Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 2
Temps de recherche: 0.0255s

monde subatomique

Des physiciens comprennent enfin pourquoi l’interaction forte est si tenace 

Il existe quatre forces fondamentales : la force de gravité, l’électromagnétisme, l’interaction faible et l’interaction (ou force) forte. Cette dernière est la plus intense. L’interaction forte agit en liant les quarks au sein des protons et des neutrons. Elle maintient ainsi les nucléons ensemble pour former des noyaux atomiques. La force forte est jusqu’à 100 000 milliards de milliards de fois plus intense que la force de gravité. Malgré cette intensité, elle est relativement peu comprise, par rapport aux autres forces. Récemment, des chercheurs ont percé l’un des mystères de l’interaction forte expliquant sa ténacité et sont notamment parvenus à la mesurer de façon plus précise.

L’interaction forte est quantifiée par la constante de couplage (que les auteurs de l’étude choisissent d’appeler simplement " couplage "), notée αs (alpha s). Il s’agit d’un paramètre fondamental dans la théorie de la chromodynamique quantique (QCD).

La difficulté de la mesure de αs réside principalement dans sa nature très variable : plus deux quarks sont éloignés, plus le couplage est élevé, et plus l’attraction entre eux devient forte. À des distances faibles, où αs est encore faible, les physiciens parviennent à appliquer des méthodes de calcul basique pour déterminer le couplage. Cependant, ces techniques deviennent inefficaces à des distances plus importantes. Dans une nouvelle étude, des physiciens ont ainsi réussi à appliquer de nouvelles méthodes pour mieux déterminer αs à des distances plus importantes. 

Un calcul basé sur l’intégrale de Bjorken

Poussé par sa curiosité, l’un des chercheurs a testé l’utilisation de l’intégrale de Bjorken pour prédire αs sur de longues distances. Cette méthode permet de définir des paramètres relatifs à la rotation de la structure des nucléons et ainsi de calculer le couplage de la force forte à courte distance. Le scientifique ne s’attendait donc pas à faire une découverte de ce calibre en faisant cet essai. Pourtant, contre toute attente, ses résultats ont montré qu’à un moment donné, αs cesse d’augmenter pour devenir constant. Il a ainsi partagé ses découvertes avec son mentor qui avait, lui aussi, obtenu des résultats similaires dans des travaux antérieurs.

 "Ce fut une chance, car même si personne ne s’en était encore rendu compte, l’intégrale de Bjorken est particulièrement adaptée aux calculs de αs sur de longues distances ", déclarent les chercheurs dans un article du Scientific American. Les résultats ont été présentés lors de diverses conférences de physique, durant l’une desquelles l’auteur principal a rencontré un autre physicien, Stanley Brodsky, qui aurait appuyé les résultats obtenus.

Une méthode par holographie

En parallèle à cette découverte, d’autres physiciens ont travaillé sur la mise au point d’une autre méthode de calcul de αs sur de longues distances, qu’ils ont appelée " holographie du front lumineux ". L’holographie est une technique mathématique qui a initialement été développée dans le contexte de la théorie des cordes et de la physique des trous noirs.

Cependant, en physique des particules, elle sert à modéliser des phénomènes en quatre dimensions (incluant les trois dimensions spatiales et une dimension temporelle) en se basant sur des calculs effectués dans un espace à cinq dimensions. Dans cette méthode, la cinquième dimension n’est pas nécessairement une dimension physique réelle, mais peut servir d’outil mathématique pour faciliter les calculs. L’idée est que certaines équations complexes en quatre dimensions peuvent devenir plus simples ou plus intuitives quand elles sont envisagées dans un espace à cinq dimensions.

Auteur: Internet

Info: https://trustmyscience.com/ - Miotisoa Randrianarisoa & J. Paiano·15 avril 2024

[ gluons ] [ force de cohésion nucléaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

monde subatomique

Des physiciens ont découvert une force inattendue agissant sur les nanoparticules dans le vide

Ils ont découvert une nouvelle force inattendue qui agit sur les nanoparticules dans le vide, leur permettant d’être poussées par le " néant ".

Bien entendu, la physique quantique commence à préciser que ce " néant ", n’existe pas réellement : même le vide est rempli de petites fluctuations électromagnétiques. Cette nouvelle recherche est une preuve supplémentaire que nous commençons à peine à comprendre les forces étranges qui agissent au plus petit niveau du monde matériel, nous montrant comment le néant peut entraîner un mouvement latéral.

Alors comment est-ce que le vide peut porter une force ? L’une des premières choses que nous apprenons en physique classique est que dans un vide parfait (un lieu donc entièrement dépourvu de matière), la friction ne peut pas exister car l’espace vide ne peut pas exercer une force sur les objets qui le traversent.

Mais ces dernières années, les physiciens spécialisés dans le domaine quantique ont montré que le vide est en réalité rempli par de petites fluctuations électromagnétiques qui peuvent interférer avec l’activité des photons (les particules de lumière), et produire une force considérable sur les objets.

Il s’agit de l’effet Casimir, qui a été prédit en 1948 par le physicien néerlandais Hendrick Casimir*. À présent, la nouvelle étude a démontré que cet effet est encore plus puissant que ce que l’on imaginait auparavant. En effet, ce dernier ne peut être mesuré qu’à l’échelle quantique. Mais comme nous commençons à élaborer des technologies de plus en plus petites, il devient évident que ces effets quantiques pourraient fortement influencer certaines de nos technologies de manière globale.

Ces études sont importantes car nous développons des nanotechnologies qui travaillent avec des distances et des tailles si petites, que ce type de force peut dominer tout le reste ", explique le chercheur principal Alejandro Manjavacas de l’Université du Nouveau-Mexique, aux États-Unis. " Nous savons que ces forces de Casimir existent, alors ce que nous essayons de faire, c’est de trouver l’impact général qu’elles ont sur de très petites particules ", ajoute-t-il.

Afin de découvrir de quelle manière l’effet Casimir pourrait avoir un impact sur les nanoparticules, l’équipe a analysé ce qui s’est passé avec des nanoparticules tournant près d’une surface plane, dans le vide. Ils ont ensuite découvert que l’effet Casimir pouvait effectivement pousser ces nanoparticules latéralement, même si elles ne touchent pas la surface.

Pour imager la chose, imaginez une minuscule sphère tournant sur une surface qui est constamment bombardée de photons. Alors que les photons ralentissent la rotation de la sphère, ils provoquent également un déplacement de cette dernière dans une direction latérale :

(Photo : En rouge, la rotation de la sphère. En noir, la distance de la sphère par rapport à la surface plane et en bleu, l’effet de Casimir latéral.)

Dans le domaine de la physique classique, il faudrait un frottement entre la sphère et la surface pour atteindre ce type de mouvement latéral, mais le monde quantique ne suit pas les mêmes règles : la sphère peut être poussée sur une surface, même si elle ne la touche pas. " La nanoparticule subit une force latérale comme si elle était en contact avec la surface, bien qu’elle soit en réalité séparée de celle-ci ", explique Manjavacas. " C’est une réaction étrange, mais qui peut avoir un impact considérable pour les ingénieurs ", ajoute-t-il.

Cette nouvelle découverte pourrait bien jouer un rôle important dans la manière dont nous développerons des technologies de plus en plus miniaturisées à l’avenir, y compris des dispositifs tels que les ordinateurs quantiques.

Les chercheurs affirment qu’ils pourraient contrôler la direction de la force en changeant la distance entre la particule et la surface, ce qui pourrait s’avérer utile pour les ingénieurs et les scientifiques travaillant sur des méthodes de manipulation de la matière, à l’échelle nanoscopique. 

L’étude a déjà été publiée dans le Physical Review Letters et les résultats doivent à présent être reproduits et vérifiés par d’autres équipes. Mais le fait que nous ayons maintenant la preuve qu’une nouvelle force intrigante pourrait être utilisée pour diriger des nanoparticules dans le vide est très intéressant et met en lumière un tout nouvel élément du monde quantique et ses forces encore largement incomprises. 



*( L'effet Casimir, prédit en 1948 par le physicien néerlandais Hendrick Casimir, est un phénomène quantique où deux plaques métalliques parfaitement conductrices placées dans le vide s'attirent l'une vers l'autre avec une force inversement proportionnelle au carré de leur distance.12 Cet effet résulte de la pression exercée par les fluctuations quantiques du vide sur les plaques.

Explication de l'effet

Selon la théorie quantique des champs, le vide n'est pas complètement vide mais contient des fluctuations d'énergie sous forme de particules virtuelles qui apparaissent et disparaissent constamment. Entre deux plaques rapprochées, ces fluctuations sont restreintes par les conditions aux limites imposées par les plaques conductrices. Cela crée une différence de pression de radiation entre l'intérieur et l'extérieur des plaques, générant une force attractive entre elles.

Observation expérimentale

Bien que prédit théoriquement en 1948, l'effet Casimir n'a été observé expérimentalement pour la première fois qu'en 1997, confirmant ainsi l'existence de cette force quantique dans le vide. Cette découverte a renforcé la compréhension de la nature quantique du vide et de ses effets mesurables. (Source : anthropic) 

Auteur: Internet

Info: https://trustmyscience.com/ - Stéphanie Schmidt, 12 avril 2017

[ éther ] [ vacuité source ]

 

Commentaires: 0

Ajouté à la BD par miguel