Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits... Recherche mots ou phrases tous azimuts... Outil de précision sémantique et de réflexion communautaire... Voir aussi la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats ... Lire la suite >>
Résultat(s): 7
Temps de recherche: 0.0257s

classifications

Vous serez tenté de rouspéter quant à l'instabilité de la taxonomie : mais la stabilité ne se produit que lorsque les gens cessent de penser et cessent de travailler.

Auteur: Abbott Donald Putnam

Info: Dans Galen Howard Hilgard (éd.) Observing Marine Invertebrates : Dessins du laboratoire. Préface de l'auteur (p. xvi) Stanford University Press. Stanford, Californie, États-Unis. 1987

[ évolutives ] [ typologies variables ] [ citation s'appliquant à ce logiciel ]

 

Commentaires: 0

Ajouté à la BD par miguel

culture

Les trois facteurs fondamentaux que nous parvenons aujourd'hui à identifier sont la création de l'art visuel, le développement d'un langage sonore articulé et la structuration d'une religion, avec des archétypes et des paradigmes qui se répètent depuis dans toutes les religions.

Auteur: Anati Emmanuel

Info: La religion des origines

[ triade ] [ source ] [ évolution ] [ gnose ] [ structurations évolutives ]

 

Commentaires: 0

culture collective

Un article de Wikipédia est un processus, pas un produit.
(...)
Nous avons vécu dans ce monde où les petites choses se font par amour et les grandes pour l'argent. Nous avons maintenant Wikipédia. Soudain, on peut faire de grandes choses par amour.

Auteur: Shirky Clay

Info: Here Comes Everybody: The Power of Organizing Without Organizations

[ connaissances évolutives ] [ citation s'appliquant à ce logiciel ] [ Internet ]

 

Commentaires: 0

Ajouté à la BD par miguel

itérations apprenantes

Définissons plutôt la vie de manière très large, simplement comme un processus capable de conserver sa complexité et de se répliquer. Ce qui est répliqué n'est pas la matière (faite d'atomes) mais l'information (faite de bits) qui spécifie comment les atomes sont disposés. Lorsqu'une bactérie fait une copie de son ADN, aucun nouvel atome n'est créé, mais un nouvel ensemble d'atomes est disposé selon le même schéma que l'original, copiant ainsi l'information. En d'autres termes, nous pouvons considérer la vie comme un système de traitement de l'information auto-répliquant dont l'information (software-logiciel) constitue tant le comportement que les plans de son appareillage (hardware).

Auteur: Tegmark Max

Info: Life 3.0: Being Human in the Age of Artificial Intelligence (2017)

[ duplications évolutives ]

 

Commentaires: 0

Ajouté à la BD par miguel

assimilation

Les signaux ou les signes qui 'cadrent' ou 'étiquettent' un message (ou qui métacommuniquent sur la communication dans le message) sont nettement d'un type logique supérieur qu'ils classifient... La communication et l'apprentissage comportent des niveaux de typologie logique. Un message qui est simplement reçu représente le premier niveau ou le niveau zéro de l'apprentissage. Au deuxième niveau, le message est perçu comme appartenant à un ensemble ou à un contexte. Au troisième niveau, un message, initialement perçu au niveau de la 'surprise', est progressivement reprogrammé au niveau de l'habitude' ou de l''attention consciente' (surinvestissement) à la 'programmation de base' (investissement); à ce troisième niveau, on apprend à apprendre... Chacun de ces niveaux est d'un type logique supérieur à celui qui le précède.

Auteur: Wilden Anthony

Info: "System and Structure, Essays in Communication and Exchange", 1972, 1980 (lère et 2ème éd. ang, Tavistock Pub. Londres) et 1983 (trad. fr. 3ème éd. complétée et achevée, Montréal, Boréal Express)  p. 124.

[ intégration ] [ tiercités évolutives ] [ sémantique ] [ sémiotique ] [ approfondissement ]

 

Commentaires: 0

Ajouté à la BD par miguel

rétroactions informatives

Voici un résumé-synthèse exhaustif de notre échange machine-homme sur les parallèles entre épigénétique et langage.

L'épigénétique représente un dialogue complexe à plusieurs niveaux :

- Entre les gènes et l'environnement

- Entre l'hôte et les symbiotes

- Entre les cellules d'un même organisme

- Entre les générations

Ce dialogue se produit principalement au niveau moléculaire, impliquant l'ADN, les histones et les ARN. Il opère à différentes échelles, de l'intracellulaire à l'intergénérationnel.

Interactions à longue distance

Les interactions épigénétiques peuvent se produire sur de grandes distances, impliquant :

- Des boucles chromatiniennes

- Des domaines topologiquement associés (TADs)

- Des interactions interchromosomiques

Ces interactions s'étendent au-delà de la cellule, englobant l'organisme entier et son environnement.

Analogies avec le langage humain

Plusieurs parallèles ont été établis entre l'épigénétique et le langage humain :

- Importance du contexte dans l'interprétation

- Flexibilité et adaptabilité

- Utilisation de métaphores et symboles

- Opération à plusieurs niveaux de signification

- Aspects héréditaires et évolutifs

- Fonction de dialogue et de communication

Comparaisons approfondies

(Version chatgpt) Dans le cadre du langage humain, si l'on veut établir une analogie entre l'épissage (un processus biologique) et un phénomène en syntaxique linguistique, on peut le comparer à une forme de montage ou d'édition qui permet de structurer les phrases en enlevant certaines parties inutiles et en conservant celles qui ont un sens pertinent.

En biologie moléculaire, l'épissage est un processus qui intervient lors de la transcription de l'ADN en ARN. Il consiste à retirer les introns (les segments non codants) et à relier les exons (les segments codants), ce qui permet de produire un ARNm mature prêt à être traduit en protéine.

L'analogie en linguistique pourrait être la manière dont, dans une phrase ou un texte, on :

- Supprime les informations redondantes ou non pertinentes (similaires aux introns),

- Garde les informations significatives pour l'expression d'un message cohérent (exons ).

C'est un peu comme si, en écrivant ou en parlant, on filtre certaines idées ou mots pour structurer le message de façon optimale. En ce sens, l'épissage pourrait correspondre à un processus de révision ou de condensation syntaxique dans lequel les phrases sont réorganisées, simplifiées ou « épurées » pour produire un message compréhensible et cohérent.

En résumé, dans le cadre linguistique :

- Les introns = Les mots ou informations inutiles ou redondantes,

- Les exons = Les mots ou idées essentiels à la phrase,

- L'épissage = Le processus de suppression et de réorganisation des éléments pour créer un message final " mature " et fonctionnel.

SInon :

- Le langage humain tend vers une base double booléenne, tandis que l'épigénétique opère sur une base tétravalente plus nuancée.

- Le " langage " épigénétique est considéré comme plus ancré dans la réalité biologique immédiate.

Réflexions sur le langage humain

Le langage humain a été caractérisé comme :

- Plus "hors-sol" et abstrait

- Un outil grégaire favorisant la cohésion sociale

- Capable d'une virtualisation plus poussée

- Orienté vers la création de nouveaux concepts

Cette capacité d' abstraction et de virtualisation du langage humain représente à la fois une avancée significative et un potentiel éloignement de la réalité immédiate.

Conclusion

Cette analyse comparative met en lumière la complexité et la flexibilité de l'épigénétique, tout en soulignant le rôle unique du langage humain dans l'abstraction et la création conceptuelle. Elle révèle comment ces deux systèmes, bien que fondamentalement différents, offrent des perspectives complémentaires sur la communication et l'adaptation dans le monde biologique et social.

Auteur: perplexity.ai

Info: 6 octobre 2024

[ systèmes adaptatifs ] [ réseaux d'interaction dynamiques ] [ mécanismes d'auto-régulation ] [ cycles d'apprentissage biologique ] [ processus itératifs ] [   encodage adaptatif ] [ flux multi-échelles ] [ dialogues moléculaires et conceptuels ] [ cascades de signalisation récursives ] [ architectures évolutives ] [ réseaux de signalisation plastiques ] [ transduction ]

 

Commentaires: 0

Ajouté à la BD par miguel

énactions grégaires

L'intelligence a évolué au moins deux fois chez les animaux vertébrés

Les circuits neuronaux complexes sont probablement apparus indépendamment chez les oiseaux et les mammifères, ce qui suggère que les vertébrés ont développé leur intelligence à plusieurs reprises.

Les humains ont tendance à mettre leur propre intelligence sur un piédestal. Notre cerveau peut faire des mathématiques, utiliser la logique, explorer des abstractions et penser de manière critique. Mais nous ne pouvons pas revendiquer le monopole de la pensée. Parmi les nombreuses espèces non humaines connues pour leur intelligence, les oiseaux ont démontré à maintes reprises des capacités cognitives avancées. Les corbeaux planifient pour l'avenir, les corbeaux comptent et utilisent des outils , les cacatoès s'ouvrent et pillent des poubelles piégées et des mésanges gardent la trace de dizaines de milliers de graines disséminées dans un paysage. Il est remarquable que les oiseaux accomplissent de telles prouesses avec des cerveaux complètement différents des nôtres : ils sont plus petits et dépourvus des structures hautement organisées que les scientifiques associent à l'intelligence des mammifères.

" Un oiseau avec un cerveau de 10 grammes fait à peu près la même chose qu'un chimpanzé avec un cerveau de 400 grammes ", a déclaré Onur Güntürkün, qui étudie les structures cérébrales à l'Université de la Ruhr à Bochum, en Allemagne. " Comment est-ce possible ? "

Les chercheurs débattent depuis longtemps du lien entre l'intelligence des oiseaux et celle des mammifères. Une hypothèse est que l'intelligence des vertébrés – animaux dotés d'une colonne vertébrale, dont les mammifères et les oiseaux – ait évolué une fois. Dans ce cas, les deux groupes auraient hérité des voies neuronales complexes qui sous-tendent la cognition d'un ancêtre commun : une créature ressemblant à un lézard qui vivait il y a 320 millions d'années, lorsque les continents terrestres étaient comprimés en une seule masse continentale. L'autre hypothèse est que les types de circuits neuronaux qui sous-tendent l'intelligence des vertébrés aient évolué indépendamment chez les oiseaux et les mammifères.

Il est difficile de retracer le chemin emprunté par l'évolution, étant donné que toute trace du cerveau de l'ancêtre a disparu en un éclair géologique. Les biologistes ont donc adopté d'autres approches, comme la comparaison des structures cérébrales des animaux adultes et en développement d'aujourd'hui, pour comprendre comment cette complexité neurobiologique a pu émerger.

Une série d'études publiées dans Science en février 2025 fournit la meilleure preuve à ce jour que les oiseaux et les mammifères n'ont pas hérité d'un ancêtre commun les voies neuronales génératrices de l'intelligence, mais les ont développées indépendamment. Cela suggère que l'intelligence des vertébrés est apparue non pas une fois, mais plusieurs fois. Pourtant, leur complexité neuronale n'a pas évolué dans des directions radicalement différentes : les cerveaux des oiseaux et des mammifères présentent des circuits étonnamment similaires, selon les études.

" C'est une étape importante dans la quête de compréhension et d'intégration des différentes idées sur l'évolution " de l'intelligence des vertébrés, a déclaré Güntürkün, qui n'a pas participé à la nouvelle recherche.

Ces découvertes, qui émergent dans un monde fasciné par les formes d'intelligence artificielle, pourraient nous éclairer sur l'évolution des circuits complexes de notre cerveau. Plus important encore, elles pourraient nous aider à nous éloigner de l'idée que nous sommes les meilleures créatures du monde, a déclaré Niklas Kempynck, un étudiant diplômé de la KU Leuven qui a dirigé l'une des études. " Nous ne sommes pas la solution optimale pour l'intelligence. "

Les oiseaux y sont également arrivés par leurs propres moyens.

Trouble du picage

Pendant la première moitié du XXe siècle, les neuroanatomistes pensaient que les oiseaux n'étaient tout simplement pas si intelligents. Ces créatures sont dépourvues de tout élément ressemblant à un néocortex – la structure externe hautement ordonnée du cerveau des humains et des autres mammifères, où résident le langage, la communication et le raisonnement. Le néocortex est organisé en six couches de neurones, qui reçoivent les informations sensorielles d'autres parties du cerveau, les traitent et les transmettent aux régions qui déterminent notre comportement et nos réactions.

" Pendant longtemps, on a pensé que c'était le centre de la cognition, et que ce type d'anatomie était nécessaire pour développer des capacités cognitives avancées ", a déclaré Bastienne Zaremba , chercheur postdoctoral étudiant l'évolution du cerveau à l'Université de Heidelberg.

Au lieu de couches bien nettes, les oiseaux ont " des boules de neurones non spécifiées sans repères ni distinctions ", a déclaré Fernando García-Moreno, neurobiologiste au Centre basque de neurosciences Achucarro, en Espagne. Ces structures ont poussé les neuroanatomistes, il y a un siècle, à suggérer qu'une grande partie du comportement des oiseaux est réflexive et non motivée par l'apprentissage et la prise de décision. Cela " implique que ce qu'un mammifère peut apprendre facilement, un oiseau ne l'apprendra jamais ", a déclaré Güntürkün.

La pensée conventionnelle a commencé à évoluer dans les années 1960, lorsque Harvey Karten, un jeune neuroanatomiste du Massachusetts Institute of Technology, a cartographié et comparé les circuits cérébraux des mammifères et des pigeons, puis de hiboux, de poulets et d'autres oiseaux. Sa découverte a été une surprise : les régions cérébrales que l'on pensait impliquées uniquement dans les mouvements réflexes étaient constituées de circuits neuronaux – des réseaux de neurones interconnectés – qui ressemblaient à ceux du néocortex des mammifères. Cette région du cerveau des oiseaux, la crête ventriculaire dorsale (DVR), semblait comparable à un néocortex ; elle n'en avait simplement pas l'apparence.

En 1969, Karten a écrit un " article très influent qui a complètement changé le débat dans le domaine ", a déclaré Maria Tosches, qui étudie le développement du cerveau des vertébrés à l'Université Columbia. " Ses travaux étaient véritablement révolutionnaires. " Il a conclu que, les circuits aviaires et mammifères étant similaires, ils étaient hérités d'un ancêtre commun. Cette pensée a dominé le domaine pendant des décennies, a déclaré Güntürkün, ancien postdoctorant au laboratoire de Karten. Elle a " suscité un vif intérêt pour le cerveau des oiseaux ". 

Quelques décennies plus tard, Luis Puelles, anatomiste à l'Université de Murcie en Espagne, est arrivé à la conclusion inverse de celle de Karten. En comparant des embryons à différents stades de développement, il a découvert que le néocortex des mammifères et le DVR aviaire se développaient à partir de zones distinctes du pallium de l'embryon – une région cérébrale commune à tous les vertébrés. Il en a conclu que ces structures avaient dû évoluer indépendamment.

Karten et Puelles " apportaient des réponses radicalement différentes à cette grande question ", a déclaré Tosches. Le débat a duré des décennies. À cette époque, les biologistes ont également commencé à s'intéresser à l'intelligence des oiseaux, en commençant par leurs études sur Alex, un perroquet gris d'Afrique capable de compter et d'identifier des objets. Ils ont alors réalisé à quel point les oiseaux pouvaient être intelligents.

Cependant, selon García-Moreno, aucun des deux groupes ne semblait vouloir résoudre la divergence entre leurs deux théories sur l'évolution des palliums des vertébrés. "Non, ils ont continué à travailler sur leur propre méthode ", a-t-il déclaré. Un camp a continué à comparer les circuits du cerveau des vertébrés adultes ; l'autre s'est concentré sur le développement embryonnaire.

Dans les nouvelles études, a-t-il déclaré, " nous avons essayé de tout rassembler ".

Pareil mais pas pareil

Deux nouvelles études, menées par des équipes de chercheurs indépendantes, se sont appuyées sur le même outil puissant d'identification des types cellulaires : le séquençage d'ARN unicellulaire. Cette technique permet aux chercheurs de comparer les circuits neuronaux, comme l'a fait Karten, non seulement dans le cerveau adulte, mais tout au long du développement embryonnaire, en suivant Puelles. Ils ont ainsi pu identifier le point de départ de la croissance des cellules dans l'embryon et leur évolution finale chez l'animal adulte : un processus développemental révélateur de voies évolutives.

Pour leur étude, García-Moreno et son équipe souhaitaient observer le développement des circuits cérébraux. Grâce au séquençage de l'ARN et à d'autres techniques, ils ont suivi des cellules dans les palliums de poulets, de souris et de geckos à différents stades embryonnaires afin d'horodater la génération et le stade de maturation des différents types de neurones.

Ils ont découvert que les circuits matures se ressemblaient remarquablement chez tous les animaux, comme l'avaient noté Karten et d'autres, mais ils étaient construits différemment, comme l'avait découvert Puelles. Les circuits qui composaient le néocortex des mammifères et le DVR aviaire se sont développés à des moments différents, dans des ordres différents et dans des régions différentes du cerveau.

(Image : 2 schémas comparés explicatif ) 

Parallèlement, García-Moreno collaborait avec Zaremba et ses collègues de l'Université de Heidelberg. Grâce au séquençage de l'ARN, ils ont créé " l'atlas le plus complet du pallium* aviaire dont nous disposons ", a déclaré Tosches, auteur d' un article de perspective connexe publié dans Science. En comparant le pallium des oiseaux à ceux des lézards et des souris, ils ont également découvert que le néocortex et le DVR étaient dotés de circuits similaires — cependant, les neurones qui composaient ces circuits neuronaux étaient distincts.

" La manière dont nous avons obtenu des circuits similaires était plus flexible que je ne l'aurais imaginé ", a déclaré Zaremba. " On peut construire les mêmes circuits à partir de différents types de cellules. "

Zaremba et son équipe ont également découvert que, dans le pallium des oiseaux, des neurones qui débutent leur développement dans différentes régions peuvent se développer en neurones du même type à l'âge adulte. Cela contredit les théories précédentes, selon lesquelles des régions distinctes de l'embryon doivent générer différents types de neurones.

Chez les mammifères, le développement cérébral suit un cheminement intuitif : les cellules de l’amygdale embryonnaire, au début du développement, se retrouvent dans l’amygdale adulte. Les cellules du cortex embryonnaire se retrouvent dans le cortex adulte. Mais chez les oiseaux, " on observe une réorganisation extraordinaire du cerveau antérieur ", explique Güntürkün, " qui est totalement inattendue ".

Prises ensemble, ces études apportent la preuve la plus claire à ce jour que les oiseaux et les mammifères ont développé indépendamment des régions cérébrales responsables de la cognition complexe. Elles font également écho à des recherches antérieures du laboratoire de Tosches , qui ont montré que le néocortex des mammifères avait évolué indépendamment du DVR des reptiles.

Il semble néanmoins probable qu'il y ait eu une certaine hérédité à partir d'un ancêtre commun. Dans une troisième étude utilisant l'apprentissage profond, Kempynck et son coauteur Nikolai Hecker ont découvert que les souris, les poulets et les humains partagent certains segments d'ADN qui influencent le développement du néocortex ou du DVR, suggérant que des outils génétiques similaires sont à l'œuvre chez les deux types d'animaux. Comme l'avaient suggéré des études précédentes, les groupes de recherche ont découvert que les neurones inhibiteurs, ou ceux qui inhibent et modulent les signaux neuronaux, étaient conservés chez les oiseaux et les mammifères.

Les résultats n'ont cependant pas complètement résolu le débat entre Karten et Puelles. Quelles idées étaient les plus proches de la vérité ? Tosches a affirmé que Puelles avait raison, tandis que Güntürkün estimait que les résultats reflétaient mieux les idées de Karten, même s'ils plairaient en partie à Puelles. García-Moreno a partagé la question : " Tous deux avaient raison ; aucun n'avait tort ", a-t-il déclaré.

Comment développer l'intelligence

L'intelligence n'est pas accompagnée d'un mode d'emploi. Elle est difficile à définir, il n'existe pas de méthode idéale pour y parvenir et sa conception n'est pas optimale, a déclaré Tosches. Des innovations peuvent survenir tout au long de la biologie d'un animal, qu'il s'agisse de nouveaux gènes et de leur régulation, ou de nouveaux types de neurones, circuits et régions cérébrales. Mais des innovations similaires peuvent évoluer plusieurs fois indépendamment – ​​un phénomène appelé évolution convergente – et ce phénomène est observé tout au long de la vie.

" L’une des raisons pour lesquelles j’aime ces articles, c’est qu’ils mettent vraiment en évidence de nombreuses différences ", a déclaré Bradley Colquitt, neuroscientifique moléculaire à l'Université de Californie à Santa Cruz. " Cela permet de se demander : quelles sont les différentes solutions neuronales que ces organismes ont imaginées pour résoudre des problèmes similaires, comme vivre dans un monde complexe et s'adapter à un environnement terrestre en rapide évolution ? "

Les pieuvres et les calmars, indépendamment des mammifères et de leur propre
intelligence corporelle, ont développé des yeux semblables à des caméras. Les oiseaux, les chauves-souris et les insectes ont tous pris leur envol par leurs propres moyens. Les peuples anciens d'Égypte et d'Amérique du Sud ont construit indépendamment des pyramides – la forme structurelle la plus efficace et qui résistera à l'épreuve du temps, a déclaré García-Moreno : " Si on construit une tour, elle s'effondrera. Si on construit un mur, ça ne marchera pas. "

De même, " il existe un degré de liberté limité permettant de générer un cerveau intelligent, du moins chez les vertébrés ", a déclaré Tosches. En revanche, si l'on s'éloigne du monde des vertébrés, on peut générer un cerveau intelligent de manières bien plus étranges, du moins de notre point de vue. " C'est le Far West ", a-t-elle déclaré. Les pieuvres, par exemple, " ont développé leur intelligence de manière totalement indépendante ". Leurs structures cognitives ne ressemblent en rien aux nôtres, si ce n'est qu'elles sont constituées du même type cellulaire : le neurone. Pourtant, on a pu observer des pieuvres accomplir des prouesses incroyables, comme s'échapper d'aquariums, résoudre des énigmes, dévisser des couvercles de bocaux et porter des coquillages comme boucliers.

Il serait passionnant de comprendre comment les pieuvres ont développé leur intelligence grâce à des structures neuronales très divergentes, a déclaré Colquitt. Ainsi, il pourrait être possible d'identifier les contraintes absolues pesant sur l'évolution de l'intelligence chez toutes les espèces animales, et pas seulement chez les vertébrés.

De telles découvertes pourraient à terme révéler des caractéristiques communes à diverses intelligences, a déclaré Zaremba. Quels sont les éléments constitutifs d'un cerveau capable de penser de manière critique, d'utiliser des outils ou de former des idées abstraites ? Cette compréhension pourrait contribuer à la recherche d'une intelligence extraterrestre et à l'amélioration de notre intelligence artificielle. Par exemple, notre façon actuelle d'envisager l'utilisation des connaissances issues de l'évolution pour améliorer l'IA est très anthropocentrique. " Je serais vraiment curieux de voir si nous pouvons construire une intelligence artificielle similaire à celle des oiseaux ", a déclaré Kempynck." Comment pense un oiseau ? Pouvons-nous l'imiter ? "






 

Auteur: Internet

Info: https://www.quantamagazine.org/, Yasemin Saplakoglu, 7 avril 2025. * fait ici référence aux couches de matière grise et blanche qui recouvrent la surface supérieure du cerveau chez les vertébrés

[ homme-animal ] [ intellection multiscalaire ] [ contraintes évolutives partagées ] [ phénétique ] [ individuel - collectif ] [ murmurations ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste