biophysique
En résumé, nous avons réexaminé les aspects quantiques de la récolte de lumière dans la photosynthèse. Il est apparu clairement, à partir de considérations de base, qu'il n'y a pas d'équivalence entre la quanticité des processus et les cohérences observées dans les expériences de spectroscopie femtoseconde. Même la question très fondamentale de savoir si les cohérences non stationnaires des systèmes photosynthétiques peuvent être excitées par la lumière du soleil n'a pas encore été totalement clarifiée. Quelle que soit la configuration la préparation de l'état, la dynamique sera régie par les couplages associés du système et son interaction avec son environnement (bath)*. En outre, les affirmations concernant la persistance de ces cohérences dans les expériences femtoseconde ont été réévaluées de manière critique. En particulier, l'analyse détaillée d'un système exemplaire utilisée en biologie quantique - le complexe FMO** - montre sans ambiguïté l'absence de cohérence interexcitonnelle de longue durée sur les échelles de temps pertinentes dans ce système, à la fois aux températures cryogéniques et physiologiques. Au contraire, il est devenu évident que les signaux oscillants à longue durée de vie proviennent de modes vibratoires principalement issu de l'état électronique fondamental. Des analyses de données plus avancées et des traitements théoriques utilisant une paramétrisation réaliste de l'environnement modélisé (bath) sont nécessaires pour identifier clairement les signaux de cohérence. La discussion approfondie sur l'attribution antérieure de ces signatures spectrales, qui se développe dans la communauté depuis une décennie, souligne cette nécessité.
Le principal résultat positif de ce travail est l'amélioration des méthodes théoriques et expérimentales qui ont conduit à une meilleure compréhension des interactions système-bath responsables de la décohérence et de la dissipation dans les structures biologiques. La nature ne produit pas le bain (bath) pour éviter la décohérence des processus fonctionnels directs ; une telle approche ne serait certainement pas robuste. La nature, plutôt qu'essayer d'éviter la dissipation, l'exploite spécifiquement avec l'ingénierie des énergies sur site via le couplage excitonique* pour le transport direct de l'énergie. Le rôle des paramètres thermodynamiques dans le pilotage des fonctions biologiques est bien apprécié à d'autres niveaux. Ici, nous voyons que ce principe s'applique même aux processus de transfert d'énergie impliqués dans la photosynthèse qui se produisent sur des échelles de temps probablement plus rapides. La physique de base de la thermalisation étant utilisée pour imprimer une direction. Ce concept simple, maîtrisé par la nature dans toutes les dimensions temporelles et spatiales pertinentes, est une véritable merveille de la biologie.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
https://advances.sciencemag.org, 3 avril 2020. "Quantum biology revisited. Conclusions". By Jianshu Cao, Richard J. Cogdell, David F. Coker, Hong-Guang Duan, Jürgen Hauer, Ulrich Kleinekathöfer, Thomas L. C. Jansen, Tomáš Mančal, R. J. Dwayne Miller, Jennifer P. Ogilvie, Valentyn I. Prokhorenko, Thomas Renger, Howe-Siang Tan, Roel Tempelaar, Michael Thorwart, Sebastian Westenhof, Donatas Zigmantas.
*En physique, un système quantique ouvert est un système de quantique qui interagit avec un système quantique externe (bath). En général, ces interactions modifient considérablement la dynamique du système et entraînent une dissipation quantique, de sorte que les informations contenues dans le système sont perdues pour son environnement. Comme aucun système quantique n'est complètement isolé de son environnement, il est important de développer un tel cadre théorique pour traiter ces interactions afin d'améliorer la compréhension des systèmes quantiques. **Complexe Fenna-Matthews-Olson : complexe hydrosoluble, a été le premier complexe pigment-protéine à être analysé par spectroscopie aux rayons X ***Un exciton est une quasi-particule que l'on peut voir comme une paire électron-trou liée par des forces de Coulomb. Une analogie consiste à comparer l'électron et le trou respectivement à l'électron et au proton d'un atome d'hydrogène. Ce phénomène se produit dans les semi-conducteurs et les isolants. Mise en forme Mg
[
anabolisme
]
[
épigénétique
]
[
hyper-complexité
]