Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 483
Temps de recherche: 0.0322s

lassitude

Dans l’ennui, je dirais, ce qui nous arrive, c’est que nous accédons à une perception douloureuse de la répétition, la répétition se donne à nous sous le biais du monotone et par cette dimension du monotone, ce qui se produit, si vous y pensez bien, vous verrez que ça coïncide avec quelque chose... je m’excuse d’aller un peu vite, mais je crois qu’on peut le dire quand même ...ça correspond avec quelque chose de l’ordre de l’usure de la métaphore paternelle.

Les métaphores s’usent : regardez un mot d’esprit, il fait de l’effet un temps, un mot d’esprit s’use, une fois usé, effectivement il est monotone. Je dirais que l’usure de la métaphore, l’effet de cette usure... et cette usure se produit justement sous l’effet de l’impact de ces signifiants qui persistent dans le Réel et qui sont corrodants sur la métaphore ...cette usure, je dirais qu’elle est liée à l’apparition du déchet dans notre univers. [...]

L’usure de la métaphore, vous pouvez repérer qu’elle est lié à l’apparition dans notre univers du déchet,

– que ce déchet soit de l’ordre subjectif avec ce qu’on appelle la culpabilité ou le péché,

– ou que ce déchet soit même l’apparition de ce déchet qu’est notre corps propre dans la mesure ou notre corps dans la perspective de cet ennui ou de cette monotonie, ce qui lui arrive, c’est qu’il peut se mettre parfois à être, je dirais, soumis à une loi qui serait la loi exclusive du réel, je veux dire la loi de la pesanteur, je veux dire par là que lorsque notre corps se mettrait à se manifester par le fait qu’il pèse parce qu’il ne serait soumis qu’à la loi de la pesanteur, eh bien, vous avez là, l’accentuation de la fonction de ce déchet qu’est notre corps tout à l’opposé, si vous voulez, quand le corps est soumis à cet autre Réel qui est celui du signifiant qui l’allège, ce qui fait que vous voyez certaines personnes marcher dans la rue qui semblent ne pas peser, qui semblent être comme une plume, quel que soit leur poids, c’est quelque chose de cette nature et on peut dire que ce déchet qu’est le corps quand il se met à peser, eh bien, nous pouvons l’opposer à ce qui arrive au corps quand brusquement il s’allège, il s’allège par exemple dans la fête ou dans le repas totémique, ou tout simplement dans l’amour, dans le coup de foudre, la foudre sidération, ce que représente pour un homme ce signifiant de haute intensité psychique qu’est la femme, ce signifiant sidérant, il faut reconnaître qu’il a le pouvoir, en suscitant l’amour - et puis le terme de ce terme de femme fatale nous fait peut-être sentir que par cette fatalité, ce que l’homme rencontre de fatal, c’est quelque chose de l’ordre du signifiant du Nom du Père - eh bien, qu’est-ce qui se passe quand on perd la tête dans l’amour, ou le corps c’est que vous devenez tellement légers ou allégés que comme à la limite, comme le maniaque vous perdez votre lest, vous devenez fous, ne pesez plus rien, vous perdez le corps, la tête.

Et alors ce que je voulais vous signaler, c’est que cette consomption ou cette consumation du reste qu’est cette consumation du corps quand il ne pèse plus, eh bien, repérez que justement dans le repas totémique ou dans les fêtes qui sont étudiées dans les sociétés magiques, les restes, corrélativement à l’incorporation du père, il y a cette cérémonie, ce qui a été peu retenu par Freud, qui consiste à brûler les restes.

Auteur: Didier-Weill Alain

Info: La topologie et le temps, intervention lors du séminaire de Jacques Lacan, 8 mai 1979

[ causes ] [ calcification ]

 
Commentaires: 2
Ajouté à la BD par Coli Masson

complexité

Epigénétique. Sous ce nom, se cache un tremblement de terre qui fait vaciller la statue la plus emblématique du monde du vivant : le génome. Depuis un demi-siècle, l'ADN était considéré comme un coffre-fort protégeant les plans de l'être humain. Des instructions portées par un collier de 3 milliards de bases lues par d'infatigables nanomachines fabriquant nuit et jour des protéines. C'était trop simple ! "Il y a une deuxième couche d'informations qui recouvre le génome. C'est l'épigénome", résume Marcel Méchali de l'Institut de génétique humaine de Montpellier. En fait, le message génétique n'est pas gravé pour toujours dans les chromosomes. "Des protéines et des molécules viennent se greffer sur l'ADN de base et modifient sa lecture. Cela dépend de l'environnement, de l'air que vous respirez et peut-être même des émotions que vous ressentez à un moment donné. De plus, ces informations sont transmissibles d'une génération à l'autre", poursuit Marcel Méchali. Le poids des régulateurs Tout comme le cerveau, qui n'est pas tout à fait le même après la lecture d'un livre ou à la suite d'une conversation animée, l'ADN est une structure plastique. "Des jumeaux qui partagent le même génome ne réagissent pas de la même façon aux agressions extérieures ou aux médicaments", indique Marcel Méchali. En résumé, l'expression d'un gène varie au fil du temps, d'un individu à l'autre et même d'une cellule à sa voisine. Les experts résument la nouvelle donne d'une phrase : "Ce ne sont pas les gènes qui comptent, mais les facteurs qui assurent leur régulation." Ces régulateurs qui contestent le pouvoir des gènes sont innombrables et souvent inattendus. Des molécules, des protéines, des micro-ARN et même des "pseudo-gènes". "La lecture du génome s'effectue dans des usines à transcription. Elles sont très localisées, mais très riches au plan chimique", ajoute Peter Fraser du Babraham Institute de Cambridge en Angleterre. Guerre des sexes Ce concept remet en cause de très nombreux dogmes, à commencer par celui de la non-transmission des caractères acquis. Certains généticiens pensent ainsi qu'une partie de nos maladies, voire de nos comportements est la conséquence du mode de vie de nos grands-parents. Récemment, le chercheur britannique Marcus Pembrey a démontré, en réanalysant d'anciennes données épidémiologiques, que les préférences alimentaires de préadolescents suédois du début du siècle dernier ont influencé la santé de leurs descendants sur au moins deux générations. Ce chercheur très atypique est connu pour une formule qui résume bien la situation : "Il y a des fantômes qui rôdent dans nos gènes." Darwin et Lamarck vont se retourner dans leur tombe en entendant ces discours, qui brouillent les frontières entre l'inné et l'acquis. Dans ce contexte, les chercheurs s'intéressent aux premiers instants qui suivent la fécondation de l'ovocyte par un spermatozoïde. Une question taraude la communauté scientifique : comment l'ovule décide-t-il d'être un XX (femme) ou un XY (homme) ? En d'autres termes, quand démarre la guerre des sexes ? A l'Institut Curie à Paris, Edith Heard, spécialiste de la biologie du développement, s'intéresse aux mécanismes d'inactivation du chromosome X chez les mammifères. Elle répond simplement à cette question : "Dès les premiers jours." Là encore, ce sont des facteurs aléatoires qui lancent les dés de la sexualité. En fait, ce sont des collisions entre des molécules dans les toutes premières cellules qui font de l'homme un Mozart ou une Marilyn Monroe."C'est la loi du hasard", résume Edith Heard. Minuscules mais puissants Reste enfin la question qui tue. Pourquoi l'homme et le chimpanzé, qui partagent plus de 99 % de leurs gènes, sont-ils si différents l'un de l'autre ? Certains chercheurs, comme l'Américaine Katherine Pollard, se sont lancés dans la quête du "gène de l'humanité" pour l'instant introuvable. D'autres voient dans ces différences la confirmation que ce ne sont pas les gènes qui comptent, mais toutes leurs variations. En réalité, la cellule est un indescriptible chaos. Elle contient, entre autres, des centaines de minuscules fragments d'ARN d'une puissance extravagante. Ils sont capables de bloquer un gène 10.000 fois plus gros. Comme si une mouche posée sur le pare-brise du TGV Paris-Marseille interdisait son départ. Une chose est sûre, ce nouvel horizon de la biologie va générer des océans de données qu'il faudra stocker, analyser et interpréter. Un défi presque surhumain, qui conduira peut-être à la découverte du gène de l'obstination.

Auteur: Perez Alain

Info: les échos, 27,09,2010, La nouvelle révolution génétique

[ sciences ] [ hyper-complexité ] [ adaptation ]

 

Commentaires: 0

physique fondamentale

On m’a dit que je gaspillais mon temps 

Malgré son emploi du temps surchargé du à son prix Nobel de physique 2022 partagé avec l’Américain John F. Clauser et ­l’Autrichien Anton Zeilinger, le physicien nous a reçus et livré un entretien inédit sur ses recherches, avec la passion qui l’anime.

AM - Vous venez de recevoir le prix Nobel de physique 2022 pour vos travaux sur l’intrication qui ont permis d’appréhender le cœur de la théorie quantique. Avant de nous expliquer vos recherches, pouvez-vous nous donner un aperçu de la "physique quantique" ?

AA - La physique quantique a été développée au début du XXe siècle pour rendre compte des propriétés du monde microscopique : les atomes, les électrons… Ce que la physique classique n’arrivait pas à faire. À la fin du XIXe siècle, on savait, par exemple, que la matière était formée de charges positives et négatives qui s’attirent. Mais pourquoi, alors, cette matière ne s’effondrait-elle pas sur elle-même ? La physique classique ne pouvait apporter aucune explication.

Pour le comprendre, il a fallu recourir à la physique quantique, notamment à l’un de ses premiers concepts : la dualité onde/particuleAinsi, un objet, par exemple la lumière, que nous décrivons comme une onde, doit aussi être considérée comme formée de grains, à savoir les photons. Réciproquement, des objets dont nous pensons que ce sont des particules – un électron, un atome, un neutron – doivent aussi, dans certaines circonstances, être considérés comme des ondes. C’est la base de ce qu’on appelle "la première révolution quantique". Cela a permis de comprendre la stabilité de la matière, la conduction du courant électrique ou la façon dont la matière émet ou absorbe la lumière.

Et puis dans les années 1940-1960, ce fut l’invention du transistor et du laser qui s’appuyaient sur cette théorie quantique. Ces deux technologies n’ont pas été élaborées par un bricoleur dans un garage en Californie, mais par les plus grands physiciens de l’époque qui ont eu des prix Nobel. Une fois qu’on a le transistor, on a les circuits intégrés à la base des ordinateurs.

AA - Et qu’appelle-t-on deuxième révolution quantique ?

AA - Elle a été lancée par un article d’Albert Einstein, de Boris Podolsky et de Nathan Rosen en 1935. Ils découvrent dans les équations mathématiques de la physique quantique des états où deux particules qui ont interagi, mais qui n’interagissent plus, semblent continuer à former un tout inséparable. C’est ce que l’on appellera l’"intrication". Dès le début, le physicien Niels Bohr s’était opposé aux conclusions d’Einstein. Son homologue John Bell a alors proposé, en 1964, de faire des expérimentations pour trancher la discussion.

Il a ensuite fallu plusieurs décennies pour que les autres physiciens réalisent la portée des travaux de Bell. Quand j’ai commencé ma thèse en 1974, nombre d’entre eux pensaient que l’intrication n’était pas différente de la dualité onde/particule. Puis, on a pris conscience de sa nouveauté. C’est pourquoi je parle d’une "deuxième révolution quantique", d’abord sur le plan de la recherche fondamentale, mais également sur les nouvelles applications que cela a suscitées, comme la cryptographie ou les ordinateurs quantiques.

AM - Comment a-t-on validé ce phénomène "d’intrication" ?

AA - Il fallait créer une paire de photons et une méthode pour montrer que, même éloignés, les deux photons demeuraient corrélés. Le photon, c’est de la lumière et la lumière a une polarisation. Un polariseur est un instrument d’optique qui a deux sorties associées à l’orientation de son axe : tout l’objet du test est de regarder comment les résultats dépendent de cette orientation. Si les polariseurs sont parallèles, vous avez une corrélation parfaite, vous trouvez les mêmes résultats des deux côtés. Imaginez que je lance deux pièces à 10 mètres de distance l’une de l’autre, ça a l’air aléatoire, mais si j’ai pile d’un côté, j’ai pile de l’autre, et si j’ai face d’un côté, j’ai face de l’autre. C’est la corrélation prévue pour les photons intriqués. Et cette corrélation est si forte qu’on ne peut en rendre compte que par la physique quantique.

AM - Quelles expériences ont été réalisées pour établir cette intrication ?

AA - La première expérience a été faite par John Clauser et Stuart Freedman en 1964. Celles que j’ai faites dix ans plus tard et celles qu’Anton Zeilinger a effectuées seize ans après moi ont des niveaux de raffinement différents, mais portent sur des objets identiques : il s’agit de deux photons émis par la même source et qui s’éloignent l’un de l’autre dans des directions opposées. J’ai mis cinq ans à fabriquer ma source. J’ai commencé en 1974 et les premières paires de photons intriqués ont été obtenues vers 1979-1980. Pour ce faire, je prends des atomes, je tape dessus avec des lasers, je les "excite" de façon contrôlée, et ils n’ont pas d’autre choix que d’émettre les deux photons dont j’ai besoin.

Après l’émission des photons et avant leur détection, il faut que les deux polariseurs soient éloignés l’un de l’autre et que leur orientation soit déterminée au dernier moment afin qu’ils ne s’influencent pas. Ainsi, mes deux polariseurs sont distants de 6 mètres de la source et je change leur orientation pendant le temps de vol des photons qui est de 20 nanosecondes… Comment tourner un appareil en 20 milliardièmes de seconde ? C’est impossible, mais j’ai eu l’idée de construire une espèce d’aiguillage capable de le faire et l’expérience a réussi.

AM - D’où vient votre passion pour la physique ?

Je suis originaire du village d’Astaffort (Lot-et-Garonne) à une époque où les champs étaient labourés avec le cheval ou les bœufs, mais j’étais fasciné par le moindre objet technique, par exemple les outils des artisans. Je me souviens de la visite, à Fumel, d’un haut-fourneau qui fournissait de la fonte transformée en tuyaux comme ceux que j’avais vu poser dans mon village pour installer l’eau courante. À l’école primaire, les instituteurs et institutrices faisaient ce que l’on appelait des "leçons de choses". J’étais aussi un grand lecteur de Jules Verne.

Arrivé au lycée d’Agen, je me réjouissais à l’idée de faire de la physique-chimie, mais on ne commençait qu’en seconde. J’ai eu alors un professeur formidable, Maurice Hirsch, qui nous faisait des expériences extraordinaires. Il a décuplé mon intérêt pour la physique et m’a enseigné des méthodes que j’ai conservées toute ma vie.

AM - Quels conseils donneriez-vous aux jeunes qui souhaiteraient se lancer dans votre discipline ?

AA - Il est clair qu’il y a un problème de moyens financiers. La loi de programmation de la recherche fait des propositions intéressantes, mais quand on regarde les budgets associés, ils sont inférieurs à ce que l’Académie des sciences avait estimé être le minimum pour que la recherche française puisse rester au niveau des concurrents étrangers. Les crédits de base, y compris ceux de l’Agence nationale de la recherche, sont décevants, même s’ils ne sont pas négligeables. Heureusement, on peut obtenir des crédits européens pour des projets innovants jugés au meilleur niveau, mais seul un petit nombre de chercheurs peut en bénéficier.

On me demande souvent si, aujourd’hui, on pourrait faire la même chose que ce que j’ai fait dans les années 1970-1980. Certainement pas de la même façon, mais un chercheur titulaire peut se lancer dans un projet de recherche original. Au pire, sa carrière sera freinée mais, moi aussi, je courais ce risque. Comme j’avais un poste permanent, je pouvais me lancer dans une recherche à long terme sans craindre de perdre mon emploi d’enseignant-chercheur.

On m’a dit que je gaspillais mon temps, que mon sujet n’avait aucun intérêt, mais je gardais mon emploi. Il en est toujours de même. Si un scientifique du CNRS ou de l’université se lance dans une recherche ­désapprouvée par les comités, il peut persévérer s’il accepte un certain retard de carrière. Bien sûr, si au bout de dix ans son travail n’a débouché sur rien, il doit se remettre en cause, les comités n’avaient peut-être pas tort.



 

Auteur: Aspect Alain

Info: Interviewé par Anna Musso pour https://www.humanite.fr, 8 Novembre 2022

[ nano-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste