellule. Les signaux d'ARN ne durent pas longtemps, mais ce n'est pas nécessaire, car ils peuvent très vite devenir inutiles.
En tant que message, l’ARN est transitoire. Il s’agit d’une caractéristique, pas d’un bug : il ne peut avoir que des effets à court terme sur d’autres cellules avant de se dégrader. Et comme l’ARN à l’intérieur d’une cellule change constamment, " le message que vous pouvez envoyer à votre cellule voisine " peut également changer très rapidement, a déclaré Erdmann. En ce sens, il s’apparente davantage à un message texte ou à un e-mail rapide destiné à communiquer des informations opportunes qu’à des runes gravées dans la pierre ou à un mémo officiel sur papier à en-tête.
Bien qu'il semble que les archées voisines absorbent et internalisent les EV provenant de leurs cellules voisines, on ne sait pas encore si ces messages les affectent. Erdmann se demande également ce qui arrive à ces vésicules dans la nature, où de nombreux organismes différents pourraient être à portée d'oreille des messages qu'elles transportent.
" Combien d’autres organismes dans le même environnement pourraient capter ce message ? ", s’est-elle interrogée. " Et le mangent-ils simplement et utilisent-ils l’ARN comme nourriture, ou détectent-ils réellement le signal ? "
Bien que cela puisse encore être un mystère pour Haloferax , d’autres chercheurs ont démontré que des cellules à travers des espèces, des règnes et même des domaines de la vie peuvent envoyer et recevoir des missives moléculaires remarquablement pointues.
Dialogue biologique croisé
Bien que l'ARN ait une durée de vie courte, il s'est révélé être une merveille moléculaire capable de changer de forme. Il est surtout connu pour aider les cellules à produire de nouvelles protéines en copiant les instructions de l'ADN (sous forme d'ARN messager, ou ARNm) et en les transmettant au ribosome pour construction. Cependant, son squelette flexible permet à l'ARN de se replier dans un certain nombre de formes qui peuvent avoir un impact sur la biologie cellulaire. Il peut agir comme une enzyme pour accélérer les réactions chimiques au sein des cellules. Il peut se lier à l'ADN pour activer ou désactiver l'expression des gènes. Et des brins d'ARN concurrents peuvent emmêler les instructions de l'ARNm dans un processus appelé interférence ARN qui empêche la production de nouvelles protéines.
Les chercheurs se sont de plus en plus intéressés aux façons dont l'ARN modifie l'activité cellulaire. Ils ont donc étudié des stratégies pour utiliser cette petite molécule mutable comme outil expérimental, comme traitement contre les maladies et même comme base du vaccin à ARNm contre la Covid-19 . Toutes ces applications nécessitent le transfert d'ARN dans les cellules, mais il semble que l'évolution nous ait devancés : les VE transmettent l'ARN même aux cellules qui ne souhaitent pas recevoir le message.
Il y a environ 10 ans, la généticienne moléculaire Hailing Jin et son laboratoire à l'Université de Californie, Riverside a découvert que deux organismes de règnes différents - une plante et un champignon - échangent de l'ARN comme une forme de guerre. Jin étudiait Botrytis cinerea , une moisissure grise duveteuse qui ravage des cultures telles que les fraises et les tomates, lorsqu'elle a vu qu'elle échangeait de l'ARN avec la plante Arabidopsis (arabette) pendant l'infection. Le champignon Botrytis a délivré de l'ARN qui interférait avec la capacité de la plante à combattre l'infection. Des travaux ultérieurs ont montré que les cellules végétales pouvaient répondre avec leur propre volée d'ARN qui a endommagé le champignon.
Dans cette " course aux armements coévolutionnaires ", comme l’a décrite Jin, les deux organismes ont utilisé des EV comme vecteurs de ces messages ARN délicats mais dommageables. Auparavant, les scientifiques intéressés par la dynamique hôte-pathogène se concentraient principalement sur les protéines et les métabolites, a expliqué Jin, car ces molécules peuvent être plus faciles à étudier. Mais il est logique que les organismes disposent de plusieurs moyens de résister aux défis environnementaux, a-t-elle ajouté, notamment en utilisant l’ARN pour interagir avec des parents évolutifs éloignés.
Au cours de la dernière décennie, de plus en plus de scientifiques ont découvert des exemples d'échange d'ARN entre règnes comme stratégie offensive lors d'une infection. Les vers parasites vivant dans les intestins de souris libèrent de l'ARN dans les EV qui désactivent les protéines immunitaires défensives de l'hôte. Les bactéries peuvent envoyer des messages aux cellules humaines qui atténuent les réponses immunitaires antibactériennes. Le champignon Candida albicans a même appris à détourner un message des véhicules électriques humains à son propre avantage : il utilise l'ARN humain pour favoriser sa propre croissance.
La correspondance entre les règnes n'est pas toujours un courrier haineux. Ces interactions ont également été observées dans des relations amicales (ou neutres), a déclaré Jin. Par exemple, les bactéries qui vivent en symbiose dans les racines des légumineuses envoient des messages ARN pour favoriser la nodulation — la croissance de petites bosses où les bactéries vivent et fixent l’azote pour la plante.
Comment l’ARN d’une branche de l’arbre de la vie peut-il être compris par les organismes d’une autre branche ? C’est un langage commun, explique Buck. L’ARN existe probablement depuis le tout début de la vie. Alors que les organismes ont évolué et se sont diversifiés, leur mécanisme de lecture de l’ARN est resté en grande partie le même. " L’ARN a déjà une signification dans chaque cellule ", explique Buck. " Et c’est un code assez simple. "
C'est tellement simple qu'une cellule réceptrice peut ouvrir et interpréter le message avant de se rendre compte qu'il pourrait être dangereux, de la même manière que nous pourrions cliquer instinctivement sur un lien dans un e-mail avant de remarquer l'adresse suspecte de l'expéditeur. En effet, plus tôt cette année, le laboratoire de Jin a montré que les cellules végétales d'Arabidopsis peuvent envoyer des instructions d'ARN apparemment inoffensives qui ont un impact surprenant sur un champignon ennemi. Au cours d'expériences, l'équipe de Jin a vu le champignon Botrytis lire l'ARNm envahissant ainsi que ses propres molécules et créer sans le vouloir des protéines qui endommageaient ses capacités infectieuses.
C'est presque comme si les plantes créaient un " pseudo-virus ", a expliqué Jin : de petits paquets d'ARN qui infectent une cellule et utilisent ensuite la machinerie de cette cellule pour produire des protéines.
" C’est un mécanisme assez puissant ", a-t-elle déclaré. " Un ARNm peut être traduit en de très nombreuses copies de protéines. […] C’est beaucoup plus efficace que le transport de la protéine elle-même. "
À sa connaissance, Jin a déclaré que c'était la première fois qu'elle observait des preuves d'organismes de différents règnes échangeant des messages d'ARNm et les lisant dans des protéines. Mais elle pense que ce phénomène sera probablement observé dans de nombreux autres systèmes, une fois que les gens commenceront à le rechercher.
Le domaine est jeune, a déclaré Buck, ce qui est passionnant. Il reste encore beaucoup à apprendre : par exemple, si les autres molécules contenues dans les VE aident à transmettre le message de l'ARN. " C'est un défi amusant de démêler tout cela ", a-t-elle déclaré. " Nous devrions être inspirés par la puissance et le dynamisme incroyables de l'ARN, et par la façon dont nous découvrons encore toutes les façons dont il façonne et régule la vie. "