Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 287
Temps de recherche: 0.0461s

réalité subatomique

Des chercheurs font une découverte importante sur le ferromagnétisme

Une équipe de chercheurs japonais vient de réaliser une percée majeure dans le domaine de la physique quantique. Leurs travaux démontrent en effet que le ferromagnétisme, un état ordonné des atomes, peut être provoqué par une augmentation de la motilité des particules, et que les forces répulsives entre les atomes sont suffisantes pour le maintenir. Voici pourquoi c'est important.

Qu’est-ce que le ferromagnétisme ?

Chaque atome d’un matériau ferromagnétique est comme un petit aimant microscopique. Imaginez alors chacun de ces atomes avec son propre nord et son propre sud magnétiques.

Normalement, ces minuscules aimants sont en proie au chaos, pointant dans toutes les directions possibles, rendant leurs effets magnétiques mutuellement insignifiants. C’est un peu comme si une foule de personnes se promenait dans toutes les directions, chacune ayant son propre itinéraire, rendant difficile de discerner une tendance générale.

Cependant, lorsque vous refroidissez ce matériau en dessous d’une température spécifique très froide, appelée température de Curie, quelque chose de magique se produit : chaque personne de cette même foule commence soudainement à suivre le même chemin, comme si elles suivaient un chef de file invisible.

Dans le monde des atomes, cela se traduit par tous les petits aimants s’alignant dans une direction commune. C’est comme si une armée d’aimants se mettait en formation, tous pointant dans la même direction avec un but commun.

Vous venez alors de créer un champ magnétique global. Cette unification des orientations magnétiques crée en effet une aimantation macroscopique que vous pouvez ressentir lorsque vous approchez un objet aimanté à proximité. C’est ce qu’on appelle le ferromagnétisme.

De nombreuses applications

On ne s’en pas forcément compte, mais ce phénomène est à la base de nombreuses technologies modernes et a un impact significatif sur notre vie quotidienne.

Pensez aux aimants sur nos réfrigérateurs, par exemple. Ils sont là, fidèles et puissants, tenant en place des photos, des listes de courses et autres souvenirs. Tout cela est rendu possible grâce à la capacité du ferromagnétisme à maintenir un champ magnétique stable, permettant aux aimants de s’attacher fermement aux surfaces métalliques.

Et que dire de nos haut-parleurs ? Ces merveilles de l’ingénierie audio tirent en effet parti du ferromagnétisme pour produire des sons que nous pouvons entendre et ressentir. Lorsque le courant électrique traverse la bobine d’un haut-parleur, il crée un champ magnétique qui interagit avec un aimant permanent, provoquant le mouvement d’un diaphragme. Ce mouvement génère alors des ondes sonores qui nous enveloppent de musique, de voix et d’effets sonores, donnant vie à nos films, chansons et podcasts préférés.

Les scanners d’IRM sont un autre exemple. Ces dispositifs révolutionnaires exploitent en effet les propriétés magnétiques des tissus corporels pour produire des images détaillées de nos organes, de nos muscles et même de notre cerveau. En appliquant un champ magnétique puissant et des ondes radio, les atomes d’hydrogène dans notre corps s’alignent et émettent des signaux détectés par l’appareil, permettant la création d’images en coupe transversale de notre anatomie interne.

Vous l’avez compris, en comprenant mieux les mécanismes sous-jacents du ferromagnétisme, les scientifiques peuvent donc exploiter cette connaissance pour développer de nouvelles technologies et améliorer celles qui existent déjà.

Cela étant dit, plus récemment, des chercheurs japonais ont fait une découverte qui étend notre compréhension de ce phénomène à des conditions et des mécanismes jusque-là inconnus.

L’ordre naît aussi du mouvement

Comme dit plus haut, traditionnellement, on pensait que le ferromagnétisme pouvait être induit par des températures très froides, où les atomes seraient suffisamment calmes pour s’aligner dans une direction commune. Ici, les scientifiques ont démontré que cet état ordonné des atomes peut également être provoqué par une augmentation de la motilité des particules.

En d’autres termes, lorsque les particules deviennent plus mobiles, les forces répulsives entre les atomes peuvent les organiser dans un état magnétique ordonné.

Cela représente une avancée majeure dans le domaine de la physique quantique, car cela élargit le concept de matière active aux systèmes quantiques.

Notez que la matière active est un état dans lequel des agents individuels s’auto-organisent et se déplacent de manière organisée sans besoin d’un contrôleur externe. Ce concept a été étudié à différentes échelles, de l’échelle nanométrique à l’échelle des animaux, mais son application au domaine quantique était jusqu’ici peu explorée.

Pour ces travaux, l’équipe dirigée par Kazuaki Takasan et Kyogo Kawaguchi, de l’Université de Tokyo, a développé un modèle théorique dans lequel les atomes imitent le comportement des agents de la matière active, comme les oiseaux en troupeau. Lorsqu’ils ont augmenté la motilité des atomes, les forces répulsives entre eux les ont réorganisés dans un état ordonné de ferromagnétisme.

Cela signifie que les spins, le moment cinétique des particules et des noyaux subatomiques, se sont alignés dans une direction, tout comme les oiseaux en troupeau font face à la même direction lorsqu’ils volent.

Image schématique du ferromagnétisme induit par l’activité dans la matière active quantique. Ici, les atomes en mouvement avec des spins présentent l’ordre ferromagnétique (c’est-à-dire s’alignant dans une direction) comme une volée d’oiseaux représentée ci-dessus. Crédits : Takasan et al 2024

Quelles implications ?

Ce résultat, obtenu par une combinaison de simulations informatiques, de théories du champ moyen et de preuves mathématiques, élargit notre compréhension de la physique quantique et ouvre de nouvelles voies de recherche pour explorer les propriétés magnétiques des matériaux à des échelles microscopiques.

Cette découverte pourrait notamment avoir un impact significatif sur le développement de nouvelles technologies basées sur les propriétés magnétiques des particules.

Par exemple, la mémoire magnétique est une technologie largement utilisée dans les dispositifs de stockage de données, tels que les disques durs et les bandes magnétiques. En comprenant mieux les mécanismes qui sous-tendent le ferromagnétisme, les scientifiques pourraient alors concevoir des matériaux magnétiques plus efficaces et plus économes en énergie pour ces applications, ce qui pourrait conduire à des capacités de stockage accrues et à des temps d’accès plus rapides pour les données.

De plus, l’informatique quantique est un domaine en plein essor qui exploite les propriétés quantiques des particules pour effectuer des calculs à une vitesse beaucoup plus rapide que les ordinateurs classiques. Les qubits, les unités de calcul de l’informatique quantique, peuvent être réalisés à l’aide de diverses plateformes, y compris des systèmes magnétiques.

La capacité de contrôler et de manipuler le ferromagnétisme à l’échelle des particules pourrait donc ouvrir de nouvelles voies pour la réalisation et la manipulation de qubits magnétiques, ce qui pourrait contribuer à la réalisation de l’informatique quantique à grande échelle.

Ce ne sont ici que des exemples. Le point à retenir est qu’en comprenant mieux les mécanismes qui sous-tendent ce phénomène, les scientifiques pourraient être en mesure de concevoir des matériaux magnétiques plus efficaces pour beaucoup d’applications.

 

Auteur: Internet

Info: https://www.science-et-vie.com - 5 mai 2024, Brice Louvet, Source : Physical Review Research.

[ électrons ] [ protons ] [ neutrons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

intelligence artificielle

Cinq indices pour repérer les contenus écrits par ChatGPT, Bard ou d'autres robots conversationnels

Voici des astuces pour détecter ces textes qui ne sont pas écrits par des humaines.

1) Elles font des répétitions (mais pas de fautes)

Donc Si vous trouvez une coquille (faute de frappe, de grammaire, etc.) dans un texte, il s'agit d'un bon moyen de voir que l'article que vous lisez a été au minimum retouché par un être humain. En revanche, les articles rédigés par une IA sans supervision humaine sont souvent truffés de répétitions. L'écriture générative a en effet tendance à reproduire les mêmes termes et structures de phrases – même si c'est de moins en moins le cas. Les IA sont de plus en plus performantes et leurs utilisateurs savent également de mieux en mieux les utiliser pour contourner ces écueils.

Des logiciels ont même été développés afin de rendre encore plus humains les textes écrits par une IA. Le plus connu s'appelle Undetectable.ai et permet "d'humaniser" les textes artificiels en les confrontant aux principaux détecteurs d'IA qui existent. De fait, ces détecteurs deviennent de moins en moins fiables. "Open AI [l'entreprise créatrice de ChatGPT] a récemment abandonné son détecteur, car ça ne marche pas", fait remarquer Virginie Mathivet, spécialiste en la matière.

2 Elles sont capables d'affirmer des absurdités

Les IA sont très performantes pour les tâches très codifiées, comme l'orthographe, mais elles peuvent affirmer des absurdités sans sourciller. "Si vous demandez à une IA d'écrire une recette d'omelette aux œufs de vache, elle peut tout à fait le faire." Indique Amélie Cordier, ingénieure spécialiste des IA. 

Les sites qui utilisent des IA pour produire des articles à la chaîne, à partir de contenus trouvés sur internet, sont souvent confrontés à ce problème. Récemment, le site The Portal, qui traite de l'actualité du jeu vidéo, s'est fait épingler sur Twitter par le journaliste Grégory Rozières. Certains articles contiennent en effet de fausses informations grossières, car l'IA qui les rédige a repris au premier degré des blagues trouvées sur Reddit.

Lorsque vous lisez un article et qu'une information semble absurde, ou qu'un chiffre vous paraît démesuré, cela peut donc être la marque d'une rédaction non-humaine. Pour s'en assurer, le mieux est alors de vérifier l'information douteuse grâce à d'autres sources de confiance. "Cela revient à faire du fact-checking, c'est à l'humain d'avoir un regard critique", commente Virginie Mathivet.

3) Elles font preuve d'une productivité inhumaine

La rédaction par IA est encore loin d'être un gage de qualité, mais permet de produire un très grand nombre d'articles en un temps record. Prudence donc face aux sites qui publient quotidiennement une quantité faramineuse d'articles, sans pour autant employer de nombreuses personnes. "Si on voit qu'un blog publie 200 articles par jour sous le même nom, c'est un indice", explique Virginie Mathivet. Certains articles écrits par des robots sont signés par un nom, comme s'ils avaient été rédigés par une personne. Si cette signature semble trop prolifique, l'utilisation d'une IA est à suspecter fortement. Sur le site The Portal, déjà cité plus haut, un même "journaliste" a ainsi signé près de 7 000 articles en seulement neuf jours.

De plus, si les articles entre eux comportent de nombreuses similitudes dans leur forme et leur structure, il y a fort à parier que ceux-ci soient rédigés automatiquement. Les IA ont en effet tendance à produire des contenus très homogènes, surtout s'ils sont créés à partir de la même consigne utilisée en boucle. "L'IA imite, c'est la façon par laquelle elle fonctionne. Elle homogénéise un peu tout", fait remarquer Amélie Cordier.

4 Elles écrivent mal et citent rarement leurs source

Même si elles signent parfois d'un nom humain, les IA ne peuvent pas incarner leurs articles de la même manière qu'un journaliste en chair et en os. Si un journaliste n'a strictement aucune existence en ligne en dehors de sa page auteur, cela peut faire partie des indices qui laissent à penser à une rédaction par IA. Enfin, les articles publiés grâce à une IA ont souvent un ton très factuel, assez désincarné. Les IA citent très rarement leurs sources et ne font jamais intervenir de personne humaine sous forme de citation comme dans un article de presse.

Elles sont en revanche tout à fait capables d'en inventer si on leur demande de le faire. Dans un numéro paru en avril 2023, le magazine people allemand Die Aktuelle a poussé le vice jusqu'à publier une fausse interview exclusive de Michael Schumacher, générée par une AI, comme le raconte le site spécialisé Numerama. La famille de l'ancien champion de Formule 1 a porté plainte et la rédactrice en chef du magazine a finalement été limogée.

L'IA peut cependant être un outil intéressant, tant qu'elle reste sous supervision humaine. Le journaliste Jean Rognetta, créateur de la newsletter Qant, a quotidiennement recours à l'IA. Selon lui, il n'est "plus possible de reconnaître avec certitude un article écrit par une IA, si ce n'est que c'est souvent du mauvais journalisme". S'il utilise l'IA pour écrire sa newsletter, Jean Rognetta reste en effet convaincu de la nécessité d'effectuer une relecture et une correction humaine. "Notre newsletter est écrite avec, et non par une IA", martèle-t-il. Une approche qui pourrait bientôt se généraliser à d'autres journaux. Le 19 juillet dernier, le New York Times annonçait dans ses pages qu'un outil d'IA, destiné à automatiser certaines tâches effectuées par ses journalistes, était en cours de développement par Google.

5 Elles seront bientôt signalées par un filigrane

Face à la difficulté de plus en plus grande de détecter les contenus générés via une IA, l'Union européenne a adopté en juin dernier le "AI Act", avec l'objectif de réguler le secteur. A partir de l'application de la nouvelle réglementation, pas prévue avant 2026, les contenus générés par IA devront être signalés par un "watermark" (une signature en filigrane) indiquant clairement qu'ils n'ont pas été créés par un humain.

La forme de ce watermark n'est cependant pas encore entièrement définie. Il pourrait prendre la forme d'une phrase d'avertissement ou être dissimulé dans le texte, afin d'être moins facilement effaçable par les utilisateurs. Open AI a récemment annoncé travailler sur un watermark invisible. Comment ? Une récente étude (PDF) de l'université du Maryland propose par exemple que les IA soient programmées pour utiliser plus fréquemment une "liste spéciale" de mots définie à l'avance, permettant aux logiciels de détection d'être plus efficaces.

"Il y a de bonnes intentions au niveau de l'UE et des éditeurs, mais le problème reste la question de la mise en œuvre", estime Amélie Cordier. Si la régulation peut se mettre en place facilement pour les plus gros acteurs comme Open AI, Google, etc., elle sera impossible à imposer aux petites entités qui pullulent.

"Si l'utilisateur a le choix entre un logiciel avec 'watermark', ou un logiciel gratuit indétectable, la régulation risque d'être inefficace."

Une opinion que partage Virginie Mathivet, particulièrement en ce qui concerne les "fake news". "Une personne qui veut faire de la désinformation fera en sorte de ne pas avoir de watermark", conclut-elle.

Auteur: Internet

Info: https://www.francetvinfo.fr/, 2 sept 2023, Pauline Lecouvé

[ homme-machine ] [ machine-homme ]

 

Commentaires: 0

Ajouté à la BD par miguel

médecine

L'intelligence artificielle peut prédire l'activité sur et hors cible des outils CRISPR qui ciblent l'ARN au lieu de l'ADN, selon une nouvelle recherche publiée dans Nature Biotechnology.

L'étude menée par des chercheurs de l'université de New York, de l'université Columbia et du New York Genome Center associe un modèle d'apprentissage profond à des écrans CRISPR pour contrôler l'expression des gènes humains de différentes manières, comme si l'on appuyait sur un interrupteur pour les éteindre complètement ou si l'on utilisait un bouton d'atténuation pour réduire partiellement leur activité. Ces contrôles précis des gènes pourraient être utilisés pour développer de nouvelles thérapies basées sur CRISPR.

CRISPR est une technologie d'édition de gènes qui a de nombreuses applications en biomédecine et au-delà, du traitement de la drépanocytose à la fabrication de feuilles de moutarde plus savoureuses. Elle fonctionne souvent en ciblant l'ADN à l'aide d'une enzyme appelée Cas9. Ces dernières années, les scientifiques ont découvert un autre type de CRISPR qui cible l'ARN à l'aide d'une enzyme appelée Cas13.

Les CRISPR ciblant l'ARN peuvent être utilisés dans un large éventail d'applications, notamment l'édition de l'ARN, l'élimination de l'ARN pour bloquer l'expression d'un gène particulier et le criblage à haut débit pour déterminer les candidats médicaments prometteurs. Des chercheurs de l'Université de New York et du New York Genome Center ont créé une plateforme de criblage CRISPR ciblant l'ARN et utilisant Cas13 pour mieux comprendre la régulation de l'ARN et identifier la fonction des ARN non codants. L'ARN étant le principal matériel génétique des virus, notamment du SRAS-CoV-2 et de la grippe, les CRISPR ciblant l'ARN sont également prometteurs pour le développement de nouvelles méthodes de prévention ou de traitement des infections virales. Par ailleurs, dans les cellules humaines, lorsqu'un gène est exprimé, l'une des premières étapes est la création d'ARN à partir de l'ADN du génome.

L'un des principaux objectifs de l'étude est de maximiser l'activité des CRISPR ciblant l'ARN sur l'ARN cible prévu et de minimiser l'activité sur d'autres ARN qui pourraient avoir des effets secondaires préjudiciables pour la cellule. L'activité hors cible comprend à la fois les mésappariements entre l'ARN guide et l'ARN cible, ainsi que les mutations d'insertion et de délétion. 

Les études antérieures sur les CRISPR ciblant l'ARN se sont concentrées uniquement sur l'activité sur la cible et les mésappariements ; la prédiction de l'activité hors cible, en particulier les mutations d'insertion et de délétion, n'a pas fait l'objet d'études approfondies. Dans les populations humaines, environ une mutation sur cinq est une insertion ou une délétion ; il s'agit donc d'un type important de cibles potentielles à prendre en compte dans la conception des CRISPR.

"À l'instar des CRISPR ciblant l'ADN tels que Cas9, nous prévoyons que les CRISPR ciblant l'ARN tels que Cas13 auront un impact considérable sur la biologie moléculaire et les applications biomédicales dans les années à venir", a déclaré Neville Sanjana, professeur agrégé de biologie à l'université de New York, professeur agrégé de neurosciences et de physiologie à l'école de médecine Grossman de l'université de New York, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude. "La prédiction précise des guides et l'identification hors cible seront d'une grande valeur pour ce nouveau domaine de développement et pour les thérapies.

Dans leur étude publiée dans Nature Biotechnology, Sanjana et ses collègues ont effectué une série de criblages CRISPR de ciblage de l'ARN dans des cellules humaines. Ils ont mesuré l'activité de 200 000 ARN guides ciblant des gènes essentiels dans les cellules humaines, y compris les ARN guides "parfaitement adaptés" et les désadaptations, insertions et suppressions hors cible.

Le laboratoire de Sanjana s'est associé à celui de David Knowles, expert en apprentissage automatique, pour concevoir un modèle d'apprentissage profond baptisé TIGER (Targeted Inhibition of Gene Expression via guide RNA design) qui a été entraîné sur les données des cribles CRISPR. En comparant les prédictions générées par le modèle d'apprentissage profond et les tests en laboratoire sur des cellules humaines, TIGER a été capable de prédire l'activité sur cible et hors cible, surpassant les modèles précédents développés pour la conception de guides sur cible Cas13 et fournissant le premier outil de prédiction de l'activité hors cible des CRISPR ciblant l'ARN.

"L'apprentissage automatique et l'apprentissage profond montrent leur force en génomique parce qu'ils peuvent tirer parti des énormes ensembles de données qui peuvent maintenant être générés par les expériences modernes à haut débit. Il est important de noter que nous avons également pu utiliser l'"apprentissage automatique interprétable" pour comprendre pourquoi le modèle prédit qu'un guide spécifique fonctionnera bien", a déclaré M. Knowles, professeur adjoint d'informatique et de biologie des systèmes à la School of Engineering and Applied Science de l'université Columbia, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude.

"Nos recherches antérieures ont montré comment concevoir des guides Cas13 capables d'éliminer un ARN particulier. Avec TIGER, nous pouvons maintenant concevoir des guides Cas13 qui trouvent un équilibre entre l'élimination sur la cible et l'évitement de l'activité hors cible", a déclaré Hans-Hermann (Harm) Wessels, coauteur de l'étude et scientifique principal au New York Genome Center, qui était auparavant chercheur postdoctoral dans le laboratoire de Sanjana.

 Les chercheurs ont également démontré que les prédictions hors cible de TIGER peuvent être utilisées pour moduler précisément le dosage des gènes - la quantité d'un gène particulier qui est exprimée - en permettant l'inhibition partielle de l'expression des gènes dans les cellules avec des guides de mésappariement. Cela peut être utile pour les maladies dans lesquelles il y a trop de copies d'un gène, comme le syndrome de Down, certaines formes de schizophrénie, la maladie de Charcot-Marie-Tooth (une maladie nerveuse héréditaire), ou dans les cancers où l'expression aberrante d'un gène peut conduire à une croissance incontrôlée de la tumeur.

Notre modèle d'apprentissage profond peut nous indiquer non seulement comment concevoir un ARN guide qui supprime complètement un transcrit, mais aussi comment le "régler", par exemple en lui faisant produire seulement 70 % du transcrit d'un gène spécifique", a déclaré Andrew Stirn, doctorant à Columbia Engineering et au New York Genome Center, et coauteur de l'étude.

En associant l'intelligence artificielle à un crible CRISPR ciblant l'ARN, les chercheurs pensent que les prédictions de TIGER permettront d'éviter une activité CRISPR hors cible indésirable et de stimuler le développement d'une nouvelle génération de thérapies ciblant l'ARN.

"À mesure que nous recueillons des ensembles de données plus importants à partir des cribles CRISPR, les possibilités d'appliquer des modèles d'apprentissage automatique sophistiqués sont de plus en plus rapides. Nous avons la chance d'avoir le laboratoire de David à côté du nôtre pour faciliter cette merveilleuse collaboration interdisciplinaire. Grâce à TIGER, nous pouvons prédire les cibles non ciblées et moduler avec précision le dosage des gènes, ce qui ouvre la voie à de nouvelles applications passionnantes pour les CRISPR ciblant l'ARN dans le domaine de la biomédecine", a déclaré Sanjana.

Cette dernière étude fait progresser la large applicabilité des CRISPR ciblant l'ARN pour la génétique humaine et la découverte de médicaments, en s'appuyant sur les travaux antérieurs de l'équipe de l'Université de New York pour développer des règles de conception de l'ARN guide, cibler les ARN dans divers organismes, y compris des virus comme le SRAS-CoV-2, concevoir des protéines et des ARN thérapeutiques, et exploiter la biologie de la cellule unique pour révéler des combinaisons synergiques de médicaments contre la leucémie.

Auteur: Internet

Info: L'IA combinée à CRISPR contrôle précisément l'expression des gènes par l'Université de New York. https://phys.org/, 3 juillet 2023 - Nature Biotechnology. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning, Nature Biotechnology (2023). DOI: 10.1038/s41587-023-01830-8

[ génie génétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

physique fondamentale

On m’a dit que je gaspillais mon temps 

Malgré son emploi du temps surchargé du à son prix Nobel de physique 2022 partagé avec l’Américain John F. Clauser et ­l’Autrichien Anton Zeilinger, le physicien nous a reçus et livré un entretien inédit sur ses recherches, avec la passion qui l’anime.

AM - Vous venez de recevoir le prix Nobel de physique 2022 pour vos travaux sur l’intrication qui ont permis d’appréhender le cœur de la théorie quantique. Avant de nous expliquer vos recherches, pouvez-vous nous donner un aperçu de la "physique quantique" ?

AA - La physique quantique a été développée au début du XXe siècle pour rendre compte des propriétés du monde microscopique : les atomes, les électrons… Ce que la physique classique n’arrivait pas à faire. À la fin du XIXe siècle, on savait, par exemple, que la matière était formée de charges positives et négatives qui s’attirent. Mais pourquoi, alors, cette matière ne s’effondrait-elle pas sur elle-même ? La physique classique ne pouvait apporter aucune explication.

Pour le comprendre, il a fallu recourir à la physique quantique, notamment à l’un de ses premiers concepts : la dualité onde/particuleAinsi, un objet, par exemple la lumière, que nous décrivons comme une onde, doit aussi être considérée comme formée de grains, à savoir les photons. Réciproquement, des objets dont nous pensons que ce sont des particules – un électron, un atome, un neutron – doivent aussi, dans certaines circonstances, être considérés comme des ondes. C’est la base de ce qu’on appelle "la première révolution quantique". Cela a permis de comprendre la stabilité de la matière, la conduction du courant électrique ou la façon dont la matière émet ou absorbe la lumière.

Et puis dans les années 1940-1960, ce fut l’invention du transistor et du laser qui s’appuyaient sur cette théorie quantique. Ces deux technologies n’ont pas été élaborées par un bricoleur dans un garage en Californie, mais par les plus grands physiciens de l’époque qui ont eu des prix Nobel. Une fois qu’on a le transistor, on a les circuits intégrés à la base des ordinateurs.

AA - Et qu’appelle-t-on deuxième révolution quantique ?

AA - Elle a été lancée par un article d’Albert Einstein, de Boris Podolsky et de Nathan Rosen en 1935. Ils découvrent dans les équations mathématiques de la physique quantique des états où deux particules qui ont interagi, mais qui n’interagissent plus, semblent continuer à former un tout inséparable. C’est ce que l’on appellera l’"intrication". Dès le début, le physicien Niels Bohr s’était opposé aux conclusions d’Einstein. Son homologue John Bell a alors proposé, en 1964, de faire des expérimentations pour trancher la discussion.

Il a ensuite fallu plusieurs décennies pour que les autres physiciens réalisent la portée des travaux de Bell. Quand j’ai commencé ma thèse en 1974, nombre d’entre eux pensaient que l’intrication n’était pas différente de la dualité onde/particule. Puis, on a pris conscience de sa nouveauté. C’est pourquoi je parle d’une "deuxième révolution quantique", d’abord sur le plan de la recherche fondamentale, mais également sur les nouvelles applications que cela a suscitées, comme la cryptographie ou les ordinateurs quantiques.

AM - Comment a-t-on validé ce phénomène "d’intrication" ?

AA - Il fallait créer une paire de photons et une méthode pour montrer que, même éloignés, les deux photons demeuraient corrélés. Le photon, c’est de la lumière et la lumière a une polarisation. Un polariseur est un instrument d’optique qui a deux sorties associées à l’orientation de son axe : tout l’objet du test est de regarder comment les résultats dépendent de cette orientation. Si les polariseurs sont parallèles, vous avez une corrélation parfaite, vous trouvez les mêmes résultats des deux côtés. Imaginez que je lance deux pièces à 10 mètres de distance l’une de l’autre, ça a l’air aléatoire, mais si j’ai pile d’un côté, j’ai pile de l’autre, et si j’ai face d’un côté, j’ai face de l’autre. C’est la corrélation prévue pour les photons intriqués. Et cette corrélation est si forte qu’on ne peut en rendre compte que par la physique quantique.

AM - Quelles expériences ont été réalisées pour établir cette intrication ?

AA - La première expérience a été faite par John Clauser et Stuart Freedman en 1964. Celles que j’ai faites dix ans plus tard et celles qu’Anton Zeilinger a effectuées seize ans après moi ont des niveaux de raffinement différents, mais portent sur des objets identiques : il s’agit de deux photons émis par la même source et qui s’éloignent l’un de l’autre dans des directions opposées. J’ai mis cinq ans à fabriquer ma source. J’ai commencé en 1974 et les premières paires de photons intriqués ont été obtenues vers 1979-1980. Pour ce faire, je prends des atomes, je tape dessus avec des lasers, je les "excite" de façon contrôlée, et ils n’ont pas d’autre choix que d’émettre les deux photons dont j’ai besoin.

Après l’émission des photons et avant leur détection, il faut que les deux polariseurs soient éloignés l’un de l’autre et que leur orientation soit déterminée au dernier moment afin qu’ils ne s’influencent pas. Ainsi, mes deux polariseurs sont distants de 6 mètres de la source et je change leur orientation pendant le temps de vol des photons qui est de 20 nanosecondes… Comment tourner un appareil en 20 milliardièmes de seconde ? C’est impossible, mais j’ai eu l’idée de construire une espèce d’aiguillage capable de le faire et l’expérience a réussi.

AM - D’où vient votre passion pour la physique ?

Je suis originaire du village d’Astaffort (Lot-et-Garonne) à une époque où les champs étaient labourés avec le cheval ou les bœufs, mais j’étais fasciné par le moindre objet technique, par exemple les outils des artisans. Je me souviens de la visite, à Fumel, d’un haut-fourneau qui fournissait de la fonte transformée en tuyaux comme ceux que j’avais vu poser dans mon village pour installer l’eau courante. À l’école primaire, les instituteurs et institutrices faisaient ce que l’on appelait des "leçons de choses". J’étais aussi un grand lecteur de Jules Verne.

Arrivé au lycée d’Agen, je me réjouissais à l’idée de faire de la physique-chimie, mais on ne commençait qu’en seconde. J’ai eu alors un professeur formidable, Maurice Hirsch, qui nous faisait des expériences extraordinaires. Il a décuplé mon intérêt pour la physique et m’a enseigné des méthodes que j’ai conservées toute ma vie.

AM - Quels conseils donneriez-vous aux jeunes qui souhaiteraient se lancer dans votre discipline ?

AA - Il est clair qu’il y a un problème de moyens financiers. La loi de programmation de la recherche fait des propositions intéressantes, mais quand on regarde les budgets associés, ils sont inférieurs à ce que l’Académie des sciences avait estimé être le minimum pour que la recherche française puisse rester au niveau des concurrents étrangers. Les crédits de base, y compris ceux de l’Agence nationale de la recherche, sont décevants, même s’ils ne sont pas négligeables. Heureusement, on peut obtenir des crédits européens pour des projets innovants jugés au meilleur niveau, mais seul un petit nombre de chercheurs peut en bénéficier.

On me demande souvent si, aujourd’hui, on pourrait faire la même chose que ce que j’ai fait dans les années 1970-1980. Certainement pas de la même façon, mais un chercheur titulaire peut se lancer dans un projet de recherche original. Au pire, sa carrière sera freinée mais, moi aussi, je courais ce risque. Comme j’avais un poste permanent, je pouvais me lancer dans une recherche à long terme sans craindre de perdre mon emploi d’enseignant-chercheur.

On m’a dit que je gaspillais mon temps, que mon sujet n’avait aucun intérêt, mais je gardais mon emploi. Il en est toujours de même. Si un scientifique du CNRS ou de l’université se lance dans une recherche ­désapprouvée par les comités, il peut persévérer s’il accepte un certain retard de carrière. Bien sûr, si au bout de dix ans son travail n’a débouché sur rien, il doit se remettre en cause, les comités n’avaient peut-être pas tort.



 

Auteur: Aspect Alain

Info: Interviewé par Anna Musso pour https://www.humanite.fr, 8 Novembre 2022

[ nano-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

univers inversé

Les possibilités métagénomiques

Une infime fraction - la plupart des scientifiques estiment <1% - des espèces microbiennes sur Terre peut être cultivée et étudiée à l'aide de techniques classiques de microbiologie et de génomique. Mais en utilisant des outils de métagénomique récemment développés, les chercheurs appliquent l'analyse génomique à des communautés microbiennes entières à la fois, sans avoir à isoler et à cultiver des espèces individuelles. Les études de métagénomique commencent par obtenir un échantillon d'un environnement particulier tel que l'eau de mer, le sol ou l'intestin humain, en extrayant le matériel génétique de tous les organismes de l'échantillon, puis en analysant l'ADN de ce mélange pour mieux comprendre comment les membres de la communauté interagir, changer et exécuter des fonctions complexes.

Processus : la métagénomique consiste à obtenir l'ADN de tous les micro-organismes d'une communauté, sans nécessairement identifier toutes les espèces impliquées. Une fois les gènes séquencés et comparés aux séquences identifiées, les fonctions de ces gènes peuvent être déterminées.

Parce qu'elle ne dépend pas de l'établissement de cultures pures, la métagénomique offre l'accès à des millions d'espèces microbiennes qui auparavant ne pouvaient pas être étudiées. Il permet également aux chercheurs d'examiner les micro-organismes dans le contexte des environnements dans lesquels ils existent naturellement, en étudiant des communautés entières en même temps.

Applications de la métagénomique

Pratiquement tous les biologistes, quel que soit leur domaine, découvriront qu'une meilleure compréhension des communautés microbiennes et de la métagénomique peut contribuer à leurs propres recherches. L'étude des communautés microbiennes par la métagénomique peut aider les biologistes à s'attaquer à des questions scientifiques fondamentales et à résoudre les problèmes sociaux, environnementaux et économiques connexes. Voici quelques-unes des applications potentielles de la métagénomique :

Avancées des sciences de la vie.

Décrypter le fonctionnement et l'interaction des espèces au sein des communautés microbiennes peut répondre en partie à des questions fondamentales sur de nombreux aspects de la biologie microbienne, végétale et animale et améliorer considérablement la compréhension de l'écologie et de l'évolution. La métagénomique pourrait aider à répondre à des questions telles que : Qu'est-ce qui constitue un génome ? Qu'est-ce qu'une espèce ? Quelle est la diversité de la vie ?

Sciences de la Terre.

L'exploration de la manière dont les communautés microbiennes du sol et des océans affectent les équilibres atmosphériques et les conditions environnementales peut aider les scientifiques à mieux comprendre, prévoir et potentiellement faire face aux changements mondiaux.

Médicament.

Des centaines de médicaments disponibles aujourd'hui sont dérivés de produits chimiques trouvés pour la première fois dans des microbes ; l'accès aux génomes d'espèces microbiennes supplémentaires est très prometteur pour en découvrir des milliers d'autres. L'étude du "microbiome" humain – les milliers de milliards de bactéries vivant dans et sur le corps humain – peut conduire à de nouvelles façons de diagnostiquer, de traiter et de prévenir les maladies.

Énergie alternative.

De nouvelles sources d'énergie pourraient être développées en exploitant le pouvoir des communautés microbiennes pour produire des sous-produits tels que l'hydrogène, le méthane, le butanol et même le courant électrique.

Assainissement de l'environnement.

Comprendre les microbes qui dégradent les produits chimiques environnementaux peut aider à nettoyer des polluants tels que les fuites d'essence, les déversements de pétrole, les eaux usées, les rejets industriels et les déchets nucléaires.

Biotechnologie.

L'identification et l'exploitation des capacités biosynthétiques polyvalentes et diverses des communautés microbiennes peuvent conduire au développement de nouveaux produits industriels, alimentaires et de santé bénéfiques.

Agriculture.

Mieux comprendre les microbes bénéfiques vivant dans, sur, sous et autour des plantes et des animaux domestiques peut contribuer à améliorer les méthodes de détection des agents pathogènes dans les cultures, le bétail et les produits alimentaires et peut faciliter le développement de pratiques agricoles qui tirent parti des les alliances naturelles entre les microbes, les plantes et les animaux.

Biodéfense et médecine légale microbienne.

L'étude de l'ADN et des empreintes biochimiques des communautés microbiennes aide les spécialistes à surveiller les agents pathogènes connus et potentiels, à créer des vaccins et des traitements plus efficaces contre les agents bioterroristes potentiels et à reconstruire les événements dans lesquels les microbes ont joué un rôle.

Valeur de la métagénomique pour l'enseignement de la biologie

La citation de Muir a également une pertinence importante pour l'enseignement des sciences. Qu'est-ce qui sépare la chimie, la génétique, la biologie moléculaire, l'évolution, l'écologie et d'autres disciplines ? Où se croisent-elles et comment se construisent-elles les unes sur les autres ?

La métagénomique aide à combler le fossé entre la génétique et l'écologie, démontrant que les gènes d'un seul organisme sont connectés aux gènes des autres et à l'ensemble de la communauté. En fait, les processus de la métagénomique démontrent qu'il est important d'étudier les gènes et les organismes en contexte et d'apprécier toute la diversité de la vie, même dans un seul cadre. Ces messages ont une pertinence importante dans l'ensemble de la biologie et seraient des ajouts précieux à n'importe quel cours de biologie, peut-être en particulier ceux du niveau d'introduction.

Parce que la métagénomique s'inspire d'un large éventail de domaines et les affecte, c'est un outil précieux pour enseigner des thèmes et des concepts qui sont tissés tout au long de l'enseignement de la biologie. En effet, l'enseignement et l'apprentissage de la métagénomique pourraient clairement intégrer les types de changements dans l'enseignement des sciences de la maternelle à la 12e année et du premier cycle que de nombreux rapports ont demandé au cours de la dernière décennie.

Certains professeurs estiment qu'ils doivent utiliser des cours d'introduction pour fournir aux étudiants pratiquement toutes les connaissances qu'ils utiliseront pour comprendre les concepts de base d'une discipline. Certains considèrent également les cours d'introduction comme un moyen d'aider les étudiants à apprendre à interpréter les nouvelles et autres informations sur la science afin qu'ils puissent prendre des décisions plus éclairées à la maison, chez le médecin et dans l'isoloir. Trop souvent, cependant, de tels cours ne parviennent pas à transmettre la beauté complexe du monde vivant et les innombrables façons dont la biologie a un impact sur la "vraie vie". L'apprentissage de la métagénomique au niveau introductif - en mettant l'accent sur ses applications potentielles dans le monde réel - pourrait servir à éclairer les principes de base d'une grande variété de domaines, les liens entre eux et la pertinence plus large des avancées scientifiques pour les problèmes du monde réel. Si les étudiants peuvent voir qu'il y a vraiment des questions non résolues intéressantes auxquelles ils peuvent jouer un rôle pour répondre, le recrutement de jeunes talentueux pour les carrières scientifiques peut être facilité. De cette façon, les élèves rencontreront une science dynamique plutôt que statique.

LES BÉNÉFICES DE L'INTÉGRATION DE L'ÉDUCATION ET DE LA RECHERCHE

Les avantages de l'intégration précoce de la métagénomique et d'autres sciences nouvelles dans l'enseignement de la biologie profiteraient non seulement aux étudiants en biologie, mais aussi aux scientifiques et à leurs projets de recherche. L'expérience montre que lorsque les chercheurs enseignent, leur propre compréhension s'approfondit, menant à de nouvelles questions et pistes de recherche souvent inattendues qui sont posées par les étudiants, ainsi qu'à contribuer au développement d'approches créatives des problèmes. Si la communauté de la biologie peut intégrer l'enseignement de la métagénomique aux progrès de la recherche dès le départ, les étudiants pourraient devenir des participants actifs au développement du domaine.

Enseigner un domaine nouveau ou émergent est un moyen idéal d'engager profondément les étudiants dans l'exploration de questions fondamentales qui sont au cœur de la poursuite scientifique et de les encourager à poser leurs propres questions. En effet, dans le cas du domaine émergent de la métagénomique, les questions les plus fondamentales peuvent être les plus profondes. Répondre à ces questions inspire à son tour les jeunes esprits et les chercheurs actifs, et la science est bénéfique. 

D'autres ont vu l'intérêt d'intégrer la science émergente à l'éducation. Un certain nombre d'efforts sont actuellement en cours pour intégrer la recherche et l'enseignement en génomique.

Auteur: Internet

Info: https://www.ncbi.nlm.nih.gov/ Metagenomics: A Call for Bringing a New Science into the Classroom (While It's Still New) Anne Jurkowski,* Ann H. Reid,† and Jay B. Labovcorresponding author

[ sciences ] [ nano-monde ] [ ouverture ] [ matrice gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

 

Commentaires: 0

Ajouté à la BD par miguel

pouvoir sémantique

La bataille pour le contrôle de votre esprit

Dans son roman dystopique classique 1984, George Orwell a écrit : "Si vous voulez une image du futur, imaginez une botte piétinant un visage humain - pour toujours." Cette image frappante a servi de symbole puissant pour le totalitarisme au 20e siècle. Mais comme l'a récemment observé Caylan Ford, avec l'émergence des passeports de santé numériques dans l'État de sécurité biomédicale, le nouveau symbole de la répression totalitaire n'est "pas une botte, mais un algorithme : sans émotion, imperméable à tout appel, façonnant silencieusement la biomasse.

Ces nouveaux mécanismes de surveillance et de contrôle numériques ne seront pas moins oppressifs parce que plus virtuels que physiques. Les applications de traçage des contacts, par exemple, ont proliféré avec au moins 120 applications diverses utilisées dans 71 États différents, et 60 autres mesures numériques de traçage des contacts ont été utilisées dans 38 pays. Rien ne prouve actuellement que les applications de recherche des contacts ou autres méthodes de surveillance numérique ont contribué à ralentir la propagation du covid ; mais comme pour beaucoup de nos politiques de lutte contre les pandémies, cela ne semble pas avoir dissuadé leur utilisation.

D'autres technologies de pointe ont été déployées dans le cadre de ce qu'un écrivain a appelé, avec un clin d'œil à Orwell, "réflexe de la piétaille", pour décrire la propension des gouvernements à abuser des pouvoirs d'urgence. Vingt-deux pays ont utilisé des drones de surveillance pour repérer les contrevenants aux règles du covid, d'autres ont déployé des technologies de reconnaissance faciale, vingt-huit pays ont eu recours à la censure d'Internet et treize pays ont eu recours à la coupure d'Internet pour gérer les populations pendant le covid. Au total, trente-deux pays ont eu recours à l'armée ou à des engins militaires pour faire respecter les règles, ce qui a entraîné des pertes humaines. En Angola, par exemple, la police a tiré et tué plusieurs citoyens alors qu'elle imposait un confinement.

Orwell a exploré le pouvoir que le langage a de façonner notre pensée, et notamment la capacité d'un langage négligé ou dégradé à la déformer. Il a exprimé ces préoccupations non seulement dans ses romans Animal Farm et 1984, mais aussi dans son essai classique, "Politics and the English Language", où il affirme que "si la pensée corrompt le langage, le langage peut aussi corrompre la pensée".

Le régime totalitaire décrit dans 1984 exige des citoyens qu'ils communiquent en Newspeak, une langue soigneusement contrôlée, à la grammaire simplifiée et au vocabulaire restreint, conçue pour limiter la capacité de l'individu à penser ou à exprimer des concepts subversifs tels que l'identité personnelle, l'expression personnelle et le libre arbitre. Avec cette abâtardissement du langage, des pensées complètes sont réduites à des termes simples ne véhiculant qu'un sens simpliste.  

Cette novlangue (newspeak)  élimine la possibilité de nuance, rendant impossible la considération et la communication des nuances de sens. Le Parti a également l'intention, avec les mots courts du Newspeak, de rendre le discours physiquement automatique et donc de rendre le discours largement inconscient, ce qui diminue encore la possibilité d'une pensée véritablement critique. Dans le  roman, le personnage Syme évoque son travail de rédaction de la dernière édition du dictionnaire du Newspeak :

"D'ici 2050 - probablement plus tôt - toute connaissance réelle de l'Oldspeak [anglais standard] aura disparu. Toute la littérature du passé aura été détruite. Chaucer, Shakespeare, Milton, Byron - n'existeront plus que dans des versions en novlangue, pas seulement transformées en quelque chose de différent, mais en réalité contradictoires avec ce qu'ils étaient. Même la littérature du Parti changera. Même les slogans changeront. Comment peut-on avoir un slogan comme "La liberté, c'est de l'esclavage" alors que le concept de liberté a été aboli ? Tout le climat de la pensée en sera différent. En fait, il n'y aura pas de pensée, telle que nous l'entendons aujourd'hui. L'orthodoxie signifie ne pas penser - ne pas avoir besoin de penser. L'orthodoxie, c'est l'inconscience."

Plusieurs termes dénigrants ont été déployés de manière répétée pendant la pandémie, des phrases dont la seule fonction était d'empêcher toute possibilité de pensée critique. Il s'agit, entre autres, des mots "négationniste du virus", "anti-vax" et "théoricien de la conspiration". Certains commentateurs vont sans doute déformer ce livre, et en particulier ce chapitre, en utilisant ces termes et d'autres similaires - des raccourcis tout faits qui évitent aux critiques la peine de lire le livre ou d'examiner de manière critique mes preuves ou mes arguments. Un bref commentaire sur chacun de ces termes peut être utile pour illustrer leur fonctionnement.

Le premier terme, "négationniste du covidien", nécessite peu d'attention. Ceux qui lancent cette accusation à toute personne critiquant notre réponse à la pandémie assimilent imprudemment le covid à l'Holocauste, ce qui suggère que l'antisémitisme continue d'infecter le discours à droite comme à gauche. Nous n'avons pas besoin de nous attarder sur cette phrase.

L'épithète " anti-vax ", déployé pour caractériser toute personne qui soulève des questions sur la campagne de vaccination de masse ou sur la sécurité et l'efficacité des vaccins covidés, fonctionne de la même manière comme un frein à la conversation plutôt que comme une étiquette descriptive précise. Lorsque les gens me demandent si je suis anti-vax parce que je conteste le mandat de vaccination, je ne peux que répondre que la question a autant de sens pour moi que la question "Dr. Kheriaty, êtes-vous 'pro-médication' ou 'anti-médication' ?". La réponse est évidemment contingente et nuancée : quel médicament, pour quel patient ou population de patients, dans quelles circonstances et pour quelles indications ? Il n'existe clairement pas de médicament, ni de vaccin d'ailleurs, qui soit toujours bon pour tout le monde, en toute circonstance et tout le temps.

En ce qui concerne le terme "conspirationniste", Agamben note que son utilisation sans discernement "témoigne d'une surprenante ignorance historique". Car quiconque est familier avec l'histoire sait que les récits des historiens retracent et reconstruisent les actions d'individus, de groupes et de factions travaillant dans un but commun pour atteindre leurs objectifs en utilisant tous les moyens disponibles. Il cite trois exemples parmi les milliers que compte l'histoire.

En 415 avant J.-C., Alcibiade déploya son influence et son argent pour convaincre les Athéniens de se lancer dans une expédition en Sicile, entreprise qui se révéla désastreuse et marqua la fin de la suprématie athénienne. En représailles, les ennemis d'Alcibiade engagent de faux témoins et conspirent contre lui pour le condamner à mort. 

En 1799, Napoléon Bonaparte viole son serment de fidélité à la Constitution de la République, renverse le directoire par un coup d'État, s'arroge les pleins pouvoirs et met fin à la Révolution. Quelques jours auparavant, il avait rencontré ses co-conspirateurs pour affiner leur stratégie contre l'opposition anticipée du Conseil des Cinq-Cents.

Plus près de nous, il mentionne la marche sur Rome de 25 000 fascistes italiens en octobre 1922. On sait que Mussolini prépara la marche avec trois collaborateurs, qu'il prit contact avec le Premier ministre et des personnalités puissantes du monde des affaires (certains affirment même que Mussolini rencontra secrètement le roi pour explorer d'éventuelles allégeances). Les fascistes avaient d’ailleurs répété leur occupation de Rome par une occupation militaire d'Ancône deux mois auparavant. 

D'innombrables autres exemples, du meurtre de Jules César à la révolution bolchévique, viendront à l'esprit de tout étudiant en histoire. Dans tous ces cas, des individus se réunissent en groupes ou en partis pour élaborer des stratégies et des tactiques, anticiper les obstacles, puis agir résolument pour atteindre leurs objectifs. Agamben reconnaît que cela ne signifie pas qu'il soit toujours nécessaire de recourir aux "conspirations" pour expliquer les événements historiques. "Mais quiconque qualifierait de "théoricien de la conspiration" un historien qui tenterait de reconstituer en détail les complots qui ont déclenché de tels événements ferait très certainement preuve de sa propre ignorance, voire de son idiotie."

Quiconque mentionnant "The Great Reset" en 2019 était accusé d'adhérer à une théorie du complot - du moins jusqu'à ce que le fondateur et président exécutif du Forum économique mondial, Klaus Schwab, publie en 2020 un livre exposant l'agenda du WEF avec le titre utile, Covid-19 : The Great Reset. Après de nouvelles révélations sur l'hypothèse de la fuite dans un laboratoire, le financement par les États-Unis de la recherche sur le principe du gain de fonction à l'Institut de virologie de Wuhan, les questions de sécurité des vaccins volontairement supprimés, et la censure coordonnée des médias et les campagnes de diffamation du gouvernement contre les voix dissidentes, il semble que la seule différence entre une théorie du complot et une nouvelle crédible aura été d'environ six mois.

Auteur: Kheriaty Aaron

Info: The Brownstone Institute, mai 2022

[ propagande numérique ] [ complotisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel

transposition linguistique

La théorie de la traduction est très rarement - comment dire ? - comique. Son mode de fonctionnement est celui de l'élégie et de l'admonestation sévère. Au XXe siècle, ses grandes figures étaient Vladimir Nabokov, en exil de la Russie soviétique, attaquant des libertins comme Robert Lowell pour leurs infidélités au sens littéral ; ou Walter Benjamin, juif dans un Berlin proto-nazi, décrivant la tâche du traducteur comme un idéal impossible d'exégèse. On ne peut jamais, selon l'argument élégiaque, reproduire précisément un vers de poésie dans une autre langue. Poésie ! Tu ne peux même pas traduire "maman"... Et cet argument élégiaque a son mythe élégiaque : la Tour de Babel, où la multiplicité des langues du monde est considérée comme la punition de l'humanité - condamnée aux hurleurs, aux faux amis, aux applications de menu étrangères. Alors que l'état linguistique idéal serait la langue universelle perdue de l'Eden.

La théorie de la traduction est rarement désinvolte ou joyeuse.

Le nouveau livre de David Bellos sur la traduction contourne d'abord cette philosophie. Il décrit les dragons de la Turquie ottomane, l'invention de la traduction simultanée lors du procès de Nuremberg, les dépêches de presse, les bulles d'Astérix, les sous-titres de Bergman, etc.... Il propose une anthropologie des actes de traduction. Mais à travers cette anthropologie, c'est un projet beaucoup plus grand qui émerge. Les anciennes théories étaient élégiaques, majestueuses ; elles étaient très sévères. Bellos est pratique et vif. Il n'est pas éduqué par l'élégie. Et c'est parce qu'il est sur quelque chose de nouveau.

Bellos est professeur de français et de littérature comparée à l'université de Princeton, et également directeur du programme de traduction et de communication interculturelle de cette université (où, je dois le préciser, j'ai déjà pris la parole). Mais pour moi, il est plus intéressant en tant que traducteur de deux romanciers particulièrement grands et problématiques : le Français Georges Perec, dont l'œuvre se caractérise par un souci maniaque de la forme, et l'Albanais Ismail Kadare, dont Bellos traduit l'œuvre non pas à partir de l'original albanais, mais à partir de traductions françaises supervisées par Kadare. La double expérience de Bellos avec ces romanciers est, je pense, à l'origine de son nouveau livre, car ces expériences de traduction prouvent deux choses : Il est toujours possible de trouver des équivalents adéquats, même pour une prose maniaquement formelle, et il est également possible de trouver de tels équivalents dans une langue qui n'est pas l'original de l'œuvre. Alors que selon les tristes théories orthodoxes de la traduction, aucune de ces vérités ne devrait être vraie.

À un moment donné, Bellos cite avec une fierté légitime un petit exemple de sa propre inventivité. Dans le roman de Perec "La vie : Mode d'emploi" de Perec, un personnage se promène dans une arcade parisienne et s'arrête pour regarder les "cartes de visite humoristiques dans la vitrine d'un magasin de farces et attrapes". Dans l'original français de Perec, l'une de ces cartes est : "Adolf Hitler/Fourreur". Un fourreur est un fourreur, mais la blague de Perec est que cela ressemble aussi à la prononciation française de Führer. Donc Bellos, dans sa version anglaise, traduit à juste titre "fourreur" non pas par "furrier", mais comme ceci : "Adolf Hitler/Lieder allemand". Le nouveau jeu de mots multiphonique de Bellos est une parodie, sans aucun doute - et c'est aussi la traduction la plus précise possible.

Les conclusions que ce paradoxe exige sont, disons, déconcertantes pour le lecteur vieux jeu. Nous sommes habitués à penser que chaque personne parle une langue individuelle - sa langue maternelle - et que cette langue maternelle est une entité discrète, avec un vocabulaire manipulé par une grammaire fixe. Mais cette image, selon Bellos, ne correspond pas aux changements quotidiens de nos multiples langues, ni au désordre de notre utilisation des langues. L'ennemi philosophique profond de Bellos est ce qu'il appelle le "nomenclaturisme", "la notion que les mots sont essentiellement des noms" - une notion qui a été amplifiée dans notre ère moderne d'écriture : une conspiration de lexicographes. Cette idée fausse l'agace parce qu'elle est souvent utilisée pour soutenir l'idée que la traduction est impossible, puisque toutes les langues se composent en grande partie de mots qui n'ont pas d'équivalent unique et complet dans d'autres langues. Mais, écrit Bellos, "un terme simple comme 'tête', par exemple, ne peut être considéré comme le 'nom' d'une chose particulière. Il apparaît dans toutes sortes d'expressions". Et si aucun mot en français, par exemple, ne couvre toutes les connotations du mot "tête", sa signification "dans un usage particulier peut facilement être représentée dans une autre langue".

Cette idée fausse a toutefois une très longue histoire. Depuis que saint Jérôme a traduit la Bible en latin, le débat sur la traduction s'est dissous dans l'ineffable - la fameuse idée que chaque langue crée un monde mental essentiellement différent et que, par conséquent, toutes les traductions sont vouées à l'insuffisance philosophique. Dans la nouvelle proposition de Bellos, la traduction "présuppose au contraire... la non-pertinence de l'ineffable dans les actes de communication". En zigzaguant à travers des études de cas de bibles missionnaires ou de machines linguistiques de la guerre froide, Bellos élimine calmement cette vieille idée de l'ineffable, et ses effets malheureux.

On dit souvent, par exemple, qu'une traduction ne peut jamais être un substitut adéquat de l'original. Mais une traduction, écrit Bellos, n'essaie pas d'être identique à l'original, mais d'être comme lui. C'est pourquoi le duo conceptuel habituel de la traduction - la fidélité et le littéral - est trop maladroit. Ces idées dérivent simplement de l'anxiété déplacée qu'une traduction essaie d'être un substitut. Adolf Hitler/Fourreur ! Une traduction en anglais par "furrier" serait littéralement exacte ; ce serait cependant une ressemblance inadéquate.

En littérature, il existe un sous-ensemble connexe de cette anxiété : l'idée que le style - puisqu'il établit une relation si complexe entre la forme et le contenu - rend une œuvre d'art intraduisible. Mais là encore, cette mélancolie est mélodramatique. Il sera toujours possible, dans une traduction, de trouver de nouvelles relations entre le son et le sens qui soient d'un intérêt équivalent, voire phonétiquement identiques. Le style, comme une blague, a juste besoin de la découverte talentueuse d'équivalents. "Trouver une correspondance pour une blague et une correspondance pour un style", écrit Bellos, "sont deux exemples d'une aptitude plus générale que l'on pourrait appeler une aptitude à la correspondance de modèles".

La traduction, propose Bellos dans une déclaration sèchement explosive, plutôt que de fournir un substitut, "fournit pour une certaine communauté une correspondance acceptable pour une énonciation faite dans une langue étrangère." Ce qui rend cette correspondance acceptable variera en fonction de l'idée que se fait cette communauté des aspects d'un énoncé qui doivent être assortis de sa traduction. Après tout, "on ne peut pas s'attendre à ce qu'une traduction ressemble à sa source sur plus de quelques points précis". Une traduction ne peut donc pas être bonne ou mauvaise "à la manière d'une interrogation scolaire ou d'un relevé bancaire". Une traduction s'apparente davantage à un portrait à l'huile". Dans une traduction, comme dans toute forme d'art, la recherche est celle d'un signe équivalent.

Et pour les habitants de Londres ou de Los Angeles, ce démantèlement des mythes autour de la traduction a des implications particulières. Comme le souligne Bellos, ceux qui sont nés anglophones sont aujourd'hui une minorité de locuteurs de l'anglais : la plupart le parlent comme une deuxième langue. L'anglais est la plus grande interlangue du monde.

Je pense donc que deux perspectives peuvent être tirées de ce livre d'une inventivité éblouissante, et elles sont d'une ampleur réjouissante. Le premier concerne tous les anglophones. Google Translate, sans aucun doute, est un appareil à l'avenir prometteur. Il connaît déjà un tel succès parce que, contrairement aux traducteurs automatiques précédents, mais comme d'autres inventions de Google, il s'agit d'une machine à reconnaissance de formes. Il analyse le corpus des traductions existantes et trouve des correspondances statistiques. Je pense que les implications de ce phénomène n'ont pas encore été suffisamment explorées : des journaux mondiaux aux romans mondiaux... . . . Et cela m'a fait imaginer une deuxième perspective - limitée à un plus petit, hyper-sous-ensemble d'anglophones, les romanciers. Je suis un romancier anglophone, après tout. Je me suis dit qu'il n'y avait aucune raison pour que les traductions d'œuvres de fiction ne puissent pas être faites de manière beaucoup plus extensive dans et à partir de langues qui ne sont pas les langues d'origine de l'œuvre. Oui, j'ai commencé à caresser l'idée d'une future histoire du roman qui serait imprudemment internationale. En d'autres termes : il n'y aurait rien de mal, pensais-je, à rendre la traduction plus joyeuse. 


Auteur: Thirlwell Adam

Info: https://www.nytimes.com/2011/10/30. A propos du livre : Le côté joyeux de la traduction, Faber & Faber Ed. Texte traduit à 90% par deepl.com/translator

 

Commentaires: 0

Ajouté à la BD par miguel

chronos

Prix Nobel de physique 2023 : on a tout compris et on vous explique simplement pourquoi c’est génial

Anne L’Huillier, Ferenc Krausz et Pierre Agostini ont inventé la physique attoseconde, et ça méritait bien d’être expliqué.

Les "impulsions laser très courtes permettant de suivre le mouvement ultrarapide des électrons à l’intérieur des molécules et des atomes", vous dites ? Les lauréats du prix Nobel de physique 2023, le Hongrois Ferenc Krausz et les Français Anne L’Huillier et Pierre Agostini n’ont pas choisi le thème le plus parlant aux néophytes (mais la physique fondamentale l’est rarement).

Commençons par un terme étrange : les lauréats sont les inventeurs de la physique attoseconde. Atto, quoi ? Une attoseconde est une fraction de seconde, précisément 1×10−18 seconde : c’est très, très peu. "Pour vous donner une idée", explique au HuffPost le physicien Franck Lépine, chercheur du CNRS à l’Institut lumière matière, et collaborateur des Nobel 2023, en terme d’ordre de grandeur "il y a autant de différence entre une attoseconde et une seconde qu’entre une seconde et l’âge de l’univers".

Lorsqu'il est contemplé à cette échelle de temps, le monde ralentit. Le battement d'ailes d'un colibri devient une éternité.

Aller "chercher" une attoseconde précise dans une seconde, c’est donc pointer une seconde précise dans l’univers depuis sa naissance. On vous l’avait bien dit, c’est court, un laps de temps à peine concevable.

La photo la plus rapide du monde

Mais comment ont-ils "inventé" cette physique ? Les Nobel 2023 ont réussi à mettre au point un appareil qui permet d’observer les électrons au sein de la matière : des éléments au déplacement si rapide que seul un "flash" de l’ordre de l’attoseconde permet de les capturer. Les trois chercheurs sont donc récompensés pour la mise au point d’une "caméra" ultrarapide… Et on va même vous raconter comment elle fonctionne.

Une impulsion très puissante est envoyée au laser vers des atomes. Sous l’effet de la lumière envoyée, Les électrons qui gravitent autour de ces atomes vont alors être accélérés et émettre à leur tour un flash lumineux qui dure environ une attoseconde : c’est ce que l’on appelle la High harmonic generation, ou production d’harmoniques élevées. Ce sont ces impulsions qui vont prendre les électrons en photo. Pourquoi une durée aussi courte est-elle nécessaire ? Parce que les électrons ne tiennent pas en place.

Au-delà de la physique

"Faisons un parallèle avec le cinéma, explique Franck Lépine. On découpe le mouvement en un certain nombre de photos par seconde. La photo fige l’objet qui bouge, mais si la capture prend trop de temps, on découpe le mouvement, les images se superposent", ce qui crée un effet de flou. "Si jamais nos flashes de lumières durent trop longtemps, on ne va pas voir seulement électrons bouger, mais également les atomes, voire les ensembles d’atomes", et donc l’objet de l’observation ne sera pas net.

Les découvertes des trosi chercheurs ne permettent pas seulement d’observer les électrons avec une précision nouvelle. Elles sont également un instrument pour les manipuler. La lumière envoyée sur les électrons les bouscule, et là encore la physique attoseconde peut tout changer, et pas seulement dans le domaine des sciences fondamentales. "On peut manipuler les réactions chimiques en manipulant les électrons", détaille Franck Lépine.

À Lyon, son laboratoire est l’un des trois en France à disposer des équipements nécessaires pour travailler avec la physique attoseconde. "Parmi les choses sur lesquelles on travaille, il y a l’utilisation des technologies attoseconde pour comprendre comment fonctionne l’ADN du vivant." La physique attoseconde, vous n’en entendrez peut-être pas parler à nouveau de sitôt, mais les découvertes qui en découlent certainement.

Historique

En 1925, Werner Heisenberg, pionniers de la mécanique quantique, a affirmé que le temps nécessaire à un électron pour faire le tour d'un atome d'hydrogène était inobservable. Dans un sens, il avait raison. Les électrons ne tournent pas autour d'un noyau atomique comme les planètes autour des étoiles. Les physiciens les considèrent plutôt comme des ondes de probabilité qui donnent leurs chances d'être observées à un certain endroit et à un certain moment, de sorte que nous ne pouvons pas mesurer un électron qui vole littéralement dans l'espace.

Heisenberg a sous-estimé l'ingéniosité de physiciens du XXe siècle comme L'Huillier, Agostini et Krausz. Les chances que l'électron soit ici ou là varient d'un moment à l'autre, d'une attoseconde à l'autre. Grâce à la possibilité de créer des impulsions laser attosecondes capables d'interagir avec les électrons au fur et à mesure de leur évolution, les chercheurs peuvent sonder directement les différents comportements des électrons.

Comment les physiciens produisent-ils des impulsions attosecondes ?

Dans les années 1980, Ahmed Zewail, de l'Institut de technologie de Californie, a développé la capacité de faire clignoter des lasers avec des impulsions d'une durée de quelques femtosecondes, soit des milliers d'attosecondes. Ces impulsions, qui ont valu à Zewail le prix Nobel de chimie en 1999, étaient suffisantes pour permettre aux chercheurs d'étudier le déroulement des réactions chimiques entre les atomes dans les molécules. Cette avancée a été qualifiée de "caméra la plus rapide du monde".

Pendant un certain temps, une caméra plus rapide semblait inaccessible. On ne savait pas comment faire osciller la lumière plus rapidement. Mais en 1987, Anne L'Huillier et ses collaborateurs ont fait une observation intrigante : Si vous éclairez certains gaz, leurs atomes sont excités et réémettent des couleurs de lumière supplémentaires qui oscillent plusieurs fois plus vite que le laser d'origine - un effet connu sous le nom d'"harmoniques". Le groupe de L'Huillier a découvert que dans des gaz comme l'argon, certaines de ces couleurs supplémentaires apparaissaient plus brillantes que d'autres, mais selon un schéma inattendu. Au début, les physiciens ne savaient pas trop quoi penser de ce phénomène.

Au début des années 1990, L'Huillier et d'autres chercheurs ont utilisé la mécanique quantique pour calculer les différentes intensités des diverses harmoniques. Ils ont alors pu prédire exactement comment, lorsqu'un laser infrarouge oscillant lentement frappait un nuage d'atomes, ces atomes émettaient à leur tour des faisceaux de lumière "ultraviolette extrême" oscillant rapidement. Une fois qu'ils ont compris à quelles harmoniques il fallait s'attendre, ils ont trouvé des moyens de les superposer de manière à obtenir une nouvelle vague : une vague dont les pics s'élèvent à l'échelle de l'attoseconde. Amener des collectifs géants d'atomes à produire ces ondes finement réglées de concert est un processus que Larsson compare à un orchestre produisant de la musique.

 Au cours des années suivantes, les physiciens ont exploité cette compréhension détaillée des harmoniques pour créer des impulsions attosecondes en laboratoire. Agostini et son groupe ont mis au point une technique appelée Rabbit, ou "reconstruction d'un battement attoseconde par interférence de transitions à deux photons". Grâce à Rabbit, le groupe d'Agostini a généré en 2001 une série d'impulsions laser d'une durée de 250 attosecondes chacune. La même année, le groupe de Krausz a utilisé une méthode légèrement différente, connue sous le nom de streaking, pour produire et étudier des salves individuelles d'une durée de 650 attosecondes chacune. En 2003, L'Huillier et ses collègues les ont tous deux surpassés avec une impulsion laser d'une durée de 170 attosecondes seulement.

Que peut-on faire avec des impulsions attosecondes ?

Les impulsions attosecondes permettent aux physiciens de détecter tout ce qui change sur une période de quelques dizaines à quelques centaines d'attosecondes. La première application a consisté à essayer ce que les physiciens avaient longtemps cru impossible (ou du moins extrêmement improbable) : voir exactement ce que font les électrons.

En 1905, Albert Einstein a donné le coup d'envoi de la mécanique quantique en expliquant l'effet photoélectrique, qui consiste à projeter des électrons dans l'air en éclairant une plaque métallique (sa théorie lui vaudra plus tard le prix Nobel de physique en 1921). Avant l'ère de la physique des attosecondes, les physiciens supposaient généralement que la chaîne de réactions qui conduisait à la libération des électrons lancés était instantanée.

En 2010, Krausz et ses collègues ont démontré le contraire. Ils ont utilisé des impulsions attosecondes pour chronométrer les électrons détachés des atomes de néon. Ils ont notamment constaté qu'un électron dans un état de basse énergie fuyait son hôte 21 attosecondes plus vite qu'un électron dans un état de haute énergie. En 2020, un autre groupe a montré que les électrons s'échappent de l'eau liquide des dizaines d'attosecondes plus rapidement que de la vapeur d'eau.

D'autres applications des impulsions attosecondes sont en cours de développement. La technique pourrait permettre de sonder toute une série de phénomènes liés aux électrons, notamment la façon dont les particules portent et bloquent la charge électrique, la façon dont les électrons rebondissent les uns sur les autres et la façon dont les électrons se comportent collectivement. Krausz fait également briller des flashs attosecondes sur du sang humain. L'année dernière, il a contribué à montrer que de minuscules changements dans un échantillon de sang peuvent indiquer si une personne est atteinte d'un cancer à un stade précoce, et de quel type.

Plus tôt dans la matinée, le comité Nobel a eu du mal à joindre Mme L'Huillier pour l'informer qu'elle était la cinquième femme de l'histoire à recevoir le prix Nobel de physique. Lorsqu'il a finalement réussi à la joindre, après trois ou quatre appels manqués, elle était en train de donner une conférence à ses étudiants. Elle est parvenue à la terminer, même si la dernière demi-heure a été très difficile. "J'étais un peu émue à ce moment", a-t-elle déclaré plus tard.

Auteur: Internet

Info: huffingtonpost et quantamagazine, 3 sept. 2023

[ nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel