Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 7
Temps de recherche: 0.0351s

causes-effets

On dit qu'en additionnant une infinité d'événements qui découlent les uns des autres, un vol de papillon au Japon peut déclencher un cyclone aux États-Unis.

Auteur: Thilliez Franck

Info: La chambre des morts

[ effet papillon ]

 

Commentaires: 0

président des Etats-Unis

Le président américain reste immobile, comme sonné. Le mathématicien observe cet homme primaire, et il se conforte dans l’idée désespérante qu’en additionnant des obscurités individuelles on obtient rarement une lumière collective.

Auteur: Le Tellier Hervé

Info: L'anomalie

[ potus ] [ sécrétion communautaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

incarnation

"Corps", "âme" et "esprit " peuvent désigner des domaines phénoménaux qui peuvent être détachés en tant que thèmes d'investigations définies ; dans une certaine mesure, leur indéfinition ontologique pourrait ne pas être importante. Cependant, lorsque nous en arrivons à la question de l'Être de l'homme, il ne s'agit pas de quelque chose que nous pouvons simplement calculer en additionnant les types d'Être que le corps, l'âme et l'esprit possèdent respectivement - types d'Être dont la nature n'a pas encore été précisée. Et même si nous devions tenter pareille démarche ontologique, une certaine idée de l'Être de cet ensemble doit être présupposée.

Auteur: Heidegger Martin

Info: Être et temps

[ triade sémantique ] [ trinité ]

 

Commentaires: 0

Ajouté à la BD par miguel

clochard

Les mendiants ne travaillent pas, dit-on. Mais alors, qu’est-ce que le travail ? Un terrassier travaille en maniant un pic. Un comptable travaille en additionnant des chiffres. Un mendiant travaille en restant dehors, qu’il pleuve ou qu’il vente, et en attrapant des varices, des bronchites, etc. C’est un métier comme un autre. Parfaitement inutile, bien sûr – mais alors bien des activités enveloppées d’une aura de bon ton sont elles aussi inutiles. En tant que type social, un mendiant soutient avantageusement la comparaison avec quantité d’autres. Il est honnête, comparé aux vendeurs de la plupart des spécialités pharmaceutiques ; il a l’âme noble comparé au propriétaire d’un journal du dimanche ; il est aimable à côté d’un représentant de biens à crédit – bref c’est un parasite, mais un parasite somme toute inoffensif. Il prend à la communauté rarement plus que ce qu’il lui faut pour subsister et – chose qui devrait le justifier à nos yeux si l’on s’en tient aux valeurs morales en cours – il paie cela par d’innombrables souffrances. Je ne vois décidément rien chez un mendiant qui puisse le faire ranger dans une catégorie d’êtres à part, ou donner à qui que ce soit d’entre nous le droit de le mépriser.

Un mendiant, à voir les choses sans passion, n'est qu'un homme d'affaires qui gagne sa vie comme tous les autres hommes d'affaires, en saisissant les occasions qui se présentent. Il n'a pas plus que la majorité de nos contemporains failli à son honneur : il a simplement commis l'erreur de choisir une profession dans laquelle il est impossible de faire fortune.

Auteur: Orwell George

Info: Dans la dèche à Paris et à Londres, 1933

[ SDF ] [ dignité ] [ éloge ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel

orient-ponant

La pensée chinoise archaïque

Quelques éléments sur ce que nous savons aujourd’hui de la pensée chinoise archaïque (XVe – XIe siècles av. J.-C.).

La manière dont les Chinois parlent et écrivent constitue, chacun le sait, un langage dont la structure grammaticale est très éloignée de la nôtre, occidentale. Ce que nous appelons les " mots d’armature " : les articles, les prépositions, les conjonctions, ces mots qui nous permettent de relier entre eux les " mots de contenu " : les substantifs, les verbes, les adjectifs qualificatifs, les adverbes, ces mots d’armature qui constituent à nos yeux le " tissu conjonctif " de la langue, sont pour la plupart absents du chinois.

Alors que nous, Occidentaux, nous attendons à lire ces mots d’armature dans un texte comme la manière requise pour l’articuler, nous constatons à la place en chinois des séquences de noms de choses à la queue leu-leu, lesquels peuvent éventuellement être reliés par quelques éléments syntaxiques mais en tout cas d’une façon beaucoup plus rudimentaire que chez nous.

Il existe en particulier dans la phrase chinoise un mot que nous écrivons dans notre graphie comme " yeh " et que nous qualifions de marqueur d’affirmation, pour préciser la façon dont il sert à relier deux notions. Un philologue de la Chine, Kyril Ryjik, dit à propos de yeh : " … ce caractère entretient, entre son sens original et son emploi opératoire, le type de rapport qu’entretient la notion de “copule” […]. Il opère avec une notion de très forte jonction entre deux termes " (Ryjik 1980 : 218). Deux termes chinois sont rapprochés et il est suggéré à l’aide du terme yeh qu’il existe un lien spécial entre les deux.

Chad Hansen, commentateur éminent de la langue chinoise archaïque, explique : 

" Il n’y a pas en chinois de est, pas d’expression prédicative dénotant l’identité ou l’inclusion. La juxtaposition de deux termes (ordinairement suivis de la particule yeh) constitue une phrase relationnelle grossièrement équivalente à une phrase affirmant l’identité ou l’inclusion […] La phrase pai ma ma yeh (blanc cheval cheval “est”) : “(du) cheval blanc ‘est’ (du) cheval”, est un exemple d’une telle structure de phrase " (Hansen 1983 : 45). 

Par ailleurs, si je prononce l’un après l’autre les mots chinois pour cheval et pour bœuf et que je fais suivre leur séquence de yeh : " cheval bœuf yeh ", je laisse entendre qu’il existe quelque chose reliant les deux termes, quelque chose fait qu’ils aient été mentionnés ensemble et je réunis ce faisant automatiquement ces deux notions sous un seul concept qui conduit à parler de ce que nous caractérisons nous comme " animal de trait ", parce que l’union établie entre le bœuf et le cheval par la particule yeh met en avant ce qui nous apparaît comme un trait commun aux deux notions évoquées. Si l’on recourt au vocabulaire de la théorie mathématique des ensembles, on dira que leur rapprochement souligné par yeh met en avant l’intersection de leurs caractères propres : le principe de l’animal de trait ne combine pas l’équinité et la bovinité selon leur union, additionnant l’ensemble des chevaux à celui des bœufs, mais selon leur intersection : là où la blancheur recoupe l’équinité, nous avons " du cheval blanc ", là où l’équinité rencontre la bovinité, nous trouvons le principe de l’animal de trait, en l’occurrence le fait qu’ils puissent l’un et l’autre tracter un objet lourd, comme un chariot, une charrue, la meule d’un moulin à grain, etc. Et à partir de là, la conjonction cheval bœuf signifie en chinois " animal de trait ".

Nous disposons dès lors d’éléments susceptibles de nous faire appréhender de plus près cette notion d’affinité qui nous semble propre à la pensée totémique dont je considère, à la suite de Durkheim et de Mauss, qu’il s’agit avec elle des échos de la pensée archaïque chinoise dans le reste de la zone circum-pacifique, échos dus à un processus historique de diffusion à partir de la Chine ou à une identité foncière trouvant sa source dans leur origine commune.

Deux notions sont rapprochées, sans qu’il soit précisé pour quelle raison précise elles le sont, le seul geste posé étant cette suggestion d’un lien entre les deux. Comment opérons-nous, par exemple en français, dans un contexte similaire ? Dans un usage de copule, nous disposons de deux verbes : être et avoir. Le verbe être, nous l’utilisons pour exprimer la nature de la chose : " Le cheval est blanc ", où un élément de l’ordre d’une caractéristique vient compléter la description de la chose jusque-là : une nouvelle qualification est apportée en complément. Mais nous utilisons aussi le verbe être pour dire : " Le cheval est un mammifère ", ce qui nous permet de signaler l’inclusion d’une sorte dans une autre sorte. La sorte " cheval " est l’une des composantes de la sorte " mammifère ".

Le verbe avoir a un sens qui peut être en français celui de la possession mais également celui d’un lien plus lâche, à la façon de ce yeh que je viens d’évoquer. Quand nous disons : " Le pharaon et la pyramide ", nous savons qu’il existe un lien entre les deux sans qu’il soit clair de quel lien précis nous voulons parler. Est-ce le fait que le pharaon a une pyramide ? Que le pharaon a fait bâtir une pyramide ? Quoi qu’il en soit, que nous précisions d’une manière ou d’une autre, nous savons qu’il existe un lien, qu’il existe – pour recourir à ce terme vague que nous utilisons en Occident pour évoquer la pensée totémique ou celle de la Chine archaïque – une affinité entre le pharaon et la pyramide.

Un autre exemple, quand on dit " L’abeille et son miel ", on peut vouloir dire que l’abeille fait du miel ou que l’abeille dispose de miel. On peut dire aussi " le miel de l’abeille ". Là aussi, nous pouvons préciser la relation exacte mais quand on se contente de dire " l’abeille et son miel ", on procède comme le faisait le chinois dans la forme archaïque de sa langue quand il rapprochait, rassemblait, les deux notions à l’aide de ce terme yeh. Un autre exemple encore, fenêtre et verre : " la fenêtre est en verre ", " il y a du verre dans la fenêtre ", " le verre de la fenêtre ", etc. Tout cela demeure de l’ordre du réversible, d’une symétrie essentielle entre les deux notions rapprochées, alors que, par contraste, les langues de l’Occident, aussi haut que nous puissions retracer leur ascendance, sont familières de la relation anti-symétrique d’inclusion, ingrédient indispensable du raisonnement scientifique. L’émergence du discours théorique qu’est la science a permis la naissance d’une technologie qui soit à proprement parler de la " science appliquée ", par opposition à la technologie résultant de la méthode empirique de l’essai et erreur, la seule que connaissait la culture humaine, à l’Ouest comme à l’Est, dans la période qui précéda le XVIIe siècle.

Le moyen de signifier la relation d’inclusion manquait au chinois, du coup quand il s’agissait d’indiquer un rapport entre deux notions, n’existait dans tous les cas de figure que l’option d’indiquer une proximité, un apparentement, ou comme nous nous exprimons, une " affinité ", faute de pouvoir qualifier la relation plus précisément. Impossible dans ce contexte d’opérer une véritable classification de l’ensemble de ces notions : nous ne pouvons au mieux qu’en établir la liste.

H. G. Creel explique : " Le point crucial est que les anciens Chinois n’étaient dans l’ensemble ni des penseurs systématiques ni ordonnés […]. Ils étaient des cataloguistes infatigables ; ils n’étaient pas systématiciens " (in Hansen 1983 : 25).

Pour qu’un classement systématique puisse être opéré dans l’espace d’une langue, il faut qu’elle dispose parmi ses outils de cette relation d’inclusion et qu’elle permette en particulier d’utiliser le verbe être – ou ce qui en tient lieu – dans le sens qui est le sien quand nous disons : " Le cheval est un animal " ou " Le rat est un mammifère ", soit l’inclusion d’une sorte dans une autre.

Si vous êtes familier de l’œuvre de Jorge Luis Borges. Vous n’ignorez pas alors qu’il nous a diverti avec de petits textes mettant habilement en scène certains paradoxes essentiels. Parmi ceux-ci, celui qui est consacré à " Pierre Ménard, auteur du Don Quichotte ". Ménard, explique Borges, est considéré comme l’un des grands auteurs des années 1930 parce qu’il est parvenu à s’imprégner à ce point de l’esprit du temps de de Cervantes, qu’il a pu réécrire à l’identique deux chapitres (et une partie importante d’un troisième) du Don Quichotte. L’idée est ridicule bien sûr parce que l’on peut imaginer aussi bien qu’au lieu de s’imprégner à la perfection de l’esprit d’une époque, le Ménard en question se soit contenté de recopier le texte du Don Quichotte. Borges avait par ailleurs saisi dans l’une de ses petites fables ce qu’avançait Creel quand il rapportait que les Chinois anciens étaient " des cataloguistes infatigables et non des systématiciens ". Selon Borges, on pouvait trouver dans un ancien texte chinois que :

" Les animaux se divisent en : a) appartenant à l’Empereur, b) embaumés, c) apprivoisés, d) cochons de lait, e) sirènes, f) fabuleux, g) chiens en liberté, h) inclus dans la présente classification, i) qui s’agitent comme des fous, j) innombrables, k) dessinés avec un pinceau très fin en poils de chameau, l) etc., m) qui viennent de casser la cruche, n) qui de loin semblent des mouches ".

Un inventaire sans doute, mais privé de tout caractère systématique, au pôle opposé d’une classification fondée sur l’emboîtement des sortes sur plusieurs niveaux, les niveaux étant ici mélangés. Il s’agit d’une plaisanterie bien entendu et non d’un vrai texte chinois, mais Borges a su saisir ce qui caractérisait à nos yeux d’Occidentaux, l’essence de la … chinoiserie.

Lucien Lévy-Bruhl caractérisait de la même manière la " mentalité primitive ", l’autre nom chez lui, nous le verrons, du totémisme, qui est aussi ce que j’appelle, comme leur synonyme, et à la suite de Durkheim et Mauss, la pensée chinoise archaïque : 

" … les connaissances ne se hiérarchisent pas en concepts subordonnés les uns aux autres. Elles demeurent simplement juxtaposées sans ordre. Elles forment une sorte d’amas ou de tas " (Lévy-Bruhl 1935 : xiv).

Il s’agit bien avec la " mentalité primitive " selon Lévy-Bruhl, le totémisme et la pensée chinoise archaïque d’une seule et même entité.

Auteur: Jorion Paul

Info: 20 janvier 2024, sur son blog.

[ langues comparées ] [ listes ] [ éparpillement ] [ imprécision sémantique ] [ historique ] [ différences ] [ nord-sud ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel