Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 11
Temps de recherche: 0.0344s

science-fiction

Le jour de vingt-deux heures et seize minutes arrivait presque à son terme, et de longues ombres froides s'étendaient sur la couverture végétale bleue-mauve. Un analogue de la bacteriorhodopsine, plus proche de cette classe de bactéries terrestres convertissait le rayonnement solaire en énergie que les chloroplastes, lui avait expliqué George Fox, toutes les plantes de Foretverte, utilisaient ce procédé, ce qui leur conférait ces nuances violacées apaisantes.

Auteur: Kress Nancy

Info: Feux croisés

[ crépuscule ]

 

Commentaires: 0

exoplanète

Le jour de vingt-deux heures et seize minutes arrivait presque à son terme, et de longues ombres froides s'étendaient sur la couverture végétale bleue-mauve. George Fox lui avait expliqué qu'un analogue de la bacteriorhodopsine, plus proche de cette classe de bactéries terrestres  que des chloroplastes, convertissait le rayonnement solaire en énergie. Toutes les plantes de Foretverte utilisaient ce procèdé, ce qui leur conférait leur nuances violacées apaissantes.

Auteur: Kress Nancy

Info: Feux croisés

[ synthase ]

 

Commentaires: 0

Ajouté à la BD par miguel

évolution

Chacune de vos cellules est une colonie. Vous savez, le noyau, la mitochondrie, les chloroplastes si vous êtes une plante ... tout ça, c'était autrefois des microbes qui menaient eux-mêmes une vie indépendante. Il y a plusieurs milliards d'années, quelque chose les a mangés, mais n'est pas arrivé à les digérer correctement, alors ils ont tous continué à vivre à l'intérieur du cytoplasme. ils ont fini par passer un marché avec la cellule hôte pour lui régler un loyer en s'occupant par exemple de certaines tâches ménagères. Ce qui a donné la cellule eucaryote moderne.

Auteur: Watts Peter

Info: Starfish

[ corps-esprit ] [ symbiose ]

 

Commentaires: 0

nanomonde

Tout le vert du monde végétal est constitué de ces chloroplastes* entiers et arrondis qui se déplacent dans l'eau. Si vous analysez une molécule de chlorophylle, vous obtenez cent trente-six atomes d'hydrogène, de carbone, d'oxygène et d'azote disposés de manière précise et complexe autour d'un anneau central. Au centre de l'anneau se trouve un seul atome de magnésium. Maintenant, si on enlève l'atome de magnésium et qu'on met à sa place un atome de fer, on obtient une molécule d'hémoglobine. L'atome de fer se combine avec tous les autres atomes pour former le sang rouge, les points rouges qui apparaissent dans la queue du poisson rouge.

Auteur: Dillard Annie

Info: Pilgrim at Tinker Creek *grain de chlorophylle.

[ biologie ] [ kit de construction ]

 

Commentaires: 0

Ajouté à la BD par miguel

définition

La photosynthèse est un processus qui permet aux plantes de transformer l'eau et le dioxyde de carbone en énergie et en oxygène.

Les plantes absorbent l'eau par leurs racines et le dioxyde de carbone de l'air par leurs feuilles. Elles utilisent ensuite l'énergie du soleil pour transformer ces deux éléments en glucose, un type de sucre. Ce glucose est utilisé par la plante comme source d'énergie et pour produire d'autres substances organiques, comme les protéines et les lipides.

Elle est un processus essentiel à la vie sur Terre. En effet, les plantes sont les seuls êtres vivants capables de produire de l'oxygène. L'oxygène est un gaz indispensable à la respiration de tous les animaux, y compris les humains. Voici une équation simplifiée de la photosynthèse :  6 CO2 + 6 H2O + lumière → C6H12O6 + 6 O2

Cette équation signifie que six molécules de dioxyde de carbone (CO2), six molécules d'eau (H2O) et de la lumière réagissent pour produire une molécule de glucose (C6H12O6) et six molécules d'oxygène (O2).

Ce processus se déroule dans les chloroplastes, des organites présents dans les cellules des plantes. Les chloroplastes contiennent de la chlorophylle, un pigment vert qui absorbe l'énergie du soleil.



 

Auteur: Google Bard chatbot

Info: 14 octobre 2023, en réponse à la question : peux-tu expliquer, de la manière la plus simple et résumée, le processus de la photosynthèse

[ biosynthèse ] [ transmutation ] [ septénaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

végétaux

Pourquoi les plantes sont-elles vertes ?

La couleur verte des plantes qui réalisent le processus de la photosynthèse n’est pas due au hasard. Des scientifiques ont exploré comment cette couleur protège les plantes de changements soudains et fréquents de l’énergie solaire.

À quoi les plantes doivent-elles leur couleur verte ? Des scientifiques ont travaillé sur la manière dont les plantes réagissent à la lumière pour le comprendre. Le modèle qu’ils ont établi a été présenté le 26 juin 2020 dans la revue Science.

"Les plantes photosynthétiques sont vertes parce que leurs complexes d’antennes absorbent la lumière à travers le spectre visible, y compris les parties bleues et rouges, tout en reflétant les longueurs d’onde vertes", écrivent les chercheurs. La photosynthèse est un processus de fabrication de matière organique chez le végétal (et certaines bactéries), à partir de gaz carbonique, d’eau et qui utilise la lumière du Soleil. Le terme signifie littéralement "synthèse par la lumière".

Les antennes collectrices dont parlent les auteurs composent ce qu’on appelle des photosystèmes. Il est ici question de l’endroit où s’effectue la photosynthèse : dans les parties vertes, et notamment les feuilles. Les cellules continent des chloroplastes, qui renferment eux-mêmes la chlorophylle, le fameux pigment vert qui capte l’énergie lumineuse. Les pigments photosynthétiques sont regroupés en photosystèmes.

Les scientifiques s’intéressent à ce qui se passe lorsque la lumière du Soleil qui arrive jusqu’à une feuille change rapidement. La plante doit alors se protéger contre cette arrivée brusque d’énergie solaire, dans son système qui assure la photosynthèse à l’intérieur de chaque feuille. Si la plante ne peut pas gérer de telles fluctuations, les auteurs expliquent que son organisme va tenter d’expulser l’énergie qui se trouve en trop, et que les cellules peuvent être endommagées. Quelle technique ont développée les organismes photosynthétiques face à cela ?

Grâce au vert, les plantes atténuent ce "bruit"

"Notre modèle montre qu’en absorbant uniquement des couleurs très spécifiques de la lumière, les organismes photosynthétiques peuvent se protéger automatiquement contre les changements soudains — ou ‘bruit’ — de l’énergie solaire, entraînant une conversion de puissance remarquablement efficace", résume Nathaniel Gabor, professeur associé de physique à l’université de Californie à Riverside, cité dans un communiqué.

Autrement dit, les feuilles se sont adaptées pour faire face à ce bruit. Elles l’amortissent, en quelque sorte. Elles sont colorées de vert, car seules certaines régions du spectre solaire sont adaptées pour assurer une protection contre cette énergie solaire qui évolue rapidement. Grâce à cette couleur, les plantes atténuent le "bruit" dont parle le physicien. Les scientifiques disent avoir été surpris par la simplicité du modèle qu’ils ont créé pour comprendre les plantes. "La nature vous surprendra toujours", observe Nathaniel Gabor.

L’étude détaillée de ce phénomène ne sert pas seulement à mieux comprendre les mécanismes mis en œuvre par les plantes. Par biomimétisme, on pourrait imaginer que cette manière d’absorber la lumière soit utilisée pour améliorer les performances des panneaux solaires, en atténuant le "bruit" de l’énergie solaire.

Auteur: Internet

Info: https://www.numerama.com, 5 juillet, 2020, Nelly Lesage

[ teinte olive ] [ filtre ] [ coloris ]

 

Commentaires: 0

Ajouté à la BD par miguel

biophysique

Comment les végétaux gèrent le trop-plein d’énergie solaire

La photosynthèse, c’est-à-dire la conversion d’énergie lumineuse en énergie chimique par les plantes, est essentielle à la vie sur terre. Un excès de lumière s’avère toutefois néfaste pour les complexes de protéines responsables de ce processus. Des chercheurs de l’Université de Genève (UNIGE) ont découvert comment Chlamydomonas reinhardtii, une algue unicellulaire mobile, active la protection de sa machinerie photosynthétique. Leur étude, publiée dans la revue PNAS, indique que les récepteurs (UVR8) qui détectent les rayons ultraviolets provoquent l’activation d’une valve de sécurité qui permet de dissiper sous forme de chaleur l’excès d’énergie. Un second rôle protecteur est ainsi attribué à ces récepteurs, dont l’équipe genevoise avait déjà montré la capacité à induire la production d’une "crème solaire" anti-UV.

Grâce à la photosynthèse, l’énergie du soleil est convertie par les végétaux en énergie chimique afin de produire des sucres pour se nourrir. La première étape de ce processus, qui se déroule dans des compartiments cellulaires nommés chloroplastes, consiste à capturer des photons de lumière grâce à la chlorophylle. Si la lumière est essentielle aux plantes, un excès de soleil pourrait endommager leur machinerie photosynthétique, ce qui affecterait leur croissance et leur productivité. Pour se protéger, les plantes activent alors un mécanisme de protection lorsque la lumière est trop abondante, qui fait appel à une série de protéines capables de convertir l’excès d’énergie en chaleur afin qu’elle se dissipe.

Produire des protéines qui détournent l’énergie

"Ce sont les rayons ultraviolets de type B qui sont susceptibles de causer le plus de dégâts à l’appareil photosynthétique, et nous avons voulu savoir s’ils jouaient un rôle de déclencheur du mécanisme de protection et, le cas échéant, lequel», expliquent Michel Goldschmidt-Clermont et Roman Ulm, professeurs au Département de botanique et biologie végétale de la Faculté des sciences de l’UNIGE. Ces travaux, menés en collaboration avec des chercheurs du Laboratoire de physiologie cellulaire et végétale (CEA/CNRS/Université Grenoble Alpes/INRA) et de l’Université de Californie, ont été effectués chez Chlamydomonas reinhardtii, une algue mobile unicellulaire employée comme organisme modèle.

L’équipe de Roman Ulm avait découvert en 2011 l’existence d’un récepteur aux UV-B, baptisé UVR8, dont l’activation permet aux plantes de se défendre contre ces UV et d’élaborer leur propre "crème solaire" moléculaire. Les chercheurs découvrent aujourd’hui que, chez cette algue, ce récepteur déclenche un deuxième mécanisme de protection. "En effet, lorsqu’UVR8 détecte des UV-B, il active un signal qui enclenche, au niveau du noyau cellulaire, la production de protéines , qui seront ensuite importées dans les chloroplastes. Une fois intégrées à l’appareil photosynthétique, elles contribuent à détourner l’énergie en excès, qui sera dissipée sous forme de chaleur grâce à des vibrations moléculaires", détaille Guillaume Allorent, premier auteur de l’article.

Chez les plantes terrestres, la perception des UV-B par ce récepteur est également importante pour la protection de la machinerie photosynthétique, mais le mécanisme n’a pas encore été élucidé. "Il est cependant crucial pour la productivité agricole et l’exploitation biotechnologique des processus photosynthétiques de mieux comprendre les mécanismes responsables de la photoprotection contre la lumière solaire et ses rayons UV-B", indique Michel Goldschmidt-Clermont. La recherche continue.



 

Auteur: Internet

Info: https://www.unige.ch, 2016

[ assimilation chlorophyllienne ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

palier évolutif

La découverte d'une extraordinaire symbiose marine résout l'un des grands mystères de l'océan

Une équipe dirigée par l'Institut Max Planck de microbiologie marine a mis au jour la symbiose entre une bactérie Rhizobium et une algue marine du groupe des diatomées. Ce couple d'organismes permettrait d'expliquer une grande partie de la fixation de l'azote dans l'océan – un processus crucial.

C'était l'un des grands mystères dont les biologistes marins cherchaient encore la clé : comment, en dehors des régions océaniques riches en cyanobactéries, les végétaux marins obtiennent-ils de l'azote sous une forme qu'ils sont capables d'assimiler ?

Il aura fallu une grande expédition océanographique depuis la côte allemande jusqu'aux zones tropicales de l'Atlantique Nord, et quatre années d'analyses ADN, pour résoudre l'énigme. La réponse, dévoilée dans une étude publiée par la revue Nature (9 mai 2024), tient en un mot : la symbiose.

Cette association très intime entre deux êtres vivants a façonné la planète telle que nous la connaissons aujourd'hui, depuis les récifs coralliens (symbiose entre le corail et l'algue zooxanthelle) jusqu'à la mycorhize,  fine dentelle qui fait vivre nos sols (symbiose entre des champignons et les racines des plantes). Et trouve désormais une nouvelle illustration.

Un travail de détective

Partie de la côte allemande à bord de deux navires direction les tropiques en 2020, l'équipe dirigée par des chercheurs de l'Institut Max Planck de microbiologie marine a recueilli plusieurs centaines de litres d'eau de mer. Dans cet échantillon massif, il leur a d'abord fallu repérer le gène codant pour une enzyme impliquée dans la fixation biologique de l'azote, pour ensuite reconstituer pas à pas le reste du génome de l'organisme inconnu qui s'avérait capable d'effectuer cette transformation chimique.

"Il s'est agi d'un travail de détective long et minutieux", confie Bernhard Tschitschko, premier auteur de l'étude et expert en bio-informatique (communiqué), "mais en fin de compte, le génome a résolu de nombreux mystères. Nous savions que le gène de la nitrogénase provenait d'une bactérie apparentée (au genre) Vibrio, mais de manière inattendue, l'organisme lui-même était étroitement lié aux (bactéries) Rhizobia qui vivent en symbiose avec les légumineuses."

En effet, sur la terre ferme, les bactéries du genre Rhizobium se trouvent en symbiose avec les racines des plantes légumineuses, telles que les haricots ou les pois, au niveau de petits renflements appelés "nodosités". En échange d'azote assimilable par ses propres cellules, le végétal fournit à son minuscule symbiote de l'énergie ainsi qu'un milieu pauvre en oxygène, propice à son activité.

Mais dans l'océan, quel hôte pouvait bien héberger ces précieux fixateurs d'azote ? À l'aide d'un marquage fluorescent appliqué à ces bactéries, les auteurs de l'étude ont constaté que celles-ci se nichaient à l'intérieur de diatomées – des algues microscopiques faisant partie de la composition du plancton. Il s'agit selon eux de la " première symbiose connue entre une diatomée et un fixateur d'azote autre qu'une cyanobactérie. " 

Le stade précoce d'une fusion ?

La bactérie symbiotique, qui a reçu le nom (provisoire) de Can­did­atus Tecti­glo­bus di­at­omi­c­ola, reçoit du carbone de la part de l'algue en échange d'une forme d'azote assimilable par celle-ci… et pas qu'un peu, d'ailleurs !

" Pour soutenir la croissance de la diatomée, la bactérie fixe 100 fois plus d'azote qu'elle n'en a besoin pour elle-même ", détaille Wiebke Mohr, co-auteur de l'étude.

En retournant en mer, les scientifiques ont repéré cette nouvelle symbiose un peu partout dans le monde, en particulier dans des zones pauvres en cyanobactéries. Ce qui tend à confirmer le rôle crucial joué par cette intime alliance dans le fonctionnement de l'écosystème marin, lequel absorbe la moitié du dioxyde de carbone émis par les activités humaines, limitant ainsi en partie le réchauffement climatique.

Par ailleurs, les auteurs notent que cette symbiose bactérie-diatomée pourrait constituer le stade précoce d'une fusion entre deux organismes pour n'en former qu'un, le plus petit étant amené à devenir un simple organite, ou compartiment cellulaire, au sein du plus grand. Un processus qui s'est déjà produit au cours de l'évolution, donnant naissance aux mitochondries, les " usines à énergie " de nos cellules, ainsi qu'aux chloroplastes, sièges de la photosynthèse chez les végétaux.



 

Auteur: Internet

Info: geo.fr - Nastasia Michaels, 14 mai 2024

[ microbiome ]

 

Commentaires: 0

Ajouté à la BD par miguel

biophysique

La photosynthèse des plantes utilise un tour de passe-passe quantique

Des chercheurs ont observé des similitudes étonnantes entre la photosynthèse des plantes vertes et le fameux "cinquième état de la matière" en mettant le doigt sur un curieux phénomène; ils ont trouvé des liens entre le processus de photosynthèse, qui permet aux végétaux d’exploiter la lumière du soleil, et les condensats de Bose-Einstein, des matériaux dans un état très particulier qui fait intervenir la physique quantique.

"Pour autant que je sache, ces deux disciplines n’ont jamais été connectées auparavant, donc ce résultat nous a semblé très intrigant et excitant", explique David Mazziotti, co-auteur de l’étude.

Son laboratoire est spécialisé dans la modélisation des interactions complexes de la matière. Ces derniers temps, son équipe s’est intéressée aux mécanismes de la photosynthèse à l’échelle des atomes et des molécules. Plus précisément, les chercheurs se sont penchés sur le siège de cette réaction : les chloroplastes, les petites structures chlorophylliennes qui donnent leur couleur aux plantes vertes.

Lorsqu’un photon vient frapper une structure bien précise à la surface de ces chloroplastes (le photosystème II, ou PSII), cela a pour effet d’arracher un électron — une particule élémentaire chargée négativement. Ce dernier devient alors l’acteur principal d’une réaction en chaîne complexe. Le mécanisme est déjà relativement bien connu. Il a été étudié en profondeur par des tas de spécialistes, et c’est aujourd’hui l’une des pierres angulaires de la biologie végétale.

Mais le départ de cet électron laisse aussi ce que les physiciens appellent un trou. Il ne s’agit pas d’une particule à proprement parler. Mais cette structure chargée positivement est aussi capable se déplacer au sein d’un système. Elle peut donc se comporter comme un vecteur d’énergie.

Ensemble, l’électron éjecté et le trou qu’il laisse derrière lui forment un couple dynamique appelé exciton. Et si le rôle du premier est bien documenté, le comportement du second dans le cadre de la photosynthèse n’a quasiment pas été étudié.

C’est quoi, un condensat de Bose-Einstein ?

Pour combler cette lacune, Mazziotti et ses collègues ont réalisé des modélisations informatiques du phénomène. Et en observant les allées et venues de ces excitons, ces spécialistes des interactions de la matière ont rapidement remarqué quelques motifs qui leur ont semblé familiers ; ils rappelaient fortement un concept proposé par Einstein en 1925.

Imaginez un gaz où des particules se déplacent aléatoirement les uns par rapport aux autres, animées par leur énergie interne. En le refroidissant (ce qui revient à retirer de l’énergie au système), on force les atomes à s’agglutiner ; le gaz passe à l’état liquide, puis solide dans certains cas.

Lorsqu’on le refroidit encore davantage pour s’approcher du zéro absolu, les atomes arrivent dans un état où ils n’ont quasiment plus d’énergie à disposition ; ils sont presque entièrement figés dans un état ultra-condensé, séparés par une distance si minuscule que la physique newtonienne traditionnelle ne suffit plus à l’expliquer.

Sans rentrer dans le détail, dans ces conditions, les atomes (ou plus précisément les bosons) qui composent certains matériaux deviennent quasiment indiscernables. Au niveau quantique, ils forment un système unique, une sorte de super-particule où chaque constituant est exactement dans le même état (voir la notion de dualité onde-corpuscule pour plus de détails). On appelle cela un condensat de Bose-Einstein.

Ces objets ne suivent pas les règles de la physique traditionnelle. Ils affichent des propriétés très particulières qui n’existent pas dans les gaz, les liquides, les solides ou le plasma. Pour cette raison, ces condensats sont parfois considérés comme les représentants du "cinquième état de la matière". (après le solide, le liquide, le gaz et le plasma)

De la biologie végétale à la physique quantique

La plus remarquable de ces propriétés, c’est que les condensats de Bose-Einstein sont de vraies autoroutes à particules. D’après la physicienne américaine Louise Lerner, l’énergie s’y déplace librement, sans la moindre résistance. Même si les mécanismes physiques sous-jacents sont différents, on se retrouve dans une situation comparable à ce que l’on trouve dans les supraconducteurs.

Or, d’après les modèles informatiques créés par Mazziotti et ses collègues, les excitons générés par la photosynthèse peuvent parfois se lier comme dans les condensats de Bose-Einstein. C’est une observation particulièrement surprenante, car jusqu’à présent, cela n’a été documenté qu’à des températures proches du zéro absolu. Selon Louise Lerner, c’est aussi étonnant que de voir "des glaçons se former spontanément dans une tasse de café chaud".

Le phénomène n’est pas aussi marqué chez les plantes que dans les vrais condensats de Bose-Einstein. Mais d’après les auteurs de l’étude, cela aurait quand même pour effet de doubler l’efficacité des transferts énergétiques indispensables à la photosynthèse.

De la recherche fondamentale aux applications pratiques

Les implications de cette découverte ne sont pas encore parfaitement claires. Mais il y en a une qui met déjà l’eau à la bouche des chercheurs : ces travaux pourraient enfin permettre d’utiliser les formidables propriétés des condensats de Bose-Einstein dans des applications concrètes.

En effet, même si ces matériaux sont très intéressants sur le papier, le fait de devoir atteindre une température proche du zéro absolu limite grandement leur intérêt pratique. Aujourd’hui, ils sont utilisés exclusivement en recherche fondamentale. Mais puisqu’un phénomène comparable a désormais été modélisé à température ambiante, les chercheurs vont pouvoir essayer d’utiliser ces mécanismes pour concevoir de nouveaux matériaux aux propriétés très intéressantes.

"Un condensat d’excitons parfait est très sensible et nécessite des conditions très spécifiques", précise Mazziotti. "Mais pour les applications réalistes, c’est très excitant de voir que ce phénomène qui augmente l’efficacité du système peut survenir à température ambiante", se réjouit-il.

A long terme, cette découverte va sans doute contribuer à la recherche fondamentale, en biologie végétale mais aussi en physique quantique pure. Cela pourrait aussi faire émerger une nouvelle génération de composants électroniques très performants. Il sera donc très intéressant de suivre les retombées de ces travaux encore balbutiants, mais exceptionnellement prometteurs.

Auteur: Internet

Info: https://www.journaldugeek.com/, Antoine Gautherie le 05 mai 2023

[ recherche fondamentale ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier évolutif

Découverte d’une nouvelle forme de vie née de la fusion d’une bactérie avec une algue

Ayant eu lieu il y a 100 millions d’années, il s’agit seulement du troisième cas connu de ce phénomène.

(Image - La forme de vie née de la fusion entre l'algue Braarudosphaera bigelowii et la cyanobactérie UCYN-A."

Des chercheurs ont découvert une forme de vie de nature extrêmement rare née de la fusion d’une algue avec une bactérie fixatrice d’azote il y a 100 millions d’années. Appelé endosymbiose primaire, le phénomène se produit lorsqu’un organisme en engloutit un autre pour faire de celui-ci un organite, à l’instar des mitochondries et des chloroplastes. Il s’agit du troisième cas recensé d’endosymbiose. Il pourrait ouvrir la voie à une production plus durable d’azote pour l’agriculture.

Au cours des 4 milliards d’années de vie sur Terre, seulement deux cas d’endosymbiose primaire étaient connus jusqu’ici. La première s’est produite il y a 2,2 milliards d’années, lorsqu’une archée a absorbé une bactérie pour l’intégrer dans son arsenal métabolique en la convertissant en mitochondrie. Cette étape constitue une phase majeure dans l’évolution de tous les organismes sur Terre, leur permettant notamment d’évoluer vers des formes plus complexes.

(Photo : Des mitochondries dans une cellule.)

La seconde endosymbiose primaire connue s’est produite il y a 1,6 milliard d’années, lorsque des organismes unicellulaires ont absorbé des cyanobactéries capables de convertir la lumière en énergie (photosynthèse). Ces bactéries sont devenues les chloroplastes que les plantes chlorophylliennes utilisent encore à ce jour pour convertir la lumière du Soleil en énergie.

D’un autre côté, on pensait que seules les bactéries pouvaient extraire l’azote atmosphérique et le convertir en une forme utilisable (en ammoniac) pour le métabolisme cellulaire. Les plantes pouvant fixer l’azote (comme les légumineuses) effectuent ce processus en hébergeant ces bactéries au niveau de leurs nodules racinaires.

La découverte de l’équipe du Berkeley Lab bouleverse cette notion avec le premier organite capable de fixer de l’azote et intégré dans une cellule eucaryote (une algue marine). " Il est très rare que des organites résultent de ce genre de choses ( endosymbiose primaire ) ", explique Tyler Coale de l’Université de Californie à Santa Cruz, dans un communiqué du Berkeley Lab. " La première fois que cela s’est produit à notre connaissance, cela a donné naissance à toute vie complexe. Tout ce qui est plus compliqué qu’une cellule bactérienne doit son existence à cet événement ", a-t-il déclaré, en faisant référence aux origines des mitochondries. Le nouvel organite, décrit dans deux études publiées dans les revues Cell Press et Science, est baptisé " nitroplaste ".

Un organite à part entière

La découverte de l’organite a nécessité plusieurs décennies de travail. En 1998, les chercheurs ont identifié une courte séquence d’ADN qui semblait provenir d’une cyanobactérie fixatrice d’azote (UCYN-A) abondante dans le Pacifique. D’un autre côté, une autre équipe de l’Université de Kochi (au Japon) a identifié une algue marine (Braarudosphaera bigelowii) qui semblait être l’hôte symbiotique de la bactérie. En effet, l’ADN de cette dernière a été découvert en importante quantité dans les cellules de l’algue.

Alors que les chercheurs considéraient l’UCYN-A comme un simple endosymbiote de l’algue, les deux nouvelles études suggèrent qu’elle a co-évolué avec son hôte de sorte à devenir un organite à part entière. En effet, après plus de 300 expéditions, l’équipe japonaise est parvenue à isoler et cultiver l’algue en laboratoire. Cela a permis de montrer que le rapport de taille entre les UCYN-A et leurs algues hôtes est similaire d’une espèce à l’autre.

D’autre part, les chercheurs ont utilisé un modèle informatique pour analyser la croissance de la cellule hôte et de la bactérie par le biais des échanges de nutriments. Ils ont constaté que leurs métabolismes sont parfaitement synchronisés, ce qui leur permettrait de coordonner leur croissance. " C’est exactement ce qui se passe avec les organites ", explique Jonathan Zehr, de l’Université de Californie à Santa Cruz et coauteur des deux études. " Si vous regardez les mitochondries et le chloroplaste, c’est la même chose : ils évoluent avec la cellule ", ajoute-t-il.

Les experts ont également montré que la bactérie UCYN-A repose sur sa cellule hôte pour sa réplication protéique et sa multiplication. Pour ce faire, ils ont utilisé une technique d’imagerie à rayons X et une tomographie permettant d’observer les processus cellulaires en temps réel. " Nous avons montré grâce à l’imagerie à rayons X que le processus de réplication et de division de l’hôte algal et de l’endosymbiote est synchronisé ", indique Carolyn Larabell, du Berkeley Lab.

(Illustrations montrant les algues à différents stades de division cellulaire. UCYN-A, l’entité fixatrice d’azote désormais considérée comme un organite, est visible en cyan ; le noyau des algues est représenté en bleu, les mitochondries en vert et les chloroplastes en violet.)

Une quantification des protéines des deux organismes a aussi été réalisée. Il a été constaté qu’environ la moitié des protéines de l’UCYN-A est synthétisée par sa cellule hôte, qui les marque avec une séquence protéinique spécifique. Ce marquage permet ensuite à la cellule de les envoyer au nitroplaste, qui les importe et les utilise pour son propre métabolisme. " C’est l’une des caractéristiques de quelque chose qui passe d’un endosymbionte à un organite ", explique Zehr. " Ils commencent à éjecter des morceaux d’ADN, et leurs génomes deviennent de plus en plus petits, et ils commencent à dépendre de la cellule mère pour que ces produits génétiques soient transportés dans la cellule ".

Un potentiel pour une production d’azote plus durable

Les chercheurs estiment que les nitroplastes ont évolué il y a environ 100 millions d’années. Comme l’UCYN-A est présente dans presque tous les océans du monde, elle est probablement impliquée dans le cycle de l’azote atmosphérique. Cette découverte pourrait avoir d’importantes implications pour l’agriculture, le procédé industriel utilisé actuellement pour convertir l’azote atmosphérique en ammoniac (procédé Haber-Bosch) étant très énergivore. Ce dernier permet notamment d’assurer 50 % de la production alimentaire mondiale et est responsable d’environ 1,4 % des émissions carbone.

Toutefois, de nombreuses questions restent sans réponse concernant le nitroplaste et son hôte algal. En prochaine étape, les chercheurs prévoient ainsi de déterminer s’il est présent dans d’autres cellules ainsi que les effets que cela pourrait avoir. Cela pourrait permettre d’intégrer directement la fixation de l’azote dans les plantes de sorte à améliorer les récoltes. 



 

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano·19 avril 2024

[ symbiogénétique ]

 

Commentaires: 0

Ajouté à la BD par miguel