Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 3
Temps de recherche: 0.0286s

représentations

L'intellect ne réfléchit jamais sans image mentale, la faculté de penser pense ses formes dans des visualisations, personne ne pourrait jamais apprendre ou comprendre quoi que ce soit s'il n'avait pas la faculté de percevoir ; même lorsqu'on pense de manière spéculative, il faut une image mentale avec laquelle penser.

Auteur: Yates Frances Amelia

Info: L'art de la mémoire

[ supports ] [ symboles interfaces ]

 
Commentaires: 1
Ajouté à la BD par miguel

mental aveugle

Aphantasie - Hors de la vue, hors de l'esprit.

Fermez les yeux et imaginez que vous regardez la maison de votre enfance depuis la rue. Si vous pouvez en voir une représentation visuelle avec une certaine fidélité d'esprit, vous faites partie des 98 % de personnes qui peuvent visualiser. Si, comme moi, vous ne voyez que du noir, vous faites partie des 2 % de gens atteints d'une maladie appelée Aphantasie.

Quand je ferme les yeux, il n'y a pas d'images, de formes, de couleurs, de taches, de flous, de bouts. Rien. Je n'ai jamais vu un seul mouton sauter par-dessus une clôture. Toute ma vie, j'ai pensé que lorsque les gens disaient qu'ils pouvaient penser en images et visualiser des images, c'était métaphorique.

En tant que designer, c'est une révélation. Personnellement, ça change vraiment la donne.

Plutôt que de penser que je n'en avais pas la capacité, j'ai toujours supposé que personne ne voyait vraiment les moutons, ils pensaient juste à eux comme moi. Je me rappelle combien il était ridicule d'essayer de compter les moutons que je ne voyais pas.

L'apprentissage de l'aphantasie (un nouveau "machin" qui n'a pas encore d'entrée dans le dictionnaire) m'a obligé à me demander quels sont mes processus internes et comment je peux obtenir à peu près les mêmes résultats que quelqu'un qui peut visualiser. Tant de choses ont un sens maintenant, mais il y en a encore tant à comprendre. Avant d'entrer dans les détails, voici quelques symptômes de ce syndrome : 

-  Il n'y a aucun souvenir visuel pour quoi que ce soit, que ce soit un visage, un mot, l'endroit où j'ai laissé mes clés, un beau moment, l'enfance.

- Tout comme le passé ne peut être rappelé, je ne peux pas visualiser les événements futurs. Toutes ces techniques de visualisation du développement personnel que j'ai essayées au fil des ans et que je croyais inutiles...

- Il n'y a pas d'endroit agréable où aller. Quand on souffre, c'est un peu comme dans la scène de Chemical Burn du Fight Club, il faut juste rester avec la douleur. 

- Je rêve en images mais jamais avec une quelconque clarté. Même quand je me souviens des rêves, je ne peux pas me les remémorer. Je ne sais pas si la fidélité de mes rêves correspond à celle de quelqu'un qui n'a pas ma condition.

- Quand je rêve le jour, j'imagine des scénarios dans des détails abstraits et des nuages de pensées, ce qui est très difficile à comprendre et encore moins à expliquer.

- Les histoires fictives sont inutiles et n'ont aucun lien viscéral. Même enfant, je n'ai jamais pu me plonger dans des aventures de fiction. Je n'aurais pas été bon à l'école du dimanche.

- C'est une bénédiction de ne pas avoir de flashbacks d'événements traumatisants, mais ;

- C'est une malédiction de ne pas pouvoir évoquer des images d'êtres chers disparus. 

Il y a une myriade d'exemples qui peuvent être ajoutés à cette liste, mais vous avez compris. Mes paupières se ferment et le monde devient noir, ce qui m'a toujours semblé logique - c'est à cela que servent les paupières. Voir des images lorsque les yeux sont fermés ressemble à un super pouvoir qui devrait être pour une minorité exceptionnelle, et non l'inverse.

La voix de l'esprit

Depuis cette découverte, j'ai pu mettre certains points sur les i. Il y a quelques années, je me suis intéressé à la programmation neuro-linguistique (PNL), dont une partie consiste à comprendre les modalités sensorielles. Lorsque je me suis appliqué à moi-même ces techniques, le résultat fut que j'étais auditif. Bien sûr, étant donné que toute ma vie professionnelle avait été en tant que designer, je m'attendais à être visuel.

Alors comment une personne atteinte d'aphantasie peut-elle traiter des données et anticiper les résultats ? Pour moi, j'ai découvert que j'entends les résultats, mais que je ne les vois pas

Par exemple, j'ai eu un combat de boxe professionnelle il y a quelques années. J'ai toujours été en faveur du développement personnel et j'avais lu et entendu si souvent qu'il faut visualiser un résultat réussi que l'on veut atteindre. En l'occurrence, me voir victorieux avec les mains levées et sortir du ring en vainqueur. Rétrospectivement, je n'ai jamais rien vu, mais j'ai tout entendu.

En visualisant le combat, j'écoutais vraiment la foule, j'entendais mes entraîneurs me dire à quel point je m'en sortais bien entre les rounds, et surtout j'écoutais mes propres commentaires et affirmations internes pendant que je jouais mentalement l'événement. Lorsque je visualisais la victoire, je ne voyais rien, mais j'entendais ma propre voix mentale célébrer la victoire.

Oreilles visuelles

La mémoire et la capacité à se souvenir d'un moment, d'un événement ou d'une action sont cruciales. Lorsque quelqu'un d'autre a égaré ses clés, il peut voir où il les a laissées comme un souvenir à rappeler. Pour ce faire, je me souviens de ma voix mentale qui disait à l'époque " tes clés sont sur le bureau " lorsque je les y pose. Et quand j'ai besoin de les retrouver, je reviens à la dernière phrase de mes clés. Les fragments de langage sont un moyen de cloisonner les actions que j'ai prises et celles que je dois prendre.

Si j'assiste à un magnifique coucher de soleil, je ne puis en capturer un instantané mental, c'est plutôt comme un extrait sonore, et c'est surtout mon bavardage interne qui essaie d'enregistrer le moment et de le verbaliser via les détails. Je suis à la limite de l'obsession des couchers de soleil, ce qui frustre tous ceux avec qui je suis si l'un d'entre eux se trouve à proximité, car je dois me rendre à un point d'observation. "On les a tous vus..." mais comme je ne m'en souviens pas, j'ai besoin de les voir encore et encore.

Je suis un fervent iPhoneographe, ce qui n'est pas unique, mais pour moi, c'est une façon de gérer mon incapacité à capturer des images mentales. Lorsque je pars en voyage avec un partenaire, c'est inévitablement frustrant pour lui, car je dois m'arrêter si souvent pour saisir les moments. "Pourquoi ne pouvez-vous pas simplement profiter de l'instant présent ?", ce que je fais, mais si je ne le capture pas, je ne pourrai généralement plus jamais revoir cet endroit. Si je conduis et qu'une scène qui vaut la peine d'être capturée apparaît, ce ne sont pas mes yeux qui m'encouragent à m'arrêter, j'entends "Ce serait une super photo", alors j'ai appris à faire confiance à ma voix au-dessus de mes yeux, même pour les choses visuelles, et j'ai une vision de 20/20.

Le dilemme du designer

Je suis un designer qui est intrinsèquement visuel. J'ai commencé dans le design visuel et j'ai évolué vers le design de l'expérience utilisateur qui, je crois maintenant, est un artefact d'Aphantasia. Lorsque je parle à mes collègues designers, je n'arrive pas à croire qu'ils voient dans leur esprit à l'avance ce qu'ils exécutent ensuite dans Photoshop. Ils disposent d'un canevas mental sur lequel ils peuvent appliquer leurs visualisations. Cela va dans le sens de l'hyperphantasie.

Un collègue peut voir 20 versions du même graphique et être capable de les filtrer dans sa tête pour créer les 5 versions qu'il fera physiquement comme options de révision. Un autre collègue peut évoquer une seule instance d'un graphique mais être capable d'animer et de déplacer les éléments jusqu'à ce qu'il se arrête  la version qu'il va concevoir.

Mais la question est, que fait un Aphantasique ?.

Lorsque j'essaie de résoudre un problème d' expérience-design, je pense que c'est la réalité. Ce n'est pas une bonne description car il n'y a pas de vraie bonne manière d'articuler ce processus. Mais je le verbalise aussi en interne, et cela se fait en grande partie en jouant le rôle de l'utilisateur et en écoutant ce qu'il entendrait de son propre bavardage interne s'il faisait l'expérience du voyage que j'essaie de résoudre pour lui. Par exemple, s'ils rencontrent un problème pendant que je joue leur expérience de la conception, je les entends dire "ça ne marche pas" mais je ne vois pas comment, je dois le traduire de mon point de vue de concepteur puis le manifester à l'écran, sur papier ou autre.

J'ai toujours été un bon collaborateur dans le domaine du design, parce que j'ai eu besoin de l'être. Très souvent, les solutions aux problèmes viennent de moi, qui en parle et qui peint une image mentale d'un problème de ce que je "vois" pendant qu'un collègue crée cette image mentale et qu'ensemble, cela devient une solution. Une véritable conception collaborative, où le partage des connaissances conduit à une compréhension collective et à la résolution des problèmes.

Imagine que

On m'a interrogé sur mon imagination ? Je suis un vrai rêveur, mais une fois "hors fèeries", je ne suis pas vraiment sûr de ce qui se passe. C'est la chose la plus difficile à expliquer parce que je ne peux pas encore vraiment expliquer ce qui se passe quand je suis "loin". La meilleure description est que je sens les choses se passer dans ma tête. Les événements se déroulent et je ne suis pas mentalement vide, mais visuellement noir. Tout cela est assez étrange. Je ressens toujours les rêves comme des images, il semble donc que le conscient ait un filtre sur ce que l'inconscient peut faire passer en douce pendant le sommeil.

Bénédiction ou malédiction

L'un des aspects les plus troublants est de ne pas pouvoir voir ses proches. Mon frère a récemment quitté ce monde et malgré tous mes efforts, je ne puis voir son visage. Je ne peux même pas visualiser une photo de son visage, ou une représentation floue. Depuis, j'en ai parlé à ma mère, qui se couche tous les soirs avec une ou plusieurs photos de lui et peut s'en servir pour se souvenir de lui.

Je peux avoir un sentiment pour une personne et je peux décrire mon frère à quelqu'un. La façon dont il marchait par exemple, je peux la reproduire, mais c'est de mémoire. Parfois, je me sense dissonant au plan émotionnel, comme en vivant un  événement traumatisant comme une rupture. J'ai l'impression d'avancer rapidement et je me demande maintenant si c'est un cas de "loin des yeux, loin du cœur". Cette citation aide à résumer beaucoup de choses pour moi et mon expérience du monde.

Un avantage, cependant, est que les expériences négatives ne peuvent pas être revécues. Des images visuelles horribles, comme un récent accident de moto, ne reviennent jamais nous hanter. Une fois la chose vue, elle est automatiquement invisible.

Voir, c'est croire

Il existe de nombreux exemples de personnes dont un sens est diminué ou inexistant, ce qui encourage d'autres à se renforcer. Le savant qui pense aux nombres comme à des images et qui peut résoudre des équations mathématiques par l'image. Je n'ai pas encore appris exactement comment traiter et traduire l'information, mais je suis maintenant sur cette voie pour comprendre comment je fonctionne et pour développer cette capacité, tout en travaillant à supprimer le filtre et à ouvrir un tout nouveau monde à l'œil de l'esprit.

Auteur: Kappler Benny

Info: 9 janvier 2017. https://medium.com/@bennykappler/aphantasia-out-of-sight-out-of-mind-f2b1b4e5cc23. Trad Mg

[ imagination non-voyante ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel