Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 5
Temps de recherche: 0.0363s

songe matriochka

Bonjour,
J'aimerai partager avec vous une expérience. Et si certains ont des explications je suis preneuse.
Durant ma sieste aujourd'hui, j'ai pris conscience que je rêvais à l'intérieur de mon rêve. C'est un peu étrange mais c'est ça. Une personne (que je connais) me questionnais sur mon plan stratégique dans un dossier dans lequel elle est impliquée. Je lui fournissais les réponses qui sont déjà prévues mais dont elle ignore l'existence. Tout d'un coup j'ai réalisé que c'était un rêve puisqu'il était impossible que cette personne soit dans ma chambre et je me suis réveillée dans mon rêve.
Par la suite, j'ai entendu un bruit assourdissant provenant de l'extérieur de la maison. En regardant par la fenêtre j'ai constaté qu'il y avait des chasseurs capturant des oiseaux. Ce sont ces oiseaux pris dans des sacs qui faisaient cet énorme bruit avec leurs ailes et leurs cris. Là encore j'ai réalisé qu'il s'agit d'un rêve et je me suis réveillée dans mon rêve.

En réalité jamais je ne me suis réveillée en vrai sauf à la fin de ma sieste.

Auteur: Internet

Info: Myriam Gaïa. 6 avril 2020, 9 h. Sur le blog de Marc Auburn, explorateurs du réel

[ rêves gigognes ]

 

Commentaires: 0

Ajouté à la BD par miguel

intelligence artificielle

Résumé et explication du texte "Attention is All You Need"



Le texte "Attention is All You Need" (Vaswani et al., 2017) a révolutionné le domaine du traitement du langage naturel (TLN) en introduisant l'architecture Transformer, un modèle neuronal basé entièrement sur le mécanisme d'attention. Ce résumé explique les concepts clés du texte et son impact sur le TLN.



Concepts clés:





  • Attention: Le mécanisme central du Transformer. Il permet au modèle de se concentrer sur des parties spécifiques d'une séquence d'entrée (par ex., une phrase) lors du traitement, capturant ainsi les relations à longue distance entre les mots.




  • Encodeur-décodeur: L'architecture du Transformer. L'encodeur traite la séquence d'entrée et produit une représentation contextuelle. Le décodeur utilise ensuite cette représentation pour générer la séquence de sortie.




  • Positional encoding: Ajoute des informations de position aux séquences d'entrée et de sortie, permettant au modèle de comprendre l'ordre des mots.




  • Apprentissage par self-attention: Le Transformer utilise uniquement des mécanismes d'attention, éliminant le besoin de réseaux récurrents (RNN) comme les LSTM.





Impact:





  • Efficacité: Le Transformer a surpassé les modèles RNN en termes de performance et de parallélisation, permettant un entraînement plus rapide et une meilleure scalabilité.




  • Polyvalence: L'architecture Transformer s'est avérée efficace pour une large gamme de tâches en TLN, telles que la traduction automatique, le résumé de texte et la réponse aux questions.




  • Impact durable: Le Transformer est devenu l'architecture de base pour de nombreux modèles de pointe en TLN et continue d'inspirer des innovations dans le domaine.





En résumé:



"Attention is All You Need" a marqué un tournant dans le TLN en introduisant l'architecture Transformer. Le mécanisme d'attention et l'absence de RNN ont permis d'améliorer considérablement l'efficacité et la polyvalence des modèles de TLN, ouvrant la voie à de nombreuses avancées dans le domaine.



Points importants:





  • Le Transformer repose sur le mécanisme d'attention pour capturer les relations à longue distance dans les séquences.




  • L'architecture encodeur-décodeur avec self-attention offre une grande efficacité et une grande flexibilité.




  • Le Transformer a eu un impact profond sur le domaine du TLN et continue d'inspirer de nouvelles recherches.



Auteur: Internet

Info: Compendium de gemini

[ historique ] [ traitement automatique du langage ] [ écrit célèbre ]

 

Commentaires: 0

Ajouté à la BD par miguel

legos protéiques

De nouveaux outils d’IA prédisent comment les blocs de construction de la vie s’assemblent

AlphaFold3 de Google DeepMind et d'autres algorithmes d'apprentissage profond peuvent désormais prédire la forme des complexes en interaction de protéines, d'ADN, d'ARN et d'autres molécules, capturant ainsi mieux les paysages biologiques des cellules.

Les protéines sont les machines moléculaires qui soutiennent chaque cellule et chaque organisme, et savoir à quoi elles ressemblent sera essentiel pour comprendre comment elles fonctionnent normalement et fonctionnent mal en cas de maladie. Aujourd’hui, les chercheurs ont fait un grand pas en avant vers cet objectif grâce au développement de nouveaux algorithmes d’apprentissage automatique capables de prédire les formes rdéployées et repliées non seulement des protéines mais aussi d’autres biomolécules avec une précision sans précédent.

Dans un article publié aujourd'hui dans Nature , Google DeepMind et sa société dérivée Isomorphic Labs ont annoncé la dernière itération de leur programme AlphaFold, AlphaFold3, capable de prédire les structures des protéines, de l'ADN, de l'ARN, des ligands et d'autres biomolécules, seuls ou liés ensemble dans différentes configurations. Les résultats font suite à une mise à jour similaire d'un autre algorithme de prédiction de structure d'apprentissage profond, appelé RoseTTAFold All-Atom, publié en mars dans Science .

Même si les versions précédentes de ces algorithmes pouvaient prédire la structure des protéines – une réussite remarquable en soi – elles ne sont pas allées assez loin pour dissiper les mystères des processus biologiques, car les protéines agissent rarement seules. "Chaque fois que je donnais une conférence AlphaFold2, je pouvais presque deviner quelles seraient les questions", a déclaré John Jumper, qui dirige l'équipe AlphaFold chez Google DeepMind. "Quelqu'un allait lever la main et dire : 'Oui, mais ma protéine interagit avec l'ADN.' Pouvez-vous me dire comment ?' " Jumper devrait bien admettre qu'AlphaFold2 ne connaissait pas la réponse.

Mais AlphaFold3 pourrait le faire. Avec d’autres algorithmes d’apprentissage profond émergents, il va au-delà des protéines et s’étend sur un paysage biologique plus complexe et plus pertinent qui comprend une bien plus grande diversité de molécules interagissant dans les cellules.

" On découvre désormais toutes les interactions complexes qui comptent en biologie ", a déclaré Brenda Rubenstein , professeure agrégée de chimie et de physique à l'Université Brown, qui n'a participé à aucune des deux études. " On commence à avoir une vision plus large."

Comprendre ces interactions est " fondamental pour la fonction biologique ", a déclaré Paul Adams , biophysicien moléculaire au Lawrence Berkeley National Laboratory qui n’a également participé à aucune des deux études. " Les deux groupes ont fait des progrès significatifs pour résoudre ce problème. "

Les deux algorithmes ont leurs limites, mais ils ont le potentiel d’évoluer vers des outils de prédiction encore plus puissants. Dans les mois à venir, les scientifiques commenceront à les tester et, ce faisant, ils révéleront à quel point ces algorithmes pourraient être utiles.

Progrès de l’IA en biologie

L’apprentissage profond est une variante de l’apprentissage automatique vaguement inspirée du cerveau humain. Ces algorithmes informatiques sont construits à l’aide de réseaux complexes de nœuds d’information (appelés neurones) qui forment des connexions en couches les unes avec les autres. Les chercheurs fournissent au réseau d’apprentissage profond des données d’entraînement, que l’algorithme utilise pour ajuster les forces relatives des connexions entre les neurones afin de produire des résultats toujours plus proches des exemples d’entraînement. Dans le cas des systèmes d'intelligence artificielle protéique, ce processus amène le réseau à produire de meilleures prédictions des formes des protéines sur la base de leurs données de séquence d'acides aminés.

AlphaFold2, sorti en 2021, a constitué une avancée majeure dans l’apprentissage profond en biologie. Il a ouvert la voie à un monde immense de structures protéiques jusque-là inconnues et est déjà devenu un outil utile pour les chercheurs qui cherchent à tout comprendre, depuis les structures cellulaires jusqu'à la tuberculose. Cela a également inspiré le développement d’outils supplémentaires d’apprentissage biologique profond. Plus particulièrement, le biochimiste David Baker et son équipe de l’Université de Washington ont développé en 2021 un algorithme concurrent appelé RoseTTAFold , qui, comme AlphaFold2, prédit les structures protéiques à partir de séquences de données.

Depuis, les deux algorithmes ont été mis à jour avec de nouvelles fonctionnalités. RoseTTAFold Diffusion pourrait être utilisé pour concevoir de nouvelles protéines qui n’existent pas dans la nature. AlphaFold Multimer pourrait étudier l’interaction de plusieurs protéines. " Mais ce que nous avons laissé sans réponse ", a déclaré Jumper, " était : comment les protéines communiquent-elles avec le reste de la cellule ? "

Le succès des premières itérations d'algorithmes d'apprentissage profond de prédiction des protéines reposait sur la disponibilité de bonnes données d'entraînement : environ 140 000 structures protéiques validées qui avaient été déposées pendant 50 ans dans la banque de données sur les protéines. De plus en plus, les biologistes ont également déposé les structures de petites molécules, d'ADN, d'ARN et leurs combinaisons. Dans cette expansion de l'algorithme d'AlphaFold pour inclure davantage de biomolécules, " la plus grande inconnue ", a déclaré Jumper, "est de savoir s'il y aurait suffisamment de données pour permettre à l'algorithme de prédire avec précision les complexes de protéines avec ces autres molécules."

Apparemment oui. Fin 2023, Baker puis Jumper ont publié les versions préliminaires de leurs nouveaux outils d’IA, et depuis, ils soumettent leurs algorithmes à un examen par les pairs.

Les deux systèmes d'IA répondent à la même question, mais les architectures sous-jacentes de leurs méthodes d'apprentissage profond diffèrent, a déclaré Mohammed AlQuraishi , biologiste des systèmes à l'Université de Columbia qui n'est impliqué dans aucun des deux systèmes. L'équipe de Jumper a utilisé un processus appelé diffusion – technologie qui alimente la plupart des systèmes d'IA génératifs non basés sur du texte, tels que Midjourney et DALL·E, qui génèrent des œuvres d'art basées sur des invites textuelles, a expliqué AlQuraishi. Au lieu de prédire directement la structure moléculaire puis de l’améliorer, ce type de modèle produit d’abord une image floue et l’affine de manière itérative.

D'un point de vue technique, il n'y a pas de grand saut entre RoseTTAFold et RoseTTAFold All-Atom, a déclaré AlQuraishi. Baker n'a pas modifié massivement l'architecture sous-jacente de RoseTTAFold, mais l'a mise à jour pour inclure les règles connues des interactions biochimiques. L'algorithme n'utilise pas la diffusion pour prédire les structures biomoléculaires. Cependant, l'IA de Baker pour la conception de protéines le fait. La dernière itération de ce programme, connue sous le nom de RoseTTAFold Diffusion All-Atom, permet de concevoir de nouvelles biomolécules en plus des protéines.

" Le type de dividendes qui pourraient découler de la possibilité d'appliquer les technologies d'IA générative aux biomolécules n'est que partiellement réalisé grâce à la conception de protéines", a déclaré AlQuraishi. "Si nous pouvions faire aussi bien avec de petites molécules, ce serait incroyable." 

Évaluer la concurrence

Côte à côte, AlphaFold3 semble être plus précis que RoseTTAFold All-Atom. Par exemple, dans leur analyse dans Nature , l'équipe de Google a constaté que leur outil est précis à environ 76 % pour prédire les structures des protéines interagissant avec de petites molécules appelées ligands, contre une précision d'environ 42 % pour RoseTTAFold All-Atom et 52 % pour le meilleur. outils alternatifs disponibles.

Les performances de prédiction de structure d'AlphaFold3 sont " très impressionnantes ", a déclaré Baker, " et meilleures que celles de RoseTTAFold All-Atom ".

Toutefois, ces chiffres sont basés sur un ensemble de données limité qui n'est pas très performant, a expliqué AlQuraishi. Il ne s’attend pas à ce que toutes les prédictions concernant les complexes protéiques obtiennent un score aussi élevé. Et il est certain que les nouveaux outils d’IA ne sont pas encore assez puissants pour soutenir à eux seuls un programme robuste de découverte de médicaments, car cela nécessite que les chercheurs comprennent des interactions biomoléculaires complexes. Pourtant, " c'est vraiment prometteur ", a-t-il déclaré, et nettement meilleur que ce qui existait auparavant.

Adams est d'accord. "Si quelqu'un prétend pouvoir utiliser cela demain pour développer des médicaments avec précision, je n'y crois pas", a-t-il déclaré. " Les deux méthodes sont encore limitées dans leur précision, [mais] les deux constituent des améliorations spectaculaires par rapport à ce qui était possible. "

(Image gif, tournante, en 3D : AlphaFold3 peut prédire la forme de complexes biomoléculaires, comme cette protéine de pointe provenant d'un virus du rhume. Les structures prédites de deux protéines sont visualisées en bleu et vert, tandis que les petites molécules (ligands) liées aux protéines sont représentées en jaune. La structure expérimentale connue de la protéine est encadrée en gris.)

Ils seront particulièrement utiles pour créer des prédictions approximatives qui pourront ensuite être testées informatiquement ou expérimentalement. Le biochimiste Frank Uhlmann a eu l'occasion de pré-tester AlphaFold3 après avoir croisé un employé de Google dans un couloir du Francis Crick Institute de Londres, où il travaille. Il a décidé de rechercher une interaction protéine-ADN qui était " vraiment déroutante pour nous ", a-t-il déclaré. AlphaFold3 a craché une prédiction qu'ils testent actuellement expérimentalement en laboratoire. "Nous avons déjà de nouvelles idées qui pourraient vraiment fonctionner", a déclaré Uhlmann. " C'est un formidable outil de découverte. "

Il reste néanmoins beaucoup à améliorer. Lorsque RoseTTAFold All-Atom prédit les structures de complexes de protéines et de petites molécules, il place parfois les molécules dans la bonne poche d'une protéine mais pas dans la bonne orientation. AlphaFold3 prédit parfois de manière incorrecte la chiralité d'une molécule – l'orientation géométrique distincte " gauche " ou " droite " de sa structure. Parfois, il hallucine ou crée des structures inexactes.

Et les deux algorithmes produisent toujours des images statiques des protéines et de leurs complexes. Dans une cellule, les protéines sont dynamiques et peuvent changer en fonction de leur environnement : elles se déplacent, tournent et passent par différentes conformations. Il sera difficile de résoudre ce problème, a déclaré Adams, principalement en raison du manque de données de formation. " Ce serait formidable de déployer des efforts concertés pour collecter des données expérimentales conçues pour éclairer ces défis ", a-t-il déclaré.

Un changement majeur dans le nouveau produit de Google est qu'il ne sera pas open source. Lorsque l’équipe a publié AlphaFold2, elle a publié le code sous-jacent, qui a permis aux biologistes de reproduire et de jouer avec l’algorithme dans leurs propres laboratoires. Mais le code d'AlphaFold3 ne sera pas accessible au public.

 " Ils semblent décrire la méthode en détail. Mais pour le moment, au moins, personne ne peut l’exécuter et l’utiliser comme il l’a fait avec [AlphaFold2] ", a déclaré AlQuraishi. C’est " un grand pas en arrière. Nous essaierons bien sûr de le reproduire."

Google a cependant annoncé qu'il prenait des mesures pour rendre le produit accessible en proposant un nouveau serveur AlphaFold aux biologistes exécutant AlphaFold3. Prédire les structures biomoléculaires nécessite une tonne de puissance de calcul : même dans un laboratoire comme Francis Crick, qui héberge des clusters informatiques hautes performances, il faut environ une semaine pour produire un résultat, a déclaré Uhlmann. En comparaison, les serveurs plus puissants de Google peuvent faire une prédiction en 10 minutes, a-t-il déclaré, et les scientifiques du monde entier pourront les utiliser. "Cela va démocratiser complètement la recherche sur la prédiction des protéines", a déclaré Uhlmann.

Le véritable impact de ces outils ne sera pas connu avant des mois ou des années, alors que les biologistes commenceront à les tester et à les utiliser dans la recherche. Et ils continueront à évoluer. La prochaine étape de l'apprentissage profond en biologie moléculaire consiste à " gravir l'échelle de la complexité biologique ", a déclaré Baker, au-delà même des complexes biomoléculaires prédits par AlphaFold3 et RoseTTAFold All-Atom. Mais si l’histoire de l’IA en matière de structure protéique peut prédire l’avenir, alors ces modèles d’apprentissage profond de nouvelle génération continueront d’aider les scientifiques à révéler les interactions complexes qui font que la vie se réalise.

" Il y a tellement plus à comprendre ", a déclaré Jumper. "C'est juste le début."

Auteur: Internet

Info: https://www.quantamagazine.org/new-ai-tools-predict-how-lifes-building-blocks-assemble-20240508/ - Yasemin Saplakoglu, 8 mai 2024

[ briques du vivant ] [ texte-image ] [ modélisation mobiles ] [ nano mécanismes du vivant ]

 

Commentaires: 0

Ajouté à la BD par miguel

évolution subatomique

Une nouvelle idée pour assembler la vie         (Avec l'aimable autorisation de Lee Cronin)

Si nous voulons comprendre des constructions complexes, telles que nous-mêmes, la théorie de l'assemblage affirme que nous devons tenir compte de toute l'histoire de la création de ces entités, du pourquoi et comment elles sont ce qu'elles sont.

La théorie de l'assemblage explique pourquoi, étant donné les possibilités combinatoires apparemment infinies, nous n'observons qu'un certain sous-ensemble d'objets dans notre univers.

La vie sur d'autres mondes - si elle existe - pourrait être si étrangère qu'elle en serait méconnaissable. Il n'est pas certain que la biologie extraterrestre utilise la même chimie que celle de la Terre, avec des éléments constitutifs familiers tels que l'ADN et les protéines. Avec cette approche les scientifiques pourraient même repérer les signatures de ces formes de vie sans savoir qu'elles sont le fruit de la biologie.

Ce problème est loin d'être hypothétique. En avril, la sonde Juice de l'Agence spatiale européenne a décollé de la Guyane française en direction de Jupiter et de ses lunes. L'une de ces lunes, Europe, abrite un océan profond et saumâtre sous sa croûte gelée et figure parmi les endroits les plus prometteurs du système solaire pour la recherche d'une vie extraterrestre. L'année prochaine, le vaisseau spatial Europa Clipper de la NASA sera lancé, lui aussi en direction d'Europe. Les deux engins spatiaux sont équipés d'instruments embarqués qui rechercheront les empreintes de molécules organiques complexes, signe possible de vie sous la glace. En 2027, la NASA prévoit de lancer un hélicoptère ressemblant à un drone, appelé Dragonfly, pour survoler la surface de Titan, une lune de Saturne, un monde brumeux, riche en carbone, avec des lacs d'hydrocarbures liquides qui pourraient être propices à la vie, mais pas telle que nous la connaissons.

Ces missions et d'autres encore se heurteront au même obstacle que celui auquel se heurtent les scientifiques depuis qu'ils ont tenté pour la première fois de rechercher des signes de biologie martienne avec les atterrisseurs Viking dans les années 1970 : Il n'y a pas de signature définitive de la vie.

C'est peut-être sur le point de changer. En 2021, une équipe dirigée par Lee Cronin, de l'université de Glasgow, en Écosse, et Sara Walker, de l'université d'État de l'Arizona, a proposé une méthode très générale pour identifier les molécules produites par les systèmes vivants, même ceux qui utilisent des chimies inconnues. Leur méthode suppose simplement que les formes de vie extraterrestres produisent des molécules dont la complexité chimique est similaire à celle de la vie sur Terre.

Appelée théorie de l'assemblage, l'idée qui sous-tend la stratégie des deux chercheurs a des objectifs encore plus ambitieux. Comme l'indique une récente série de publications, elle tente d'expliquer pourquoi des choses apparemment improbables, telles que vous et moi, existent. Et elle cherche cette explication non pas, à la manière habituelle de la physique, dans des lois physiques intemporelles, mais dans un processus qui imprègne les objets d'histoires et de souvenirs de ce qui les a précédés. Elle cherche même à répondre à une question qui laisse les scientifiques et les philosophes perplexes depuis des millénaires : qu'est-ce que la vie, de toute façon ?

Il n'est pas surprenant qu'un projet aussi ambitieux ait suscité le scepticisme. Ses partisans n'ont pas encore précisé comment il pourrait être testé en laboratoire. Et certains scientifiques se demandent si la théorie de l'assemblage peut même tenir ses promesses les plus modestes, à savoir distinguer la vie de la non-vie et envisager la complexité d'une nouvelle manière.

La théorie de l'assemblage a évolué, en partie, pour répondre au soupçon de Lee Cronin selon lequel "les molécules complexes ne peuvent pas simplement émerger, parce que l'espace combinatoire est trop vaste".

Mais d'autres estiment que la théorie de l'assemblage n'en est qu'à ses débuts et qu'il existe une réelle possibilité qu'elle apporte une nouvelle perspective à la question de la naissance et de l'évolution de la complexité. "Il est amusant de s'engager dans cette voie", a déclaré le théoricien de l'évolution David Krakauer, président de l'Institut Santa Fe. Selon lui, la théorie de l'assemblage permet de découvrir l'histoire contingente des objets, une question ignorée par la plupart des théories de la complexité, qui ont tendance à se concentrer sur la façon dont les choses sont, mais pas sur la façon dont elles sont devenues telles. Paul Davies, physicien à l'université de l'Arizona, est d'accord avec cette idée, qu'il qualifie de "nouvelle, susceptible de transformer notre façon de penser la complexité".

Sur l'ordre des choses

La théorie de l'assemblage est née lorsque M. Cronin s'est demandé pourquoi, compte tenu du nombre astronomique de façons de combiner différents atomes, la nature fabrique certaines molécules et pas d'autres. C'est une chose de dire qu'un objet est possible selon les lois de la physique, c'en est une autre de dire qu'il existe une voie réelle pour le fabriquer à partir de ses composants. "La théorie de l'assemblage a été élaborée pour traduire mon intuition selon laquelle les molécules complexes ne peuvent pas simplement émerger parce que l'espace combinatoire est trop vaste", a déclaré M. Cronin.

Walker, quant à lui, s'est penché sur la question de l'origine de la vie - une question étroitement liée à la fabrication de molécules complexes, car celles des organismes vivants sont bien trop complexes pour avoir été assemblées par hasard. Walker s'est dit que quelque chose avait dû guider ce processus avant même que la sélection darwinienne ne prenne le dessus.

Cronin et Walker ont uni leurs forces après avoir participé à un atelier d'astrobiologie de la NASA en 2012. "Sara et moi discutions de la théorie de l'information, de la vie et des voies minimales pour construire des machines autoreproductibles", se souvient M. Cronin. "Et il m'est apparu très clairement que nous convergions tous les deux sur le fait qu'il manquait une 'force motrice' avant la biologie."

Aujourd'hui, la théorie de l'assemblage fournit une explication cohérente et mathématiquement précise de l'apparente contingence historique de la fabrication des objets - pourquoi, par exemple, ne peut-on pas développer de fusées avant d'avoir d'abord la vie multicellulaire, puis l'homme, puis la civilisation et la science. Il existe un ordre particulier dans lequel les objets peuvent apparaître.

"Nous vivons dans un univers structuré de manière récursive*", a déclaré M. Walker. "La plupart des structures doivent être construites à partir de la mémoire du passé. L'information se construit au fil du temps.

Cela peut sembler intuitivement évident, mais il est plus difficile de répondre à certaines questions sur l'ordre des choses. Les dinosaures ont-ils dû précéder les oiseaux ? Mozart devait-il précéder John Coltrane ? Peut-on dire quelles molécules ont nécessairement précédé l'ADN et les protéines ?

Quantifier la complexité

La théorie de l'assemblage repose sur l'hypothèse apparemment incontestable que les objets complexes résultent de la combinaison de nombreux objets plus simples. Selon cette théorie, il est possible de mesurer objectivement la complexité d'un objet en examinant la manière dont il a été fabriqué. Pour ce faire, on calcule le nombre minimum d'étapes nécessaires pour fabriquer l'objet à partir de ses ingrédients, que l'on quantifie en tant qu'indice d'assemblage (IA).

En outre, pour qu'un objet complexe soit intéressant d'un point de vue scientifique, il faut qu'il y en ait beaucoup. Des objets très complexes peuvent résulter de processus d'assemblage aléatoires - par exemple, on peut fabriquer des molécules de type protéine en reliant n'importe quels acides aminés en chaînes. En général, cependant, ces molécules aléatoires ne feront rien d'intéressant, comme se comporter comme une enzyme. En outre, les chances d'obtenir deux molécules identiques de cette manière sont extrêmement faibles.

En revanche, les enzymes fonctionnelles sont fabriquées de manière fiable à maintes reprises en biologie, car elles sont assemblées non pas au hasard, mais à partir d'instructions génétiques transmises de génération en génération. Ainsi, si le fait de trouver une seule molécule très complexe ne vous dit rien sur la manière dont elle a été fabriquée, il est improbable de trouver plusieurs molécules complexes identiques, à moins qu'un processus orchestré - peut-être la vie - ne soit à l'œuvre.

Cronin et Walker ont calculé que si une molécule est suffisamment abondante pour être détectable, son indice d'assemblage peut indiquer si elle a été produite par un processus organisé et réaliste. L'intérêt de cette approche est qu'elle ne suppose rien sur la chimie détaillée de la molécule elle-même, ni sur celle de l'entité vivante qui l'a produite. Elle est chimiquement agnostique. C'est ce qui la rend particulièrement précieuse lorsque nous recherchons des formes de vie qui pourraient ne pas être conformes à la biochimie terrestre, a déclaré Jonathan Lunine, planétologue à l'université Cornell et chercheur principal d'une mission proposée pour rechercher la vie sur la lune glacée de Saturne, Encelade.

"Il est bien qu'au moins une technique relativement agnostique soit embarquée à bord des missions de détection de la vie", a déclaré Jonathan Lunine.

Il ajoute qu'il est possible d'effectuer les mesures requises par la théorie de l'assemblage avec des techniques déjà utilisées pour étudier la chimie des surfaces planétaires. "La mise en œuvre de mesures permettant l'utilisation de la théorie de l'assemblage pour l'interprétation des données est éminemment réalisable", a-t-il déclaré.

La mesure du travail d'une vie

Ce qu'il faut, c'est une méthode expérimentale rapide et facile pour déterminer l'IA (indice d'assemblage) de certaines molécules. À l'aide d'une base de données de structures chimiques, Cronin, Walker et leurs collègues ont conçu un moyen de calculer le nombre minimum d'étapes nécessaires à la fabrication de différentes structures moléculaires. Leurs résultats ont montré que, pour les molécules relativement petites, l'indice d'assemblage est à peu près proportionnel au poids moléculaire. Mais pour les molécules plus grandes (tout ce qui est plus grand que les petits peptides, par exemple), cette relation est rompue.

Dans ces cas, les chercheurs ont découvert qu'ils pouvaient estimer l'IA à l'aide de la spectrométrie de masse, une technique déjà utilisée par le rover Curiosity de la NASA pour identifier les composés chimiques à la surface de Mars, et par la sonde Cassini de la NASA pour étudier les molécules qui jaillissent d'Encelade.

La spectrométrie de masse décompose généralement les grosses molécules en fragments. Cronin, Walker et leurs collègues ont constaté qu'au cours de ce processus, les grosses molécules à IA élevé se fracturent en mélanges de fragments plus complexes que celles à IA faible (comme les polymères simples et répétitifs). Les chercheurs ont ainsi pu déterminer de manière fiable l'IA (indice d'assemblage) en fonction de la complexité du spectre de masse de la molécule.

Lorsque les chercheurs ont ensuite testé la technique, ils ont constaté que les mélanges complexes de molécules produites par des systèmes vivants - une culture de bactéries E. coli, des produits naturels comme le taxol (un métabolite de l'if du Pacifique aux propriétés anticancéreuses), de la bière et des cellules de levure - présentaient généralement des IA moyens nettement plus élevés que les minéraux ou les simples substances organiques.

L'analyse est susceptible de donner lieu à des faux négatifs : certains produits issus de systèmes vivants, tels que le scotch Ardbeg single malt, ont des IA qui suggèrent une origine non vivante. Mais ce qui est peut-être plus important encore, c'est que l'expérience n'a produit aucun faux positif : Les systèmes abiotiques ne peuvent pas obtenir des IA suffisamment élevés pour imiter la biologie. Les chercheurs ont donc conclu que si un échantillon doté d'un IA moléculaire élevé est mesuré sur un autre monde, il est probable qu'il ait été fabriqué par une entité que l'on pourrait qualifier de vivante.

(Photo-schéma : Une échelle de la vie)

Les chercheurs ont établi/estimé l'indice d'assemblage (IA) de substance variées par des mesures répétés de leurs structures moléculaires, Seules celles assemblées biologiquement ont un AI au-dessus d'un certain palier. 

Non biologique        (vert)

Indice               bas        moyen       haut

charbon             10...    12

quarz                    11... 12

granit                 10  ..   12..   15

Biologique               (jaune)

levure                10                         24

urine                9                          ...   27

eau de mer      9                                 ....28

e-Coli                                    15                        31

bière                 10                                 ..            34

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.1038/s41467-021-23258-x)

La spectrométrie de masse ne fonctionnerait que dans le cadre de recherches astrobiologiques ayant accès à des échantillons physiques, c'est-à-dire des missions d'atterrissage ou des orbiteurs comme Europa Clipper, qui peuvent ramasser et analyser des molécules éjectées de la surface d'un monde. Mais Cronin et ses collègues viennent de montrer qu'ils peuvent mesurer l'IA moléculaire en utilisant deux autres techniques qui donnent des résultats cohérents. L'une d'entre elles, la spectroscopie infrarouge, pourrait être utilisée par des instruments tels que ceux du télescope spatial James Webb, qui étudient à distance la composition chimique de mondes lointains.

Cela ne veut pas dire que ces méthodes de détection moléculaire offrent un instrument de mesure précis permettant de passer de la pierre au reptile. Hector Zenil, informaticien et biotechnologue à l'université de Cambridge, a souligné que la substance présentant l'IA le plus élevé de tous les échantillons testés par le groupe de Glasgow - une substance qui, selon cette mesure, pourrait être considérée comme la plus "biologique" - n'était pas une bactérie.

C'était de la bière.

Se débarrasser des chaînes du déterminisme

La théorie de l'assemblage prédit que des objets comme nous ne peuvent pas naître isolément - que certains objets complexes ne peuvent émerger qu'en conjonction avec d'autres. C'est intuitivement logique : l'univers n'a jamais pu produire un seul être humain. Pour qu'il y ait des êtres humains, il faut qu'il y en ait beaucoup.

La physique traditionnelle n'a qu'une utilité limitée lorsqu'il s'agit de prendre en compte des entités spécifiques et réelles telles que les êtres humains en général (et vous et moi en particulier). Elle fournit les lois de la nature et suppose que des résultats spécifiques sont le fruit de conditions initiales spécifiques. Selon ce point de vue, nous devrions avoir été codés d'une manière ou d'une autre dans les premiers instants de l'univers. Mais il faut certainement des conditions initiales extrêmement bien réglées pour que l'Homo sapiens (et a fortiori vous) soit inévitable.

La théorie de l'assemblage, selon ses défenseurs, échappe à ce type d'image surdéterminée. Ici, les conditions initiales n'ont pas beaucoup d'importance. Les informations nécessaires à la fabrication d'objets spécifiques tels que nous n'étaient pas présentes au départ, mais se sont accumulées au cours du processus d'évolution cosmique, ce qui nous dispense de faire porter toute la responsabilité à un Big Bang incroyablement bien réglé. L'information "est dans le chemin", a déclaré M. Walker, "pas dans les conditions initiales".

Cronin et Walker ne sont pas les seuls scientifiques à tenter d'expliquer que les clés de la réalité observée pourraient bien ne pas résider dans des lois universelles, mais dans la manière dont certains objets sont assemblés et se transforment en d'autres. La physicienne théorique Chiara Marletto, de l'université d'Oxford, développe une idée similaire avec le physicien David Deutsch. Leur approche, qu'ils appellent la théorie des constructeurs et que Marletto considère comme "proche dans l'esprit" de la théorie de l'assemblage, examine quels types de transformations sont possibles et lesquels ne le sont pas.

"La théorie des constructeurs parle de l'univers des tâches capables d'effectuer certaines transformations", explique M. Cronin. "On peut considérer qu'elle limite ce qui peut se produire dans le cadre des lois de la physique. La théorie de l'assemblage, ajoute-t-il, ajoute le temps et l'histoire à cette équation.

Pour expliquer pourquoi certains objets sont fabriqués et d'autres non, la théorie de l'assemblage identifie une hiérarchie imbriquée de quatre "univers" distincts.

1 Dans l'univers de l'assemblage, toutes les permutations des éléments de base sont autorisées. 2 Dans l'univers de l'assemblage possible, les lois de la physique limitent ces combinaisons, de sorte que seuls certains objets sont réalisables. 3 L'univers de l'assemblage contingenté élague alors le vaste éventail d'objets physiquement autorisés en sélectionnant ceux qui peuvent effectivement être assemblés selon des chemins possibles. 4 Le quatrième univers est l'assemblage observé, qui comprend uniquement les processus d'assemblage qui ont généré les objets spécifiques que nous voyons actuellement.

(Photo - schéma montrant l'univers de l'assemblage dès son origine via un entonnoir inversé présentant ces 4 étapes, qui élargissent en descendant)

1 Univers assembleur

Espace non contraint contenant toutes les permutations possibles des blocs de base de l'univers

2 Assemblage possibles

Seuls les objets physiquement possibles existent, limités par les lois de la physique.

3 Assemblages contingents

Objets qui peuvent effectivement être assemblés en utilisant des chemins possibles

4 Assemblage dans le réel

Ce que nous pouvons observer

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.48550/arXiv.2206.02279)

La théorie de l'assemblage explore la structure de tous ces univers, en utilisant des idées tirées de l'étude mathématique des graphes, ou réseaux de nœuds interconnectés. Il s'agit d'une "théorie de l'objet d'abord", a déclaré M. Walker, selon laquelle "les choses [dans la théorie] sont les objets qui sont effectivement fabriqués, et non leurs composants".

Pour comprendre comment les processus d'assemblage fonctionnent dans ces univers notionnels, prenons le problème de l'évolution darwinienne. Conventionnellement, l'évolution est quelque chose qui "s'est produit" une fois que des molécules répliquées sont apparues par hasard - un point de vue qui risque d'être une tautologie (affirmation/certitude), parce qu'il semble dire que l'évolution a commencé une fois que des molécules évolutives ont existé. Les partisans de la théorie de l'assemblage et de la théorie du constructeur recherchent au contraire "une compréhension quantitative de l'évolution ancrée dans la physique", a déclaré M. Marletto.

Selon la théorie de l'assemblage, pour que l'évolution darwinienne puisse avoir lieu, il faut que quelque chose sélectionne de multiples copies d'objets à forte intelligence artificielle dans l'assemblage possible. Selon M. Cronin, la chimie à elle seule pourrait en être capable, en réduisant des molécules relativement complexes à un petit sous-ensemble. Les réactions chimiques ordinaires "sélectionnent" déjà certains produits parmi toutes les permutations possibles parce que leur vitesse de réaction est plus rapide.

Les conditions spécifiques de l'environnement prébiotique, telles que la température ou les surfaces minérales catalytiques, pourraient donc avoir commencé à vidanger/filtrer le pool des précurseurs moléculaires de la vie parmi ceux de l'assemblage possible. Selon la théorie de l'assemblage, ces préférences prébiotiques seront "mémorisées" dans les molécules biologiques actuelles : Elles encodent leur propre histoire. Une fois que la sélection darwinienne a pris le dessus, elle a favorisé les objets les plus aptes à se répliquer. Ce faisant, ce codage de l'histoire s'est encore renforcé. C'est précisément la raison pour laquelle les scientifiques peuvent utiliser les structures moléculaires des protéines et de l'ADN pour faire des déductions sur les relations évolutives des organismes.

Ainsi, la théorie de l'assemblage "fournit un cadre permettant d'unifier les descriptions de la sélection en physique et en biologie", écrivent Cronin, Walker et leurs collègues. Plus un objet est "assemblé", plus il faut de sélections successives pour qu'il parvienne à l'existence.

"Nous essayons d'élaborer une théorie qui explique comment la vie naît de la chimie", a déclaré M. Cronin, "et de le faire d'une manière rigoureuse et vérifiable sur le plan empirique".

Une mesure pour tous les gouverner ?

Krakauer estime que la théorie de l'assemblage et la théorie du constructeur offrent toutes deux de nouvelles façons stimulantes de réfléchir à la manière dont les objets complexes prennent naissance. "Ces théories sont davantage des télescopes que des laboratoires de chimie", a-t-il déclaré. "Elles nous permettent de voir les choses, pas de les fabriquer. Ce n'est pas du tout une mauvaise chose et cela pourrait être très puissant".

Mais il prévient que "comme pour toute la science, la preuve sera dans le pudding".

Zenil, quant à lui, estime que, compte tenu de l'existence d'une liste déjà considérable de mesures de la complexité telles que la complexité de Kolmogorov, la théorie de l'assemblage ne fait que réinventer la roue. Marletto n'est pas d'accord. "Il existe plusieurs mesures de la complexité, chacune capturant une notion différente de cette dernière", a-t-elle déclaré. Mais la plupart de ces mesures ne sont pas liées à des processus réels. Par exemple, la complexité de Kolmogorov suppose une sorte d'appareil capable d'assembler tout ce que les lois de la physique permettent. Il s'agit d'une mesure appropriée à l'assemblage possible, a déclaré Mme Marletto, mais pas nécessairement à l'assemblage observé. En revanche, la théorie de l'assemblage est "une approche prometteuse parce qu'elle se concentre sur des propriétés physiques définies de manière opérationnelle", a-t-elle déclaré, "plutôt que sur des notions abstraites de complexité".

Selon M. Cronin, ce qui manque dans les mesures de complexité précédentes, c'est un sens de l'histoire de l'objet complexe - les mesures ne font pas la distinction entre une enzyme et un polypeptide aléatoire.

Cronin et Walker espèrent que la théorie de l'assemblage permettra à terme de répondre à des questions très vastes en physique, telles que la nature du temps et l'origine de la deuxième loi de la thermodynamique. Mais ces objectifs sont encore lointains. "Le programme de la théorie de l'assemblage n'en est qu'à ses débuts", a déclaré Mme Marletto. Elle espère voir la théorie mise à l'épreuve en laboratoire. Mais cela pourrait aussi se produire dans la nature, dans le cadre de la recherche de processus réalistes se déroulant sur des mondes extraterrestres.

 

Auteur: Internet

Info: https://www.quantamagazine.org/a-new-theory-for-the-assembly-of-life-in-the-universe-20230504?mc_cid=088ea6be73&mc_eid=78bedba296 - Philip Ball , contributing Writer,  4 mai 2023. *Qui peut être répété un nombre indéfini de fois par l'application de la même règle.

[ ergodicité mystère ] [ exobiologie ] [ astrobiologie ] [ exploration spatiale ] [ origine de la vie ] [ xénobiologie ] [ itération nécessaire ] [ ordre caché ] [ univers mécanique ] [ théorie-pratique ] [ macromolécules ] [ progression orthogonale ] [ décentrement anthropique ]

 

Commentaires: 0

Ajouté à la BD par miguel

source du vivant

Comment la vie (et la mort) naissent du désordre

Alors que des systèmes simples montrent des signes de vie, les scientifiques se demandent si cette apparente complexité est entièrement une conséquence de la thermodynamique.

Quelle est la différence entre physique et biologie ? Prenez une balle de golf et un boulet de canon et déposez-les au sommet de la Tour de Pise. Les lois de la physique vous permettent de prédire leurs trajectoires avec autant de précision que vous pourriez le souhaiter.

Maintenant, refaites la même expérience, mais remplacez le boulet de canon par un pigeon.

Les systèmes biologiques ne défient pas les lois physiques, bien sûr, mais celles-ci ne semblent pas non plus pouvoir les prédire. En revanche, ils sont orientés vers un objectif : survivre et se reproduire. On peut dire qu’ils ont un but – ou ce que les philosophes appellent traditionnellement une téléologie – qui guide leur comportement.De la même manière, la physique nous permet désormais de prédire, à partir de l’état de l’univers un milliardième de seconde après le Big Bang, ce à quoi il ressemble aujourd’hui. Mais personne n’imagine que l’apparition des premières cellules primitives sur Terre a conduit de manière prévisible à la race humaine. Il semble que les lois ne dictent pas le cours de l’évolution.

La téléologie et la contingence historique de la biologie, a déclaré le biologiste évolutionniste Ernst Mayr, la rendent unique parmi les sciences . Ces deux caractéristiques découlent peut-être du seul principe directeur général de la biologie : l’évolution. Cela dépend du hasard et des aléas, mais la sélection naturelle lui donne l’apparence d’une intention et d’un but. Les animaux ne sont pas attirés vers l’eau par une attraction magnétique, mais par leur instinct, leur intention de survivre. Les jambes servent, entre autres, à nous emmener à l'eau.

Mayr affirmait que ces caractéristiques rendaient la biologie exceptionnelle – une loi en soi. Mais les développements récents en physique hors équilibre, en science des systèmes complexes et en théorie de l’information remettent en question cette vision.

Une fois que nous considérons les êtres vivants comme des agents effectuant un calcul – collectant et stockant des informations sur un environnement imprévisible – les capacités et les considérations telles que la réplication, l’adaptation, l’action, le but et la signification peuvent être comprises comme découlant non pas d’une improvisation évolutive, mais comme d'inévitables corollaires aux lois physiques. En d’autres termes, il semble y avoir une sorte de physique selon laquelle les choses font des choses et évoluent pour faire des choses. Le sens et l’intention – considérés comme les caractéristiques déterminantes des systèmes vivants – peuvent alors émerger naturellement à travers les lois de la thermodynamique et de la mécanique statistique.

En novembre dernier, des physiciens, des mathématiciens et des informaticiens se sont réunis avec des biologistes évolutionnistes et moléculaires pour discuter – et parfois débattre – de ces idées lors d'un atelier à l'Institut de Santa Fe au Nouveau-Mexique, la Mecque de la science des " systèmes complexes ". Ils ont demandé : à quel point la biologie est-elle spéciale (ou non) ?

Il n’est guère surprenant qu’il n’y ait pas eu de consensus. Mais un message qui est ressorti très clairement est que, s’il existe une sorte de physique derrière la téléologie et l’action biologiques, elle a quelque chose à voir avec le même concept qui semble s’être installé au cœur de la physique fondamentale elle-même : l’information.

Désordre et démons

La première tentative d’introduire l’information et l’intention dans les lois de la thermodynamique a eu lieu au milieu du XIXe siècle, lorsque la mécanique statistique fut inventée par le scientifique écossais James Clerk Maxwell. Maxwell a montré comment l’introduction de ces deux ingrédients semblait permettre de réaliser des choses que la thermodynamique proclamait impossibles.

Maxwell avait déjà montré comment les relations mathématiques prévisibles et fiables entre les propriétés d’un gaz – pression, volume et température – pouvaient être dérivées des mouvements aléatoires et inconnaissables d’innombrables molécules secouées frénétiquement par l’énergie thermique. En d’autres termes, la thermodynamique – la nouvelle science du flux de chaleur, qui réunissait les propriétés de la matière à grande échelle comme la pression et la température – était le résultat de la mécanique statistique à l’échelle microscopique des molécules et des atomes.

Selon la thermodynamique, la capacité à extraire du travail utile des ressources énergétiques de l’univers est en constante diminution. Les poches d’énergie diminuent, les concentrations de chaleur s’amenuisent. Dans tout processus physique, une certaine énergie est inévitablement dissipée sous forme de chaleur inutile, perdue au milieu des mouvements aléatoires des molécules. Ce caractère aléatoire est assimilé à la quantité thermodynamique appelée entropie – une mesure du désordre – qui est toujours croissante. C'est la deuxième loi de la thermodynamique. Finalement, l’univers tout entier sera réduit à un fouillis uniforme et ennuyeux : un état d’équilibre, dans lequel l’entropie est maximisée et où rien de significatif ne se reproduira plus jamais.

Sommes-nous vraiment condamnés à ce triste sort ? Maxwell était réticent à y croire et, en 1867, il entreprit, comme il le disait, de " faire un trou " dans la deuxième loi. Son objectif était de commencer avec une boîte désordonnée de molécules qui s'agitaient de manière aléatoire, puis de séparer les molécules rapides des molécules lentes, réduisant ainsi l'entropie.

Imaginez une petite créature – le physicien William Thomson l'appellera plus tard, au grand désarroi de Maxwell, un démon – qui peut voir chaque molécule individuelle dans la boîte. Le démon sépare la boîte en deux compartiments, avec une porte coulissante dans le mur entre eux. Chaque fois qu'il aperçoit une molécule particulièrement énergétique s'approcher de la porte depuis le compartiment de droite, il l'ouvre pour la laisser passer. Et chaque fois qu’une molécule lente et "froide " s’approche par la gauche, il la laisse passer également. Enfin, il dispose d'un compartiment de gaz froid à droite et de gaz chaud à gauche : un réservoir de chaleur sur lequel on peut puiser pour effectuer des travaux.

Cela n'est possible que pour deux raisons. Premièrement, le démon possède plus d’informations que nous : il peut voir toutes les molécules individuellement, plutôt que de se limiter à des moyennes statistiques. Et deuxièmement, il a une intention : un plan pour séparer le chaud du froid. En exploitant intentionnellement ses connaissances, il peut défier les lois de la thermodynamique.

Du moins, semble-t-il. Il a fallu cent ans pour comprendre pourquoi le démon de Maxwell ne peut en fait vaincre la deuxième loi et éviter le glissement inexorable vers un équilibre mortel et universel. Et la raison montre qu’il existe un lien profond entre la thermodynamique et le traitement de l’information – ou en d’autres termes, le calcul. Le physicien germano-américain Rolf Landauer a montré que même si le démon peut recueillir des informations et déplacer la porte (sans friction) sans coût d'énergie, une pénalité doit finalement être payée. Parce qu'il ne peut pas avoir une mémoire illimitée de chaque mouvement moléculaire, il doit occasionnellement effacer sa mémoire – oublier ce qu'il a vu et recommencer – avant de pouvoir continuer à récolter de l'énergie. Cet acte d’effacement d’informations a un prix inévitable : il dissipe de l’énergie, et donc augmente l’entropie. Tous les gains réalisés contre la deuxième loi grâce au travail astucieux du démon sont annulés par la " limite de Landauer " : le coût fini de l'effacement de l'information (ou plus généralement, de la conversion de l'information d'une forme à une autre).

Les organismes vivants ressemblent plutôt au démon de Maxwell. Alors qu’un bécher rempli de produits chimiques en réaction finira par dépenser son énergie et tomber dans une stase et un équilibre ennuyeux, les systèmes vivants évitent collectivement l’état d’équilibre sans vie depuis l’origine de la vie il y a environ trois milliards et demi d’années. Ils récupèrent l’énergie de leur environnement pour maintenir cet état de non-équilibre, et ils le font avec " intention ". Même les simples bactéries se déplacent avec " intention " vers les sources de chaleur et de nutrition. Dans son livre de 1944, Qu'est-ce que la vie ? , le physicien Erwin Schrödinger l’a exprimé en disant que les organismes vivants se nourrissent d’ " entropie négative ".

Ils y parviennent, explique Schrödinger, en capturant et en stockant des informations. Certaines de ces informations sont codées dans leurs gènes et transmises d’une génération à l’autre : un ensemble d’instructions pour récolter l’entropie négative. Schrödinger ne savait pas où les informations sont conservées ni comment elles sont codées, mais son intuition selon laquelle elles sont écrites dans ce qu'il appelle un " cristal apériodique " a inspiré Francis Crick, lui-même physicien de formation, et James Watson lorsqu'en 1953, ils pensèrent comment l'information génétique peut être codée dans la structure moléculaire de la molécule d'ADN.

Un génome est donc, au moins en partie, un enregistrement des connaissances utiles qui ont permis aux ancêtres d'un organisme – jusqu'à un passé lointain – de survivre sur notre planète. Selon David Wolpert, mathématicien et physicien de l'Institut de Santa Fe qui a organisé le récent atelier, et son collègue Artemy Kolchinsky , le point clé est que les organismes bien adaptés sont corrélés à cet environnement. Si une bactérie nage de manière fiable vers la gauche ou la droite lorsqu’il y a une source de nourriture dans cette direction, elle est mieux adaptée et s’épanouira davantage qu’une bactérie qui nage dans des directions aléatoires et ne trouve donc la nourriture que par hasard. Une corrélation entre l’état de l’organisme et celui de son environnement implique qu’ils partagent des informations en commun. Wolpert et Kolchinsky affirment que c'est cette information qui aide l'organisme à rester hors d'équilibre, car, comme le démon de Maxwell, il peut alors adapter son comportement pour extraire le travail des fluctuations de son environnement. S’il n’acquérait pas cette information, l’organisme retrouverait progressivement son équilibre : il mourrait.

Vue sous cet angle, la vie peut être considérée comme un calcul visant à optimiser le stockage et l’utilisation d’informations significatives. Et la vie s’avère extrêmement bonne dans ce domaine. La résolution par Landauer de l'énigme du démon de Maxwell a fixé une limite inférieure absolue à la quantité d'énergie requise par un calcul à mémoire finie : à savoir le coût énergétique de l'oubli. Les meilleurs ordinateurs d’aujourd’hui gaspillent bien plus d’énergie que cela, consommant et dissipant généralement plus d’un million de fois plus. Mais selon Wolpert, " une estimation très prudente de l’efficacité thermodynamique du calcul total effectué par une cellule est qu’elle n’est qu’environ 10 fois supérieure à la limite de Landauer ".

L’implication, dit-il, est que " la sélection naturelle s’est énormément préoccupée de minimiser le coût thermodynamique du calcul. Elle fera tout son possible pour réduire la quantité totale de calculs qu’une cellule doit effectuer. En d’autres termes, la biologie (à l’exception peut-être de nous-mêmes) semble prendre grand soin de ne pas trop réfléchir au problème de la survie. Cette question des coûts et des avantages de l'informatique tout au long de la vie, a-t-il déclaré, a été largement négligée en biologie jusqu'à présent.

Darwinisme inanimé

Ainsi, les organismes vivants peuvent être considérés comme des entités qui s’adaptent à leur environnement en utilisant l’information pour récolter de l’énergie et échapper à l’équilibre. Bien sûr, c'est un peu une bouchée. Mais remarquez qu’il ne dit rien sur les gènes et l’évolution, dont Mayr, comme de nombreux biologistes, supposait que l’intention et le but biologiques dépendaient.

Jusqu’où cette image peut-elle alors nous mener ? Les gènes perfectionnés par la sélection naturelle sont sans aucun doute au cœur de la biologie. Mais se pourrait-il que l’évolution par sélection naturelle ne soit en elle-même qu’un cas particulier d’un impératif plus général vers une fonction et un but apparent qui existe dans l’univers purement physique ? Cela commence à ressembler à cela.

L’adaptation a longtemps été considérée comme la marque de l’évolution darwinienne. Mais Jeremy England, du Massachusetts Institute of Technology, a soutenu que l'adaptation à l'environnement peut se produire même dans des systèmes non vivants complexes.

L’adaptation a ici une signification plus spécifique que l’image darwinienne habituelle d’un organisme bien équipé pour survivre. L’une des difficultés de la vision darwinienne est qu’il n’existe aucun moyen de définir un organisme bien adapté sauf rétrospectivement. Les " plus aptes " sont ceux qui se sont révélés meilleurs en termes de survie et de réplication, mais vous ne pouvez pas prédire ce qu'implique la condition physique. Les baleines et le plancton sont bien adaptés à la vie marine, mais d’une manière qui n’a que peu de relations évidentes entre eux.

La définition anglaise de " l'adaptavité " est plus proche de celle de Schrödinger, et même de celle de Maxwell : une entité bien adaptée peut absorber efficacement l'énergie d'un environnement imprévisible et fluctuant. C'est comme la personne qui garde l'équilibre sur un navire qui tangue pendant que d'autres tombent parce qu'elle sait mieux s'adapter aux fluctuations du pont. En utilisant les concepts et les méthodes de la mécanique statistique dans un contexte de non-équilibre, England et ses  collègues soutiennent que ces systèmes bien adaptés sont ceux qui absorbent et dissipent l'énergie de l'environnement, générant ainsi de l'entropie.

Les systèmes complexes ont tendance à s’installer dans ces états bien adaptés avec une facilité surprenante, a déclaré England : " La matière qui fluctue thermiquement est souvent spontanément transformée en formes qui sont capables d’absorber le travail de l’environnement variable dans le temps ".

Rien dans ce processus n’implique une adaptation progressive à l’environnement par le biais des mécanismes darwiniens de réplication, de mutation et d’héritage des traits. Il n'y a aucune réplication du tout. "Ce qui est passionnant, c'est que cela signifie que lorsque nous donnons un aperçu physique des origines de certaines des structures d'apparence adaptée que nous voyons, il n'est pas nécessaire qu'elles aient eu des parents au sens biologique habituel", a déclaré England. " Vous pouvez expliquer l'adaptation évolutive à l'aide de la thermodynamique, même dans des cas intrigants où il n'y a pas d'auto-réplicateurs et où la logique darwinienne s'effondre " - à condition que le système en question soit suffisamment complexe, polyvalent et sensible pour répondre aux fluctuations de son environnement.

Mais il n’y a pas non plus de conflit entre l’adaptation physique et l’adaptation darwinienne. En fait, cette dernière peut être considérée comme un cas particulier de la première. Si la réplication est présente, alors la sélection naturelle devient la voie par laquelle les systèmes acquièrent la capacité d'absorber le travail – l'entropie négative de Schrödinger – de l'environnement. L’auto-réplication est en fait un mécanisme particulièrement efficace pour stabiliser des systèmes complexes, et il n’est donc pas surprenant que ce soit ce que la biologie utilise. Mais dans le monde non vivant où la réplication ne se produit généralement pas, les structures dissipatives bien adaptées ont tendance à être très organisées, comme les ondulations de sable et les dunes cristallisant à partir de la danse aléatoire du sable soufflé par le vent. Vue sous cet angle, l’évolution darwinienne peut être considérée comme un exemple spécifique d’un principe physique plus général régissant les systèmes hors équilibre.

Machines à prévoir

Cette image de structures complexes s’adaptant à un environnement fluctuant nous permet également de déduire quelque chose sur la manière dont ces structures stockent l’information. En bref, tant que de telles structures – qu’elles soient vivantes ou non – sont obligées d’utiliser efficacement l’énergie disponible, elles sont susceptibles de devenir des " machines à prédiction ".

C'est presque une caractéristique déterminante de la vie que les systèmes biologiques changent d'état en réponse à un signal moteur provenant de l'environnement. Quelque chose se passe ; vous répondez. Les plantes poussent vers la lumière ; elles produisent des toxines en réponse aux agents pathogènes. Ces signaux environnementaux sont généralement imprévisibles, mais les systèmes vivants apprennent de leur expérience, stockant des informations sur leur environnement et les utilisant pour orienter leurs comportements futurs. (Photo : les gènes, sur cette image, vous donnent simplement les éléments essentiels de base à usage général.)

La prédiction n’est cependant pas facultative. Selon les travaux de Susanne Still de l'Université d'Hawaï, de Gavin Crooks, anciennement du Lawrence Berkeley National Laboratory en Californie, et de leurs collègues, prédire l'avenir semble essentiel pour tout système économe en énergie dans un environnement aléatoire et fluctuant.

Still et ses collègues démontrent que le stockage d'informations sur le passé qui n'ont aucune valeur prédictive pour l'avenir a un coût thermodynamique. Pour être le plus efficace possible, un système doit être sélectif. S'il se souvient sans discernement de tout ce qui s'est passé, il subit un coût énergétique important. En revanche, s'il ne prend pas la peine de stocker la moindre information sur son environnement, il aura constamment du mal à faire face aux imprévus. "Une machine thermodynamiquement optimale doit équilibrer la mémoire et la prédiction en minimisant sa nostalgie - les informations inutiles sur le passé", a déclaré un co-auteur, David Sivak, maintenant à l'Université Simon Fraser à Burnaby, en Colombie-Britannique. En bref, il doit devenir capable de récolter des informations significatives, celles qui sont susceptibles d'être utiles à la survie future.

On pourrait s’attendre à ce que la sélection naturelle favorise les organismes qui utilisent efficacement l’énergie. Mais même les dispositifs biomoléculaires individuels, comme les pompes et les moteurs de nos cellules, devraient, d’une manière ou d’une autre, tirer les leçons du passé pour anticiper l’avenir. Pour acquérir leur remarquable efficacité, dit Still, ces appareils doivent " implicitement construire des représentations concises du monde qu’ils ont rencontré jusqu’à présent, leur permettant d’anticiper ce qui va arriver ".

Thermodynamique de la mort

Même si certaines de ces caractéristiques fondamentales du traitement de l’information des systèmes vivants sont déjà stimulées, en l’absence d’évolution ou de réplication, par la thermodynamique hors équilibre, on pourrait imaginer que des caractéristiques plus complexes – l’utilisation d’outils, par exemple, ou une coopération sociale – doivent être fournies par évolution.

Eh bien, ne comptez pas là-dessus. Ces comportements, généralement considérés comme du domaine exclusif de la niche évolutive très avancée qui comprend les primates et les oiseaux, peuvent être imités dans un modèle simple constitué d'un système de particules en interaction. L’astuce est que le système est guidé par une contrainte : il agit de manière à maximiser la quantité d’entropie (dans ce cas, définie en termes de différents chemins possibles que les particules pourraient emprunter) qu’il génère dans un laps de temps donné. 

La maximisation de l’entropie a longtemps été considérée comme une caractéristique des systèmes hors équilibre. Mais le système de ce modèle obéit à une règle qui lui permet de maximiser l’entropie sur une fenêtre de temps fixe qui s’étend dans le futur. En d’autres termes, il fait preuve de prévoyance. En effet, le modèle examine tous les chemins que les particules pourraient emprunter et les oblige à adopter le chemin qui produit la plus grande entropie. En gros, c’est généralement la voie qui laisse ouverte le plus grand nombre d’options quant à la manière dont les particules pourraient se déplacer ultérieurement.

On pourrait dire que le système de particules éprouve une sorte de besoin de préserver sa liberté d’action future, et que ce besoin guide son comportement à tout moment. Les chercheurs qui ont développé le modèle – Alexander Wissner-Gross de l’Université Harvard et Cameron Freer, mathématicien du Massachusetts Institute of Technology – appellent cela une " force entropique causale ". Dans les simulations informatiques de configurations de particules en forme de disque se déplaçant dans des contextes particuliers, cette force crée des résultats qui suggèrent étrangement l’intelligence.

Dans un cas, un grand disque a pu " utiliser " un petit disque pour extraire un deuxième petit disque d’un tube étroit – un processus qui ressemblait à l’utilisation d’un outil. Libérer le disque a augmenté l'entropie du système. Dans un autre exemple, deux disques placés dans des compartiments séparés ont synchronisé leur comportement pour tirer un disque plus grand vers le bas afin qu'ils puissent interagir avec lui, donnant ainsi l'apparence d'une coopération sociale.

Bien entendu, ces simples agents en interaction bénéficient d’un aperçu de l’avenir. La vie, en règle générale, ne le fait pas. Alors, dans quelle mesure est-ce pertinent pour la biologie ? Ce n’est pas clair, même si Wissner-Gross a déclaré qu’il travaillait actuellement à établir " un mécanisme pratique et biologiquement plausible pour les forces entropiques causales ". En attendant, il pense que cette approche pourrait avoir des retombées pratiques, offrant un raccourci vers l’intelligence artificielle. " Je prédis qu'un moyen plus rapide d'y parvenir sera de découvrir d'abord un tel comportement, puis de travailler à rebours à partir des principes et contraintes physiques, plutôt que de travailler en avant à partir de techniques de calcul ou de prédiction particulières ", a-t-il déclaré. En d’autres termes, trouvez d’abord un système qui fait ce que vous voulez qu’il fasse, puis déterminez comment il le fait.

Le vieillissement est également traditionnellement considéré comme un trait dicté par l’évolution. Les organismes ont une durée de vie qui crée des opportunités de reproduction, raconte l'histoire, sans inhiber les perspectives de survie de la progéniture du fait que les parents restent trop longtemps et se disputent les ressources. Cela semble sûrement faire partie de l'histoire, mais Hildegard Meyer-Ortmanns, physicienne à l'Université Jacobs de Brême, en Allemagne, pense qu'en fin de compte, le vieillissement est un processus physique et non biologique, régi par la thermodynamique de l'information.

Ce n’est certainement pas simplement une question d’usure. "La plupart des matériaux souples dont nous sommes constitués sont renouvelés avant d'avoir la chance de vieillir", a déclaré Meyer-Ortmanns. Mais ce processus de renouvellement n'est pas parfait. La thermodynamique de la copie de l'information dicte qu'il doit y avoir un compromis entre précision et énergie. Un organisme dispose d’une réserve d’énergie limitée, donc les erreurs s’accumulent nécessairement avec le temps. L’organisme doit alors dépenser une énergie de plus en plus importante pour réparer ces erreurs. Le processus de renouvellement finit par produire des copies trop défectueuses pour fonctionner correctement ; la mort suit.

Les preuves empiriques semblent le confirmer. On sait depuis longtemps que les cellules humaines en culture semblent capables de se répliquer au maximum 40 à 60 fois (appelée limite de Hayflick ) avant de s'arrêter et de devenir sénescentes. Et des observations récentes sur la longévité humaine suggèrent qu'il pourrait y avoir une raison fondamentale pour laquelle les humains ne peuvent pas survivre bien au-delà de 100 ans .

Il y a un corollaire à ce besoin apparent de systèmes prédictifs, organisés et économes en énergie qui apparaissent dans un environnement fluctuant hors d’équilibre. Nous sommes nous-mêmes un tel système, comme le sont tous nos ancêtres jusqu’à la première cellule primitive. Et la thermodynamique hors équilibre semble nous dire que c’est exactement ce que fait la matière dans de telles circonstances. En d’autres termes, l’apparition de la vie sur une planète comme la Terre primitive, imprégnée de sources d’énergie telles que la lumière du soleil et l’activité volcanique qui maintiennent les choses hors d’équilibre, ne commence pas à sembler un événement extrêmement improbable, comme de nombreux scientifiques l’ont supposé, mais pratiquement inévitable. En 2006, Eric Smith et feu Harold Morowitz de l'Institut de Santa Fe ont soutenu que la thermodynamique des systèmes hors équilibre rend l'émergence de systèmes organisés et complexes beaucoup plus probable sur une Terre prébiotique loin de l'équilibre qu'elle ne le serait si les ingrédients chimiques bruts étaient juste assis dans un " petit étang chaud " (comme le disait Charles Darwin) en mijotant doucement.

Au cours de la décennie qui a suivi la première apparition de cet argument, les chercheurs ont ajouté des détails et des perspectives à l’analyse. Les qualités qu’Ernst Mayr considérait comme essentielles à la biologie – le sens et l’intention – pourraient émerger comme une conséquence naturelle des statistiques et de la thermodynamique. Et ces propriétés générales peuvent à leur tour conduire naturellement à quelque chose comme la vie.

Dans le même temps, les astronomes nous ont montré combien de mondes existent – ​​selon certaines estimations, ils se chiffrent en milliards – en orbite autour d’autres étoiles de notre galaxie. Beaucoup sont loin de l’équilibre, et au moins quelques-uns ressemblent à la Terre. Et les mêmes règles s’appliquent sûrement là aussi. 



 

Auteur: Internet

Info: https://www.quantamagazine.org/how-life-and-death-spring-from-disorder-20170126/ Philip Ball, 26 janv 2017 voir dialogues avec l'ange et la la Fondation Simons

[ au coeur de FLP ] [ bayésianisme ] [ mémoire tétravalente ] [ épigénétique ] [ filtrage mémoriel ] [ constante ouverture ] [ citation s'appliquant à ce logiciel ] [ expérience accumulée ] [ prospective ouverte ] [ curiosité moteur ] [ scalabilité ] [ entendement ] [ théorie du tout ] [ astrobiologie ] [ orthogenèse ]

 

Commentaires: 0

Ajouté à la BD par miguel