Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 108
Temps de recherche: 0.048s

laisser-aller

Une polémique contre notre culture de surmenage et un manifeste d'être plutôt que de faire... Apprenons des paresseux.

En 1765, Jean-Jacques Rousseau passa deux mois sur une île suisse à se consacrer à "mon précieux farniente" (ne rien faire). Il traînait, ramassait des plantes, dérivait dans un bateau, s'asseyait pendant des heures pour une "Délicieuse rêverie.. Plaisamment conscient de mon existence sans me soucier de ma pensée" : une oisiveté qu'il qualifia plus tard de "bonheur le plus complet et parfait" de sa vie.

Rousseau est l'un des héros de Not Working, avec Thoreau, Emily Dickinson et un lapin nommé Rr dont Josh Cohen s'est brièvement occupé. Le livre s'ouvre sur Rr qui se balade autour de son clapier, sa sérénité insensée déclenchant chez Cohen une reconnaissance empathique de son propre "vide secret et clos", ses fréquents accès de "rêverie lapine". Comme Rousseau sur son île, Rr ne fait pas, il est, tout simplement. Sa passivité interpelle Cohen qui, à différents moments de son livre, se décrit lui-même comme un slob, un fainéant, un feignant. Enfant, on le réprimandait régulièrement pour sa paresse ; à l'âge adulte, chaque jour lui apporte son moment de farniente : "Ça arrive souvent la nuit, quand je suis affalé sur le canapé... mon livre repose face contre terre, mes chaussures enlevées ; à côté de moi se trouvent deux télécommandes, un bol de cacahuètes et une bouteille de bière à moitié vide...

Sortir de cette léthargie... Ressemble à un trouble physique, métaphysique même, une violation de la justice cosmique..." "Pourquoi devrais-je ?" La protestation enfantine est désarmante ; on s'imagine lapin intérieur de Cohen attaché à un tapis roulant ou, pire encore, transformé en lapin très différent : le lapin Duracell, dont le "mouvement d'horloge" et le "sourire aux yeux morts" en font le symbole parfait de l'acharnement de la vie moderne, sa "nerveuse et constante contrainte à agir" que Cohen n'aime pas et à laquelle il résiste.

Not Working est une polémique contre notre culture du surmenage et une méditation sur ses alternatives. "Qu'est-ce qui fait que la vie vaut la peine d'être vécue ?" Cohen est psychanalyste. Chaque jour son cabinet de consultation résonne d'histoires d'activité ininterrompue, d'épuisement, de dépression, de "fantasmes d'une cessation complète de l'activité". Certains de ces conteurs apparaissent dans le livre, soigneusement déguisés, en compagnie d'une foule d'autres anti-travailleurs, réels et fictifs, dont le philosophe grec Pyrrho, Homer Simpson et Cohen lui-même à différents moments de sa vie. La distribution est majoritairement masculine, regroupée en quatre "types inertiels" : le burnout, le slob (fuyard), le rêveur, le fainéant. Certains s'enfoncent dans l'inertie, d'autres, comme Cohen, y sombrent.

Il s'avère que tous sont prennent des risques, car "en résistant au travail... chacun de ces types est susceptible de tomber dans une ou plusieurs impasses" : lassitude débilitante, dépression, solitude, ennui. Le farniente, en d'autres termes, a son prix, qui peut être très élevé pour certaines personnes, y compris trois hommes dont Cohen souligne les histoires - Andy Warhol, Orson Welles et David Foster Wallace.

Warhol aspirait à ce que les stoïciens appelaient l'apathie (l'absence de passion), une nostalgie qui se traduisait par un engourdissement mécanique, un état de "ne rien être et ne rien ressentir", avec laquelle alternaient de féroces et mécaniques activités, suivies d'un effondrement inertiel : un lapin Duracell avec des batteries à plat. Welles combinait des efforts herculéens avec de longues retraites dans son lit, qui devinrent de plus en plus fréquentes à mesure que son corps et son esprit cédaient sous son style de vie de fou. L'éblouissante carrière littéraire de Foster Wallace fut ponctuée de périodes où il s'effondrait devant la télévision aux prises avec une dépression aiguë : torpeur mortelle qui prit fin par son suicide.

Cohen qualifie ces hommes différemment (Warhol le burnout, Welles le reveur, Foster Wallace le fainéant) mais ce qui frappe chez les trois, c'est comment cette fuite de l'hyperactivité vers l'inertie autodestructrice implique un mouvement vers une solitude radicale, farniente de cancéreux en isolement. La solitude fut longtemps associée à l'énervement dépressif. On disait des solitaires spirituels médiévaux qu'ils souffraient d'acédie, une paresse mélancolique de l'esprit et du corps. "Ne soyez pas solitaire, ne restez pas inactif ", conseille Robert Burton, un érudit du XVIIe siècle, dans The Anatomy of Melancholy (1621), un ouvrage extrêmement influent. La psychiatrie moderne considère la réclusivité comme pathologique et de nombreux collègues psychanalystes de Cohen sont du même avis. Il s'en défend, se tournant plutôt vers la tradition alternative de la Renaissance, qui valorise la solitude comme lieu de création.

L'analyste d'après-guerre Donald Winnicott fut un éloquent porte-parole de cette tradition. Pour Winnicott, - la créativité dépendait du maintien du contact avec le "point mort et silencieux" au cœur de la psyché - Cohen prend pour exemple la célèbre recluse Emily Dickinson, qui se retira de la société pour les "infinies limites de sa propre chambre et de son cerveau" et qui produisit une poésie à l'éclatante originalité". Renonçant à l'amour sexuel et au mariage pour l'"intimité polaire" de sa vie intérieure, "elle ne faisait rien" aux yeux du monde, alors que dans son propre esprit, elle "faisait tout", voyageant sans peur jusqu'aux extrêmes de l'expérience possible.

Dans une brillante série de textes, Cohen montre comment ce voyage intrépide a produit une poésie qui se déplace entre des images bouleversantes d'acédie et des évocations extatiques du désir non consommé, la "gloire privée et invisible" de Dickinson. Le rêve et les produits du rêve l'emportent sur l'actualité contraignante. "Pour Dickinson, rêvasser n'était pas une retraite dans l'inactivité, mais le socle de la plus haute vocation." La manière dont Cohen traite Dickinson est révélatrice. Les lâches et autres fainéants qui peuplent Not Working sont des hommes selon son cœur, mais c'est l'artiste qui est son ideal, qui dédaigne la vie du monde réel ("prose" était l'étiquette méprisante de Dickinson pour cela) au bénéfice de la vie de l'imagination.

Une artiste "ne fait rien", ne produit rien "d'utile", elle incarne en cela la "dimension sabbatique de l'être humain", la partie la plus riche de nous-mêmes. Mais est-ce que cela fait de l'artiste un "type de poids mort" ? Dans ses Confessions, Rousseau écrit "L'oisiveté que j'aime n'est pas celle du fainéant qui reste les bras croisés dans une totale inactivité", mais "celle de l'enfant sans cesse en mouvement". Le jeu n'est pas non plus un travail, mais il est tout sauf inerte. Pour Winnicott, le jeu était expérience la créative primordiale, la source de toute créativité adulte. Cohen est passionné par Winnicott, il est donc intéressant qu'il n'en parle pas, contrairement à Tracey Emin qui, lors d'une interview en 2010, décrivit les jeux d'enfants comme la source de son art.

Dans une discussion éclairante de sur My Bed d'Emin, Cohen fait l'éloge de l'œuvre pour sa représentation puissante de "l'inertie et de la lassitude". Mais contrairement à l'inertie des hommes dont il parle, Emin elle-même semble aller de force en force. Jouer est-il le secret ? Emin et Dickinson sont parmi les rares femmes qui apparaissent dans Not Working. Nous apprenons quand à leur représentation artistique de l'inertie féminine, mais sans rencontrer de femme paresseuse ou feignante. Alors que font-elle pendant que les hommes paressent ?

En regardant de plus près les paresseux préférés de Cohen - Rousseau, Thoreau, Homer Simpson - nous avons un indice. Les jours de farniente de Rousseau sont ponctués par les repas préparés par sa femme. La lessive de Thoreau était faite par sa mère. Marge Simpson fait le ménage pendant qu'Homer boit de la bière devant la télé. Quel genre de révolution faudrait-il pour mettre Marge devant la télé pendant que Homer nettoie la cuisine ? La lutte contre le surmenage existe depuis des siècles (rejointe plus récemment par des protestations féministes contre le "double travail"). Il en va de même pour les luttes pour un travail décent, décemment rémunéré, luttes que Cohen et moi aimons tous deux.

Pourtant, aujourd'hui, dans la vie réelle, les Marges se précipitent toujours de leur maison vers leur emploi au salaire minimum chez Asda. Les Homer enquillent des 12 heures de travail à la suite pour Uber. Et s'ils s'épuisent, comme beaucoup ils se retrouvent souvent dans les banques alimentaires. Que faire à ce sujet ? "Idiorythmie" était le terme de Roland Barthes pour vivre selon ses propres rythmes intérieurs, sans contrainte. Cohen veut qu'on imagine ce que serait une telle vie. Il est sceptique quand aux propositions "pour changer ça", qui n'y parviennent jamais, soutenant que si "les objectifs de la justice juridique, politique et économique ne s'occupent plus de la question de savoir ce qui fait qu'une vie vaut la peine d'être vécue, ils sont susceptibles de devenir des trucs en plus sur la déjà longue liste des choses à faire sans joie...".

Parallèlement aux droits liés au travail, nous avons besoin d'un droit au non travail, a-t-il affirmé récemment. C'est un argument utopique et pas pire pour autant, même affaibli par un rejet ironique de toute action politique en faveur du relâchement et de la paresse. Cependant Not Working n'est pas un manifeste révolutionnaire. Il s'agit plutôt d'une ré-imagination très personnelle et éloquente de nos vies en tant qu'espace de farniente dans toute son idiosyncrasie sans entraves, et d'un rappel précieux du prix exorbitant d'une existence de lapin Duracell.

Auteur: Taylor Bradford Barbara

Info: critique de "Not Working" de Josh Cohen - les bienfaits de l'oisiveté. https://www.theguardian.com. 12 janv. 2019

[ créativité ] [ insouciance ] [ flemme ] [ écrivain-sur-écrivains ] [ femmes-hommes ]

 

Commentaires: 0

Ajouté à la BD par miguel

émergence du regard

Les yeux des mollusques révèlent à quel point l'évolution future dépend du passé

Les systèmes visuels d'un groupe obscur de mollusques fournissent un exemple naturel rare d'évolution dépendante du chemin, dans lequel une bifurcation critique dans le passé des créatures a déterminé leur avenir évolutif.

(photo : Les systèmes visuels des chitons, un type de mollusque marin, représentent un rare exemple réel d’évolution dépendante du chemin – où l’histoire d’une lignée façonne irrévocablement sa trajectoire future.)

Les biologistes se sont souvent demandé ce qui se passerait s'ils pouvaient rembobiner la bande de l'histoire de la vie et laisser l'évolution se dérouler à nouveau. Les lignées d’organismes évolueraient-elles de manière radicalement différente si on leur en donnait la possibilité ? Ou auraient-ils tendance à développer les mêmes types d’yeux, d’ailes et d’autres traits adaptatifs parce que leurs histoires évolutives précédentes les avaient déjà envoyés sur certaines voies de développement ?

Un nouvel article publié aujourd'hui dans Science décrit un cas test rare et important pour cette question, qui est fondamentale pour comprendre comment l'évolution et le développement interagissent. Une équipe de chercheurs de l'Université de Californie à Santa Barbara l'a découvert alors qu'elle étudiait l'évolution de la vision chez un groupe obscur de mollusques appelés chitons. Dans ce groupe d’animaux, les chercheurs ont découvert que deux types d’yeux – les ocelles et les yeux en coquille – ont chacun évolué deux fois indépendamment. Une lignée donnée peut évoluer vers un type d’œil ou vers l’autre, mais jamais les deux.

Curieusement, le type d’œil d’une lignée était déterminé par une caractéristique plus ancienne apparemment sans rapport : le nombre de fentes dans l’armure du chiton. Cela représente un exemple concret d' " évolution dépendante du chemin ", dans lequel l'histoire d'une lignée façonne irrévocablement sa trajectoire évolutive future. Les moments critiques dans une lignée agissent comme des portes à sens unique, ouvrant certaines possibilités tout en fermant définitivement d’autres options.

"C'est l'un des premiers cas où nous avons pu observer une évolution dépendante du cheminement", a déclaré Rebecca Varney , chercheuse postdoctorale au laboratoire de Todd Oakley à l'UCSB et auteur principal du nouvel article. Bien qu’une évolution dépendante du chemin ait été observée chez certaines bactéries cultivées en laboratoire, " montrer cela dans un système naturel était une chose vraiment excitante ".

"Il y a toujours un impact de l'histoire sur l'avenir d'un trait particulier", a déclaré Lauren Sumner-Rooney , qui étudie les systèmes visuels des invertébrés à l'Institut Leibniz pour les sciences de l'évolution et de la biodiversité et n'a pas participé à la nouvelle étude. "Ce qui est particulièrement intéressant et passionnant dans cet exemple, c'est que les auteurs semblent avoir identifié le moment où se produit cette division."

Pour cette raison, les chitons "sont susceptibles d'entrer dans les futurs manuels sur l'évolution" comme exemple d'évolution dépendante du chemin, a déclaré Dan-Eric Nilsson, un écologiste visuel à l'Université de Lund en Suède qui n'a pas participé à la recherche.

Les chitons, petits mollusques qui vivent sur les roches intertidales et dans les profondeurs marines, ressemblent à de petits réservoirs protégés par huit plaques de coquille – un plan corporel resté relativement stable pendant environ 300 millions d'années. Loin d'être des armures inertes, ces genres de plaques d'obus sont fortement décorées d'organes sensoriels qui permettent aux chitons de détecter d'éventuelles menaces.

(photo : Chiton tuberculatus , qui vit sur les côtes rocheuses des Caraïbes, utilise de nombreux ocelles pour obtenir une vision spatiale. Les chitons ont développé des ocelles à deux reprises au cours de leur histoire évolutive.)

Les organes sensoriels sont de trois types. Tous les chitons ont des esthètes (aesthetes : récepteur tout-en-un extrêmement synesthésique qui permet de détecter la lumière ainsi que les signaux chimiques et mécaniques de l'environnement.)

Certains chitons possèdent également un système visuel approprié : soit des milliers d'ocelles sensibles à la lumière, soit des centaines d'yeux en forme de coquille plus complexes, dotés d'un cristallin et d'une rétine permettant de capturer des images grossières. Les animaux dotés d'yeux en forme de coquille peuvent détecter les prédateurs imminents, en réponse à quoi ils se cramponnent fermement au rocher.

Pour comprendre comment cette variété d’yeux de chiton a évolué, une équipe de chercheurs dirigée par Varney a examiné les relations entre des centaines d’espèces de chiton. Ils ont utilisé une technique appelée capture d'exome pour séquencer des sections stratégiques d'ADN provenant d'anciens spécimens de la collection de Doug Eernisse , spécialiste du chiton à la California State University, Fullerton. Au total, ils ont séquencé l’ADN de plus de 100 espèces soigneusement sélectionnées pour représenter toute l’étendue de la diversité des chitons, assemblant ainsi la phylogénie (ou l’arbre des relations évolutives) la plus complète à ce jour pour les chitons.

Ensuite, les chercheurs ont cartographié les différents types d’yeux sur la phylogénie. Les chercheurs ont observé que la première étape avant l’évolution des yeux en coquille ou des ocelles était une augmentation de la densité des esthètes sur la coquille. Ce n’est qu’alors que des yeux plus complexes pourraient apparaître. Les taches oculaires et les yeux en coquille ont chacun évolué à deux reprises au cours de la phylogénie, ce qui représente deux instances distinctes d'évolution convergente.

Indépendamment, les chitons ont fait évoluer les yeux - et, à travers eux, ce que nous pensons être probablement quelque chose comme la vision spatiale - à quatre reprises, ce qui est vraiment impressionnant", a déclaré M. Varney. 

" Cette évolution s'est faite incroyablement rapidement ". Les chercheurs ont estimé que chez le genre néotropical Chiton, par exemple, les yeux ont évolué en l'espace de 7 millions d'années seulement, soit un clin d'œil à l'échelle de l'évolution.

Les résultats ont surpris les chercheurs. "Je pensais qu'il s'agissait d'une évolution progressive de la complexité, passant des esthètes à un système d'ocelles et à des yeux en forme de coquille - une progression très satisfaisante", a déclaré Dan Speiser , écologiste visuel à l'Université de Caroline du Sud et co-auteur d'un article. auteur. " Au lieu de cela, il existe plusieurs chemins vers la vision."

Mais pourquoi certaines lignées ont-elles développé des yeux en coquille plutôt que des ocelles ? Au cours d'un trajet de six heures en voiture depuis une conférence à Phoenix jusqu'à Santa Barbara, Varney et Oakley ont commencé à développer l'hypothèse selon laquelle le nombre de fentes dans la coquille d'un chiton pourrait être la clé de l'évolution de la vision du chiton.

Toutes les structures sensibles à la lumière sur la coquille du chiton, a expliqué Varney, sont attachées à des nerfs qui passent à travers les fentes de la coquille pour se connecter aux nerfs principaux du corps. Les fentes fonctionnent comme des organisateurs de câbles, regroupant les neurones sensoriels. Plus il y a de fentes plus il y les ouvertures par lesquelles les nerfs peuvent passer.

Il se trouve que le nombre de fentes est une information standard qui est enregistrée chaque fois que quelqu'un décrit une nouvelle espèce de chiton. " L'information était disponible, mais sans le contexte d'une phylogénie sur laquelle la cartographier, elle n'avait aucune signification ", a déclaré Varney. " Alors je suis allé voir ça et j'ai commencé à voir ce modèle."

Varney a constaté qu'à deux reprises, indépendamment, des lignées comportant 14 fentes ou plus dans la plaque céphalique ont développé des ocelles. Et deux fois, indépendamment, des lignées comportant 10 fentes ou moins ont développé des yeux en coquille. On se rend ainsi compte que le nombre de fentes verrouillées et le type d'yeux pouvaient évoluer : un chiton avec des milliers d'ocelles a besoin de plus de fentes, tandis qu'un chiton avec des centaines d'yeux en coquille en a besoin de moins. En bref, le nombre de fentes dans la  coquille déterminait l’évolution du système visuel des créatures.

Les résultats conduisent vers une nouvelle série de questions. Les chercheurs étudient activement pourquoi le nombre de fentes limite le type d'œil dans son évolution. Pour répondre à cette question, il faudra travailler à élucider les circuits des nerfs optiques et la manière dont ils traitent les signaux provenant de centaines ou de milliers d’yeux.

Alternativement, la relation entre le type d’œil et le nombre de fentes pourrait être déterminée non pas par les besoins de vision mais par la manière dont les plaques se développent et se développent dans différentes lignées, a suggéré Sumner-Rooney. Les plaques de coquille se développent du centre vers l'extérieur par accrétion, et des yeux sont ajoutés tout au long de la vie du chiton à mesure que le bord se développe. " Les yeux les plus anciens sont ceux au centre de l'animal, et les plus récents sont ajoutés sur les bords. ", a déclaré Sumner-Rooney. En tant que chiton, " vous pourriez commencer votre vie avec 10 yeux et finir votre vie avec 200 ".

Par conséquent, le bord de croissance d'une plaque de carapace doit laisser des trous pour les yeux nouceaux – de nombreux petits trous pour les ocelles, ou moins de trous plus grands pour les yeux de la coquille. Des trous trop nombreux ou trop grands pourraient affaiblir une coque jusqu'à son point de rupture, de sorte que des facteurs structurels pourraient limiter les possibilités pour cest yeux.

Il reste beaucoup à découvrir sur la façon dont les chitons voient le monde, mais en attendant, leurs yeux sont prêts à devenir le nouvel exemple préféré des biologistes d'évolution dépendante du chemin, a déclaré Nilsson. "Les exemples de dépendance au chemin qui peuvent être vraiment bien démontrés, comme dans ce cas, sont rares - même si le phénomène n'est pas seulement courant, c'est la manière standard dont les choses se produisent."



 



Auteur: Internet

Info: Résumé par Gemini

[ évolution qui dépend du chemin ] [ biologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

songes

Comment utiliser les rêves comme source d'inspiration créative

En s'inspirant de Thomas Edison et de Salvador Dalí, des chercheurs montrent que le modelage de l'imagerie des rêves peut susciter des idées créatives pour résoudre un problème spécifique.

(Photo de Salvador Dalí, avec ce texte) Dali avait des moyens originaux pour tirer une inspiration artistique de ses rêves, par exemple en mettant du parfum sur ses paupières ou en lâchant un objet pour se réveiller afin de se souvenir du contenu de ses rêves.)

Structure du benzène, Google et Frankenstein : Qu'ont en commun ces icônes de la science, de la technologie et de la littérature ? Elles  font partie des nombreuses découvertes et inventions qui auraient été inspirées par un rêve.

Pendant des décennies, les spécialistes du sommeil ont réfléchi au lien entre le rêve et l'inspiration créatrice. Ils ont longtemps pensé que ces idées provenaient de la phase de sommeil à mouvements oculaires rapides (REM), riche en rêves, et qui commence une heure ou plus après le début du cycle de sommeil. Mais de nouvelles données mettent en lumière une phase du sommeil beaucoup plus précoce - la zone crépusculaire qui sépare le sommeil de l'éveil - comme terrain fertile pour un élan créatif.

Dans une étude publiée le 15 mai dans Scientific Reports, une équipe de chercheurs montre que les personnes qui font de brèves siestes précédant l'endormissement obtiennent des résultats plus élevés quant aux critères de créativité que celles qui se lancent dans les mêmes tâches créatives après être restées éveillées. "L'importance de cet état de sommeil précoce pour la créativité a fait l'objet de spéculations, mais à ma connaissance, il s'agit de la meilleure étude démontrant sa valeur", déclare Jonathan Schooler, psychologue cognitif à l'université de Californie à Santa Barbara, qui n'a pas participé à l'étude.

De plus, les scientifiques ont découvert qu'ils pouvaient même exercer un certain contrôle sur le processus de rêve. Pour ce faire, ils ont orienté les rêves des participants vers un sujet spécifique. Plus les participants rêvaient de ce thème, plus ils étaient créatifs dans les tâches qui s'y rapportaient. "C'est à peu près ce qui nous permet de dire que rêver d'un sujet améliore la créativité ultérieure sur ce sujet", déclare Robert Stickgold, neuroscientifique cognitif et chercheur sur les rêves à la Harvard Medical School, qui faisait partie de l'équipe de l'étude.

L'expérience s'est appuyée sur un détecteur de sommeil en forme de gant appelé Dormio, mis au point par une équipe comprenant le co-chercheur principal Adam Haar Horowitz, chercheur postdoctoral au Massachusetts Institute of Technology. Dormio suit le début du sommeil en surveillant le tonus musculaire, la conductance de la peau et la fréquence cardiaque par l'intermédiaire de contacts sur le poignet et la main. Il communique avec une application qui émet des messages vocaux pour les rêves et enregistre les rapports de rêves.

Plus d'un penseur célèbre a tiré parti de la première phase de transition dans le sommeil, appelée stade 1 du sommeil non REM (sans mouvements oculaires rapides - N1), pour générer des idées créatives. Le peintre Salvador Dalí s'assoupissait délibérément en tenant un jeu de clés au-dessus d'une plaque de métal lorsqu'il réfléchissait à une idée de peinture. Au fur et à mesure qu'il s'assoupissait, les muscles de sa main se détendaient et il laissait tomber les clés qui heurtaient la plaque et le réveillaient, et il gardait l'image de son rêve. Thomas Edison aurait utilisé une technique similaire avec des billes de métal au lieu de clés pour obtenir des idées à intégrer dans ses inventions.

En 2021, une équipe de chercheurs de l'Institut du cerveau de Paris a rapporté certaines des premières preuves solides comme quoi Dalí et Edison étaient sur la bonne voie. Ils ont demandé à des personnes de faire de courtes siestes après les avoir exposées à des problèmes de mathématiques pour lesquels existait un raccourci caché. Parmi la grande majorité des personnes n'ayant pas vu le raccourci tout de suite, celles qui ont fait une sieste au stade N1 furent presque trois fois plus efficaces que celles n'ayant pas fait de sieste pour trouver la meilleure solution lorsqu'elles s'attaquaient à de nouveaux problèmes nécessitant de mettre en œuvre les mêmes connaissances mathématiques.

Stickgold, Haar Horowitz et leurs collègues ont voulu vérifier l'idée que le rêve était l'intermédiaire clé pour générer des éclats de perspicacité pendant le stade N1. Avant la publication de l'étude de 2021 sur les mathématiques, les chercheurs ont entrepris une étude contrôlée sur le rêve, dans laquelle ils ont incité des personnes à rêver de quelque chose de spécifique, comme un arbre.

Ils ont recruté 50 personnes pour une "étude sur la sieste" de l'après-midi - intitulé qui a vraisemblablement attiré les personnes qui aiment faire la sieste, bien que les chercheurs n'aient en fait demandé qu'à la moitié des participants de dormir dans le cadre de l'étude. Alors qu'ils portaient Dormio, les participants se sont endormis et l'application liée à Dormio leur a demandé de "penser à un arbre" ou de "penser à observer leurs pensées". Une à cinq minutes plus tard, l'application les réveillait en leur demandant de raconter leur rêve. Ce cycle s'est répété pendant 45 minutes, produisant en moyenne cinq récits de rêve par personne. Les personnes à qui l'on a demandé de rester éveillées ont laissé leur esprit vagabonder tout en recevant des instructions similaires. (Les chercheurs ont créé une version simplifiée de ce protocole d'incubation de rêves, accessible sur le web, que vous pouvez essayer chez vous).

Parmi les siesteurs qui ont reçu l'instruction sur les arbres, tous sauf un ont déclaré avoir rêvé d'arbres ou de parties d'arbres, alors qu'une seule personne parmi les siesteurs ayant reçu l'instruction plus générale l'a fait. L'un d'entre eux a décrit des "arbres se divisant en une infinité de morceaux" et s'est retrouvé dans le désert avec "un chaman assis sous l'arbre avec moi".

Les participants ont ensuite passé trois tests de créativité : Ils ont écrit une histoire créative dans laquelle figurait le mot "arbre". Ils ont énuméré "toutes les utilisations alternatives créatives" qu'ils pouvaient imaginer pour un arbre. Enfin, ils ont écrit le premier verbe qui leur venait à l'esprit pour chacun des 31 noms qui se rapportaient, plus ou moins, aux arbres. La créativité des réponses a été évaluée par des personnes qui ne savaient pas qui faisait la sieste ou qui avait reçu l'invitation à parler d'un arbre. Ces évaluations ont été combinées en un indice de créativité globale.

Les personnes ayant fait la sieste et qui avaient reçu l'indice de l'arbre ont obtenu les scores de créativité les plus élevés. "Il existe un lien objectif et expérimental entre l'incubation d'un rêve spécifique et la créativité post-sommeil autour de ce sujet", explique Haar Horowitz. "Cela valide des siècles de rapports anecdotiques de personnes qui se trouvent dans l'espace créatif.

En outre, plus une personne fait référence à des arbres, plus son score de créativité est élevé. "Plus vous rêvez d'un arbre, meilleures sont vos performances ultérieures", explique Kathleen Esfahany, étudiante de premier cycle au M.I.T., qui a codirigé l'étude avec Haar Horowitz. Les personnes semblent utiliser leurs rêves pour trouver des idées pour ces tâches, ajoute Kathleen Esfahany. Par exemple, une personne ayant rêvé que son corps était en bois a écrit une histoire sur un "roi chêne" qui portait une "couronne de feuilles" et dont le corps était tantôt "en bois", tantôt "en lumière".

L'ensemble de ces données indique que le rêve pendant N1 est un ingrédient actif de la créativité, comme l'ont supposé les chercheurs. "Il s'agit d'une étude pionnière", déclare Tore Nielsen, chercheur sur le rêve à l'Université de Montréal, qui n'a pas participé à l'étude. "Personne n'a démontré expérimentalement que le fait de rêver de quelque chose au début du sommeil est en fait lié à la créativité qui s'ensuit.

Nielsen et d'autres chercheurs estiment que l'étude est de petite envergure et qu'elle doit être reproduite. En outre, les résultats des tâches de créativité individuelles (par opposition au résultat composite) n'étaient pas significativement plus élevés chez les personnes qui ont fait une sieste guidée que chez celles qui n'ont pas été guidées, explique Penny Lewis, neuroscientifique à l'université de Cardiff au Pays de Galles, qui n'a pas participé à l'étude. "Je pense que leurs données montrent de manière convaincante que le fait de passer un certain temps dans le stade 1 du sommeil - c'est-à-dire le sommeil très léger qui se produit lorsque vous vous endormez - conduit à de meilleures performances dans ces trois tâches", explique Penny Lewis. Mais l'idée "que l'incitation conduit à ces effets devrait être traitée avec prudence parce que les statistiques ne sont pas très solides".

Une mesure objective et automatisée de la créativité, nommée "distance sémantique", indiquait qu'une brève sieste favorise l'inventivité, mais qu'il n'y a pas d'avantage supplémentaire lorsqu'on ajoutait une incitation à l'idée d'un arbre. Dans cette mesure, un ordinateur évalue la similarité des paires de mots produites dans chaque tâche de créativité, une similarité moindre étant liée à une plus grande créativité. Néanmoins, cette mesure laisse entrevoir un mécanisme de stimulation de la créativité au cours de la période N1. "Elle suggère que les gens sont capables de faire des associations plus éloignées et donc de trouver des ponts [conceptuels] qu'ils n'auraient pas pu découvrir autrement", explique M. Schooler.

L'étude ne portait que sur un seul motif, impliquant un arbre, de sorte que le système doit être testé sur d'autres sujets et éventuellement utilisé pour résoudre des problèmes réels. "C'est passionnant car, en principe, il s'agit d'une technologie que les gens pourraient utiliser eux-mêmes pour stimuler leur propre créativité", explique M. Schooler.

Il semble que les personnes désireuses de l'essayer ne manquent pas. "Des gens très différents sont venus frapper à la porte du laboratoire et ont demandé à faire des rêves", déclare Haar Horowitz.

Auteur: Internet

Info: https://www.scientificamerican.com/. Par Ingrid Wickelgren, 15 mai 2023

[ subconscient ]

 

Commentaires: 0

Ajouté à la BD par miguel

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Les particules quantiques ne tournent pas. Alors d'où vient leur spin ?

Le fait que les électrons possèdent la propriété quantique du spin est essentiel pour notre monde tel que nous le connaissons. Pourtant, les physiciens ne pensent pas que ces particules tournent réellement. 

Les électrons sont des petits magiciens compétents. Ils semblent voltiger autour d'un atome sans suivre de chemin particulier, ils semblent souvent être à deux endroits à la fois, et leur comportement dans les micropuces en silicium alimente l'infrastructure informatique du monde moderne. Mais l'un de leurs tours les plus impressionnants est faussement simple, comme toute bonne magie. Les électrons semblent toujours tourner. Tous les électrons jamais observés, qu'ils se déplacent sur un atome de carbone dans votre ongle ou qu'ils se déplacent à toute vitesse dans un accélérateur de particules, ont l'air de faire constamment de petites pirouettes en se déplaçant dans le monde. Sa rotation ne semble jamais ralentir ou accélérer. Peu importe comment un électron est bousculé ou frappé, il semble toujours tourner à la même vitesse. Il possède même un petit champ magnétique, comme devrait le faire un objet en rotation doté d'une charge électrique. Naturellement, les physiciens appellent ce comportement "spin".

Mais malgré les apparences, les électrons ne tournent pas. Ils ne peuvent pas tourner. Prouver qu'il est impossible que les électrons tournent est un problème standard dans tout cours d'introduction à la physique quantique. Si les électrons tournaient suffisamment vite pour expliquer tout le comportement de rotation qu'ils affichent, leurs surfaces se déplaceraient beaucoup plus vite que la vitesse de la lumière (si tant est qu'ils aient des surfaces). Ce qui est encore plus surprenant, c'est que pendant près d'un siècle, cette contradiction apparente a été ignorée par la plupart des physiciens comme étant une autre caractéristique étrange du monde quantique, qui ne mérite pas qu'on s'y attarde.

Pourtant, le spin est profondément important. Si les électrons ne semblaient pas tourner, votre chaise s'effondrerait pour ne plus représenter qu'une fraction minuscule de sa taille. Vous vous effondreriez aussi - et ce serait le moindre de vos problèmes. Sans le spin, c'est tout le tableau périodique des éléments qui s'effondrerait, et toute la chimie avec. En fait, il n'y aurait pas de molécules du tout. Le spin n'est donc pas seulement l'un des meilleurs tours de magie des électrons, c'est aussi l'un des plus importants. Et comme tout bon magicien, les électrons n'ont jamais dit à personne comment ils faisaient ce tour. Mais aujourd'hui, une nouvelle explication du spin est peut-être en train de se profiler à l'horizon, une explication qui tire le rideau et montre comment la magie opère.

UNE DÉCOUVERTE VERTIGINEUSE

La rotation a toujours été une source de confusion. Même les premières personnes qui ont développé l'idée du spin pensaient qu'elle devait être fausse. En 1925, deux jeunes physiciens hollandais, Samuel Goudsmit et George Uhlenbeck, s'interrogeaient sur les derniers travaux du célèbre (et célèbre) physicien Wolfgang Pauli. Pauli, dans une tentative d'expliquer la structure des spectres atomiques et du tableau périodique, avait récemment postulé que les électrons avaient une "double valeur non descriptible classiquement". Mais Pauli n'avait pas dit à quelle propriété physique de l'électron sa nouvelle valeur correspondait, et Goudsmit et Uhlenbeck se demandaient ce que cela pouvait être.

Tout ce qu'ils savaient - tout le monde le savait à l'époque - c'est que la nouvelle valeur de Pauli était associée à des unités discrètes d'une propriété bien connue de la physique newtonienne classique, appelée moment angulaire. Le moment angulaire est simplement la tendance d'un objet en rotation à continuer de tourner. C'est ce qui fait que les toupies tournent et que les bicyclettes restent droites. Plus un objet tourne vite, plus il a de moment cinétique, mais la forme et la masse de l'objet ont aussi leur importance. Un objet plus lourd a plus de moment cinétique qu'un objet plus léger qui tourne aussi vite, et un objet qui tourne avec plus de masse sur les bords a plus de moment cinétique que si sa masse était concentrée en son centre.

Les objets peuvent avoir un moment angulaire sans tourner. Tout objet qui tourne autour d'un autre objet, comme la Terre qui tourne autour du soleil ou un trousseau de clés qui se balance autour de votre doigt sur un cordon, a un certain moment angulaire. Mais Goudsmit et Uhlenbeck savaient que ce type de moment angulaire ne pouvait pas être la source du nouveau nombre de Pauli. Les électrons semblent effectivement se déplacer autour du noyau atomique, retenus par l'attraction entre leur charge électrique négative et l'attraction positive des protons du noyau. Mais le moment angulaire que ce mouvement leur confère était déjà bien pris en compte et ne pouvait pas être le nouveau nombre de Pauli. Les physiciens savaient également qu'il existait déjà trois nombres associés à l'électron, qui correspondaient aux trois dimensions de l'espace dans lesquelles il pouvait se déplacer. Un quatrième nombre signifiait une quatrième façon dont l'électron pouvait se déplacer. Les deux jeunes physiciens pensaient que la seule possibilité était que l'électron lui-même tourne, comme la Terre qui tourne sur son axe autour du soleil. Si les électrons pouvaient tourner dans l'une des deux directions - dans le sens des aiguilles d'une montre ou dans le sens inverse - cela expliquerait la "bivalence" de Pauli.

Excités, Goudsmit et Uhlenbeck rédigent leur nouvelle idée et la montrent à leur mentor, Paul Ehrenfest. Ehrenfest, un ami proche d'Einstein et un formidable physicien à part entière, trouve l'idée intrigante. Tout en la considérant, il dit aux deux jeunes hommes enthousiastes d'aller consulter quelqu'un de plus âgé et de plus sage : Hendrik Antoon Lorentz, le grand manitou de la physique néerlandaise, qui avait anticipé une grande partie du développement de la relativité restreinte deux décennies plus tôt et qu'Einstein lui-même tenait en très haute estime.

Mais Lorentz est moins impressionné par l'idée de spin qu'Ehrenfest. Comme il l'a fait remarquer à Uhlenbeck, on sait que l'électron est très petit, au moins 3 000 fois plus petit qu'un atome - et on sait déjà que les atomes ont un diamètre d'environ un dixième de nanomètre, soit un million de fois plus petit que l'épaisseur d'une feuille de papier. L'électron étant si petit, et sa masse encore plus petite - un milliardième de milliardième de milliardième de gramme - il était impossible qu'il tourne assez vite pour fournir le moment angulaire que Pauli et d'autres recherchaient. En fait, comme Lorentz l'a dit à Uhlenbeck, la surface de l'électron devrait se déplacer dix fois plus vite que la vitesse de la lumière, une impossibilité absolue.

Défait, Uhlenbeck retourne voir Ehrenfest et lui annonce la nouvelle. Il demande à Ehrenfest de supprimer l'article, mais on lui répond qu'il est trop tard, car son mentor a déjà envoyé l'article pour publication. "Vous êtes tous les deux assez jeunes pour pouvoir vous permettre une stupidité", a dit Ehrenfest. Et il avait raison. Malgré le fait que l'électron ne pouvait pas tourner, l'idée du spin était largement acceptée comme correcte, mais pas de la manière habituelle. Plutôt qu'un électron qui tourne réellement, ce qui est impossible, les physiciens ont interprété la découverte comme signifiant que l'électron portait en lui un certain moment angulaire intrinsèque, comme s'il tournait, même s'il ne pouvait pas le faire. Néanmoins, l'idée était toujours appelée "spin", et Goudsmit et Uhlenbeck ont été largement salués comme les géniteurs de cette idée.

Le spin s'est avéré crucial pour expliquer les propriétés fondamentales de la matière. Dans le même article où il avait proposé son nouveau nombre à deux valeurs, Pauli avait également suggéré un "principe d'exclusion", à savoir que deux électrons ne pouvaient pas occuper exactement le même état. S'ils le pouvaient, alors chaque électron d'un atome tomberait simplement dans l'état d'énergie le plus bas, et pratiquement tous les éléments se comporteraient presque exactement de la même manière les uns que les autres, détruisant la chimie telle que nous la connaissons. La vie n'existerait pas. L'eau n'existerait pas. L'univers serait simplement rempli d'étoiles et de gaz, dérivant dans un cosmos ennuyeux et indifférent sans rencontrer la moindre pierre. En fait, comme on l'a compris plus tard, toute matière solide, quelle qu'elle soit, serait instable. Bien que l'idée de Pauli soit clairement correcte, la raison pour laquelle les électrons ne pouvaient pas partager des états n'était pas claire. Comprendre l'origine du principe d'exclusion de Pauli permettrait d'expliquer tous ces faits profonds de la vie quotidienne.

La réponse à cette énigme se trouvait dans le spin. On découvrit bientôt que le spin était une propriété de base de toutes les particules fondamentales, et pas seulement des électrons, et qu'il était étroitement lié au comportement de ces particules en groupes. En 1940, Pauli et le physicien suisse Markus Fierz ont prouvé que lorsque la mécanique quantique et la relativité restreinte d'Einstein étaient combinées, cela conduisait inévitablement à un lien entre le spin et le comportement statistique des groupes. Le principe d'exclusion de Pauli n'était qu'un cas particulier de ce théorème de la statistique du spin, comme on l'a appelé. Ce théorème est un "fait puissant sur le monde", comme le dit le physicien Michael Berry. "Il est à la base de la chimie, de la supraconductivité, c'est un fait très fondamental". Et comme tant d'autres faits fondamentaux en physique, le spin s'est avéré utile sur le plan technologique également. Dans la seconde moitié du XXe siècle, le spin a été exploité pour développer des lasers, expliquer le comportement des supraconducteurs et ouvrir la voie à la construction d'ordinateurs quantiques.

VOIR AU-DELÀ DU SPIN

Mais toutes ces fabuleuses découvertes, applications et explications laissent encore sur la table la question de Goudsmit et Uhlenbeck : qu'est-ce que le spin ? Si les électrons doivent avoir un spin, mais ne peuvent pas tourner, alors d'où vient ce moment angulaire ? La réponse standard est que ce moment est simplement inhérent aux particules subatomiques et ne correspond à aucune notion macroscopique de rotation.

Pourtant, cette réponse n'est pas satisfaisante pour tout le monde. "Je n'ai jamais aimé l'explication du spin donnée dans un cours de mécanique quantique", déclare Charles Sebens, philosophe de la physique à l'Institut de technologie de Californie. On vous le présente et vous vous dites : "C'est étrange. Ils agissent comme s'ils tournaient, mais ils ne tournent pas vraiment ? Je suppose que je peux apprendre à travailler avec ça". Mais c'est étrange."

Récemment, cependant, Sebens a eu une idée. "Dans le cadre de la mécanique quantique, il semble que l'électron ne tourne pas", dit-il. Mais, ajoute-t-il, "la mécanique quantique n'est pas notre meilleure théorie de la nature. La théorie des champs quantiques est une théorie plus profonde et plus précise."

La théorie quantique des champs est l'endroit où le monde quantique des particules subatomiques rencontre l'équation la plus célèbre du monde : E = mc2, qui résume la découverte d'Einstein selon laquelle la matière peut se transformer en énergie et vice versa. (La théorie quantique des champs est également à l'origine du théorème de la statistique du spin). C'est à partir de cette propriété que lorsque des particules subatomiques interagissent, de nouvelles particules sont souvent créées à partir de leur énergie, et les particules existantes peuvent se désintégrer en quelque chose d'autre. La théorie quantique des champs traite ce phénomène en décrivant les particules comme provenant de champs qui imprègnent tout l'espace-temps, même l'espace vide. Ces champs permettent aux particules d'apparaître et de disparaître, conformément aux règles strictes de la relativité restreinte d'Einstein et aux lois probabilistes du monde quantique.

Et ce sont ces champs, selon Sebens, qui pourraient contenir la solution à l'énigme du spin. "L'électron est habituellement considéré comme une particule", explique-t-il. "Mais dans la théorie quantique des champs, pour chaque particule, il existe une façon de la considérer comme un champ." En particulier, l'électron peut être considéré comme une excitation dans un champ quantique connu sous le nom de champ de Dirac, et ce champ pourrait être ce qui porte le spin de l'électron. "Il y a une véritable rotation de l'énergie et de la charge dans le champ de Dirac", dit Sebens. Si c'est là que réside le moment angulaire, le problème d'un électron tournant plus vite que la vitesse de la lumière disparaît ; la région du champ portant le spin de l'électron est bien plus grande que l'électron supposé ponctuel lui-même. Ainsi, selon Sebens, d'une certaine manière, Pauli et Lorentz avaient à moitié raison : il n'y a pas de particule qui tourne. Il y a un champ tournant, et c'est ce champ qui donne naissance aux particules.

UNE QUESTION SANS RÉPONSE ?

Jusqu'à présent, l'idée de Sebens a produit quelques remous, mais pas de vagues. Pour ce qui est de savoir si les électrons tournent, "je ne pense pas qu'il s'agisse d'une question à laquelle on puisse répondre", déclare Mark Srednicki, physicien à l'université de Californie à Santa Barbara. "Nous prenons un concept qui trouve son origine dans le monde ordinaire et nous essayons de l'appliquer à un endroit où il ne s'applique plus vraiment. Je pense donc que ce n'est vraiment qu'une question de choix, de définition ou de goût pour dire que l'électron tourne vraiment." Hans Ohanian, physicien à l'université du Vermont qui a réalisé d'autres travaux sur le spin des électrons, souligne que la version originale de l'idée de Sebens ne fonctionne pas pour l'antimatière.

Mais tous les physiciens ne sont pas aussi dédaigneux. Selon Sean Carroll, physicien à l'université Johns Hopkins et à l'Institut Santa Fe, "la formulation conventionnelle de notre réflexion sur le spin laisse de côté un élément potentiellement important". "Sebens est tout à fait sur la bonne voie, ou du moins fait quelque chose de très, très utile dans le sens où il prend très au sérieux l'aspect champ de la théorie quantique des champs." Mais, souligne Carroll, "les physiciens sont, au fond, des pragmatiques..... Si Sebens a raison à 100 %, les physiciens vous diront : "D'accord, mais qu'est-ce que cela m'apporte ?"

Doreen Fraser, philosophe de la théorie des champs quantiques à l'université de Waterloo, au Canada, se fait l'écho de ce point de vue. "Je suis ouverte à ce projet que Sebens a de vouloir forer plus profondément pour avoir une sorte d'intuition physique pour aller avec le spin", dit-elle. "Vous avez cette belle représentation mathématique ; vous voulez avoir une image physique intuitive pour l'accompagner." En outre, une image physique pourrait également déboucher sur de nouvelles théories ou expériences qui n'ont jamais été réalisées auparavant. "Pour moi, ce serait le test pour savoir si c'est une bonne idée."

Il est trop tôt pour dire si les travaux de M. Sebens porteront ce genre de fruits. Et bien qu'il ait rédigé un article sur la manière de résoudre la préoccupation d'Ohanian concernant l'antimatière, d'autres questions connexes restent en suspens. "Il y a beaucoup de raisons d'aimer" l'idée du champ, dit Sebens. "Je prends cela plus comme un défi que comme un argument massue contre elle."

Auteur: Becker Adam

Info: Scientific American, November 22, 2022

[ approfondissement ]

 

Commentaires: 0

Ajouté à la BD par miguel

évolution technologique

Intelligence artificielle ou stupidité réelle ?

Bien que le battage médiatique augmente la sensibilisation à l'IA, il facilite également certaines activités assez stupides et peut distraire les gens de la plupart des progrès réels qui sont réalisés.
Distinguer la réalité des manchettes plus dramatiques promet d'offrir des avantages importants aux investisseurs, aux entrepreneurs et aux consommateurs.

L'intelligence artificielle a acquis sa notoriété récente en grande partie grâce à des succès très médiatisés tels que la victoire d'IBM Watson à Jeopardy et celle de Google AlphaGo qui a battu le champion du monde au jeu "Go". Waymo, Tesla et d'autres ont également fait de grands progrès avec les véhicules auto-propulsés. Richard Waters a rendu compte de l'étendue des applications de l'IA dans le Financial Times : "S'il y a un message unificateur qui sous-tend la technologie grand public exposée [au Consumer Electronics Show] .... c'est : "L'IA partout."

Les succès retentissants de l'IA ont également capturé l'imagination des gens à un tel point que cela a suscité d'autres efforts d'envergure. Un exemple instructif a été documenté par Thomas H. Davenport et Rajeev Ronanki dans le Harvard Business Review. Ils écrirent, "En 2013, le MD Anderson Cancer Center a lancé un projet ""Moon shot " : diagnostiquer et recommander des plans de traitement pour certaines formes de cancer en utilisant le système cognitif Watson d'IBM". Malheureusement, ce système n'a pas fonctionné et en 2017 le projet fut mis en veilleuse après avoir coûté plus de 62 millions de dollars sans avoir été utilisé pour les patients.

Waters a également abordé un autre message, celui des attentes modérées. En ce qui concerne les "assistants personnels à commande vocale", note-t-elle, "on ne sait pas encore si la technologie est capable de remplacer le smartphone pour naviguer dans le monde numérique autrement autrement que pour écouter de la musique ou vérifier les nouvelles et la météo".

D'autres exemples de prévisions modérées abondent. Generva Allen du Baylor College of Medicine et de l'Université Rice a avertit , "Je ne ferais pas confiance à une très grande partie des découvertes actuellement faites qui utilisent des techniques de machine learning appliquées à de grands ensembles de données". Le problème, c'est que bon nombre des techniques sont conçues pour fournir des réponses précises et que la recherche comporte des incertitudes. Elle a précisé : "Parfois, il serait beaucoup plus utile qu'ils reconnaissent que certains sont vraiment consolidés, mais qu'on est pas sûr pour beaucoup d'autres".

Pire encore, dans les cas extrêmes, l'IA n'est pas seulement sous-performante ; elle n'a même pas encore été mise en œuvre. Le FT rapporte, "Quatre jeunes entreprises européennes sur dix n'utilisent aucun programme d'intelligence artificielle dans leurs produits, selon un rapport qui souligne le battage publicitaire autour de cette technologie.

Les cycles d'attentes excessives suivies de vagues de déception ne sont pas surprenants pour ceux qui ont côtoyé l'intelligence artificielle pendant un certain temps. Ils savent que ce n'est pas le premier rodéo de l'IA. En effet, une grande partie du travail conceptuel date des années 1950. D'ailleurs, en passant en revue certaines de mes notes récentes je suis tombé sur une pièce qui explorait les réseaux neuronaux dans le but de choisir des actions - datant de 1993.

La meilleure façon d'avoir une perspective sur l'IA est d'aller directement à la source et Martin Ford nous en donne l'occasion dans son livre, Architects of Intelligence. Organisé sous la forme d'une succession d'entrevues avec des chercheurs, des universitaires et des entrepreneurs de premier plan de l'industrie, le livre présente un historique utile de l'IA et met en lumière les principaux courants de pensée.

Deux perspectives importantes se dégagent de ce livre.

La première est qu'en dépit des origines et des personnalités disparates des personnes interrogées, il existe un large consensus sur des sujets importants.

L'autre est qu'un grand nombre des priorités et des préoccupations des principales recherches sur l'IA sont bien différentes de celles exprimées dans les médias grand public.

Prenons par exemple le concept d'intelligence générale artificielle (AGI). Qui est étroitement lié à la notion de "singularité" ce point où l'IA rejoindra celle de l'homme - avant un dépassement massif de cette dernière. Cette idée et d'autres ont suscité des préoccupations au sujet de l'IA, tout comme les pertes massives d'emplois, les drones tueurs et une foule d'autres manifestations alarmantes.

Les principaux chercheurs en AI ont des points de vue très différents ; ils ne sont pas du tout perturbés par l'AGI et autres alarmismes.

Geoffrey Hinton, professeur d'informatique à l'Université de Toronto et vice-président et chercheur chez Google, dit : "Si votre question est : Quand allons-nous obtenir un commandant-docteur Data (comme dans Star Trek ) je ne crois pas que ce sera comme çà que ça va se faire. Je ne pense pas qu'on aura des programmes uniques et généralistes comme ça."

Yoshua Bengio, professeur d'informatique et de recherche opérationnelle à l'Université de Montréal, nous dit qu'il y a des problèmes très difficiles et que nous sommes très loin de l'IA au niveau humain. Il ajoute : "Nous sommes tous excités parce que nous avons fait beaucoup de progrès dans cette ascension, mais en nous approchant du sommet, nous apercevons d'autres collines qui s'élèvent devant nous au fur et à mesure".

Barbara Grosz, professeur de sciences naturelles à l'Université de Harvard : "Je ne pense pas que l'AGI soit la bonne direction à prendre". Elle soutient que la poursuite de l'AGI (et la gestion de ses conséquences) sont si loin dans l'avenir qu'elles ne sont que "distraction".

Un autre fil conducteur des recherches sur l'IA est la croyance que l'IA devrait être utilisée pour améliorer le travail humain plutôt que le remplacer.

Cynthia Breazeal, directrice du groupe de robots personnels du laboratoire de médias du MIT, aborde la question : "La question est de savoir quelle est la synergie, quelle est la complémentarité, quelle est l'amélioration qui permet d'étendre nos capacités humaines en termes d'objectifs, ce qui nous permet d'avoir vraiment un plus grand impact dans le monde, avec l'IA."

Fei-Fei Li, professeur d'informatique à Stanford et scientifique en chef pour Google Cloud dit lui : "L'IA en tant que technologie a énormément de potentiel pour valoriser et améliorer le travail, sans le remplacer".

James Manyika, président du conseil et directeur du McKinsey Global Institute, fait remarquer que puisque 60 % des professions ont environ un tiers de leurs activités qui sont automatisables et que seulement environ 10 % des professions ont plus de 90 % automatisables, "beaucoup plus de professions seront complétées ou augmentées par des technologies qu'elles ne seront remplacées".

De plus, l'IA ne peut améliorer le travail humain que si elle peut travailler efficacement de concert avec lui.

Barbara Grosz fait remarquer : "J'ai dit à un moment donné que 'les systèmes d'IA sont meilleurs s'ils sont conçus en pensant aux gens'". Je recommande que nous visions à construire un système qui soit un bon partenaire d'équipe et qui fonctionne si bien avec nous que nous ne nous rendions pas compte qu'il n'est pas humain".

David Ferrucci, fondateur d'Elemental Cognition et directeur d'IA appliquée chez Bridgewater Associates, déclare : " L'avenir que nous envisageons chez Elemental Cognition repose sur une collaboration étroite et fluide entre l'intelligence humaine et la machine. "Nous pensons que c'est un partenariat de pensée." Yoshua Bengio nous rappelle cependant les défis à relever pour former un tel partenariat : "Il ne s'agit pas seulement de la précision [avec l'IA], il s'agit de comprendre le contexte humain, et les ordinateurs n'ont absolument aucun indice à ce sujet."

Il est intéressant de constater qu'il y a beaucoup de consensus sur des idées clés telles que l'AGI n'est pas un objectif particulièrement utile en ce moment, l'IA devrait être utilisée pour améliorer et non remplacer le travail et l'IA devrait fonctionner en collaboration avec des personnes. Il est également intéressant de constater que ces mêmes leçons sont confirmées par l'expérience des entreprises.

Richard Waters décrit comment les implémentations de l'intelligence artificielle en sont encore à un stade assez rudimentaire.

Éliminez les recherches qui monopolisent les gros titres (un ordinateur qui peut battre les humains au Go !) et la technologie demeure à un stade très primaire .

Mais au-delà de cette "consumérisation" de l'IT, qui a mis davantage d'outils faciles à utiliser entre les mains, la refonte des systèmes et processus internes dans une entreprise demande beaucoup de travail.

Ce gros travail prend du temps et peu d'entreprises semblent présentes sur le terrain. Ginni Rometty, responsable d'IBM, qualifie les applications de ses clients d'"actes aléatoires du numérique" et qualifie nombre de projets de "hit and miss". (ratages). Andrew Moore, responsable de l'intelligence artificielle pour les activités de Google Cloud business, la décrit comme "intelligence artificielle artisanale". Rometty explique : "Ils ont tendance à partir d'un ensemble de données isolé ou d'un cas d'utilisation - comme la rationalisation des interactions avec un groupe particulier de clients. Tout ceci n'est pas lié aux systèmes, données ou flux de travail plus profonds d'une entreprise, ce qui limite leur impact."

Bien que le cas HBR du MD Anderson Cancer Center soit un bon exemple d'un projet d'IA "au clair de lune "qui a probablement dépassé les bornes, cela fournit également une excellente indication des types de travail que l'IA peut améliorer de façon significative. En même temps que le centre essayait d'appliquer l'IA au traitement du cancer, son "groupe informatique expérimentait l'utilisation des technologies cognitives pour des tâches beaucoup moins ambitieuses, telles que faire des recommandations d'hôtels et de restaurants pour les familles des patients, déterminer quels patients avaient besoin d'aide pour payer leurs factures, et résoudre les problèmes informatiques du personnel".

Dans cette entreprise, le centre a eu de bien meilleures expériences : "Les nouveaux systèmes ont contribué à accroître la satisfaction des patients, à améliorer le rendement financier et à réduire le temps consacré à la saisie fastidieuse des données par les gestionnaires de soins de l'hôpital. De telles fonctions banales ne sont peut-être pas exactement du ressort de Terminator, mais elles sont quand même importantes.

Optimiser l'IA dans le but d'augmenter le travail en collaborant avec les humains était également le point central d'une pièce de H. James Wilson et Paul R. Daugherty "HBRpiece". Ils soulignent : "Certes, de nombreuses entreprises ont utilisé l'intelligence artificielle pour automatiser leurs processus, mais celles qui l'utilisent principalement pour déplacer leurs employés ne verront que des gains de productivité à court terme. Grâce à cette intelligence collaborative, l'homme et l'IA renforcent activement les forces complémentaires de l'autre : le leadership, le travail d'équipe, la créativité et les compétences sociales de la première, la rapidité, l'évolutivité et les capacités quantitatives de la seconde".

Wilson et Daugherty précisent : "Pour tirer pleinement parti de cette collaboration, les entreprises doivent comprendre comment les humains peuvent le plus efficacement augmenter les machines, comment les machines peuvent améliorer ce que les humains font le mieux, et comment redéfinir les processus commerciaux pour soutenir le partenariat". Cela demande beaucoup de travail et cela va bien au-delà du simple fait de balancer un système d'IA dans un environnement de travail préexistant.

Les idées des principaux chercheurs en intelligence artificielle, combinées aux réalités des applications du monde réel, offrent des implications utiles. La première est que l'IA est une arme à double tranchant : le battage médiatique peut causer des distractions et une mauvaise attribution, mais les capacités sont trop importantes pour les ignorer.

Ben Hunt discute des rôles de la propriété intellectuelle (PI) et de l'intelligence artificielle dans le secteur des investissements, et ses commentaires sont largement pertinents pour d'autres secteurs. Il note : "L'utilité de la propriété intellectuelle pour préserver le pouvoir de fixation des prix est beaucoup moins fonction de la meilleure stratégie que la PI vous aide à établir, et beaucoup plus fonction de la façon dont la propriété intellectuelle s'intègre dans le l'esprit du temps (Zeitgeist) dominant dans votre secteur.

Il poursuit en expliquant que le "POURQUOI" de votre PI doit "répondre aux attentes de vos clients quant au fonctionnement de la PI" afin de protéger votre produit. Si vous ne correspondez pas à l'esprit du temps, personne ne croira que les murs de votre château existent, même si c'est le cas". Dans le domaine de l'investissement (et bien d'autres encore), "PERSONNE ne considère plus le cerveau humain comme une propriété intellectuelle défendable. Personne." En d'autres termes, si vous n'utilisez pas l'IA, vous n'obtiendrez pas de pouvoir de fixation des prix, quels que soient les résultats réels.

Cela fait allusion à un problème encore plus grave avec l'IA : trop de gens ne sont tout simplement pas prêts à y faire face.

Daniela Rus, directrice du laboratoire d'informatique et d'intelligence artificielle (CSAIL) du MIT déclare : "Je veux être une optimiste technologique. Je tiens à dire que je vois la technologie comme quelque chose qui a le potentiel énorme d'unir les gens plutôt que les diviser, et de les autonomiser plutôt que de les désolidariser. Mais pour y parvenir, nous devons faire progresser la science et l'ingénierie afin de rendre la technologie plus performante et plus utilisable." Nous devons revoir notre façon d'éduquer les gens afin de nous assurer que tous ont les outils et les compétences nécessaires pour tirer parti de la technologie.

Yann Lecun ajoute : "Nous n'aurons pas de large diffusion de la technologie de l'IA à moins qu'une proportion importante de la population ne soit formée pour en tirer parti ".

Cynthia Breazeal répéte : "Dans une société de plus en plus alimentée par l'IA, nous avons besoin d'une société alphabétisée à l'IA."

Ce ne sont pas non plus des déclarations creuses ; il existe une vaste gamme de matériel d'apprentissage gratuit pour l'IA disponible en ligne pour encourager la participation sur le terrain.

Si la société ne rattrape pas la réalité de l'IA, il y aura des conséquences.

Brezeal note : "Les craintes des gens à propos de l'IA peuvent être manipulées parce qu'ils ne la comprennent pas."

Lecun souligne : " Il y a une concentration du pouvoir. À l'heure actuelle, la recherche sur l'IA est très publique et ouverte, mais à l'heure actuelle, elle est largement déployée par un nombre relativement restreint d'entreprises. Il faudra un certain temps avant que ce ne soit utilisé par une plus grande partie de l'économie et c'est une redistribution des cartes du pouvoir."

Hinton souligne une autre conséquence : "Le problème se situe au niveau des systèmes sociaux et la question de savoir si nous allons avoir un système social qui partage équitablement... Tout cela n'a rien à voir avec la technologie".

À bien des égards, l'IA est donc un signal d'alarme. En raison de l'interrelation unique de l'IA avec l'humanité, l'IA a tendance à faire ressortir ses meilleurs et ses pires éléments. Certes, des progrès considérables sont réalisés sur le plan technologique, ce qui promet de fournir des outils toujours plus puissants pour résoudre des problèmes difficiles. Cependant, ces promesses sont également limitées par la capacité des gens, et de la société dans son ensemble, d'adopter les outils d'IA et de les déployer de manière efficace.

Des preuves récentes suggèrent que nous avons du pain sur la planche pour nous préparer à une société améliorée par l'IA. Dans un cas rapporté par le FT, UBS a créé des "algorithmes de recommandation" (tels que ceux utilisés par Netflix pour les films) afin de proposer des transactions pour ses clients. Bien que la technologie existe, il est difficile de comprendre en quoi cette application est utile à la société, même de loin.

Dans un autre cas, Richard Waters nous rappelle : "Cela fait presque dix ans, par exemple, que Google a fait trembler le monde de l'automobile avec son premier prototype de voiture autopropulsée". Il continue : "La première vague de la technologie des voitures sans conducteur est presque prête à faire son entrée sur le marché, mais certains constructeurs automobiles et sociétés de technologie ne semblent plus aussi désireux de faire le grand saut. Bref, ils sont menacés parce que la technologie actuelle est à "un niveau d'autonomie qui fait peur aux constructeurs automobiles, mais qui fait aussi peur aux législateurs et aux régulateurs".

En résumé, que vous soyez investisseur, homme d'affaires, employé ou consommateur, l'IA a le potentiel de rendre les choses bien meilleures - et bien pires. Afin de tirer le meilleur parti de cette opportunité, un effort actif axé sur l'éducation est un excellent point de départ. Pour que les promesses d'AI se concrétisent, il faudra aussi déployer beaucoup d'efforts pour mettre en place des infrastructures de systèmes et cartographier les forces complémentaires. En d'autres termes, il est préférable de considérer l'IA comme un long voyage plutôt que comme une destination à court terme.

Auteur: Internet

Info: Zero Hedge, Ven, 03/15/2019 - 21:10

[ prospective ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

trickster

Les mondes multiples d'Hugh Everett

Il y a cinquante ans, Hugh Everett a conçu l'interprétation de la mécanique quantique en l'expliquant par des mondes multiples, théorie dans laquelle les effets quantiques engendrent d'innombrables branches de l'univers avec des événements différents dans chacune. La théorie semble être une hypothèse bizarre, mais Everett l'a déduite des mathématiques fondamentales de la mécanique quantique. Néanmoins, la plupart des physiciens de l'époque la rejetèrent, et il dût abréger sa thèse de doctorat sur le sujet pour éviter la controverse. Découragé, Everett quitta la physique et travailla sur les mathématiques et l'informatique militaires et industrielles. C'était un être émotionnellement renfermé et un grand buveur. Il est mort alors qu'il n'avait que 51 ans, et ne put donc pas voir le récent respect accordé à ses idées par les physiciens.

Hugh Everett III était un mathématicien brillant, théoricien quantique iconoclaste, puis ensuite entrepreneur prospère dans la défense militaire ayant accès aux secrets militaires les plus sensibles du pays. Il a introduit une nouvelle conception de la réalité dans la physique et a influencé le cours de l'histoire du monde à une époque où l'Armageddon nucléaire semblait imminent. Pour les amateurs de science-fiction, il reste un héros populaire : l'homme qui a inventé une théorie quantique des univers multiples. Pour ses enfants, il était quelqu'un d'autre : un père indisponible, "morceau de mobilier assis à la table de la salle à manger", cigarette à la main. Alcoolique aussi, et fumeur à la chaîne, qui mourut prématurément.

L'analyse révolutionnaire d'Everett a brisé une impasse théorique dans l'interprétation du "comment" de la mécanique quantique. Bien que l'idée des mondes multiples ne soit pas encore universellement acceptée aujourd'hui, ses méthodes de conception de la théorie présagèrent le concept de décohérence quantique - explication moderne du pourquoi et comment la bizarrerie probabiliste de la mécanique quantique peut se résoudre dans le monde concret de notre expérience. Le travail d'Everett est bien connu dans les milieux de la physique et de la philosophie, mais l'histoire de sa découverte et du reste de sa vie l'est relativement moins. Les recherches archivistiques de l'historien russe Eugène Shikhovtsev, de moi-même et d'autres, ainsi que les entretiens que j'ai menés avec les collègues et amis du scientifique décédé, ainsi qu'avec son fils musicien de rock, révèlent l'histoire d'une intelligence radieuse éteinte trop tôt par des démons personnels.

Le voyage scientifique d'Everett commença une nuit de 1954, raconte-t-il deux décennies plus tard, "après une gorgée ou deux de sherry". Lui et son camarade de classe de Princeton Charles Misner et un visiteur nommé Aage Petersen (alors assistant de Niels Bohr) pensaient "des choses ridicules sur les implications de la mécanique quantique". Au cours de cette session Everett eut l'idée de base fondant la théorie des mondes multiples, et dans les semaines qui suivirent, il commença à la développer dans un mémoire. L'idée centrale était d'interpréter ce que les équations de la mécanique quantique représentent dans le monde réel en faisant en sorte que les mathématiques de la théorie elle-même montrent le chemin plutôt qu'en ajoutant des hypothèses d'interprétation aux mathématiques existantes sur le sujet. De cette façon, le jeune homme a mis au défi l'establishment physique de l'époque en reconsidérant sa notion fondamentale de ce qui constitue la réalité physique. En poursuivant cette entreprise, Everett s'attaqua avec audace au problème notoire de la mesure en mécanique quantique, qui accablait les physiciens depuis les années 1920.

En résumé, le problème vient d'une contradiction entre la façon dont les particules élémentaires (comme les électrons et les photons) interagissent au niveau microscopique quantique de la réalité et ce qui se passe lorsque les particules sont mesurées à partir du niveau macroscopique classique. Dans le monde quantique, une particule élémentaire, ou une collection de telles particules, peut exister dans une superposition de deux ou plusieurs états possibles. Un électron, par exemple, peut se trouver dans une superposition d'emplacements, de vitesses et d'orientations différentes de sa rotation. Pourtant, chaque fois que les scientifiques mesurent l'une de ces propriétés avec précision, ils obtiennent un résultat précis - juste un des éléments de la superposition, et non une combinaison des deux. Nous ne voyons jamais non plus d'objets macroscopiques en superposition. Le problème de la mesure se résume à cette question : Comment et pourquoi le monde unique de notre expérience émerge-t-il des multiples alternatives disponibles dans le monde quantique superposé ? Les physiciens utilisent des entités mathématiques appelées fonctions d'onde pour représenter les états quantiques. Une fonction d'onde peut être considérée comme une liste de toutes les configurations possibles d'un système quantique superposé, avec des nombres qui donnent la probabilité que chaque configuration soit celle, apparemment choisie au hasard, que nous allons détecter si nous mesurons le système. La fonction d'onde traite chaque élément de la superposition comme étant également réel, sinon nécessairement également probable de notre point de vue. L'équation de Schrödinger décrit comment la fonction ondulatoire d'un système quantique changera au fil du temps, une évolution qu'elle prédit comme lisse et déterministe (c'est-à-dire sans caractère aléatoire).

Mais cette élégante mathématique semble contredire ce qui se passe lorsque les humains observent un système quantique, tel qu'un électron, avec un instrument scientifique (qui lui-même peut être considéré comme un système quantique). Car au moment de la mesure, la fonction d'onde décrivant la superposition d'alternatives semble s'effondrer en un unique membre de la superposition, interrompant ainsi l'évolution en douceur de la fonction d'onde et introduisant la discontinuité. Un seul résultat de mesure émerge, bannissant toutes les autres possibilités de la réalité décrite de manière classique. Le choix de l'alternative produite au moment de la mesure semble arbitraire ; sa sélection n'évolue pas logiquement à partir de la fonction d'onde chargée d'informations de l'électron avant la mesure. Les mathématiques de l'effondrement n'émergent pas non plus du flux continu de l'équation de Schrödinger. En fait, l'effondrement (discontinuité) doit être ajouté comme un postulat, comme un processus supplémentaire qui semble violer l'équation.

De nombreux fondateurs de la mécanique quantique, notamment Bohr, Werner Heisenberg et John von Neumann, se sont mis d'accord sur une interprétation de la mécanique quantique - connue sous le nom d'interprétation de Copenhague - pour traiter le problème des mesures. Ce modèle de réalité postule que la mécanique du monde quantique se réduit à des phénomènes observables de façon classique et ne trouve son sens qu'en termes de phénomènes observables, et non l'inverse. Cette approche privilégie l'observateur externe, le plaçant dans un domaine classique distinct du domaine quantique de l'objet observé. Bien qu'incapables d'expliquer la nature de la frontière entre le domaine quantique et le domaine classique, les Copenhagueistes ont néanmoins utilisé la mécanique quantique avec un grand succès technique. Des générations entières de physiciens ont appris que les équations de la mécanique quantique ne fonctionnent que dans une partie de la réalité, la microscopique, et cessent d'être pertinentes dans une autre, la macroscopique. C'est tout ce dont la plupart des physiciens ont besoin.

Fonction d'onde universelle. Par fort effet contraire, Everett s'attaqua au problème de la mesure en fusionnant les mondes microscopique et macroscopique. Il fit de l'observateur une partie intégrante du système observé, introduisant une fonction d'onde universelle qui relie les observateurs et les objets dans un système quantique unique. Il décrivit le monde macroscopique en mécanique quantique imaginant que les grands objets existent également en superpositions quantiques. Rompant avec Bohr et Heisenberg, il n'avait pas besoin de la discontinuité d'un effondrement de la fonction ondulatoire. L'idée radicalement nouvelle d'Everett était de se demander : Et si l'évolution continue d'une fonction d'onde n'était pas interrompue par des actes de mesure ? Et si l'équation de Schrödinger s'appliquait toujours et s'appliquait aussi bien à tous les objets qu'aux observateurs ? Et si aucun élément de superposition n'est jamais banni de la réalité ? A quoi ressemblerait un tel monde pour nous ? Everett constata, selon ces hypothèses, que la fonction d'onde d'un observateur devrait, en fait, bifurquer à chaque interaction de l'observateur avec un objet superposé. La fonction d'onde universelle contiendrait des branches pour chaque alternative constituant la superposition de l'objet. Chaque branche ayant sa propre copie de l'observateur, copie qui percevait une de ces alternatives comme le résultat. Selon une propriété mathématique fondamentale de l'équation de Schrödinger, une fois formées, les branches ne s'influencent pas mutuellement. Ainsi, chaque branche se lance dans un avenir différent, indépendamment des autres. Prenons l'exemple d'une personne qui mesure une particule qui se trouve dans une superposition de deux états, comme un électron dans une superposition de l'emplacement A et de l'emplacement B. Dans une branche, la personne perçoit que l'électron est à A. Dans une branche presque identique, une copie de la personne perçoit que le même électron est à B. Chaque copie de la personne se perçoit comme unique et considère que la chance lui a donné une réalité dans un menu des possibilités physiques, même si, en pleine réalité, chaque alternative sur le menu se réalise.

Expliquer comment nous percevons un tel univers exige de mettre un observateur dans l'image. Mais le processus de ramification se produit indépendamment de la présence ou non d'un être humain. En général, à chaque interaction entre systèmes physiques, la fonction d'onde totale des systèmes combinés aurait tendance à bifurquer de cette façon. Aujourd'hui, la compréhension de la façon dont les branches deviennent indépendantes et ressemblent à la réalité classique à laquelle nous sommes habitués est connue sous le nom de théorie de la décohérence. C'est une partie acceptée de la théorie quantique moderne standard, bien que tout le monde ne soit pas d'accord avec l'interprétation d'Everett comme quoi toutes les branches représentent des réalités qui existent. Everett n'a pas été le premier physicien à critiquer le postulat de l'effondrement de Copenhague comme inadéquat. Mais il a innové en élaborant une théorie mathématiquement cohérente d'une fonction d'onde universelle à partir des équations de la mécanique quantique elle-même. L'existence d'univers multiples a émergé comme une conséquence de sa théorie, pas par un prédicat. Dans une note de bas de page de sa thèse, Everett écrit : "Du point de vue de la théorie, tous les éléments d'une superposition (toutes les "branches") sont "réels", aucun n'est plus "réel" que les autres. Le projet contenant toutes ces idées provoqua de remarquables conflits dans les coulisses, mis au jour il y a environ cinq ans par Olival Freire Jr, historien des sciences à l'Université fédérale de Bahia au Brésil, dans le cadre de recherches archivistiques.

Au printemps de 1956 le conseiller académique à Princeton d'Everett, John Archibald Wheeler, prit avec lui le projet de thèse à Copenhague pour convaincre l'Académie royale danoise des sciences et lettres de le publier. Il écrivit à Everett qu'il avait eu "trois longues et fortes discussions à ce sujet" avec Bohr et Petersen. Wheeler partagea également le travail de son élève avec plusieurs autres physiciens de l'Institut de physique théorique de Bohr, dont Alexander W. Stern. Scindages La lettre de Wheeler à Everett disait en autre : "Votre beau formalisme de la fonction ondulatoire reste bien sûr inébranlable ; mais nous sentons tous que la vraie question est celle des mots qui doivent être attachés aux quantités de ce formalisme". D'une part, Wheeler était troublé par l'utilisation par Everett d'humains et de boulets de canon "scindés" comme métaphores scientifiques. Sa lettre révélait l'inconfort des Copenhagueistes quant à la signification de l'œuvre d'Everett. Stern rejeta la théorie d'Everett comme "théologique", et Wheeler lui-même était réticent à contester Bohr. Dans une longue lettre politique adressée à Stern, il explique et défend la théorie d'Everett comme une extension, non comme une réfutation, de l'interprétation dominante de la mécanique quantique : "Je pense que je peux dire que ce jeune homme très fin, capable et indépendant d'esprit en est venu progressivement à accepter l'approche actuelle du problème de la mesure comme correcte et cohérente avec elle-même, malgré quelques traces qui subsistent dans le présent projet de thèse d'une attitude douteuse envers le passé. Donc, pour éviter tout malentendu possible, permettez-moi de dire que la thèse d'Everett ne vise pas à remettre en question l'approche actuelle du problème de la mesure, mais à l'accepter et à la généraliser."

Everett aurait été en total désaccord avec la description que Wheeler a faite de son opinion sur l'interprétation de Copenhague. Par exemple, un an plus tard, en réponse aux critiques de Bryce S. DeWitt, rédacteur en chef de la revue Reviews of Modern Physics, il écrivit : "L'Interprétation de Copenhague est désespérément incomplète en raison de son recours a priori à la physique classique... ainsi que d'une monstruosité philosophique avec un concept de "réalité" pour le monde macroscopique qui ne marche pas avec le microcosme." Pendant que Wheeler était en Europe pour plaider sa cause, Everett risquait alors de perdre son permis de séjour étudiant qui avait été suspendu. Pour éviter d'aller vers des mesures disciplinaires, il décida d'accepter un poste de chercheur au Pentagone. Il déménagea dans la région de Washington, D.C., et ne revint jamais à la physique théorique. Au cours de l'année suivante, cependant, il communiqua à distance avec Wheeler alors qu'il avait réduit à contrecœur sa thèse au quart de sa longueur d'origine. En avril 1957, le comité de thèse d'Everett accepta la version abrégée - sans les "scindages". Trois mois plus tard, Reviews of Modern Physics publiait la version abrégée, intitulée "Relative State' Formulation of Quantum Mechanics".("Formulation d'état relatif de la mécanique quantique.") Dans le même numéro, un document d'accompagnement de Wheeler loue la découverte de son élève. Quand le papier parut sous forme imprimée, il passa instantanément dans l'obscurité.

Wheeler s'éloigna progressivement de son association avec la théorie d'Everett, mais il resta en contact avec le théoricien, l'encourageant, en vain, à faire plus de travail en mécanique quantique. Dans une entrevue accordée l'an dernier, Wheeler, alors âgé de 95 ans, a déclaré qu' "Everett était déçu, peut-être amer, devant les non réactions à sa théorie. Combien j'aurais aimé continuer les séances avec lui. Les questions qu'il a soulevées étaient importantes." Stratégies militaires nucléaires Princeton décerna son doctorat à Everett près d'un an après qu'il ait commencé son premier projet pour le Pentagone : le calcul des taux de mortalité potentiels des retombées radioactives d'une guerre nucléaire. Rapidement il dirigea la division des mathématiques du Groupe d'évaluation des systèmes d'armes (WSEG) du Pentagone, un groupe presque invisible mais extrêmement influent. Everett conseillait de hauts responsables des administrations Eisenhower et Kennedy sur les meilleures méthodes de sélection des cibles de bombes à hydrogène et de structuration de la triade nucléaire de bombardiers, de sous-marins et de missiles pour un impact optimal dans une frappe nucléaire. En 1960, participa à la rédaction du WSEG n° 50, un rapport qui reste classé à ce jour. Selon l'ami d'Everett et collègue du WSEG, George E. Pugh, ainsi que des historiens, le WSEG no 50 a rationalisé et promu des stratégies militaires qui ont fonctionné pendant des décennies, notamment le concept de destruction mutuelle assurée. Le WSEG a fourni aux responsables politiques de la guerre nucléaire suffisamment d'informations effrayantes sur les effets mondiaux des retombées radioactives pour que beaucoup soient convaincus du bien-fondé d'une impasse perpétuelle, au lieu de lancer, comme le préconisaient certains puissants, des premières attaques préventives contre l'Union soviétique, la Chine et d'autres pays communistes.

Un dernier chapitre de la lutte pour la théorie d'Everett se joua également dans cette période. Au printemps 1959, Bohr accorda à Everett une interview à Copenhague. Ils se réunirent plusieurs fois au cours d'une période de six semaines, mais avec peu d'effet : Bohr ne changea pas sa position, et Everett n'est pas revenu à la recherche en physique quantique. L'excursion n'avait pas été un échec complet, cependant. Un après-midi, alors qu'il buvait une bière à l'hôtel Østerport, Everett écrivit sur un papier à l'en-tête de l'hôtel un raffinement important de cet autre tour de force mathématique qui a fait sa renommée, la méthode généralisée du multiplicateur de Lagrange, aussi connue sous le nom d'algorithme Everett. Cette méthode simplifie la recherche de solutions optimales à des problèmes logistiques complexes, allant du déploiement d'armes nucléaires aux horaires de production industrielle juste à temps en passant par l'acheminement des autobus pour maximiser la déségrégation des districts scolaires. En 1964, Everett, Pugh et plusieurs autres collègues du WSEG ont fondé une société de défense privée, Lambda Corporation. Entre autres activités, il a conçu des modèles mathématiques de systèmes de missiles anti-missiles balistiques et de jeux de guerre nucléaire informatisés qui, selon Pugh, ont été utilisés par l'armée pendant des années. Everett s'est épris de l'invention d'applications pour le théorème de Bayes, une méthode mathématique de corrélation des probabilités des événements futurs avec l'expérience passée. En 1971, Everett a construit un prototype de machine bayésienne, un programme informatique qui apprend de l'expérience et simplifie la prise de décision en déduisant les résultats probables, un peu comme la faculté humaine du bon sens. Sous contrat avec le Pentagone, le Lambda a utilisé la méthode bayésienne pour inventer des techniques de suivi des trajectoires des missiles balistiques entrants. En 1973, Everett quitte Lambda et fonde une société de traitement de données, DBS, avec son collègue Lambda Donald Reisler. Le DBS a fait des recherches sur les applications des armes, mais s'est spécialisée dans l'analyse des effets socio-économiques des programmes d'action sociale du gouvernement. Lorsqu'ils se sont rencontrés pour la première fois, se souvient M. Reisler, Everett lui a demandé timidement s'il avait déjà lu son journal de 1957. J'ai réfléchi un instant et j'ai répondu : "Oh, mon Dieu, tu es cet Everett, le fou qui a écrit ce papier dingue", dit Reisler. "Je l'avais lu à l'université et avais gloussé, le rejetant d'emblée." Les deux sont devenus des amis proches mais convinrent de ne plus parler d'univers multiples.

Malgré tous ces succès, la vie d'Everett fut gâchée de bien des façons. Il avait une réputation de buveur, et ses amis disent que le problème semblait s'aggraver avec le temps. Selon Reisler, son partenaire aimait habituellement déjeuner avec trois martinis, dormant dans son bureau, même s'il réussissait quand même à être productif. Pourtant, son hédonisme ne reflétait pas une attitude détendue et enjouée envers la vie. "Ce n'était pas quelqu'un de sympathique", dit Reisler. "Il apportait une logique froide et brutale à l'étude des choses... Les droits civils n'avaient aucun sens pour lui." John Y. Barry, ancien collègue d'Everett au WSEG, a également remis en question son éthique. Au milieu des années 1970, Barry avait convaincu ses employeurs chez J. P. Morgan d'embaucher Everett pour mettre au point une méthode bayésienne de prévision de l'évolution du marché boursier. Selon plusieurs témoignages, Everett avait réussi, puis il refusa de remettre le produit à J. P. Morgan. "Il s'est servi de nous", se souvient Barry. "C'était un individu brillant, innovateur, insaisissable, indigne de confiance, probablement alcoolique." Everett était égocentrique. "Hugh aimait épouser une forme de solipsisme extrême", dit Elaine Tsiang, ancienne employée de DBS. "Bien qu'il eut peine à éloigner sa théorie [des monde multiples] de toute théorie de l'esprit ou de la conscience, il est évident que nous devions tous notre existence par rapport au monde qu'il avait fait naître." Et il connaissait à peine ses enfants, Elizabeth et Mark. Alors qu'Everett poursuivait sa carrière d'entrepreneur, le monde de la physique commençait à jeter un regard critique sur sa théorie autrefois ignorée. DeWitt pivota d'environ 180 degrés et devint son défenseur le plus dévoué. En 1967, il écrivit un article présentant l'équation de Wheeler-DeWitt : une fonction d'onde universelle qu'une théorie de la gravité quantique devrait satisfaire. Il attribue à Everett le mérite d'avoir démontré la nécessité d'une telle approche. DeWitt et son étudiant diplômé Neill Graham ont ensuite publié un livre de physique, The Many-Worlds Interpretation of Quantum Mechanics, qui contenait la version non informatisée de la thèse d'Everett. L'épigramme "mondes multiples" se répandit rapidement, popularisée dans le magazine de science-fiction Analog en 1976. Toutefois, tout le monde n'est pas d'accord sur le fait que l'interprétation de Copenhague doive céder le pas. N. David Mermin, physicien de l'Université Cornell, soutient que l'interprétation d'Everett traite la fonction des ondes comme faisant partie du monde objectivement réel, alors qu'il la considère simplement comme un outil mathématique. "Une fonction d'onde est une construction humaine", dit Mermin. "Son but est de nous permettre de donner un sens à nos observations macroscopiques. Mon point de vue est exactement le contraire de l'interprétation des mondes multiples. La mécanique quantique est un dispositif qui nous permet de rendre nos observations cohérentes et de dire que nous sommes à l'intérieur de la mécanique quantique et que la mécanique quantique doive s'appliquer à nos perceptions est incohérent." Mais de nombreux physiciens avancent que la théorie d'Everett devrait être prise au sérieux. "Quand j'ai entendu parler de l'interprétation d'Everett à la fin des années 1970, dit Stephen Shenker, physicien théoricien à l'Université Stanford, j'ai trouvé cela un peu fou. Maintenant, la plupart des gens que je connais qui pensent à la théorie des cordes et à la cosmologie quantique pensent à quelque chose qui ressemble à une interprétation à la Everett. Et à cause des récents développements en informatique quantique, ces questions ne sont plus académiques."

Un des pionniers de la décohérence, Wojciech H. Zurek, chercheur au Los Alamos National Laboratory, a commente que "l'accomplissement d'Everett fut d'insister pour que la théorie quantique soit universelle, qu'il n'y ait pas de division de l'univers entre ce qui est a priori classique et ce qui est a priori du quantum. Il nous a tous donné un ticket pour utiliser la théorie quantique comme nous l'utilisons maintenant pour décrire la mesure dans son ensemble." Le théoricien des cordes Juan Maldacena de l'Institute for Advanced Study de Princeton, N.J., reflète une attitude commune parmi ses collègues : "Quand je pense à la théorie d'Everett en mécanique quantique, c'est la chose la plus raisonnable à croire. Dans la vie de tous les jours, je n'y crois pas."

En 1977, DeWitt et Wheeler invitèrent Everett, qui détestait parler en public, à faire une présentation sur son interprétation à l'Université du Texas à Austin. Il portait un costume noir froissé et fuma à la chaîne pendant tout le séminaire. David Deutsch, maintenant à l'Université d'Oxford et l'un des fondateurs du domaine de l'informatique quantique (lui-même inspiré par la théorie d'Everett), était là. "Everett était en avance sur son temps", dit Deutsch en résumant la contribution d'Everett. "Il représente le refus de renoncer à une explication objective. L'abdication de la finalité originelle de ces domaines, à savoir expliquer le monde, a fait beaucoup de tort au progrès de la physique et de la philosophie. Nous nous sommes irrémédiablement enlisés dans les formalismes, et les choses ont été considérées comme des progrès qui ne sont pas explicatifs, et le vide a été comblé par le mysticisme, la religion et toutes sortes de détritus. Everett est important parce qu'il s'y est opposé." Après la visite au Texas, Wheeler essaya de mettre Everett en contact avec l'Institute for Theoretical Physics à Santa Barbara, Californie. Everett aurait été intéressé, mais le plan n'a rien donné. Totalité de l'expérience Everett est mort dans son lit le 19 juillet 1982. Il n'avait que 51 ans.

Son fils, Mark, alors adolescent, se souvient avoir trouvé le corps sans vie de son père ce matin-là. Sentant le corps froid, Mark s'est rendu compte qu'il n'avait aucun souvenir d'avoir jamais touché son père auparavant. "Je ne savais pas quoi penser du fait que mon père venait de mourir, m'a-t-il dit. "Je n'avais pas vraiment de relation avec lui." Peu de temps après, Mark a déménagé à Los Angeles. Il est devenu un auteur-compositeur à succès et chanteur principal d'un groupe de rock populaire, Eels. Beaucoup de ses chansons expriment la tristesse qu'il a vécue en tant que fils d'un homme déprimé, alcoolique et détaché émotionnellement. Ce n'est que des années après la mort de son père que Mark a appris l'existence de la carrière et des réalisations de son père. La sœur de Mark, Elizabeth, fit la première d'une série de tentatives de suicide en juin 1982, un mois seulement avant la mort d'Everett. Mark la trouva inconsciente sur le sol de la salle de bain et l'amena à l'hôpital juste à temps. Quand il rentra chez lui plus tard dans la soirée, se souvient-il, son père "leva les yeux de son journal et dit : Je ne savais pas qu'elle était si triste."" En 1996, Elizabeth se suicida avec une overdose de somnifères, laissant une note dans son sac à main disant qu'elle allait rejoindre son père dans un autre univers. Dans une chanson de 2005, "Things the Grandchildren Should Know", Mark a écrit : "Je n'ai jamais vraiment compris ce que cela devait être pour lui de vivre dans sa tête". Son père solipsistiquement incliné aurait compris ce dilemme. "Une fois que nous avons admis que toute théorie physique n'est essentiellement qu'un modèle pour le monde de l'expérience, conclut Everett dans la version inédite de sa thèse, nous devons renoncer à tout espoir de trouver quelque chose comme la théorie correcte... simplement parce que la totalité de l'expérience ne nous est jamais accessible."

Auteur: Byrne Peter

Info: 21 octobre 2008, https://www.scientificamerican.com/article/hugh-everett-biography/. Publié à l'origine dans le numéro de décembre 2007 de Scientific American

[ légende de la physique théorique ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier cognitif

Des physiciens observent une transition de phase quantique "inobservable"

Mesure et l'intrication ont toutes deux une saveur non locale "étrange". Aujourd'hui, les physiciens exploitent cette nonlocalité pour sonder la diffusion de l'information quantique et la contrôler.

La mesure est l'ennemi de l'intrication. Alors que l'intrication se propage à travers une grille de particules quantiques - comme le montre cette simulation - que se passerait-il si l'on mesurait certaines des particules ici et là ? Quel phénomène triompherait ?

En 1935, Albert Einstein et Erwin Schrödinger, deux des physiciens les plus éminents de l'époque, se disputent sur la nature de la réalité.

Einstein avait fait des calculs et savait que l'univers devait être local, c'est-à-dire qu'aucun événement survenant à un endroit donné ne pouvait affecter instantanément un endroit éloigné. Mais Schrödinger avait fait ses propres calculs et savait qu'au cœur de la mécanique quantique se trouvait une étrange connexion qu'il baptisa "intrication" et qui semblait remettre en cause l'hypothèse de localité d'Einstein.

Lorsque deux particules sont intriquées, ce qui peut se produire lors d'une collision, leurs destins sont liés. En mesurant l'orientation d'une particule, par exemple, on peut apprendre que sa partenaire intriquée (si et quand elle est mesurée) pointe dans la direction opposée, quel que soit l'endroit où elle se trouve. Ainsi, une mesure effectuée à Pékin pourrait sembler affecter instantanément une expérience menée à Brooklyn, violant apparemment l'édit d'Einstein selon lequel aucune influence ne peut voyager plus vite que la lumière.

Einstein n'appréciait pas la portée de l'intrication (qu'il qualifiera plus tard d'"étrange") et critiqua la théorie de la mécanique quantique, alors naissante, comme étant nécessairement incomplète. Schrödinger défendit à son tour la théorie, dont il avait été l'un des pionniers. Mais il comprenait le dégoût d'Einstein pour l'intrication. Il admit que la façon dont elle semble permettre à un expérimentateur de "piloter" une expérience autrement inaccessible est "plutôt gênante".

Depuis, les physiciens se sont largement débarrassés de cette gêne. Ils comprennent aujourd'hui ce qu'Einstein, et peut-être Schrödinger lui-même, avaient négligé : l'intrication n'a pas d'influence à distance. Elle n'a pas le pouvoir de provoquer un résultat spécifique à distance ; elle ne peut distribuer que la connaissance de ce résultat. Les expériences sur l'intrication, telles que celles qui ont remporté le prix Nobel en 2022, sont maintenant devenues monnaie courante.

Au cours des dernières années, une multitude de recherches théoriques et expérimentales ont permis de découvrir une nouvelle facette du phénomène, qui se manifeste non pas par paires, mais par constellations de particules. L'intrication se propage naturellement dans un groupe de particules, établissant un réseau complexe de contingences. Mais si l'on mesure les particules suffisamment souvent, en détruisant l'intrication au passage, il est possible d'empêcher la formation du réseau. En 2018, trois groupes de théoriciens ont montré que ces deux états - réseau ou absence de réseau - rappellent des états familiers de la matière tels que le liquide et le solide. Mais au lieu de marquer une transition entre différentes structures de la matière, le passage entre la toile et l'absence de toile indique un changement dans la structure de l'information.

"Il s'agit d'une transition de phase dans l'information", explique Brian Skinner, de l'université de l'État de l'Ohio, l'un des physiciens qui a identifié le phénomène en premier. "Les propriétés de l'information, c'est-à-dire la manière dont l'information est partagée entre les choses, subissent un changement très brutal.

Plus récemment, un autre trio d'équipes a tenté d'observer cette transition de phase en action. Elles ont réalisé une série de méta-expériences pour mesurer comment les mesures elles-mêmes affectent le flux d'informations. Dans ces expériences, ils ont utilisé des ordinateurs quantiques pour confirmer qu'il est possible d'atteindre un équilibre délicat entre les effets concurrents de l'intrication et de la mesure. La découverte de la transition a lancé une vague de recherches sur ce qui pourrait être possible lorsque l'intrication et la mesure entrent en collision.

L'intrication "peut avoir de nombreuses propriétés différentes, bien au-delà de ce que nous avions imaginé", a déclaré Jedediah Pixley, théoricien de la matière condensée à l'université Rutgers, qui a étudié les variations de la transition.

Un dessert enchevêtré

L'une des collaborations qui a permis de découvrir la transition d'intrication est née autour d'un pudding au caramel collant dans un restaurant d'Oxford, en Angleterre. En avril 2018, Skinner rendait visite à son ami Adam Nahum, un physicien qui travaille actuellement à l'École normale supérieure de Paris. Au fil d'une conversation tentaculaire, ils se sont retrouvés à débattre d'une question fondamentale concernant l'enchevêtrement et l'information.

Tout d'abord, un petit retour en arrière. Pour comprendre le lien entre l'intrication et l'information, imaginons une paire de particules, A et B, chacune dotée d'un spin qui peut être mesuré comme pointant vers le haut ou vers le bas. Chaque particule commence dans une superposition quantique de haut et de bas, ce qui signifie qu'une mesure produit un résultat aléatoire - soit vers le haut, soit vers le bas. Si les particules ne sont pas intriquées, les mesurer revient à jouer à pile ou face : Le fait d'obtenir pile ou face avec l'une ne vous dit rien sur ce qui se passera avec l'autre.

Mais si les particules sont intriquées, les deux résultats seront liés. Si vous trouvez que B pointe vers le haut, par exemple, une mesure de A indiquera qu'il pointe vers le bas. La paire partage une "opposition" qui ne réside pas dans l'un ou l'autre membre, mais entre eux - un soupçon de la non-localité qui a troublé Einstein et Schrödinger. L'une des conséquences de cette opposition est qu'en mesurant une seule particule, on en apprend plus sur l'autre. "La mesure de B m'a d'abord permis d'obtenir des informations sur A", a expliqué M. Skinner. "Cela réduit mon ignorance sur l'état de A."

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, tu mesurais certains spins ici et là ? Si tu les mesurais tous en permanence, l'intrication disparaîtrait de façon ennuyeuse. Mais si tu les mesures sporadiquement, par quelques spins seulement, quel phénomène sortira vainqueur ? L'intrication ou la mesure ?

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, on mesurait certains spins ici et là ? Les mesurer tous en permanence ferait disparaître toute l'intrication d'une manière ennuyeuse. Mais si on en mesure sporadiquement quelques spins seulement, quel phénomène sortirait vainqueur ? L'intrication ou la mesure ?

Skinner, répondit qu'il pensait que la mesure écraserait l'intrication. L'intrication se propage de manière léthargique d'un voisin à l'autre, de sorte qu'elle ne croît que de quelques particules à la fois. Mais une série de mesures pourrait toucher simultanément de nombreuses particules tout au long de la longue chaîne, étouffant ainsi l'intrication sur une multitude de sites. S'ils avaient envisagé cet étrange scénario, de nombreux physiciens auraient probablement convenu que l'intrication ne pouvait pas résister aux mesures.

"Selon Ehud Altman, physicien spécialiste de la matière condensée à l'université de Californie à Berkeley, "il y avait une sorte de folklore selon lequel les états très intriqués sont très fragiles".

Mais Nahum, qui réfléchit à cette question depuis l'année précédente, n'est pas de cet avis. Il imaginait que la chaîne s'étendait dans le futur, instant après instant, pour former une sorte de clôture à mailles losangées. Les nœuds étaient les particules, et les connexions entre elles représentaient les liens à travers lesquels l'enchevêtrement pouvait se former. Les mesures coupant les liens à des endroits aléatoires. Si l'on coupe suffisamment de maillons, la clôture s'écroule. L'intrication ne peut pas se propager. Mais jusque là, selon Nahum, même une clôture en lambeaux devrait permettre à l'intrication de se propager largement.

Nahum a réussi à transformer un problème concernant une occurrence quantique éphémère en une question concrète concernant une clôture à mailles losangées. Il se trouve qu'il s'agit d'un problème bien étudié dans certains cercles - la "grille de résistance vandalisée" - et que Skinner avait étudié lors de son premier cours de physique de premier cycle, lorsque son professeur l'avait présenté au cours d'une digression.

"C'est à ce moment-là que j'ai été vraiment enthousiasmé", a déclaré M. Skinner. "Il n'y a pas d'autre moyen de rendre un physicien plus heureux que de montrer qu'un problème qui semble difficile est en fait équivalent à un problème que l'on sait déjà résoudre."

Suivre l'enchevêtrement

Mais leurs plaisanteries au dessert n'étaient rien d'autre que des plaisanteries. Pour tester et développer rigoureusement ces idées, Skinner et Nahum ont joint leurs forces à celles d'un troisième collaborateur, Jonathan Ruhman, de l'université Bar-Ilan en Israël. L'équipe a simulé numériquement les effets de la coupe de maillons à différentes vitesses dans des clôtures à mailles losangées. Ils ont ensuite comparé ces simulations de réseaux classiques avec des simulations plus précises mais plus difficiles de particules quantiques réelles, afin de s'assurer que l'analogie était valable. Ils ont progressé lentement mais sûrement.

Puis, au cours de l'été 2018, ils ont appris qu'ils n'étaient pas les seuls à réfléchir aux mesures et à l'intrication.

Matthew Fisher, éminent physicien de la matière condensée à l'université de Californie à Santa Barbara, s'était demandé si l'intrication entre les molécules dans le cerveau pouvait jouer un rôle dans notre façon de penser. Dans le modèle que lui et ses collaborateurs étaient en train de développer, certaines molécules se lient occasionnellement d'une manière qui agit comme une mesure et tue l'intrication. Ensuite, les molécules liées changent de forme d'une manière qui pourrait créer un enchevêtrement. Fisher voulait savoir si l'intrication pouvait se développer sous la pression de mesures intermittentes - la même question que Nahum s'était posée.

"C'était nouveau", a déclaré M. Fisher. "Personne ne s'était penché sur cette question avant 2018.

Dans le cadre d'une coopération universitaire, les deux groupes ont coordonné leurs publications de recherche l'un avec l'autre et avec une troisième équipe étudiant le même problème, dirigée par Graeme Smith de l'université du Colorado, à Boulder.

"Nous avons tous travaillé en parallèle pour publier nos articles en même temps", a déclaré M. Skinner.

En août, les trois groupes ont dévoilé leurs résultats. L'équipe de Smith était initialement en désaccord avec les deux autres, qui soutenaient tous deux le raisonnement de Nahum inspiré de la clôture : Dans un premier temps, l'intrication a dépassé les taux de mesure modestes pour se répandre dans une chaîne de particules, ce qui a entraîné une entropie d'intrication élevée. Puis, lorsque les chercheurs ont augmenté les mesures au-delà d'un taux "critique", l'intrication s'est arrêtée - l'entropie d'intrication a chuté.

La transition semblait exister, mais il n'était pas évident pour tout le monde de comprendre où l'argument intuitif - selon lequel l'intrication de voisin à voisin devait être anéantie par les éclairs généralisés de la mesure - s'était trompé.

Dans les mois qui ont suivi, Altman et ses collaborateurs à Berkeley ont découvert une faille subtile dans le raisonnement. "On ne tient pas compte de la diffusion (spread) de l'information", a déclaré M. Altman.

Le groupe d'Altman a souligné que toutes les mesures ne sont pas très informatives, et donc très efficaces pour détruire l'intrication. En effet, les interactions aléatoires entre les particules de la chaîne ne se limitent pas à l'enchevêtrement. Elles compliquent également considérablement l'état de la chaîne au fil du temps, diffusant effectivement ses informations "comme un nuage", a déclaré M. Altman. Au bout du compte, chaque particule connaît l'ensemble de la chaîne, mais la quantité d'informations dont elle dispose est minuscule. C'est pourquoi, a-t-il ajouté, "la quantité d'intrication que l'on peut détruire [à chaque mesure] est ridiculement faible".

En mars 2019, le groupe d'Altman a publié une prépublication détaillant comment la chaîne cachait efficacement les informations des mesures et permettait à une grande partie de l'intrication de la chaîne d'échapper à la destruction. À peu près au même moment, le groupe de Smith a mis à jour ses conclusions, mettant les quatre groupes d'accord.

La réponse à la question de Nahum était claire. Une "transition de phase induite par la mesure" était théoriquement possible. Mais contrairement à une transition de phase tangible, telle que le durcissement de l'eau en glace, il s'agissait d'une transition entre des phases d'information - une phase où l'information reste répartie en toute sécurité entre les particules et une phase où elle est détruite par des mesures répétées.

C'est en quelque sorte ce que l'on rêve de faire dans la matière condensée, a déclaré M. Skinner, à savoir trouver une transition entre différents états. "Maintenant, on se demande comment on le voit", a-t-il poursuivi.

 Au cours des quatre années suivantes, trois groupes d'expérimentateurs ont détecté des signes du flux distinct d'informations.

Trois façons de voir l'invisible

Même l'expérience la plus simple permettant de détecter la transition intangible est extrêmement difficile. "D'un point de vue pratique, cela semble impossible", a déclaré M. Altman.

L'objectif est de définir un certain taux de mesure (rare, moyen ou fréquent), de laisser ces mesures se battre avec l'intrication pendant un certain temps et de voir quelle quantité d'entropie d'intrication vous obtenez dans l'état final. Ensuite, rincez et répétez avec d'autres taux de mesure et voyez comment la quantité d'intrication change. C'est un peu comme si l'on augmentait la température pour voir comment la structure d'un glaçon change.

Mais les mathématiques punitives de la prolifération exponentielle des possibilités rendent cette expérience presque impensablement difficile à réaliser.

L'entropie d'intrication n'est pas, à proprement parler, quelque chose que l'on peut observer. C'est un nombre que l'on déduit par la répétition, de la même manière que l'on peut éventuellement déterminer la pondération d'un dé chargé. Lancer un seul 3 ne vous apprend rien. Mais après avoir lancé le dé des centaines de fois, vous pouvez connaître la probabilité d'obtenir chaque chiffre. De même, le fait qu'une particule pointe vers le haut et une autre vers le bas ne signifie pas qu'elles sont intriquées. Il faudrait obtenir le résultat inverse plusieurs fois pour en être sûr.

Il est beaucoup plus difficile de déduire l'entropie d'intrication d'une chaîne de particules mesurées. L'état final de la chaîne dépend de son histoire expérimentale, c'est-à-dire du fait que chaque mesure intermédiaire a abouti à une rotation vers le haut ou vers le bas. Pour accumuler plusieurs copies du même état, l'expérimentateur doit donc répéter l'expérience encore et encore jusqu'à ce qu'il obtienne la même séquence de mesures intermédiaires, un peu comme s'il jouait à pile ou face jusqu'à ce qu'il obtienne une série de "têtes" d'affilée. Chaque mesure supplémentaire rend l'effort deux fois plus difficile. Si vous effectuez 10 mesures lors de la préparation d'une chaîne de particules, par exemple, vous devrez effectuer 210 ou 1 024 expériences supplémentaires pour obtenir le même état final une deuxième fois (et vous pourriez avoir besoin de 1 000 copies supplémentaires de cet état pour déterminer son entropie d'enchevêtrement). Il faudra ensuite modifier le taux de mesure et recommencer.

L'extrême difficulté à détecter la transition de phase a amené certains physiciens à se demander si elle était réellement réelle.

"Vous vous fiez à quelque chose d'exponentiellement improbable pour le voir", a déclaré Crystal Noel, physicienne à l'université Duke. "Cela soulève donc la question de savoir ce que cela signifie physiquement."

Noel a passé près de deux ans à réfléchir aux phases induites par les mesures. Elle faisait partie d'une équipe travaillant sur un nouvel ordinateur quantique à ions piégés à l'université du Maryland. Le processeur contenait des qubits, des objets quantiques qui agissent comme des particules. Ils peuvent être programmés pour créer un enchevêtrement par le biais d'interactions aléatoires. Et l'appareil pouvait mesurer ses qubits.

Le groupe a également eu recours à une deuxième astuce pour réduire le nombre de répétitions - une procédure technique qui revient à simuler numériquement l'expérience parallèlement à sa réalisation. Ils savaient ainsi à quoi s'attendre. C'était comme si on leur disait à l'avance comment le dé chargé était pondéré, et cela a permis de réduire le nombre de répétitions nécessaires pour mettre au point la structure invisible de l'enchevêtrement.

Grâce à ces deux astuces, ils ont pu détecter la transition d'intrication dans des chaînes de 13 qubits et ont publié leurs résultats à l'été 2021.

"Nous avons été stupéfaits", a déclaré M. Nahum. "Je ne pensais pas que cela se produirait aussi rapidement."

À l'insu de Nahum et de Noel, une exécution complète de la version originale de l'expérience, exponentiellement plus difficile, était déjà en cours.

À la même époque, IBM venait de mettre à niveau ses ordinateurs quantiques, ce qui leur permettait d'effectuer des mesures relativement rapides et fiables des qubits à la volée. Jin Ming Koh, étudiant de premier cycle à l'Institut de technologie de Californie, avait fait une présentation interne aux chercheurs d'IBM et les avait convaincus de participer à un projet visant à repousser les limites de cette nouvelle fonctionnalité. Sous la supervision d'Austin Minnich, physicien appliqué au Caltech, l'équipe a entrepris de détecter directement la transition de phase dans un effort que Skinner qualifie d'"héroïque".

 Après avoir demandé conseil à l'équipe de Noel, le groupe a simplement lancé les dés métaphoriques un nombre suffisant de fois pour déterminer la structure d'intrication de chaque historique de mesure possible pour des chaînes comptant jusqu'à 14 qubits. Ils ont constaté que lorsque les mesures étaient rares, l'entropie d'intrication doublait lorsqu'ils doublaient le nombre de qubits - une signature claire de l'intrication qui remplit la chaîne. Les chaînes les plus longues (qui impliquaient davantage de mesures) ont nécessité plus de 1,5 million d'exécutions sur les appareils d'IBM et, au total, les processeurs de l'entreprise ont fonctionné pendant sept mois. Il s'agit de l'une des tâches les plus intensives en termes de calcul jamais réalisées à l'aide d'ordinateurs quantiques.

Le groupe de M. Minnich a publié sa réalisation des deux phases en mars 2022, ce qui a permis de dissiper tous les doutes qui subsistaient quant à la possibilité de mesurer le phénomène.

"Ils ont vraiment procédé par force brute", a déclaré M. Noel, et ont prouvé que "pour les systèmes de petite taille, c'est faisable".

Récemment, une équipe de physiciens a collaboré avec Google pour aller encore plus loin, en étudiant l'équivalent d'une chaîne presque deux fois plus longue que les deux précédentes. Vedika Khemani, de l'université de Stanford, et Matteo Ippoliti, aujourd'hui à l'université du Texas à Austin, avaient déjà utilisé le processeur quantique de Google en 2021 pour créer un cristal de temps, qui, comme les phases de propagation de l'intrication, est une phase exotique existant dans un système changeant.

En collaboration avec une vaste équipe de chercheurs, le duo a repris les deux astuces mises au point par le groupe de Noel et y a ajouté un nouvel ingrédient : le temps. L'équation de Schrödinger relie le passé d'une particule à son avenir, mais la mesure rompt ce lien. Ou, comme le dit Khemani, "une fois que l'on introduit des mesures dans un système, cette flèche du temps est complètement détruite".

Sans flèche du temps claire, le groupe a pu réorienter la clôture à mailles losangiques de Nahum pour accéder à différents qubits à différents moments, ce qu'ils ont utilisé de manière avantageuse. Ils ont notamment découvert une transition de phase dans un système équivalent à une chaîne d'environ 24 qubits, qu'ils ont décrite dans un article publié en mars.

Puissance de la mesure

Le débat de Skinner et Nahum sur le pudding, ainsi que les travaux de Fisher et Smith, ont donné naissance à un nouveau sous-domaine parmi les physiciens qui s'intéressent à la mesure, à l'information et à l'enchevêtrement. Au cœur de ces différentes lignes de recherche se trouve une prise de conscience croissante du fait que les mesures ne se contentent pas de recueillir des informations. Ce sont des événements physiques qui peuvent générer des phénomènes véritablement nouveaux.

"Les mesures ne sont pas un sujet auquel les physiciens de la matière condensée ont pensé historiquement", a déclaré M. Fisher. Nous effectuons des mesures pour recueillir des informations à la fin d'une expérience, a-t-il poursuivi, mais pas pour manipuler un système.

En particulier, les mesures peuvent produire des résultats inhabituels parce qu'elles peuvent avoir le même type de saveur "partout-tout-enmême-temps" qui a autrefois troublé Einstein. Au moment de la mesure, les possibilités alternatives contenues dans l'état quantique s'évanouissent, pour ne jamais se réaliser, y compris celles qui concernent des endroits très éloignés dans l'univers. Si la non-localité de la mécanique quantique ne permet pas des transmissions plus rapides que la lumière comme le craignait Einstein, elle permet d'autres exploits surprenants.

"Les gens sont intrigués par le type de nouveaux phénomènes collectifs qui peuvent être induits par ces effets non locaux des mesures", a déclaré M. Altman.

L'enchevêtrement d'une collection de nombreuses particules, par exemple, a longtemps été considéré comme nécessitant au moins autant d'étapes que le nombre de particules que l'on souhaitait enchevêtrer. Mais l'hiver dernier, des théoriciens ont décrit un moyen d'y parvenir en beaucoup moins d'étapes grâce à des mesures judicieuses. Au début de l'année, le même groupe a mis l'idée en pratique et façonné une tapisserie d'enchevêtrement abritant des particules légendaires qui se souviennent de leur passé. D'autres équipes étudient d'autres façons d'utiliser les mesures pour renforcer les états intriqués de la matière quantique.

Cette explosion d'intérêt a complètement surpris Skinner, qui s'est récemment rendu à Pékin pour recevoir un prix pour ses travaux dans le Grand Hall du Peuple sur la place Tiananmen. (Skinner avait d'abord cru que la question de Nahum n'était qu'un exercice mental, mais aujourd'hui, il n'est plus très sûr de la direction que tout cela prend.)

"Je pensais qu'il s'agissait d'un jeu amusant auquel nous jouions, mais je ne suis plus prêt à parier sur l'idée qu'il n'est pas utile."

Auteur: Internet

Info: Quanta Magazine, Paul Chaikin, sept 2023

[ passage inversant ] [ esprit-matière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste