Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 11
Temps de recherche: 0.0534s

ionisation

Aujourd'hui, j’ai revu une petite aurore boréale. Elle traversait la sphère céleste comme des hippocampes vert-de-gris au galop, côte à côte, disparaissant d'un commun accord derrière l'horizon comme dans le grand crépuscule originel de la mer.

Auteur: Rautiainen Petra

Info: La Mémoire des mers

[ spectacle nocturne ]

 

Commentaires: 0

Ajouté à la BD par miguel

ressac

C’est ça, la mer ?
Eneido le confirma, tout en posant son hippocampe séché sur une soupe de manioc. Il donna le plat à la chienne.
Oui, c’est ça la mer. Elle fait du bruit, c’est un vent qui passe par-dessous. Dans le fleuve, l’eau coule, mais dans la mer c’est le moyen de compter le temps, puisque chaque vague dure une minute.

Auteur: Del Fuego Andréa

Info: Les Malaquias

[ horloge ] [ balancier ]

 

Commentaires: 0

rêves

De nombreuses études chez l'animal montrent que les neurones de l'hippocampe et du cortex s'activent sans relâche au cours du sommeil. Leurs décharges neuronales "rejouent", à grande vitesse, les mêmes séquences d'activité que celles évoquées durant la journée précédente. Un rat court dans un labyrinthe, puis s'endort : les cellules de l'hippocampe qui codent pour les lieux de l'espace se réactivent immédiatement, avec une telle précision que l'on parvient à décoder quels endroits l'animal est en train d'explorer mentalement. Souvent, les décharges oniriques se déroulent plus vite que la réalité, parfois même en ordre inverse. Cette compression temporelle pourrait permettre au cerveau de traiter des informations dispersées dans le temps comme un seul épisode : accélérée, une séquence temporelle se transforme en une carte spatiale de neurones activés ou inhibés, qui permet la détection de régularités cachées, inaccessibles aux mécanisme normaux de l'apprentissage diurne. Quel qu'en soit le mécanisme ultime, il est clair que le sommeil est une période d'intense activité inconsciente qui consolide la mémoire et parfois, dans l'obscurité de la nuit, jette soudain la lumière sur des problèmes demeurés insolubles.

Auteur: Dehaene Stanislas

Info: Le code de la conscience

[ songes ] [ sciences ]

 

Commentaires: 0

folie

La schizophrénie est une maladie psychiatrique qui touche environ 1% de la population mondiale et se manifeste généralement au début de l'âge adulte. Les symptômes les plus fréquents comprennent une altération des processus sensoriels et cognitifs et une altération profonde de la cognition sociale. L'équipe de Rebecca Piskorowski et Vivien Chevaleyre au laboratoire de Physiologie cérébrale, en collaboration avec un laboratoire américain, lève le voile sur un mécanisme impliqué dans ces altérations de mémoire sociale. Cette étude, publiée dans la revue Neuron, ouvre la voie à de nouvelles cibles thérapeutiques potentielles.
Bien que de nombreux progrès aient été réalisés concernant la compréhension des causes génétiques de la schizophrénie, les mécanismes cellulaires qui sous-tendent des symptômes spécifiques sont peu connus. La délétion génétique 22q11.2 (perte de matériel génétique sur le chromosome 22) est le facteur de risque le plus fort pour développer la schizophrénie. En utilisant un modèle de souris porteuse d'une délétion génétique similaire obtenu par le laboratoire de Joseph Gogos à Columbia University (USA), l'équipe "Plasticité Synaptique et Réseaux Neuronaux" de Rebecca Piskorowski et Vivien Chevaleyre au laboratoire de Physiologie cérébrale, a étudié une petite région de l'hippocampe, qui est une structure importante pour la formation de mémoires et dont l'activité est affectée au cours de la schizophrénie.
Les résultats révèlent des altérations spécifiques de la région CA2 de l'hippocampe, qui a été longtemps ignorée mais qui émerge comme importante pour la formation de mémoires sociales au travers d'études récentes. En particulier, des changements ont été observés dans la balance entre l'excitation et l'inhibition ainsi que des altérations des propriétés des neurones de CA2. Il en résulte une forte diminution de l'activité des neurones de cette région, ce qui sous-tend probablement le déficit de mémoire sociale aussi observé chez ces souris. De façon intéressante et en parallèle avec le développement des symptômes chez l'homme, ces changements ne sont pas observés sur de jeunes animaux mais apparaissent uniquement au début de l'âge adulte.
Cette étude représente une avancée significative concernant la compréhension des mécanismes cellulaires altérés au cours de la schizophrénie, mais aussi potentiellement au cours d'autres maladies psychiatriques dans lesquelles les interactions sociales sont également affectées. Les résultats révèlent un mécanisme potentiel pour le déficit de mémoire sociale et, étant données les caractéristiques de la région CA2, ils ouvrent la voie à des cibles thérapeutiques potentielles.

Auteur: Internet

Info: http://www.techno-science.net/?onglet=news&news=14788. Schizophrénie: une nouvelle piste dans la compréhension des déficits de mémoire sociale

[ cerveau ] [ sciences ]

 

Commentaires: 0

mémorisation

Comment le cerveau sélectionne les souvenirs qu'il veut garder

C'est loin de n'être que du travail nocturne

La nuit, pendant que nous nous reposons, notre cerveau s'active. Il trie les souvenirs de la journée, en stocke certains dans la mémoire à long terme, en supprime d'autres jugés inutiles. Il révise, assimile, nettoie ses toxines et sa mémoire de travail. Dormir permet aussi de reposer notre hippocampe, cette région responsable du fonctionnement de la mémoire et des apprentissages.

En bref: le cerveau travaille dur. Seulement, des chercheurs se sont récemment demandé comment ce dernier faisait pour sélectionner et organiser nos souvenirs. Dans une récente étude publiée par la revue Science, ils ont mis en évidence la façon dont notre cerveau ne les assimile pas seulement la nuit mais le fait aussi au cours de la journée. Lors de phases jugées au ralenti, il commence alors un " pré-tri " de nos souvenirs.

Par l'émission d'ondulations cérébrales, nos neurones se rassemblent et créent des ondulations dites aiguës qui viennent indiquer au cerveau les souvenirs jugés importants, ou non. Ce sont ces informations qui seront ensuite triées dans la soirée. Ces ondulations aiguës nous obligent à condenser notre collection de souvenirs pour mieux les trier par la suite.

Des pauses fondamentales

Ainsi, une fois que nous dormons, le cerveau va plus facilement découper les expériences de la journée pour venir les combiner avec d'autres, pour enfin en supprimer certaines, ou en garder d'autres, créant ainsi nos souvenirs. " De nombreuses parties de nos expériences de la veille sont découpées et liées à d'autres expériences dans l'hippocampe ", explique l'auteur principal de l'étude, György Buzsáki, professeur de neurosciences à la faculté de médecine de l'université de New York. 

Pour que le cerveau puisse correctement faire son tri en journée, il faut pouvoir lui offrir des moments de pause. Une session de jogging ou un café permettent par exemple de mieux se souvenir des connaissances ou compétences que l'on vient d'emmagasiner. Lors de ces moments, notre cerveau effectue un travail de collecte et de stockage, ce qui permet de comprendre le mécanisme par lequel tout cela s’assemble.

Au micro d'Europe 1, la neuropsychologue Sophie Chokron conseille également une courte sieste, après le déjeuner par exemple, pour reposer notre cerveau. Selon elle, lors de ces phases de suspens, " notre cerveau consolide tout ce que nous avons appris, associe des idées et renforce nos souvenirs ". Mais attention à ne pas dépasser trente minutes de sieste, détaille-t-elle: ensuite, " le cerveau est trop inactif, et donc, il y a un risque de déclin cognitif ".



 

Auteur: Internet

Info: Discover magazine - Mona Delahais - 22 mai 2024

[ mécanisée ] [ science ]

 

Commentaires: 0

Ajouté à la BD par miguel

lecture

Internet, l'iPhone, Facebook, les jeux virtuels, ont en quelques années révolutionné notre quotidien. Mieux encore, ils modifient la mémoire et la plasticité du cerveau de nos adolescents. Pour certains experts, nous vivons une révolution digne de Gutemberg et de la découverte de l'imprimerie.
La Student Academy, à Bruxelles, est une magnifique maison de maître nichée à deux pas de l'ULB. Ici, avant d'entrer, les étudiants déposent leurs smartphones. Aujourd'hui, une vingtaine d'étudiants, tous issus du secondaire, viennent suivre un cours de techniques de concentration. Ils apprennent à mémoriser durablement les matières qu'ils étudient. Au préalable, leur coach les soumet à un petit exercice. Pendant neuf minutes, ils doivent retenir un texte par coeur. David a beaucoup de mal. Le moindre mouvement dans la salle le distrait et la présence de la caméra de la RTBF n'arrange pas les choses. Mais surtout, David a sa mémoire saturée d'informations qu'il puise sur internet. Il l'avoue lui-même : il passe toutes ses journées sur son ordinateur et se sent ensuite incapable de se concentrer sur ses cours.
Pour Lola Van Lierde, coach à la Student Academy, David n'est pas une exception. Soumis à des tests de concentration, la plupart des étudiants qui jonglent avec internet, Facebook et les réseaux sociaux, sont devenus "multitâches", mais sont aussi plus facilement distraits. A la Student Academy, ils apprennent à renforcer leur mémoire. Mais dès la pause de midi, l'Iphone reprend ses droits. Eloi discute athlétisme avec son copain pour connaître le chrono de Hussein Bolt au championnat du monde. Il consulte internet et obtient la réponse en un clic.
Révolution de Gutenberg
L'Iphone et internet sont une vraie révolution digne de la découverte de l'imprimerie par Gutemberg.
Commentaire :
Par contre, l'imprimerie ne nous à pas enlevé notre capacité à la concentration ni à la mémoire à long terme. S'il y a, c'est tout le contraire.
Aujourd'hui, plus besoin de mémoriser des chiffres, des adresses ou des numéros de téléphone, nous avons toutes ces infos. Résultat, plutôt que de mémoriser du contenu, notre cerveau a plutôt tendance à mémoriser comment y accéder. La génération 'Google' a tellement intégré cette nouvelle forme d'apprentissage que son cerveau s'est transformé. Valérie Cornil, neuropsychiatre aux Cliniques de l'Europe à Bruxelles, observe que l'hippocampe, siège de consolidation de l'information, est moins développé chez nos ados. Tandis que les lobes frontaux, sièges du traitement de l'information multiple, la synthèse, ont tendance à se renforcer.
En d'autres termes, leur cerveau s'adapte. Les ados développent le sens de la synthèse.
Commentaire :
Quoiqu'intéressant, paradoxal : comment développer le sens de la synthèse si nous perdons le sens de la consolidation de l'information?
Nous sommes loin du temps où un professeur était dépositaire d'un savoir universel. Aujourd'hui, les sources d'information se bousculent, à nous de faire le tri. A moins d'accepter de s'offrir plus de plages de concentrations coupées d'internet.

Auteur: RTBF

Info: Internet et les téléphones "intelligents" modifient le cerveau d'une génération.

[ historique ] [ évolution ]

 
Mis dans la chaine

Commentaires: 0

réminiscence

Déjà-vu ? Les scientifiques ont la réponse La plupart d'entre nous a éprouvé le "déjà-vu" au moins une fois. Sentiment inconfortable qu'on a été ici dans un endroit, dans une situation auparavant. Habituellement la sensation dure pendant un moment et est rapidement suivie de la réalisation qu'on a en fait pas éprouvé cette situation actuelle dans le passé, et qu'on ne peut simplement pas connaître cet endroit. Néanmoins, il y a le sentiment que quelque chose était là dans notre mémoire, en partie ou en entier.
La sensation de "déjà-vu", a été nommée ainsi au 19ème siècle, mais ce phénomène mental a fasciné et effrayé ceux qui l'éprouvent. depuis bien plus longtemps.
La Science eut peu à offrir comme explication, ajoutant au mystère.
Il y eut des tentatives pour éclaircir le phénomène, certains y voyant une évidence qu'après la mort l'âme passe à un autre corps, humain ou animal.
Un des point de départ pour les chercheurs est qu'une expérience de "déjà vu" est peut-être liée à l'expérience d'un rêve qui a été à demi ou totalement oublié.
Les auteurs français Marc Tadié et son frère Jean Yves, l'un directeur de faculté de neurochirurgie, l'autre professeur de littérature, pointent ceci dans en leur livre "Le sens de la mémoire ".
Il est caractéristique de l'expérience qu'on est sûr pendant un moment d'avoir vécu cette expérience auparavant mais qu'on ne peut simplement pas se rappeler ou dans le temps.
La description des rêves dans la littérature pourrait indiquer une manière pour comprendre ces expériences de "déjà-vu".
"Dans un rêve la conscience peut bouger librement dans un espace sans limites, où passé et futur se mélangent" disent les deux Tadié au sujet de descriptions de cette sorte.
Dans une contribution l'année dernière au magasine allemand "Gehirn und Geist" (cerveau et esprit, édités par Heidelberg référence est faite de recherches au sein des processus de mémoire conduits par John D.E. Gabrieli et son équipe à l'université de Stanford en Californie.
Leurs études indiquent que les structures cervicales de l'hippocampe et du cortex parahippocampien jouent des rôles différents dans ce processus.
Tandis que l'hippocampe permet sujet à se rappeler les événements consciemment, le cortex parahipppocampien peut faire la distinction entre des impulsions accoutumées ou inhabituelles, il fait ceci sans même se rapporter à une expérience concrète.
Josef Spatt de l'institut de Ludwig-Ludwig-Boltzmann à Vienne a basé son hypothèse sur cette idée, proposant que le "déjà vu" se produit quand le Parahippocampe, sans que l'hippocampe soit impliqué, émet un signal "accoutumé à", ou "confortable" lié avec telle ou telle sensation.
Ainsi une expérience peut-être considérée comme bien connue, quoiqu'elle ne puisse pas être placée à temps.
Comme Spatt, Uwe Wolfradt, qui fait des recherches sur la self aliénation et les phénomènes de mémoire à l'institut de psychologie de l'université de Halle-Wittenberg dit qu'il y a probablement beaucoup de régions du cerveau impliquées dans la sensations de "déjà vu".
"Les sentiments intensifs de self-aliénation et d'irréalité, couplés avec un sentiment du temps modifié, semblent indiquer une série complexe d'événements dans la conscience," dit-il.
Tandis que la personne éprouvant le "déjà vu" peut commencer à douter de sa prise sur la réalité pendant un moment, les neurologistes croient que cette "petite erreur" commise par notre conscience leur ouvre une fenêtre inhabituelle sur les processus de la conscience.
"Peut-être que la recherche à venir induite par le "déjà vu" expliquera non seulement comment les erreurs de mémoire se produisent, mais également comment le cerveau peut établir une image continue de le réalité " indique Wolfradt.

Auteur: Nouvelles allemandes

Info: Hambourg 14 février 2005

[ paramnésie ]

 

Commentaires: 0

humain miroir

La perception humaine de l'espace s'étend tout comme l'univers réel !

Le cerveau humain a une façon intéressante d'évaluer la proximité ou la distance d'un objet dans l'espace. Si vous regardez la nuit depuis votre voiture, il y a de fortes chances que la Lune vous paraisse se déplacer à vos côtés. Une nouvelle étude neuroscientifique a permis de découvrir pourquoi la zone de la mémoire de notre cerveau perçoit les images proches et lointaines et comment ces exagérations peuvent créer davantage de connexions cérébrales à mesure que nous vieillissons.

L'hippocampe est une zone du cerveau impliquée dans l'apprentissage et la mémoire. Dans l'étude actuelle, les auteurs ont constaté que les neurones associés à la planification, à la mémoire et à la navigation spatiale transforment l'espace en une forme géométrique hyperbolique non linéaire - pensez à un sablier en expansion qui grossit à mesure que vous vous en éloignez. Pour en revenir à l'exemple de la lune, les jeunes enfants ont pu constater que la lune les suivait ou qu'elle était suffisamment proche pour qu'ils l'attrapent.

Bien sûr, la Lune ne se déplace pas et sa taille est déformée par sa distance. Les résultats ont montré que la taille de l'image augmente avec le temps passé dans un lieu. La taille perçue par notre cerveau est également directement liée à la quantité d'informations qu'il peut traiter : les jeunes cerveaux sont peut-être plus enclins à naviguer et à percevoir l'espace de manière linéaire. Avec de nouvelles expériences, l'hippocampe est capable d'affiner ses connexions neuronales et de traiter davantage d'informations sur l'image.

Le cerveau "s'élargit" avec l'expérience

Comprendre comment les réseaux neuronaux du cerveau traitent la navigation spatiale pourrait aider à étudier les troubles neurocognitifs. La maladie d'Alzheimer, par exemple, est une maladie dans laquelle l'hippocampe est l'une des premières zones du cerveau à être détruite, ce qui affecte la mémoire de la personne.

"Notre étude démontre que le cerveau n'agit pas toujours de manière linéaire. Au contraire, les réseaux neuronaux fonctionnent le long d'une courbe en expansion, qui peut être analysée et comprise à l'aide de la géométrie hyperbolique et de la théorie de l'information", explique l'auteur principal, Tatyana Sharpee, professeur à l'Institut Salk et titulaire de la chaire Edwin K. Hunter, dans un communiqué de presse. "Il est passionnant de constater que les réponses neuronales dans cette région du cerveau forment une carte qui s'élargit avec l'expérience, en fonction du temps passé dans un lieu donné. L'effet s'est même maintenu pour des écarts de temps minuscules, lorsque l'animal courait plus lentement ou plus rapidement dans l'environnement."

L'équipe de recherche a utilisé des méthodes informatiques avancées pour comprendre le fonctionnement du cerveau. L'une de ces techniques consiste à utiliser la géométrie hyperbolique pour disséquer les signaux biologiques. Des travaux antérieurs ont utilisé la géométrie hyperbolique pour étudier le fonctionnement des molécules odorantes et de la perception des odeurs.

La géométrie hyperbolique s'est avérée efficace pour comprendre les réponses neuronales et pour cartographier les molécules et les événements sensoriels. Les chercheurs ont recueilli leurs informations auprès de rats qui ont passé du temps à explorer un nouvel environnement. Plus le rat passe de temps dans une zone, plus il acquiert d'informations sur l'espace qui l'entoure. Cela a permis à leur carte neuronale de s'étendre et de se développer.

"Ces résultats offrent une nouvelle perspective sur la manière dont les représentations neuronales peuvent être modifiées par l'expérience", explique Huanqiu Zhang, étudiant diplômé du laboratoire de M. Sharpee. "Les principes géométriques identifiés dans notre étude peuvent également guider les futurs efforts de compréhension de l'activité neuronale dans divers systèmes cérébraux.

Auteur: Internet

Info: Nature Neuroscience, repris par Jocelyn Solis-Moreira ,7 janvier 2023

[ horizon grégaire intégré ] [ vieillir grandir ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

Créer de nouveaux souvenirs pendant le sommeil ?
L'équipe de Karim Benchenane du Laboratoire Plasticité du cerveau à l'ESPCI, associée à des chercheurs du laboratoire Neuroscience à l'Institut de biologie Paris-Seine, a réussi à créer artificiellement, à l'aide d'une interface cerveau-machine, un souvenir de lieu pendant le sommeil chez la souris. Cette étude publiée dans la revue Nature Neuroscience démontre ainsi le rôle causal des cellules de lieu de l'hippocampe dans l'établissement d'une carte cognitive de l'environnement, et leur rôle dans la consolidation de la mémoire pendant le sommeil.
L'hippocampe est une structure cérébrale cruciale pour la mémoire et la navigation spatiale, chez l'homme comme chez l'animal. En effet, des lésions de l'hippocampe entrainent une amnésie antérograde, c'est à dire l'incapacité de former de nouveaux souvenirs. De plus, ces études de lésions ont pu montrer qu'il existait deux types de mémoire: la mémoire dite déclarative ou explicite, qui peut être communiquée par des mots, et la mémoire procédurale, qui concerne notamment des apprentissages moteurs, ou encore les conditionnements simples. Chez le rongeur, la mémoire spatiale, dont les facultés sont altérées par des lésions de l'hippocampe, est alors considérée comme une mémoire de type explicite, notamment lorsqu'elle est utilisée dans la mise en place d'un comportement dirigé vers un but.
De manière intéressante, l'activité de certains neurones de l'hippocampe est corrélée à la position de l'animal dans un environnement: on parle de cellules de lieu. Ce corrélât est si fort que l'on peut déduire la position de l'animal uniquement par l'analyse de l'activité de ces cellules de lieu, ce qui suggère que l'animal pourrait se servir de ces neurones particuliers comme carte mentale lors de la navigation. La découverte de ces cellules de lieu, ainsi que l'établissement de la théorie de la carte cognitive, a valu au neurobiologiste John O'Keefe l'attribution du prix Nobel de médecine 2014. Cependant, même si cette théorie était unanimement acceptée, elle ne reposait que sur des corrélations et il n'y avait jusqu'alors pas de preuve directe d'un lien de causalité entre la décharge des cellules de lieu et la représentation mentale de l'espace.
L'activité de ces cellules pourrait également expliquer le rôle bénéfique du sommeil dans la mémoire. En 1989, le chercheur Gyuri Buzsaki a proposé que ce rôle bénéfique pourrait reposer sur les réactivations neuronales survenant pendant le sommeil. En effet pendant le sommeil, les cellules de lieu rejouent l'activité enregistrée pendant l'éveil, comme si la souris parcourait à nouveau mentalement l'environnement afin d'en renforcer son apprentissage. A nouveau, cette théorie, bien qu'étayée par un nombre important de résultats concordants, n'avait pas pu être démontrée directement.
L'équipe du Laboratoire Plasticité du Cerveau à l'ESPCI, a utilisé une interface cerveau-machine pour associer pendant le sommeil les réactivations spontanées d'une cellule de lieu unique à une stimulation dans les fibres dopaminergiques du circuit de la récompense, appelé faisceau médian prosencéphalique. Au réveil, la souris se dirigeait directement vers le champ de lieu de la cellule de lieu associée aux stimulations, comme pour y rechercher une récompense, alors qu'aucune récompense n'y avait jamais été présentée. La souris avait donc consolidé un nouveau souvenir pendant son sommeil, celui de l'association de ce lieu à une sensation de plaisir.
Dans cette expérience, l'activité de la cellule de lieu était décorrélée de la position de la souris puisque celle-ci était endormie dans sa cage. L'association entre l'activité du neurone et de la stimulation récompensante entraine au réveil de la souris une association lieu-récompense. Cette étude apporte donc une preuve du lien causal entre l'activité d'une cellule de lieu et la représentation mentale de l'espace. Enfin, elle montre que les réactivations des cellules de lieu pendant le sommeil portent bien la même information spatiale que pendant l'éveil, confirmant ainsi le rôle des réactivations neuronales dans la consolidation de la mémoire.
Cette étude démontre enfin qu'il est possible de créer une mémoire complexe, ou explicite, durant le sommeil, allant bien au delà des précédentes études montrant que des conditionnements simples pouvaient être réalisés pendant le sommeil. Ces recherches pourraient permettre le développement de nouvelles thérapies du stress post-traumatique en utilisant le sommeil pour effacer l'association pathologique.

Auteur: Internet

Info: 8 avril 2015

[ dormir ] [ programmation ]

 

Commentaires: 0

médecine

Comment le cerveau participe au cancer

Des neurones voient le jour au sein même du microenvironnement tumoral, contribuant au développement du cancer. Ces cellules nerveuses dérivent de progéniteurs provenant du cerveau et sont acheminés via la circulation sanguine. Cette découverte étonnante ouvre la voie à tout un nouveau champ de recherche, relatif au rôle du système nerveux dans le développement des cancers et aux interactions entre les systèmes vasculaires, immunitaires et nerveux dans la tumorigenèse.

La production de nouveaux neurones est un événement plutôt rare chez l'adulte, cantonné à deux régions particulières du cerveau: le gyrus denté dans l'hippocampe et la zone sous-ventriculaire. Mais voilà que l'équipe Inserm Atip-Avenir dirigée par Claire Magnon* à l'Institut de Radiobiologie Cellulaire et Moléculaire, dirigé par Paul-Henri Roméo (CEA, Fontenay-aux-Roses), vient de montrer que ce phénomène se produit également en dehors du système nerveux central: dans les tumeurs !

En 2013, cette chercheuse avait déjà mis en évidence, dans des tumeurs de la prostate, que l'infiltration de fibres nerveuses, issues de prolongements d'axones de neurones préexistants, était associée à la survenue et à la progression de ce cancer. Depuis, d'autres études ont permis de confirmer le rôle inattendu, mais apparemment important, des fibres nerveuses dans le microenvironnement tumoral de nombreux cancers solides.

Soucieuse de comprendre l'origine du réseau neuronal tumoral, Claire Magnon a une idée surprenante: et si le réseau nerveux impliqué dans le développement des tumeurs provenait de nouveaux neurones se formant sur place ? Et dans ce cas, comment pourrait être initiée cette neurogenèse tumorale ?

Des cellules neurales souches dans les tumeurs
Pour tester cette hypothèse, Claire Magnon a étudié les tumeurs de 52 patients atteints de cancer de la prostate. Elle y a découvert des cellules exprimant une protéine, la doublecortine (DCX), connue pour être exprimée par les cellules progénitrices neuronales, lors du développement embryonnaire et chez l'adulte dans les deux zones du cerveau où les neurones se renouvellent. De plus, dans les tumeurs étudiées, la quantité de cellules DCX+ est parfaitement corrélée à la sévérité du cancer. "Cette découverte étonnante atteste de la présence de progéniteurs neuronaux DCX+ en dehors du cerveau chez l'adulte. Et nos travaux montrent qu'ils participent bien à la formation de nouveaux neurones dans les tumeurs", clarifie-t-elle.

Une migration du cerveau vers la tumeur
Pour déterminer l'origine de ces progéniteurs neuronaux, Claire Magon a utilisé des souris transgéniques, porteuses de tumeurs. Elle a quantifié les cellules DCX+ présentes dans les deux régions du cerveau où elles résident habituellement. Elle a alors constaté que, lors de l'établissement d'une tumeur, leur quantité est réduite dans l'une d'elles: la zone sous-ventriculaire. "Il y avait deux explications: soit les cellules DCX+ mourraient dans cette région sans qu'on en connaisse la cause, soit elles quittaient cette zone, ce qui pouvait expliquer leur apparition au niveau de la tumeur".

Différentes expériences ont montré que cette seconde hypothèse était la bonne avec la mise en évidence du passage des cellules DCX+ de la zone sous-ventriculaire du cerveau dans la circulation sanguine et de l'extrême similarité entre les cellules centrales et celles retrouvées dans la tumeur. "En pratique, nous constatons des anomalies de perméabilité de la barrière hématoencéphalique de la zone sous-ventriculaire chez les souris cancéreuses, favorisant le passage des cellules DCX+ dans le sang. Rien ne permet pour l'instant de savoir si ce problème de perméabilité précède l'apparition du cancer sous l'effet d'autres facteurs, ou si elle est provoquée par le cancer lui-même, via des signaux issus de la tumeur en formation.

Quoi qu'il en soit, les cellules DCX+ migrent dans le sang jusqu'à la tumeur, y compris dans les nodules métastatiques, où elles s'intègrent au microenvironnement. Là, elles se différencient en neuroblastes puis en neurones adrénergiques producteurs d'adrénaline. Or, l'adrénaline régule le système vasculaire et c'est probablement ce mécanisme qui favorise à son tour le développement tumoral. Mais ces hypothèses restent à vérifier".

Une piste thérapeutique
En attendant, cette recherche ouvre la porte à une nouvelle piste thérapeutique: De fait, des observations cliniques montrent que les patients atteints de cancer de la prostate qui utilisent des bêtabloquants (qui bloquent les récepteurs adrénergiques) à des fins cardiovasculaires, présentent de meilleurs taux de survie. "Il serait intéressant de tester ces médicaments en tant qu'anticancéreux" estime la chercheuse. Deux essais cliniques allant dans ce sens ont récemment ouvert aux Etats-Unis. De façon plus générale, "l'étude de ce réseau nerveux dans le microenvironnement tumoral pourrait apporter des réponses sur le pourquoi des résistances à certains traitements et favoriser le développement de nouveaux médicaments", conclut-elle.

Auteur: Internet

Info: www.techno-science.net, 17 mai 2019. *Laboratoire de Cancer et Microenvironnement, Equipe Atip-Avenir, UMR967 Inserm/IBFJ-iRCM-CEA/Université Paris 11/Université Paris Diderot, Fontenay-aux-Roses

 

Commentaires: 0

Ajouté à la BD par miguel