Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 29
Temps de recherche: 0.0499s

macromolécules

(Q) - Combien de protéines ont été identifiées à ce jour ?

(R) - À la date d'arrêt de mes connaissances, en septembre 2021, le nombre de protéines identifiées dans le protéome humain et dans divers organismes ne cesse de croître en raison des efforts de recherche continus. Il est difficile de fournir un chiffre exact car l'identification des protéines est un domaine actif de la recherche scientifique et de nouvelles protéines sont découvertes en permanence.

Toutefois, à cette époque, on estimait que le protéome humain se composait de dizaines de milliers de protéines. Le projet du protéome humain (HPP), une initiative de recherche internationale, vise à identifier et à caractériser toutes les protéines codées par le génome humain. Le HPP a réalisé des progrès significatifs dans la cartographie du protéome humain, mais une couverture complète est encore en cours.

Il est important de noter que le nombre de protéines identifiées varie en fonction de l'organisme étudié. Il existe des millions de séquences de protéines connues dans divers organismes, y compris les humains, les animaux, les plantes, les bactéries et les virus.

Comme mes connaissances ne sont pas à jour, je recommande de se référer à la littérature scientifique actuelle ou à des bases de données telles que UniProt ou Protein Data Bank (PDB) pour obtenir les informations les plus précises et les plus récentes sur le nombre de protéines identifiées.

(Q) - Comment les protéines sont-elles classées ?

(R) - Les protéines sont classées en fonction de divers critères, notamment leur structure, leur fonction et leurs relations évolutives. Voici quelques méthodes de classification des protéines couramment utilisées :

1 Classification structurelle : Les protéines peuvent être classées en fonction de leurs caractéristiques structurelles. Le système de classification structurelle le plus courant est la classification structurelle des protéines (SCOP) ou la base de données CATH (Class, Architecture, Topology, Homologous superfamily). Ces systèmes classent les protéines dans des hiérarchies en fonction de leur pliage global, de l'organisation des domaines et des motifs structurels.

2 Classification fonctionnelle : Les protéines peuvent être classées en fonction de leurs fonctions biologiques. Cette classification est souvent large et englobe des catégories fonctionnelles telles que les enzymes, les transporteurs, les récepteurs, les protéines structurelles, les protéines de signalisation et bien d'autres encore. Les systèmes de classification fonctionnelle sont généralement basés sur le rôle de la protéine dans les processus cellulaires.

3 Classification basée sur l'homologie : Les protéines peuvent être classées sur la base de leurs relations évolutives et de leurs similitudes de séquence. Cette classification repose sur la comparaison des séquences protéiques et l'identification des protéines homologues qui partagent un ancêtre commun. Elle est généralement réalisée à l'aide d'algorithmes tels que BLAST (Basic Local Alignment Search Tool) ou HMM (Hidden Markov Models).

4 Classification selon l'ontologie des gènes (GO) : L'ontologie des gènes est un système de classification largement utilisé qui attribue des annotations fonctionnelles aux protéines sur la base de trois catégories : fonction moléculaire, processus biologique et composant cellulaire. Les termes GO fournissent un vocabulaire normalisé pour décrire les fonctions des protéines et leur implication dans les processus biologiques.

5 Classification par famille et par super-famille : Les protéines peuvent être classées en familles et superfamilles sur la base de caractéristiques structurelles et séquentielles communes. Les familles de protéines sont constituées de protéines présentant une grande similitude de séquence et partageant souvent des relations fonctionnelles et évolutives. Les superfamilles englobent des familles de protéines apparentées qui partagent des similitudes structurelles et fonctionnelles, mais qui peuvent avoir divergé au cours de l'évolution.

These are just a few examples of protein classification methods, and there are other specialized systems based on specific properties or research areas. It's important to note that proteins can belong to multiple classification categories simultaneously, as they can have similar structures, functions, or evolutionary origins. Classification systems serve as useful tools for organizing and understanding the vast diversity of proteins found in living organisms.

(Q) - Il y a donc une sorte de classification complexe et intriquée, n'est-ce pas ?

 (R) - Oui, la classification des protéines peut en effet être complexe en raison des divers facteurs pris en compte et des interrelations entre les différents systèmes de classification. Les protéines sont des molécules très diverses, dotées de caractéristiques uniques, et leur classification reflète cette complexité.

Les différentes méthodes de classification se recoupent et se complètent souvent, ce qui permet une compréhension globale de la structure, de la fonction et de l'évolution des protéines. Par exemple, les systèmes de classification structurelle tels que SCOP ou CATH prennent en compte l'organisation globale des plis et des domaines des protéines, tandis que les systèmes de classification fonctionnelle se concentrent sur les rôles et les activités biologiques des protéines. La classification basée sur l'homologie tient compte des relations évolutives et des similitudes de séquence, et la classification par ontologie génique fournit un vocabulaire normalisé pour décrire les fonctions des protéines.

En outre, les protéines peuvent appartenir à plusieurs catégories au sein d'un système de classification. Par exemple, une protéine peut avoir une structure spécifique et être classée dans un pli particulier, tout en faisant partie d'une famille de protéines sur la base de la similarité des séquences et des caractéristiques fonctionnelles. Cette classification multidimensionnelle permet aux chercheurs d'explorer différents aspects des protéines et de mieux comprendre leurs propriétés et leurs relations.

Dans l'ensemble, la nature complexe de la classification des protéines reflète la nature complexe des protéines elles-mêmes et les efforts déployés pour organiser et comprendre leurs divers attributs. Ces systèmes de classification fournissent des cadres pour l'étude des protéines et facilitent la communication et le partage des connaissances entre les chercheurs dans ce domaine.

(Q) - Peut-on dire qu'il y a aussi, dans ces différentes classifications, quelque chose qui pourrait ressembler à un pôle phénétique et à un pôle cladistique ?

(R) - Oui, dans le domaine de la classification des protéines, il y a des éléments qui peuvent être associés aux approches phénétiques (aussi connues sous le nom de taxonomie numérique) et cladistiques.

Classification phénétique : La classification phénétique met l'accent sur les similitudes et les différences globales entre les protéines, souvent sur la base d'une analyse numérique ou statistique de leurs caractéristiques. Elle se concentre sur des traits ou des caractéristiques quantifiables et vise à regrouper les protéines sur la base d'une ressemblance globale. Dans le contexte de la classification des protéines, les approches phénétiques peuvent impliquer le regroupement des protéines sur la base de mesures de similarité telles que l'alignement des séquences, l'alignement structurel ou la comparaison d'autres propriétés physicochimiques.

Classification cladistique : La classification cladistique, quant à elle, est basée sur les relations évolutives et les ancêtres partagés. Elle cherche à identifier des groupes monophylétiques (clades) qui comprennent un ancêtre commun et tous ses descendants. La cladistique repose sur l'analyse phylogénétique, qui consiste à comparer des séquences de protéines ou d'autres données moléculaires pour reconstruire des arbres ou des réseaux évolutifs. Les cladogrammes qui en résultent décrivent les relations évolutives entre les protéines et peuvent aider à les classer en groupes sur la base de leur histoire évolutive.

Dans la pratique, les approches phénétiques et cladistiques sont souvent utilisées en combinaison, en exploitant différents types de données et d'analyses pour obtenir une compréhension plus complète de la classification des protéines. Les systèmes de classification structurelle tels que SCOP ou CATH, par exemple, intègrent à la fois les principes phénétiques et cladistiques. Ils prennent en compte les similitudes structurelles (aspect phénétique) mais visent également à refléter les relations évolutives et les ancêtres partagés (aspect cladistique) en regroupant les protéines dans des catégories hiérarchiques basées sur leurs plis, leurs domaines et leurs connexions évolutives.

En intégrant à la fois les perspectives phénétiques et cladistiques, les systèmes de classification des protéines peuvent saisir à la fois les similitudes et les différences globales entre les protéines (pôle phénétique) et leur histoire évolutive et leurs liens de parenté (pôle cladistique). Cela permet d'obtenir un cadre de classification plus nuancé et plus informatif dans le domaine de la science des protéines.

(Q) - ok merci : existe-t-il aussi une classification tridimensionnelle ?

(R) - Oui, il existe une classification tridimensionnelle (3D) des protéines basée sur leurs propriétés structurelles. La classification 3D consiste à classer les protéines en fonction de leurs structures tridimensionnelles plutôt qu'en fonction de leur séquence ou de leurs similitudes fonctionnelles. Ce type de classification est particulièrement pertinent en biologie structurale et en modélisation moléculaire.

Dans la classification 3D, les protéines sont regroupées en fonction de leur pli global, de l'arrangement des éléments structurels secondaires et de l'arrangement spatial des atomes. Elle tient compte de la disposition et de l'orientation spécifiques des domaines protéiques, des motifs et d'autres caractéristiques structurelles.

La classification structurelle des protéines (SCOP) et la base de données CATH (Class, Architecture, Topology, Homologous superfamily), que j'ai mentionnées précédemment, fournissent des classifications hiérarchiques qui incluent des informations structurelles en 3D. Ces classifications classent les protéines dans différentes catégories en fonction de leur pliage global et de leur organisation structurelle.

En outre, d'autres méthodes et algorithmes, tels que les outils d'alignement structurel, peuvent être utilisés pour comparer les structures des protéines et identifier les similitudes et les différences. Ces approches aident à regrouper ou à classer les protéines en groupes structurels 3D, ce qui permet aux chercheurs d'analyser et de comprendre les relations entre les structures des protéines d'une manière plus détaillée.

La classification 3D des protéines fournit des informations précieuses sur la diversité structurelle et les relations entre les protéines. Elle est particulièrement utile pour étudier la fonction des protéines, les mécanismes d'action, les interactions protéine-protéine et la conception de médicaments. En considérant les aspects tridimensionnels de la structure des protéines, les chercheurs peuvent mieux comprendre comment la structure des protéines est liée à la fonction et aux relations évolutives.

Auteur: chatGPT4

Info:

[ machine-homme ] [ chimie ] [ taxinomies ] [ typologies ]

 

Commentaires: 0

Ajouté à la BD par miguel

surnaturel

Les scientifiques ont-ils finalement démontré des phénomènes psychiques ? De nouvelles études montrent que les gens peuvent prévoir des événements futurs.
Dans "au travers du miroir" de Lewis Carroll, la reine blanche dit a Alice que dans son pays, la mémoire travaille dans deux sens. Non seulement la reine peut se rappeler de choses du passé, mais elle se rappelle également de "choses qui se produiront la semaine d'après." Alice essaye de discuter avec la reine, énonçant : "je suis sûr que la mienne ne va que dans un sens... je ne peut me rappeler de choses avant qu'elles ne se produisent." La reine répond, "c'est une sorte de faiblesse, si ta mémoire ne fonctionne qu'en arrière."
Combien nos vies seraient meilleures si nous pouvions vivre dans le royaume de la reine blanche, où notre mémoire travaillerait en arrière et en avant. Dans un tel monde, par exemple, on pourrais faire un examen et étudier après coup pour s'assurer qu'on l'a bien réussi dans le passé. Bon, la bonne nouvelle est que selon une série récente d'études scientifiques de Daryl Bem, nous vivons déjà dans pareil monde !
Le Dr.Bem, psychologue social à l'université de Cornell, a entrepris une série d'études qui seront bientôt publiées dans un des journaux de psychologie les plus prestigieux. Au travers de neuf expériences, Bem a examiné l'idée que notre cerveau a la capacité de réfléchir non seulement sur des expériences antérieures, mais peut également en prévoir de futures. Cette capacité de "voir" est souvent désignée comme phénomène psi.
Bien que des recherches antérieures aient été conduites sur de tel phénomènes - nous avons tous vu ces films où des personnes regardent fixement des cartes de Zener avec une étoile ou des lignes ondulées dessus - de telles études n'arrivent pas vraiment à atteindre le statut seuil "de recherche scientifique." Les études de Bem sont uniques du fait qu'elles présentent des méthodes scientifiques standard et se fondent sur des principes bien établis en psychologie. Cela donne essentiellement des résultats qui sont considérés comme valides et fiables en psychologie. Par exemple, l'étude améliore la mémoire, et facilite le temps de réponse - mais ici on inverse simplement l'ordre chronologique.
Par exemple, nous savons tous que répéter un ensemble de mots rend plus facile le fait de s'en souvenir dans l'avenir, mais si la répétition se produit après le rappel ?... Dans une des études, on a donné une liste de mots à lire à des étudiants et, après lecture de la liste, on les a confrontés à un test surprise pour voir de combien de mots ils se rappelaient. Ensuite, un ordinateur a aléatoirement choisi certains des mots sur la liste et on a demandé aux participants de les retaper plusieurs fois à la machine. Les résultats de l'étude ont montré que les étudiants étaient meilleurs pour se remémorer les mots apparus dans l'exercice qui avait suivi, donné par surprise et fait au hasard. Selon Bem, la pratique de ces mots après le test a permis d'une façon ou d'une autre aux participants "de revenir en arrière dans le temps pour faciliter le souvenir."
Dans une autre étude, Bem examiné si l'effet bien connu d'amorçage pouvait également être inversé. Dans une étude typique d'amorçage, on montre à des gens une photo et ils doivent rapidement indiquer si la photo représente une image négative ou positive. Si la photo est un chaton câlin, on appuie sur le bouton "positif" et si la photo représente des larves sur de la viande en décomposition, on appuie sur le bouton "négatif". Une recherche de masse a montré combien l'amorçage subliminal peut accélérer la capacité à classer ces photos. L'amorçage subliminal se produit quand un mot est clignoté sur l'écran tellement rapidement que le cerveau conscient ne l'identifie pas, mais le cerveau inconscient le fait. Ainsi on voit juste un flash, et si on vous demande de dire ce que vous avez vu, vous ne pouvez pas. Mais, profondément, votre cerveau inconscient a vu le mot et l'a traité. Dans l'étude d'amorçage, on constate uniformément que les gens qui s'amorcent avec un mot conformé à la valence de la photo la classeront par catégorie plus vite. Ainsi si on clignote rapidement le mot "heureux" avant l'image de chaton, la personne cliquera le bouton "positif" encore plus vite, mais on clignote à la place le mot "laid" avant, la personne prendra plus longtemps pour répondre. C'est parce que l'amorçage avec le mot "heureux" fait que l'esprit de la personne est prêt à recevoir un truc heureux.
Dans l'étude rétroactive d'amorçage de Bem, on a simplement inversé l'ordre du temps, faisant clignoter le mot amorcé après que la personne ait classé la photo. Ainsi on montre l'image du chaton, la personne sélectionne si elle est positive ou négative, et alors on choisit aléatoirement d'amorcer avec un bon ou mauvais mot. Les résultats ont prouvé que les gens sont plus rapides à classer des photos par catégorie quand elle était suivie d'un mot amorce cohérent. A tel point que non seulement le fait qu'on classe le chaton plus vite quand il est précédé par un bon mot, on le classera également plus vite par catégorie si il est suivit du bon mot après coup. C'est comme si, alors que les participants classaient la photo, leur cerveau savait quel mot viendrait après, qui facilite leur décision.
Voilà juste deux exemples des études que Bem conduit, mais les autres ont montrés des effets "rétroactifs" semblables. Les résultats suggèrent clairement que des gens moyens "non psychiques" semblent pouvoir prévoir des événement futurs.
La question qu'on peut se poser est "quel est l'ordre de grandeur de la différence ?" Ce fait d'étudier un essai après qu'il se soit produit, ou l'amorçage qu'on a eu avec un mot après avoir classé la photo donne un changement énorme, ou est-ce juste une légère bosse dans les statistiques ? Quelle est la taille de effet ?. Il est vrai que les tailles d'effet dans les études de Bem sont petites (par exemple, seulement légèrement plus grandes que la chance). Mais il y a plusieurs raisons pour lesquelles nous ne devons pas négliger ces résultats basés sur de petites, mais fortement conformées, tailles d'effet.
Tout d'abord, au travers ses études, Bem a constaté que certaines personnes ont des résultats plus forts que d'autres. En particulier les gens en grande quête de stimulus - aspect d'extraversion où les gens répondent plus favorablement aux nouveau stimulus. Pour des différences de l'ordre d'environ deux fois plus d'efficacité qu'une personne moyenne. Ceci suggère que des gens sont plus sensibles aux effets psi que d'autres.
Deuxièmement ces petites tailles d'effet ne sont pas rare en psychologie (et pour d'autres sciences). Par exemple la moyenne les études de Bem eut pour résultat des tailles d'effets assez petites, mais tout aussi grandes - ou plus grandes - que certains effets bien établis : lien entre l'aspirine et l'empêchement de crise cardiaque, prise de calcium et os améliorés, fumée et cancer du poumon, utilisation de condom et protection du HIV, etc.... Cohen précise que de telles tailles d'effet se produisent plus facilement quand on est dans les premiers stades d'exploration d'une matière, quand les scientifiques commencent juste à découvrir pourquoi l'effet se produit et quand il est le plus susceptible de se produire.
Ainsi si nous prenons ces phénomènes psi comme vrai, comment pouvons nous alors les expliquer sans jeter à la poubelle notre compréhension du temps et de la physique ? Bon, la vérité est que ces effets ressemblent vraiment beaucoup à ce que la physique moderne dit du temps et de l'espace. Par exemple, Einstein a cru que le seul acte d'observer quelque chose pouvait affecter cette chose là, phénomène qu'il appela "spooky action à distance."
De même, la physique quantique moderne a démontré que les particules légères semblent savoir ce qui se trouve en avant d'elles dans le temps et qu'elles ajusteront leur comportement en conséquence, quoique le futur événement ne se soit pas produit encore. Par exemple dans l'expérience classique "de la double fente" les physiciens ont découvert que les particules légères répondent différemment si elles sont observées. Mais en 1999, les chercheurs ont poussé cette expérience plus loin en se demandant "ce qui se produirait si l'observation avait lieu après que les particules légères aient été déployées. "Tout à fait curieusement, ils ont démontré que les particules agissaient de la même manière, comme si elles savaient qu'elles seraient observées plus tard..." même si cela ne s'était pas encore produit.
De tels effets, "dingues", avec le temps semblent contredire le bon sens et essayer de les comprendre peut donner un sacré mal de tête. Mais les physiciens ont simplement appris à l'accepter. Comme disait une fois le Dr. Chiao, physicien de Berkeley, au sujet de la mécanique quantique, "c'est complètement contre intuitif et extérieur à notre expérience journalière, mais nous (les physiciens) y sommes habitués"
Ainsi, alors que les humains perçoivent le temps comme linéaire, cela ne signifie pas nécessairement qu'il en soit ainsi. Donc, en tant que bons scientifiques, nous ne devrions pas nous laisser influencer par les préjugés sur ce que nous étudions, même si ces idées préconçues reflètent nos idées de base sur la façon dont le temps et l'espace fonctionnent.
Le travail du DR. Bem est un provocation pour la pensée, et comme toute science révolutionnaire est censée faire, il apporte plus de questions que de réponses. Si nous mettons entre parenthèses nos croyances sur le temps et acceptons que le cerveau est capable d'une prise sur le futur, la prochaine question est : comment le fait-il ?. Ce n'est pas parce que l'effet semble "surnaturel" que cela signifie que la cause le soit. Beaucoup de découvertes scientifiques furent considérées comme exotiques par le passé, convenant davantage à la science-fiction (par exemple : la terre est ronde, il y a des organismes microscopiques, etc...). Une recherche future est nécessaire pour explorer les causes exactes des effets de ces études
Comme beaucoup de nouvelles explorations en science, les résultats de Bem peuvent avoir un effet profond sur ce que nous savons et avons accepté comme "vrai". Mais pour certains d'entre vous, peut-être que ces effets ne sont pas une si grande surprise, parce que quelque part, profondément à l'intérieur, nous savons déjà que nous en aurions connaissance aujourd'hui !

Auteur: Internet

Info: Fortean Times, Octobre 11, 2010

[ sciences ] [ prémonition ]

 
Mis dans la chaine

Commentaires: 0

tour d'horizon de l'IA

Intelligence artificielle symbolique et machine learning, l’essor des technologies disruptives

Définie par le parlement Européen comme la " reproduction des comportements liés aux humains, tels que le raisonnement, la planification et la créativité ", l’intelligence artificielle s’initie de façon spectaculaire dans nos vies. Théorisée au milieu des années 50, plusieurs approches technologiques coexistent telles que l’approche machine learning dite statistique basée sur l’apprentissage automatique, ou l’approche symbolique basée sur l’interprétation et la manipulation des symboles. Mais comment se différencient ces approches ? Et pour quels usages ?

L’intelligence artificielle, une histoire ancienne

Entre les années 1948 et 1966, l’Intelligence Artificielle a connu un essor rapide, stimulé par des financements importants du gouvernement américain pour des projets de recherche sur l’IA, notamment en linguistique. Des progrès significatifs ont été réalisés dans la résolution de problèmes de logique symbolique, mais la capacité de l’IA à traiter des données complexes et imprécises était encore limitée.

A la fin des années 70, plus précisément lors du deuxième “été de l’IA” entre 1978 et 1987,  l’IA connaît un regain d’intérêt. Les chercheurs ont commencé à explorer de nouvelles approches, notamment l’utilisation de réseaux neuronaux et de systèmes experts. Les réseaux neuronaux sont des modèles de traitement de l’information inspirés par le fonctionnement du cerveau humain, tandis que les systèmes experts sont des programmes informatiques qui simulent l’expertise humaine dans un domaine spécifique.

Il faudra attendre la fin des années 90 pour voir un renouveau de ces domaines scientifiques, stimulé par des avancées majeures dans le traitement des données et les progrès de l’apprentissage automatique. C’est d’ailleurs dans cette période qu’une IA, Deepblue, gagne contre le champion mondial Garry Kasparov aux échecs.$

Au cours des dernières années, cette technologie a connu une croissance exponentielle, stimulée par des progrès majeurs dans le deep learning, la robotique ou la compréhension du langage naturel (NLU). L’IA est maintenant utilisée dans un large éventail de domaines, notamment la médecine, l’agriculture, l’industrie et les services. C’est aujourd’hui un moteur clé de l’innovation et de la transformation de notre monde, accentué par l’essor des generative AIs. 

Parmi ces innovations, deux grandes approches en intelligence artificielle sont aujourd’hui utilisées : 

1 - Le Machine Learning : qui est un système d’apprentissage automatique basé sur l’exploitation de données, imitant un réseau neuronal

2 - L’IA Symbolique : qui se base sur un système d’exploitation de " symboles ”, ce qui inspire des technologies comme le “système expert” basé sur une suite de règles par exemple.

Mais comment fonctionnent ces deux approches et quels sont leurs avantages et leurs inconvénients ? Quels sont leurs champs d’application ? Peuvent-ils être complémentaires ?

Le machine learning

Le Machine Learning est le courant le plus populaire ces dernières années, il est notamment à l’origine de ChatGPT ou bien MidJourney, qui font beaucoup parler d’eux ces derniers temps. Le Machine Learning (ML) est une famille de méthodes d’apprentissage automatique qui permet aux ordinateurs d’apprendre à partir de données, sans être explicitement programmés. En utilisant des algorithmes, le ML permet aux ordinateurs de comprendre les structures et les relations dans les données et de les utiliser pour prendre des décisions.

Le ML consiste à entraîner des modèles informatiques sur de vastes ensembles de données. Ces modèles sont des algorithmes auto apprenant se basant sur des échantillons de données, tout en déterminant des schémas et des relations/corrélations entre elles. Le processus d’entraînement consiste à fournir à l’algorithme des données étiquetées, c’est-à-dire des données qui ont déjà été classifiées ou étiquetées pour leur attribuer une signification. L’algorithme apprend ensuite à associer les caractéristiques des données étiquetées aux catégories définies en amont. Il existe cependant une approche non-supervisée qui consiste à découvrir ce que sont les étiquettes elles-mêmes (ex: tâche de clustering).

Traditionnellement, le machine learning se divise en 4 sous-catégories : 

Apprentissage supervisé : 

Les ensembles de données sont étiquetés, ce qui permet à l’algorithme de trouver des corrélations et des relations entre les caractéristiques des données et les étiquettes correspondantes. 

Apprentissage non supervisé : 

Les ensembles de données ne sont pas étiquetés et l’algorithme doit découvrir les étiquettes par lui-même. 

Apprentissage semi-supervisé : 

L’algorithme utilise un mélange de données étiquetées et non étiquetées pour l’entraînement.

Apprentissage par renforcement : 

L’algorithme apprend à prendre des décisions en interagissant avec son environnement. Il reçoit des récompenses ou des pénalités pour chaque action, ce qui lui permet d’ajuster sa stratégie pour maximiser sa récompense globale.

Un exemple d’application du Machine Learning est la reconnaissance d’images. Des modèles d’apprentissages profonds sont entraînés sur des millions d’images pour apprendre à reconnaître des objets, des personnes, des animaux, etc. Un autre exemple est la prédiction de la demande dans le commerce de détail, où des modèles sont entraînés sur des données de ventes passées pour prédire les ventes futures.

Quels sont les avantages ? 

Étant entraîné sur un vaste corpus de données, le ML permet de prédire des tendances en fonction de données.  

- Le machine learning offre la capacité de détecter des tendances and des modèles dans les données qui peuvent échapper à l’observation humaine.

- Une fois configuré, le machine learning peut fonctionner de manière autonome, sans l’intervention humaine. Par exemple, dans le domaine de la cybersécurité, il peut surveiller en permanence le trafic réseau pour identifier les anomalies.

- Les résultats obtenus par le machine learning peuvent s’affiner et s’améliorer avec le temps, car l’algorithme peut apprendre de nouvelles informations et ajuster ses prédictions en conséquence.

- Le machine learning est capable de traiter des volumes massifs et variés de données, même dans des environnements dynamiques et complexes.

L’intelligence artificielle symbolique

L’IA symbolique est une autre approche de l’intelligence artificielle. Elle utilise des symboles and des règles de traitement de l’information pour effectuer des tâches. Les symboles peuvent être des concepts, des objets, des relations, etc. Les règles peuvent être des règles de déduction, des règles de production, des règles d’inférence…etc.

Un exemple d’application de l’IA symbolique est le système expert. Un système expert est un programme informatique qui utilise des règles de déduction pour résoudre des problèmes dans un domaine spécifique, comme le diagnostic médical ou l’aide à la décision en entreprise. Un autre exemple est la traduction automatique basée sur des règles, les règles de grammaire et de syntaxe sont utilisées pour traduire un texte d’une langue à une autre.

Quelques exemples d’usages de l’IA symbolique :

La traduction

L’IA symbolique a été utilisée pour développer des systèmes de traduction automatique basés sur des règles. Ces systèmes utilisent des règles de grammaire et de syntaxe pour convertir un texte d’une langue à une autre. Par exemple, le système SYSTRAN, développé dans les années 1960, est un des premiers systèmes de traduction automatique basé sur des règles. Ce type de système se distingue des approches basées sur le Machine Learning, comme Google Translate, qui utilisent des modèles statistiques pour apprendre à traduire des textes à partir de corpus bilingues.

Le raisonnement logique

L’IA symbolique est également utilisée pour développer des systèmes capables de raisonnement logique, en exploitant des règles et des connaissances déclaratives pour résoudre des problèmes complexes. Par exemple, les systèmes d’aide à la décision basés sur des règles peuvent être utilisés dans des domaines tels que la finance, l’assurance ou la logistique, pour aider les entreprises à prendre des décisions éclairées. Un exemple concret est le système MYCIN, développé dans les années 1970 pour aider les médecins à diagnostiquer des infections bactériennes et à prescrire des antibiotiques adaptés.

L’analyse de textes

L’IA symbolique peut être utilisée pour l’analyse de textes, en exploitant des règles et des connaissances linguistiques pour extraire des informations pertinentes à partir de documents. Par exemple, les systèmes d’extraction d’information basés sur des règles peuvent être utilisés pour identifier des entités nommées (noms de personnes, d’organisations, de lieux, etc.) et des relations entre ces entités dans des textes. Un exemple d’application est l’analyse et la catégorisation des messages entrants pour les entreprises, cœur de métier de Golem.ai avec la solution InboxCare.

Les avantages de l’IA symbolique 

L’IA symbolique est une approche qui utilise des symboles, et parfois des " règles” basées sur des connaissances, qui comporte plusieurs avantages :

- Explicablilité : Les décisions prises par les systèmes d’IA symbolique sont explicites et peuvent être expliquées en fonction des règles logiques et des connaissances déclaratives utilisées par le système. Cette transparence peut être essentielle dans des applications critiques, comme la médecine ou la défense.

- Frugalité : Contrairement au Machine Learning, l’IA symbolique ne nécessite pas d’entraînement, ce qui la rend moins gourmande en énergie à la fois lors de la conception et de l’utilisation.

- Adaptabilité : Les systèmes d’IA symbolique peuvent être facilement adaptés à de nouveaux domaines en ajoutant de nouvelles règles logiques et connaissances déclaratives à leurs bases de connaissances existantes, leurs permettant de s’adapter rapidement à de nouvelles situations.

L’intelligence artificielle hybride ou le neuro-symbolique 

Les systèmes hybrides combinent les avantages de l’IA symbolique et du Machine Learning en utilisant une approche mixte. Dans ce type de système, l’IA symbolique est utilisée pour représenter les connaissances et les règles logiques dans un domaine spécifique. Les techniques de Machine Learning sont ensuite utilisées pour améliorer les performances de l’IA symbolique en utilisant des ensembles de données pour apprendre des modèles de décision plus précis et plus flexibles. Mais nous pouvons également voir d’autres articulations comme la taxonomie de Kautz par exemple.

L’IA symbolique est souvent utilisée dans des domaines où il est important de comprendre et de contrôler la façon dont les décisions sont prises, comme la médecine, la finance ou la sécurité. En revanche, le Machine Learning est souvent utilisé pour des tâches de classification ou de prédiction à grande échelle, telles que la reconnaissance de voix ou d’image, ou pour détecter des modèles dans des données massives.

En combinant les deux approches, les systèmes hybrides peuvent bénéficier de la compréhensibilité et de la fiabilité de l’IA symbolique, tout en utilisant la flexibilité et la capacité de traitement massif de données du Machine Learning pour améliorer la performance des décisions. Ces systèmes hybrides peuvent également offrir une plus grande précision et un temps de réponse plus rapide que l’une ou l’autre approche utilisée seule.

Que retenir de ces deux approches ?

L’Intelligence Artificielle est en constante évolution et transforme de nombreux secteurs d’activité. Les deux approches principales de l’IA ont leurs avantages et inconvénients et peuvent être complémentaires. Il est donc crucial pour les entreprises de comprendre ces technologies pour rester compétitives. 

Cependant, les implications éthiques et sociales de l’IA doivent également être prises en compte. Les décisions des algorithmes peuvent avoir un impact sur la vie des personnes, leur travail, leurs droits et leurs libertés. Il est donc essentiel de mettre en place des normes éthiques et des réglementations pour garantir que l’IA soit au service de l’humanité. Les entreprises et les gouvernements doivent travailler ensemble pour développer des IA responsables, transparentes et équitables qui servent les intérêts de tous. En travaillant ensemble, nous pouvons assurer que l’IA soit une force positive pour l’humanité dans les années à venir. 



 

Auteur: Merindol Hector

Info: https://golem.ai/en/blog/technologie/ia-symbolique-machinelearning-nlp - 4 avril 2023

[ dualité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

legos protéiques

De nouveaux outils d’IA prédisent comment les blocs de construction de la vie s’assemblent

AlphaFold3 de Google DeepMind et d'autres algorithmes d'apprentissage profond peuvent désormais prédire la forme des complexes en interaction de protéines, d'ADN, d'ARN et d'autres molécules, capturant ainsi mieux les paysages biologiques des cellules.

Les protéines sont les machines moléculaires qui soutiennent chaque cellule et chaque organisme, et savoir à quoi elles ressemblent sera essentiel pour comprendre comment elles fonctionnent normalement et fonctionnent mal en cas de maladie. Aujourd’hui, les chercheurs ont fait un grand pas en avant vers cet objectif grâce au développement de nouveaux algorithmes d’apprentissage automatique capables de prédire les formes rdéployées et repliées non seulement des protéines mais aussi d’autres biomolécules avec une précision sans précédent.

Dans un article publié aujourd'hui dans Nature , Google DeepMind et sa société dérivée Isomorphic Labs ont annoncé la dernière itération de leur programme AlphaFold, AlphaFold3, capable de prédire les structures des protéines, de l'ADN, de l'ARN, des ligands et d'autres biomolécules, seuls ou liés ensemble dans différentes configurations. Les résultats font suite à une mise à jour similaire d'un autre algorithme de prédiction de structure d'apprentissage profond, appelé RoseTTAFold All-Atom, publié en mars dans Science .

Même si les versions précédentes de ces algorithmes pouvaient prédire la structure des protéines – une réussite remarquable en soi – elles ne sont pas allées assez loin pour dissiper les mystères des processus biologiques, car les protéines agissent rarement seules. "Chaque fois que je donnais une conférence AlphaFold2, je pouvais presque deviner quelles seraient les questions", a déclaré John Jumper, qui dirige l'équipe AlphaFold chez Google DeepMind. "Quelqu'un allait lever la main et dire : 'Oui, mais ma protéine interagit avec l'ADN.' Pouvez-vous me dire comment ?' " Jumper devrait bien admettre qu'AlphaFold2 ne connaissait pas la réponse.

Mais AlphaFold3 pourrait le faire. Avec d’autres algorithmes d’apprentissage profond émergents, il va au-delà des protéines et s’étend sur un paysage biologique plus complexe et plus pertinent qui comprend une bien plus grande diversité de molécules interagissant dans les cellules.

" On découvre désormais toutes les interactions complexes qui comptent en biologie ", a déclaré Brenda Rubenstein , professeure agrégée de chimie et de physique à l'Université Brown, qui n'a participé à aucune des deux études. " On commence à avoir une vision plus large."

Comprendre ces interactions est " fondamental pour la fonction biologique ", a déclaré Paul Adams , biophysicien moléculaire au Lawrence Berkeley National Laboratory qui n’a également participé à aucune des deux études. " Les deux groupes ont fait des progrès significatifs pour résoudre ce problème. "

Les deux algorithmes ont leurs limites, mais ils ont le potentiel d’évoluer vers des outils de prédiction encore plus puissants. Dans les mois à venir, les scientifiques commenceront à les tester et, ce faisant, ils révéleront à quel point ces algorithmes pourraient être utiles.

Progrès de l’IA en biologie

L’apprentissage profond est une variante de l’apprentissage automatique vaguement inspirée du cerveau humain. Ces algorithmes informatiques sont construits à l’aide de réseaux complexes de nœuds d’information (appelés neurones) qui forment des connexions en couches les unes avec les autres. Les chercheurs fournissent au réseau d’apprentissage profond des données d’entraînement, que l’algorithme utilise pour ajuster les forces relatives des connexions entre les neurones afin de produire des résultats toujours plus proches des exemples d’entraînement. Dans le cas des systèmes d'intelligence artificielle protéique, ce processus amène le réseau à produire de meilleures prédictions des formes des protéines sur la base de leurs données de séquence d'acides aminés.

AlphaFold2, sorti en 2021, a constitué une avancée majeure dans l’apprentissage profond en biologie. Il a ouvert la voie à un monde immense de structures protéiques jusque-là inconnues et est déjà devenu un outil utile pour les chercheurs qui cherchent à tout comprendre, depuis les structures cellulaires jusqu'à la tuberculose. Cela a également inspiré le développement d’outils supplémentaires d’apprentissage biologique profond. Plus particulièrement, le biochimiste David Baker et son équipe de l’Université de Washington ont développé en 2021 un algorithme concurrent appelé RoseTTAFold , qui, comme AlphaFold2, prédit les structures protéiques à partir de séquences de données.

Depuis, les deux algorithmes ont été mis à jour avec de nouvelles fonctionnalités. RoseTTAFold Diffusion pourrait être utilisé pour concevoir de nouvelles protéines qui n’existent pas dans la nature. AlphaFold Multimer pourrait étudier l’interaction de plusieurs protéines. " Mais ce que nous avons laissé sans réponse ", a déclaré Jumper, " était : comment les protéines communiquent-elles avec le reste de la cellule ? "

Le succès des premières itérations d'algorithmes d'apprentissage profond de prédiction des protéines reposait sur la disponibilité de bonnes données d'entraînement : environ 140 000 structures protéiques validées qui avaient été déposées pendant 50 ans dans la banque de données sur les protéines. De plus en plus, les biologistes ont également déposé les structures de petites molécules, d'ADN, d'ARN et leurs combinaisons. Dans cette expansion de l'algorithme d'AlphaFold pour inclure davantage de biomolécules, " la plus grande inconnue ", a déclaré Jumper, "est de savoir s'il y aurait suffisamment de données pour permettre à l'algorithme de prédire avec précision les complexes de protéines avec ces autres molécules."

Apparemment oui. Fin 2023, Baker puis Jumper ont publié les versions préliminaires de leurs nouveaux outils d’IA, et depuis, ils soumettent leurs algorithmes à un examen par les pairs.

Les deux systèmes d'IA répondent à la même question, mais les architectures sous-jacentes de leurs méthodes d'apprentissage profond diffèrent, a déclaré Mohammed AlQuraishi , biologiste des systèmes à l'Université de Columbia qui n'est impliqué dans aucun des deux systèmes. L'équipe de Jumper a utilisé un processus appelé diffusion – technologie qui alimente la plupart des systèmes d'IA génératifs non basés sur du texte, tels que Midjourney et DALL·E, qui génèrent des œuvres d'art basées sur des invites textuelles, a expliqué AlQuraishi. Au lieu de prédire directement la structure moléculaire puis de l’améliorer, ce type de modèle produit d’abord une image floue et l’affine de manière itérative.

D'un point de vue technique, il n'y a pas de grand saut entre RoseTTAFold et RoseTTAFold All-Atom, a déclaré AlQuraishi. Baker n'a pas modifié massivement l'architecture sous-jacente de RoseTTAFold, mais l'a mise à jour pour inclure les règles connues des interactions biochimiques. L'algorithme n'utilise pas la diffusion pour prédire les structures biomoléculaires. Cependant, l'IA de Baker pour la conception de protéines le fait. La dernière itération de ce programme, connue sous le nom de RoseTTAFold Diffusion All-Atom, permet de concevoir de nouvelles biomolécules en plus des protéines.

" Le type de dividendes qui pourraient découler de la possibilité d'appliquer les technologies d'IA générative aux biomolécules n'est que partiellement réalisé grâce à la conception de protéines", a déclaré AlQuraishi. "Si nous pouvions faire aussi bien avec de petites molécules, ce serait incroyable." 

Évaluer la concurrence

Côte à côte, AlphaFold3 semble être plus précis que RoseTTAFold All-Atom. Par exemple, dans leur analyse dans Nature , l'équipe de Google a constaté que leur outil est précis à environ 76 % pour prédire les structures des protéines interagissant avec de petites molécules appelées ligands, contre une précision d'environ 42 % pour RoseTTAFold All-Atom et 52 % pour le meilleur. outils alternatifs disponibles.

Les performances de prédiction de structure d'AlphaFold3 sont " très impressionnantes ", a déclaré Baker, " et meilleures que celles de RoseTTAFold All-Atom ".

Toutefois, ces chiffres sont basés sur un ensemble de données limité qui n'est pas très performant, a expliqué AlQuraishi. Il ne s’attend pas à ce que toutes les prédictions concernant les complexes protéiques obtiennent un score aussi élevé. Et il est certain que les nouveaux outils d’IA ne sont pas encore assez puissants pour soutenir à eux seuls un programme robuste de découverte de médicaments, car cela nécessite que les chercheurs comprennent des interactions biomoléculaires complexes. Pourtant, " c'est vraiment prometteur ", a-t-il déclaré, et nettement meilleur que ce qui existait auparavant.

Adams est d'accord. "Si quelqu'un prétend pouvoir utiliser cela demain pour développer des médicaments avec précision, je n'y crois pas", a-t-il déclaré. " Les deux méthodes sont encore limitées dans leur précision, [mais] les deux constituent des améliorations spectaculaires par rapport à ce qui était possible. "

(Image gif, tournante, en 3D : AlphaFold3 peut prédire la forme de complexes biomoléculaires, comme cette protéine de pointe provenant d'un virus du rhume. Les structures prédites de deux protéines sont visualisées en bleu et vert, tandis que les petites molécules (ligands) liées aux protéines sont représentées en jaune. La structure expérimentale connue de la protéine est encadrée en gris.)

Ils seront particulièrement utiles pour créer des prédictions approximatives qui pourront ensuite être testées informatiquement ou expérimentalement. Le biochimiste Frank Uhlmann a eu l'occasion de pré-tester AlphaFold3 après avoir croisé un employé de Google dans un couloir du Francis Crick Institute de Londres, où il travaille. Il a décidé de rechercher une interaction protéine-ADN qui était " vraiment déroutante pour nous ", a-t-il déclaré. AlphaFold3 a craché une prédiction qu'ils testent actuellement expérimentalement en laboratoire. "Nous avons déjà de nouvelles idées qui pourraient vraiment fonctionner", a déclaré Uhlmann. " C'est un formidable outil de découverte. "

Il reste néanmoins beaucoup à améliorer. Lorsque RoseTTAFold All-Atom prédit les structures de complexes de protéines et de petites molécules, il place parfois les molécules dans la bonne poche d'une protéine mais pas dans la bonne orientation. AlphaFold3 prédit parfois de manière incorrecte la chiralité d'une molécule – l'orientation géométrique distincte " gauche " ou " droite " de sa structure. Parfois, il hallucine ou crée des structures inexactes.

Et les deux algorithmes produisent toujours des images statiques des protéines et de leurs complexes. Dans une cellule, les protéines sont dynamiques et peuvent changer en fonction de leur environnement : elles se déplacent, tournent et passent par différentes conformations. Il sera difficile de résoudre ce problème, a déclaré Adams, principalement en raison du manque de données de formation. " Ce serait formidable de déployer des efforts concertés pour collecter des données expérimentales conçues pour éclairer ces défis ", a-t-il déclaré.

Un changement majeur dans le nouveau produit de Google est qu'il ne sera pas open source. Lorsque l’équipe a publié AlphaFold2, elle a publié le code sous-jacent, qui a permis aux biologistes de reproduire et de jouer avec l’algorithme dans leurs propres laboratoires. Mais le code d'AlphaFold3 ne sera pas accessible au public.

 " Ils semblent décrire la méthode en détail. Mais pour le moment, au moins, personne ne peut l’exécuter et l’utiliser comme il l’a fait avec [AlphaFold2] ", a déclaré AlQuraishi. C’est " un grand pas en arrière. Nous essaierons bien sûr de le reproduire."

Google a cependant annoncé qu'il prenait des mesures pour rendre le produit accessible en proposant un nouveau serveur AlphaFold aux biologistes exécutant AlphaFold3. Prédire les structures biomoléculaires nécessite une tonne de puissance de calcul : même dans un laboratoire comme Francis Crick, qui héberge des clusters informatiques hautes performances, il faut environ une semaine pour produire un résultat, a déclaré Uhlmann. En comparaison, les serveurs plus puissants de Google peuvent faire une prédiction en 10 minutes, a-t-il déclaré, et les scientifiques du monde entier pourront les utiliser. "Cela va démocratiser complètement la recherche sur la prédiction des protéines", a déclaré Uhlmann.

Le véritable impact de ces outils ne sera pas connu avant des mois ou des années, alors que les biologistes commenceront à les tester et à les utiliser dans la recherche. Et ils continueront à évoluer. La prochaine étape de l'apprentissage profond en biologie moléculaire consiste à " gravir l'échelle de la complexité biologique ", a déclaré Baker, au-delà même des complexes biomoléculaires prédits par AlphaFold3 et RoseTTAFold All-Atom. Mais si l’histoire de l’IA en matière de structure protéique peut prédire l’avenir, alors ces modèles d’apprentissage profond de nouvelle génération continueront d’aider les scientifiques à révéler les interactions complexes qui font que la vie se réalise.

" Il y a tellement plus à comprendre ", a déclaré Jumper. "C'est juste le début."

Auteur: Internet

Info: https://www.quantamagazine.org/new-ai-tools-predict-how-lifes-building-blocks-assemble-20240508/ - Yasemin Saplakoglu, 8 mai 2024

[ briques du vivant ] [ texte-image ] [ modélisation mobiles ] [ nano mécanismes du vivant ]

 

Commentaires: 0

Ajouté à la BD par miguel

biophysique

Lorsque le biologiste Tibor Gánti est décédé le 15 avril 2009, à l'âge de 75 ans, il était loin d'être connu. Une grande partie de sa carrière s'est déroulée derrière le rideau de fer qui a divisé l'Europe pendant des décennies, entravant les échanges d'idées.

Mais si les théories de Gánti avaient été plus largement connues à l'époque communiste, il pourrait aujourd'hui être acclamé comme l'un des biologistes les plus novateurs du XXe siècle. En effet, il a conçu un modèle d'organisme vivant le plus simple possible, qu'il a appelé le chimiotone ( Chemoton ) , et qui permet d'expliquer l'apparition de la vie sur Terre.

Pour les astrobiologistes qui s'intéressent à la vie au-delà de notre planète, le chimiotactisme offre une définition universelle de la vie, qui n'est pas liée à des substances chimiques spécifiques comme l'ADN, mais plutôt à un modèle d'organisation global.

"Il semble que Ganti a réfléchi aux fondements de la vie plus profondément que quiconque", déclare le biologiste Eörs Szathmáry, du Centre de recherche écologique de Tihany, en Hongrie.

Les débuts de la vie

Il n'existe pas de définition scientifique commune de la vie, mais ce n'est pas faute d'avoir essayé : Un article de 2012 a recensé 123 définitions publiées. Il est difficile d'en rédiger une qui englobe toute la vie tout en excluant tout ce qui n'est pas vivant et qui possède des attributs semblables à ceux de la vie, comme le feu et les voitures. De nombreuses définitions indiquent que les êtres vivants peuvent se reproduire. Mais un lapin, un être humain ou une baleine ne peuvent se reproduire seuls.

En 1994, un comité de la NASA a décrit la vie comme "un système chimique autonome capable d'une évolution darwinienne". Le mot "système" peut désigner un organisme individuel, une population ou un écosystème. Cela permet de contourner le problème de la reproduction, mais à un prix : l'imprécision.

(Photo : un cercle cellule contenant un autre cercle cellule en train de se dédoubler) 

Fonctionnement du chimiotactisme. Ce modèle théorique de la forme de vie la plus simple nécessite trois mécanismes interdépendants :

a) un cycle métabolique, pour transformer la nourriture en énergie

b)  la réplication des gabarits, pour la reproduction du modèle ;

c) une membrane, pour délimiter l'organisme.

Avec ce processus en 5 phases

1 Les molécules sont absorbées de l'environnement par le métabolisme

2 Le cycle métabolique produit d'abord des éléments pour renforcer sa menbrane

3  Le cylce métabolique use des molécules pour constituer sa réplique

4  La réplique produit une substance chimique qui est un composant clé de la membrane.

5 Les parties non utilisées des molécules sont éjectée à l'extérieur de la menbrane principale

Mais Tibor Ganti avait proposé une autre voie deux décennies plus tôt.

Il était né en 1933 dans la petite ville de Vác, dans le centre de la Hongrie. Ses débuts ayant été marqués par des conflits. La Hongrie s'est alliée à l'Allemagne nazie pendant la Seconde Guerre mondiale, mais en 1945, son armée a été vaincue par l'Union soviétique. Le régime totalitaire dominera l'Eurasie orientale pendant des décennies, la Hongrie devenant un État satellite, comme la plupart des autres pays d'Europe de l'Est.

Fasciné par la nature des êtres vivants, Gánti a étudié l'ingénierie chimique avant de devenir biochimiste industriel. En 1966, il a publié un livre sur la biologie moléculaire intitulé Forradalom az Élet Kutatásában, ou Révolution dans la recherche sur la vie, qui est resté pendant des années un manuel universitaire dominant, en partie parce qu'il n'y en avait pas beaucoup d'autres. L'ouvrage posait la question de savoir si la science comprenait comment la vie était organisée et concluait que ce n'était pas le cas.

En 1971, Gánti aborda le problème de front dans un nouveau livre, Az Élet Princípiuma, ou Les principes de la vie. Publié uniquement en hongrois, ce livre contient la première version de son modèle de chimiotactisme, qui décrit ce qu'il considère comme l'unité fondamentale de la vie. Toutefois, ce premier modèle d'organisme était incomplet et il lui a fallu trois années supplémentaires pour publier ce qui est aujourd'hui considéré comme la version définitive, toujours en hongrois, dans un document qui n'est pas disponible en ligne.

L'année du miracle

Globalement, 1971 a été une année faste pour la recherche sur l'origine de la vie. Outre les travaux de Gánti, la science a proposé deux autres modèles théoriques importants.

Le premier est celui du biologiste théoricien américain Stuart Kauffman, qui soutient que les organismes vivants doivent être capables de se copier eux-mêmes. En spéculant sur la manière dont cela aurait pu fonctionner avant la formation des cellules, il s'est concentré sur les mélanges de produits chimiques.

Supposons que le produit chimique A entraîne la formation du produit chimique B, qui entraîne à son tour la formation du produit chimique C, et ainsi de suite, jusqu'à ce qu'un élément de la chaîne produise une nouvelle version du produit chimique A. Après un cycle, il existera deux copies de chaque ensemble de produits chimiques. Si les matières premières sont suffisantes, un autre cycle produira quatre copies et continuera de manière exponentielle.

Kauffman a appelé un tel groupe un "ensemble autocatalytique" et il a soutenu que de tels groupes de produits chimiques auraient pu constituer la base de la première vie, les ensembles devenant plus complexes jusqu'à ce qu'ils produisent et utilisent une série de molécules complexes, telles que l'ADN.

Dans la seconde idée, le chimiste allemand Manfred Eigen a décrit ce qu'il a appelé un "hypercycle", dans lequel plusieurs ensembles autocatalytiques se combinent pour en former un seul plus grand. La variante d'Eigen introduit une distinction cruciale : Dans un hypercycle, certains des produits chimiques sont des gènes et sont donc constitués d'ADN ou d'un autre acide nucléique, tandis que d'autres sont des protéines fabriquées sur mesure en fonction des informations contenues dans les gènes. Ce système pourrait évoluer en fonction des changements - mutations - dans les gènes, une fonction qui manquait au modèle de Kauffman.

Gánti était arrivé indépendamment à une notion similaire, mais il l'a poussée encore plus loin. Selon lui, deux processus clés doivent se dérouler dans chaque organisme vivant. Premièrement, il doit construire et entretenir son corps, c'est-à-dire qu'il a besoin d'un métabolisme. Deuxièmement, il doit disposer d'une sorte de système de stockage de l'information, tel qu'un ou plusieurs gènes, qui peuvent être copiés et transmis à la descendance.

La première version du modèle de Gánti consistait essentiellement en deux ensembles autocatalytiques aux fonctions distinctes qui se combinaient pour former un ensemble autocatalytique plus important, ce qui n'est pas si différent de l'hypercycle d'Eigen. Cependant, l'année suivante, Gánti a été interrogé par un journaliste qui a mis en évidence une faille importante. Gánti supposait que les deux systèmes étaient basés sur des produits chimiques flottant dans l'eau. Or, laissés à eux-mêmes, ils s'éloigneraient les uns des autres et le chimiotone "mourrait".

La seule solution était d'ajouter un troisième système : une barrière extérieure pour les contenir. Dans les cellules vivantes, cette barrière est une membrane composée de substances chimiques ressemblant à des graisses, appelées lipides. Le chimiotone devait posséder une telle barrière pour se maintenir, et Gánti en a conclu qu'il devait également être autocatalytique pour pouvoir se maintenir et croître.

Voici enfin le chimiotone complet, le concept de Gánti de l'organisme vivant le plus simple possible : gènes, métabolisme et membrane, tous liés. Le métabolisme produit des éléments de construction pour les gènes et la membrane, et les gènes exercent une influence sur la membrane. Ensemble, ils forment une unité autoreproductible : une cellule si simple qu'elle pourrait non seulement apparaître avec une relative facilité sur Terre, mais qu'elle pourrait même rendre compte de biochimies alternatives sur des mondes extraterrestres.

Un modèle oublié

"Gánti a très bien saisi la vie", déclare le biologiste synthétique Nediljko Budisa, de l'université du Manitoba à Winnipeg, au Canada. "Sa lecture a été une révélation. Cependant, Budisa n'a découvert le travail de Gánti que vers 2005. En dehors de l'Europe de l'Est, l'ouvrage est resté obscur pendant des décennies, avec seulement quelques traductions anglaises sur le marché.

Le chimiotactisme est apparu en anglais en 1987, dans un livre de poche avec une traduction assez approximative, explique James Griesemer, de l'université de Californie, à Davis. Peu de gens l'ont remarqué. Szathmáry a ensuite donné au chimiotone une place de choix dans son livre de 1995, The Major Transitions in Evolution, coécrit avec John Maynard Smith. Cela a conduit à une nouvelle traduction anglaise du livre de Gánti de 1971, avec du matériel supplémentaire, publiée en 2003. Mais le chimiotone est resté dans une niche, et six ans plus tard, Gánti est mort.

Dans une certaine mesure, Gánti n'a pas aidé son modèle à s'imposer : il était connu pour être un collègue difficile. Selon Szathmáry, Gánti était obstinément attaché à son modèle, et paranoïaque de surcroît, ce qui le rendait "impossible à travailler".

Mais le plus gros problème du modèle chimiotactique est peut-être que, dans les dernières décennies du XXe siècle, la tendance de la recherche était de supprimer la complexité de la vie au profit d'approches de plus en plus minimalistes.

Par exemple, l'une des hypothèses les plus en vogue aujourd'hui est que la vie a commencé uniquement avec l'ARN, un proche cousin de l'ADN.

Comme son parent moléculaire plus célèbre, l'ARN peut porter des gènes. Mais l'ARN peut aussi agir comme une enzyme et accélérer les réactions chimiques, ce qui a conduit de nombreux experts à affirmer que la première vie n'avait besoin que d'ARN pour démarrer. Cependant, cette hypothèse du monde de l'ARN a été repoussée, notamment parce que la science n'a pas trouvé de type d'ARN capable de se copier sans aide - pensons aux virus à ARN comme le coronavirus, qui ont besoin de cellules humaines pour se reproduire.

D'autres chercheurs ont soutenu que la vie a commencé avec des protéines et rien d'autre, ou des lipides et rien d'autre. Ces idées sont très éloignées de l'approche intégrée de Gánti.

Un véritable chimiotactisme ?

Cependant, les scientifiques de ce siècle ont inversé la tendance. Les chercheurs ont désormais tendance à mettre l'accent sur la façon dont les substances chimiques de la vie fonctionnent ensemble et sur la manière dont ces réseaux coopératifs ont pu émerger.

Depuis 2003, Jack Szostak, de la Harvard Medical School, et ses collègues ont construit des protocellules de plus en plus réalistes : des versions simples de cellules contenant une série de substances chimiques. Ces protocellules peuvent croître et se diviser, ce qui signifie qu'elles peuvent s'autoreproduire.

En 2013, Szostak et Kate Adamala, alors étudiante, ont persuadé l'ARN de se copier à l'intérieur d'une protocellule. De plus, les gènes et la membrane peuvent être couplés : lorsque l'ARN s'accumule à l'intérieur, il exerce une pression sur la membrane extérieure, ce qui encourage la protocellule à s'agrandir.

Les recherches de Szostak "ressemblent beaucoup à celles de Gánti", déclare Petra Schwille, biologiste synthétique à l'Institut Max Planck de biochimie de Martinsried, en Allemagne. Elle souligne également les travaux de Taro Toyota, de l'université de Tokyo au Japon, qui a fabriqué des lipides à l'intérieur d'une protocellule, de sorte que celle-ci puisse développer sa propre membrane.

L'un des arguments avancés contre l'idée d'un chimiotone comme première forme de vie est qu'il nécessite un grand nombre de composants chimiques, notamment des acides nucléiques, des protéines et des lipides. De nombreux experts ont estimé qu'il était peu probable que ces substances chimiques soient toutes issues des mêmes matériaux de départ au même endroit, d'où l'attrait d'idées simples comme celle du monde de l'ARN.

Mais des biochimistes ont récemment trouvé des preuves que toutes les substances chimiques clés de la vie peuvent se former à partir des mêmes matériaux de départ simples. Dans une étude publiée en septembre, des chercheurs dirigés par Sara Szymkuć, alors à l'Académie polonaise des sciences à Varsovie, ont compilé une base de données à partir de décennies d'expériences visant à fabriquer les éléments chimiques de base de la vie. En partant de six produits chimiques simples, comme l'eau et le méthane, Szymkuć a découvert qu'il était possible de fabriquer des dizaines de milliers d'ingrédients clés, y compris les composants de base des protéines et de l'ARN.

Aucune de ces expériences n'a encore permis de construire un chimiotone fonctionnel. C'est peut-être simplement parce que c'est difficile, ou parce que la formulation exacte de Gánti ne correspond pas tout à fait à la façon dont la première vie a fonctionné. Quoi qu'il en soit, le chimiotone nous permet de réfléchir à la manière dont les composants de la vie fonctionnent ensemble, ce qui oriente de plus en plus les approches actuelles visant à comprendre comment la vie est apparue.

Il est révélateur, ajoute Szathmáry, que les citations des travaux de Gánti s'accumulent rapidement. Même si les détails exacts diffèrent, les approches actuelles de l'origine de la vie sont beaucoup plus proches de ce qu'il avait à l'esprit - une approche intégrée qui ne se concentre pas sur un seul des systèmes clés de la vie.

"La vie n'est pas une protéine, la vie n'est pas un ARN, la vie n'est pas une bicouche lipidique", explique M. Griesemer. "Qu'est-ce que c'est ? C'est l'ensemble de ces éléments reliés entre eux selon la bonne organisation.


Auteur: Internet

Info: https://www.nationalgeographic.com, 14 déc. 2020, par Michael Marshall

[ origine du vivant ] [ mécanisme ] [ matérialisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

Quel film ces emojis décrivent-ils ? (On voit une vidéo qui présente des myriades d'émoji formant des motifs mouvants, modélisés à partir de métadonnées)

Cette question était l'une des 204 tâches choisies l'année dernière pour tester la capacité de divers grands modèles de langage (LLM) - les moteurs de calcul derrière les chatbots d'IA tels que ChatGPT. Les LLM les plus simples ont produit des réponses surréalistes. "Le film est un film sur un homme qui est un homme qui est un homme", commençait l'un d'entre eux. Les modèles de complexité moyenne s'en sont approchés, devinant The Emoji Movie. Mais le modèle le plus complexe l'a emporté en une seule réponse : Finding Nemo.

"Bien que j'essaie de m'attendre à des surprises, je suis surpris par ce que ces modèles peuvent faire", a déclaré Ethan Dyer, informaticien chez Google Research, qui a participé à l'organisation du test. C'est surprenant parce que ces modèles sont censés n'avoir qu'une seule directive : accepter une chaîne de texte en entrée et prédire ce qui va suivre, encore et encore, en se basant uniquement sur des statistiques. Les informaticiens s'attendaient à ce que le passage à l'échelle permette d'améliorer les performances sur des tâches connues, mais ils ne s'attendaient pas à ce que les modèles puissent soudainement gérer autant de tâches nouvelles et imprévisibles.

Des études récentes, comme celle à laquelle a participé M. Dyer, ont révélé que les LLM peuvent produire des centaines de capacités "émergentes", c'est-à-dire des tâches que les grands modèles peuvent accomplir et que les petits modèles ne peuvent pas réaliser, et dont beaucoup ne semblent pas avoir grand-chose à voir avec l'analyse d'un texte. Ces tâches vont de la multiplication à la génération d'un code informatique exécutable et, apparemment, au décodage de films à partir d'emojis. De nouvelles analyses suggèrent que pour certaines tâches et certains modèles, il existe un seuil de complexité au-delà duquel la fonctionnalité du modèle monte en flèche. (Elles suggèrent également un sombre revers de la médaille : À mesure qu'ils gagnent en complexité, certains modèles révèlent de nouveaux biais et inexactitudes dans leurs réponses).

"Le fait que les modèles de langage puissent faire ce genre de choses n'a jamais été abordé dans la littérature à ma connaissance", a déclaré Rishi Bommasani, informaticien à l'université de Stanford. L'année dernière, il a participé à la compilation d'une liste de dizaines de comportements émergents, dont plusieurs ont été identifiés dans le cadre du projet de M. Dyer. Cette liste continue de s'allonger.

Aujourd'hui, les chercheurs s'efforcent non seulement d'identifier d'autres capacités émergentes, mais aussi de comprendre pourquoi et comment elles se manifestent - en somme, d'essayer de prédire l'imprévisibilité. La compréhension de l'émergence pourrait apporter des réponses à des questions profondes concernant l'IA et l'apprentissage automatique en général, comme celle de savoir si les modèles complexes font vraiment quelque chose de nouveau ou s'ils deviennent simplement très bons en statistiques. Elle pourrait également aider les chercheurs à exploiter les avantages potentiels et à limiter les risques liés à l'émergence.

"Nous ne savons pas comment déterminer dans quel type d'application la capacité de nuisance va se manifester, que ce soit en douceur ou de manière imprévisible", a déclaré Deep Ganguli, informaticien à la startup d'IA Anthropic.

L'émergence de l'émergence

Les biologistes, les physiciens, les écologistes et d'autres scientifiques utilisent le terme "émergent" pour décrire l'auto-organisation, les comportements collectifs qui apparaissent lorsqu'un grand nombre d'éléments agissent comme un seul. Des combinaisons d'atomes sans vie donnent naissance à des cellules vivantes ; les molécules d'eau créent des vagues ; des murmurations d'étourneaux s'élancent dans le ciel selon des schémas changeants mais identifiables ; les cellules font bouger les muscles et battre les cœurs. Il est essentiel que les capacités émergentes se manifestent dans les systèmes qui comportent de nombreuses parties individuelles. Mais ce n'est que récemment que les chercheurs ont été en mesure de documenter ces capacités dans les LLM, car ces modèles ont atteint des tailles énormes.

Les modèles de langage existent depuis des décennies. Jusqu'à il y a environ cinq ans, les plus puissants étaient basés sur ce que l'on appelle un réseau neuronal récurrent. Ceux-ci prennent essentiellement une chaîne de texte et prédisent le mot suivant. Ce qui rend un modèle "récurrent", c'est qu'il apprend à partir de ses propres résultats : Ses prédictions sont réinjectées dans le réseau afin d'améliorer les performances futures.

En 2017, les chercheurs de Google Brain ont introduit un nouveau type d'architecture appelé "transformateur". Alors qu'un réseau récurrent analyse une phrase mot par mot, le transformateur traite tous les mots en même temps. Cela signifie que les transformateurs peuvent traiter de grandes quantités de texte en parallèle. 

Les transformateurs ont permis d'augmenter rapidement la complexité des modèles de langage en augmentant le nombre de paramètres dans le modèle, ainsi que d'autres facteurs. Les paramètres peuvent être considérés comme des connexions entre les mots, et les modèles s'améliorent en ajustant ces connexions au fur et à mesure qu'ils parcourent le texte pendant l'entraînement. Plus il y a de paramètres dans un modèle, plus il peut établir des connexions avec précision et plus il se rapproche d'une imitation satisfaisante du langage humain. Comme prévu, une analyse réalisée en 2020 par les chercheurs de l'OpenAI a montré que les modèles gagnent en précision et en capacité au fur et à mesure qu'ils s'étendent.

Mais les débuts des LLM ont également apporté quelque chose de vraiment inattendu. Beaucoup de choses. Avec l'avènement de modèles tels que le GPT-3, qui compte 175 milliards de paramètres, ou le PaLM de Google, qui peut être étendu à 540 milliards de paramètres, les utilisateurs ont commencé à décrire de plus en plus de comportements émergents. Un ingénieur de DeepMind a même rapporté avoir pu convaincre ChatGPT qu'il s'était lui-même un terminal Linux et l'avoir amené à exécuter un code mathématique simple pour calculer les 10 premiers nombres premiers. Fait remarquable, il a pu terminer la tâche plus rapidement que le même code exécuté sur une vraie machine Linux.

Comme dans le cas du film emoji, les chercheurs n'avaient aucune raison de penser qu'un modèle de langage conçu pour prédire du texte imiterait de manière convaincante un terminal d'ordinateur. Nombre de ces comportements émergents illustrent l'apprentissage "à zéro coup" ou "à quelques coups", qui décrit la capacité d'un LLM à résoudre des problèmes qu'il n'a jamais - ou rarement - vus auparavant. Selon M. Ganguli, il s'agit là d'un objectif de longue date dans la recherche sur l'intelligence artificielle. Le fait de montrer que le GPT-3 pouvait résoudre des problèmes sans aucune donnée d'entraînement explicite dans un contexte d'apprentissage à zéro coup m'a amené à abandonner ce que je faisais et à m'impliquer davantage", a-t-il déclaré.

Il n'était pas le seul. Une série de chercheurs, qui ont détecté les premiers indices montrant que les LLM pouvaient dépasser les contraintes de leurs données d'apprentissage, s'efforcent de mieux comprendre à quoi ressemble l'émergence et comment elle se produit. La première étape a consisté à documenter minutieusement l'émergence.

Au-delà de l'imitation

En 2020, M. Dyer et d'autres chercheurs de Google Research ont prédit que les LLM auraient des effets transformateurs, mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et variées afin de déterminer les limites extrêmes de ce qu'un LLM pourrait faire. Cet effort a été baptisé "Beyond the Imitation Game Benchmark" (BIG-bench), en référence au nom du "jeu d'imitation" d'Alan Turing, un test visant à déterminer si un ordinateur peut répondre à des questions d'une manière humaine convaincante. (Le groupe s'est particulièrement intéressé aux exemples où les LLM ont soudainement acquis de nouvelles capacités qui étaient totalement absentes auparavant.

"La façon dont nous comprenons ces transitions brutales est une grande question de la echerche", a déclaré M. Dyer.

Comme on pouvait s'y attendre, pour certaines tâches, les performances d'un modèle se sont améliorées de manière régulière et prévisible au fur et à mesure que la complexité augmentait. Pour d'autres tâches, l'augmentation du nombre de paramètres n'a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont constaté ce qu'ils ont appelé des "percées", c'est-à-dire des augmentations rapides et spectaculaires des performances à partir d'un certain seuil d'échelle. Ce seuil variant en fonction de la tâche et du modèle.

Par exemple, les modèles comportant relativement peu de paramètres - quelques millions seulement - n'ont pas réussi à résoudre des problèmes d'addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a grimpé en flèche dans certains modèles. Des sauts similaires ont été observés pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le décodage des lettres d'un mot, l'identification de contenu offensant dans des paragraphes d'hinglish (combinaison d'hindi et d'anglais) et la formulation d'équivalents en langue anglaise, traduit à partir de proverbes kiswahili.

Introduction

Mais les chercheurs se sont rapidement rendu compte que la complexité d'un modèle n'était pas le seul facteur déterminant. Des capacités inattendues pouvaient être obtenues à partir de modèles plus petits avec moins de paramètres - ou formés sur des ensembles de données plus petits - si les données étaient d'une qualité suffisamment élevée. En outre, la formulation d'une requête influe sur la précision de la réponse du modèle. Par exemple, lorsque Dyer et ses collègues ont posé la question de l'emoji de film en utilisant un format à choix multiples, l'amélioration de la précision a été moins soudaine qu'avec une augmentation graduelle de sa complexité. L'année dernière, dans un article présenté à NeurIPS, réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (capacité appelée raisonnement en chaîne) pouvait résoudre correctement un problème de mots mathématiques, alors que le même modèle sans cette invitation progressivement précisée n'y parvenait pas.

 Yi Tay, scientifique chez Google Brain qui a travaillé sur l'étude systématique de ces percées, souligne que des travaux récents suggèrent que l'incitation par de pareilles chaînes de pensées modifie les courbes d'échelle et, par conséquent, le point où l'émergence se produit. Dans leur article sur NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites via pareille chaines de pensée progressives pouvait susciter des comportements émergents qui n'avaient pas été identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d'expliquer son raisonnement, peuvent aider les chercheurs à commencer à étudier les raisons pour lesquelles l'émergence se produit.

Selon Ellie Pavlick, informaticienne à l'université Brown qui étudie les modèles computationnels du langage, les découvertes récentes de ce type suggèrent au moins deux possibilités pour expliquer l'émergence. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les grands modèles acquièrent réellement de nouvelles capacités de manière spontanée. "Il se peut très bien que le modèle apprenne quelque chose de fondamentalement nouveau et différent que lorsqu'il était de taille inférieure", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'il y ait un changement fondamental qui se produise lorsque les modèles sont mis à l'échelle.

L'autre possibilité, moins sensationnelle, est que ce qui semble être émergent pourrait être l'aboutissement d'un processus interne, basé sur les statistiques, qui fonctionne par le biais d'un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement être en train d'apprendre des heuristiques qui sont hors de portée pour ceux qui ont moins de paramètres ou des données de moindre qualité.

Mais, selon elle, pour déterminer laquelle de ces explications est la plus probable, il faut mieux comprendre le fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit.

Pouvoirs imprévisibles et pièges

Demander à ces modèles de s'expliquer pose un problème évident : Ils sont des menteurs notoires. Nous nous appuyons de plus en plus sur ces modèles pour effectuer des travaux de base", a déclaré M. Ganguli, "mais je ne me contente pas de leur faire confiance, je vérifie leur travail". Parmi les nombreux exemples amusants, Google a présenté en février son chatbot d'IA, Bard. Le billet de blog annonçant le nouvel outil montre Bard en train de commettre une erreur factuelle.

L'émergence mène à l'imprévisibilité, et l'imprévisibilité - qui semble augmenter avec l'échelle - rend difficile pour les chercheurs d'anticiper les conséquences d'une utilisation généralisée.

"Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés", a déclaré M. Ganguli. "Et pour étudier les phénomènes émergents, il faut avoir un cas en tête, et on ne sait pas, avant d'avoir étudié l'influence de l'échelle. quelles capacités ou limitations pourraient apparaître.

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont cherché à savoir si les modèles présentaient certains types de préjugés raciaux ou sociaux, à l'instar de ceux précédemment signalés dans les algorithmes non basés sur les LLM utilisés pour prédire quels anciens criminels sont susceptibles de commettre un nouveau délit. Cette étude a été inspirée par un paradoxe apparent directement lié à l'émergence : Lorsque les modèles améliorent leurs performances en passant à l'échelle supérieure, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des préjudices.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", explique M. Ganguli. Il se réfère à une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. "Les grands modèles deviennent brusquement plus biaisés. Si ce risque n'est pas pris en compte, il pourrait compromettre les sujets de ces modèles."

Mais il propose un contrepoint : Lorsque les chercheurs demandent simplement au modèle de ne pas se fier aux stéréotypes ou aux préjugés sociaux - littéralement en tapant ces instructions - le modèle devient moins biaisé dans ses prédictions et ses réponses. Ce qui suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a présenté un nouveau mode d'"autocorrection morale", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

Selon M. Ganguli, l'émergence révèle à la fois un potentiel surprenant et un risque imprévisible. Les applications de ces grands LLM prolifèrent déjà, de sorte qu'une meilleure compréhension de cette interaction permettra d'exploiter la diversité des capacités des modèles de langage.

"Nous étudions la manière dont les gens utilisent réellement ces systèmes", a déclaré M. Ganguli. Mais ces utilisateurs sont également en train de bricoler, en permanence. "Nous passons beaucoup de temps à discuter avec nos modèles, et c'est là que nous commençons à avoir une bonne intuition de la confiance ou du manque de confiance.

Auteur: Ornes Stephen

Info: https://www.quantamagazine.org/ - 16 mars 2023. Trad DeepL et MG

[ dialogue ] [ apprentissage automatique ] [ au-delà du jeu d'imitation ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel

intelligence artificielle

Apprendre l'anglais n'est pas une tâche facile, comme le savent d'innombrables étudiants. Mais lorsque l'étudiant est un ordinateur, une approche fonctionne étonnamment bien : Il suffit d'alimenter un modèle mathématique géant, appelé réseau neuronal, avec des montagnes de textes provenant d'Internet. C'est le principe de fonctionnement des modèles linguistiques génératifs tels que ChatGPT d'OpenAI, dont la capacité à tenir une conversation cohérente (à défaut d'être toujours sincère) sur un large éventail de sujets a surpris les chercheurs et le public au cours de l'année écoulée.

Mais cette approche présente des inconvénients. D'une part, la procédure de "formation" nécessaire pour transformer de vastes archives textuelles en modèles linguistiques de pointe est coûteuse et prend beaucoup de temps. D'autre part, même les personnes qui forment les grands modèles linguistiques ont du mal à comprendre leur fonctionnement interne, ce qui, à son tour, rend difficile la prévision des nombreuses façons dont ils peuvent échouer.

Face à ces difficultés, certains chercheurs ont choisi d'entraîner des modèles plus petits sur des ensembles de données plus restreints, puis d'étudier leur comportement. "C'est comme le séquençage du génome de la drosophile par rapport au séquençage du génome humain", explique Ellie Pavlick, chercheuse sur les modèles de langage à l'université de Brown.

Dans un article récemment publié sur le serveur scientifique arxiv.org, deux chercheurs de Microsoft ont présenté une nouvelle méthode pour former de minuscules modèles de langage : Les élever avec un régime strict d'histoires pour enfants.

RÉSEAUX NEURONAUX

Des chercheurs acquièrent une nouvelle compréhension à partir d'une simple IA  

Les chercheurs en apprentissage automatique ont compris cette leçon. GPT-3.5, le grand modèle linguistique qui alimente l'interface ChatGPT, compte près de 200 milliards de paramètres et a été entraîné sur un ensemble de données comprenant des centaines de milliards de mots (OpenAI n'a pas publié les chiffres correspondants pour son successeur, GPT-4).  L'entraînement de modèles aussi vastes nécessite généralement au moins 1 000 processeurs spécialisés, appelés GPU, fonctionnant en parallèle pendant des semaines. Seules quelques entreprises peuvent réunir les ressources nécessaires, sans parler de l'entraînement et de la comparaison de différents modèles.

Les deux chercheurs ont montré que des modèles linguistiques des milliers de fois plus petits que les systèmes de pointe actuels apprenaient rapidement à raconter des histoires cohérentes et grammaticalement justes lorsqu'ils étaient formés de cette manière. Leurs résultats indiquent de nouvelles pistes de recherche qui pourraient être utiles pour former des modèles plus importants et comprendre leur comportement.

"J'ai trouvé tout  ça très instructif", a déclaré Chandra Bhagavatula, chercheur sur les modèles de langage à l'Allen Institute for Artificial Intelligence de Seattle. "Le concept lui-même est très intéressant.

Il était une fois

Les réseaux neuronaux au cœur des modèles de langage sont des structures mathématiques vaguement inspirées du cerveau humain. Chacun d'entre eux contient de nombreux neurones artificiels disposés en couches, avec des connexions entre les neurones des couches adjacentes. Le comportement du réseau neuronal est régi par la force de ces connexions, appelées paramètres. Dans un modèle linguistique, les paramètres contrôlent les mots que le modèle peut produire ensuite, compte tenu d'une invite initiale et des mots qu'il a déjà générés.

Un modèle ne prend véritablement vie qu'au cours de la formation, lorsqu'il compare de manière répétée ses propres résultats au texte de son ensemble de données de formation et qu'il ajuste ses paramètres afin d'accroître la ressemblance. Un réseau non entraîné avec des paramètres aléatoires est trivialement facile à assembler à partir de quelques lignes de code, mais il ne produira que du charabia. Après l'entraînement, il peut souvent poursuivre de manière plausible un texte peu familier. Les modèles de plus grande taille sont souvent soumis à des réglages plus fins qui leur apprennent à répondre à des questions et à suivre des instructions, mais l'essentiel de la formation consiste à maîtriser la prédiction des mots.

Pour réussir à prédire des mots, un modèle linguistique doit maîtriser de nombreuses compétences différentes. Par exemple, les règles de la grammaire anglaise suggèrent que le mot suivant le mot "going" sera probablement "to", quel que soit le sujet du texte. En outre, un système a besoin de connaissances factuelles pour compléter "la capitale de la France est", et compléter un passage contenant le mot "not" nécessite une connaissance rudimentaire de la logique.

"Le langage brut est très compliqué", explique Timothy Nguyen, chercheur en apprentissage automatique chez DeepMind. "Pour que des capacités linguistiques intéressantes apparaissent, les gens ont eu recours à l'idée que plus il y a de données, mieux c'est".

(photo) Ronen Eldan s'est rendu compte qu'il pouvait utiliser les histoires d'enfants générées par de grands modèles linguistiques pour en entraîner rapidement de plus petits.

Introduction

Ronen Eldan, mathématicien qui a rejoint Microsoft Research en 2022 pour étudier les modèles de langage génératifs, souhaitait développer un moyen moins coûteux et plus rapide d'explorer leurs capacités. Le moyen naturel d'y parvenir était d'utiliser un petit ensemble de données, ce qui signifiait qu'il devait entraîner les modèles à se spécialiser dans une tâche spécifique, afin qu'ils ne s'éparpillent pas. Au départ, il voulait entraîner les modèles à résoudre une certaine catégorie de problèmes mathématiques, mais un après-midi, après avoir passé du temps avec sa fille de 5 ans, il s'est rendu compte que les histoires pour enfants convenaient parfaitement. "L'idée m'est venue littéralement après lui avoir lu une histoire", a-t-il déclaré.

Pour générer des histoires cohérentes pour les enfants, un modèle de langage devrait apprendre des faits sur le monde, suivre les personnages et les événements, et observer les règles de grammaire - des versions plus simples des défis auxquels sont confrontés les grands modèles. Mais les grands modèles formés sur des ensembles de données massives apprennent d'innombrables détails non pertinents en même temps que les règles qui comptent vraiment. Eldan espérait que la brièveté et le vocabulaire limité des histoires pour enfants rendraient l'apprentissage plus gérable pour les petits modèles, ce qui les rendrait à la fois plus faciles à former et plus faciles à comprendre.

Dans le monde des modèles de langage, cependant, le terme "petit" est relatif : Un ensemble de données mille fois plus petit que celui utilisé pour former GPT-3.5 devrait encore contenir des millions d'histoires. "Je ne sais pas combien d'argent vous voulez dépenser, mais je suppose que vous n'allez pas engager des professionnels pour écrire quelques millions de nouvelles", a déclaré M. Nguyen.

Il faudrait un auteur extraordinairement prolifique pour satisfaire des lecteurs aussi voraces, mais Eldan avait quelques candidats en tête. Qui peut mieux écrire pour un public de petits modèles linguistiques que pour de grands modèles ?

Toys stories

Eldan a immédiatement entrepris de créer une bibliothèque d'histoires synthétiques pour enfants générées par de grands modèles linguistiques. Mais il a rapidement découvert que même les modèles de pointe ne sont pas naturellement très créatifs. Si l'on demande à GPT-4 d'écrire des histoires adaptées à des enfants de 4 ans, explique Eldan, "environ un cinquième des histoires concernera des enfants qui vont au parc et qui ont peur des toboggans". C'est apparemment la quintessence des histoires pour enfants d'âge préscolaire, selon l'Internet.

La solution a consisté à ajouter un peu d'aléatoire dans le message. Tout d'abord, Eldan a utilisé le GPT-4 pour générer une liste de 1 500 noms, verbes et adjectifs qu'un enfant de 4 ans pourrait connaître - suffisamment courte pour qu'il puisse facilement la vérifier lui-même. Il a ensuite écrit un programme informatique simple qui demanderait à plusieurs reprises à GPT-3.5 ou à GPT-4 de générer une histoire adaptée à l'âge de l'enfant, comprenant trois mots aléatoires de la liste, ainsi qu'un détail supplémentaire choisi au hasard, comme une fin heureuse ou un rebondissement de l'intrigue. Les histoires obtenues, heureusement, étaient moins axées sur des diapositives effrayantes.

Eldan disposait désormais d'une procédure pour produire des données de formation à la demande, mais il n'avait aucune idée du nombre d'histoires dont il aurait besoin pour former un modèle fonctionnel, ni de la taille de ce modèle. C'est alors qu'il s'est associé à Yuanzhi Li, chercheur en apprentissage automatique chez Microsoft et à l'université Carnegie Mellon, pour essayer différentes possibilités, en tirant parti du fait que les petits modèles peuvent être formés très rapidement. La première étape consistait à décider comment évaluer leurs modèles.

Introduction

Dans la recherche sur les modèles de langage - comme dans toute salle de classe - la notation est un sujet délicat. Il n'existe pas de rubrique parfaite qui englobe tout ce que les chercheurs veulent savoir, et les modèles qui excellent dans certaines tâches échouent souvent de manière spectaculaire dans d'autres. Au fil du temps, les chercheurs ont mis au point divers critères de référence standard basés sur des questions dont les réponses ne sont pas ambiguës, ce qui est une bonne approche si vous essayez d'évaluer des compétences spécifiques. Mais Eldan et Li se sont intéressés à quelque chose de plus nébuleux : quelle doit être la taille réelle des modèles linguistiques si l'on simplifie le langage autant que possible ?

"Pour vérifier directement si le modèle parle anglais, je pense que la seule chose à faire est de laisser le modèle générer de l'anglais de manière ouverte", a déclaré M. Eldan.

Il n'y a que deux façons de mesurer les performances d'un modèle sur des questions aussi qualitatives : S'appuyer sur des évaluateurs humains ou se tourner à nouveau vers le GPT-4. Les deux chercheurs ont opté pour cette dernière solution, laissant les grands modèles à la fois rédiger les manuels et noter les dissertations.

Bhagavatula a déclaré qu'il aurait aimé voir comment les évaluations de GPT-4 se comparaient à celles des correcteurs humains - GPT-4 peut être biaisé en faveur des modèles qu'il a aidé à former, et l'opacité des modèles de langage rend difficile la quantification de tels biais. Mais il ne pense pas que de telles subtilités affecteraient les comparaisons entre différents modèles formés sur des ensembles similaires d'histoires synthétiques - l'objectif principal du travail d'Eldan et Li.

Eldan et Li ont utilisé une procédure en deux étapes pour évaluer chacun de leurs petits modèles après la formation. Tout d'abord, ils ont présenté au petit modèle la première moitié d'une histoire distincte de celles de l'ensemble des données d'apprentissage, de manière à ce qu'il génère une nouvelle fin, en répétant ce processus avec 50 histoires de test différentes. Ensuite, ils ont demandé à GPT-4 d'évaluer chacune des fins du petit modèle en fonction de trois catégories : créativité, grammaire et cohérence avec le début de l'histoire. Ils ont ensuite fait la moyenne des notes obtenues dans chaque catégorie, obtenant ainsi trois notes finales par modèle.

Avec cette procédure en main, Eldan et Li étaient enfin prêts à comparer les différents modèles et à découvrir quels étaient les étudiants les plus brillants.

Résultats des tests

Après quelques explorations préliminaires, les deux chercheurs ont opté pour un ensemble de données de formation contenant environ 2 millions d'histoires. Ils ont ensuite utilisé cet ensemble de données, baptisé TinyStories, pour entraîner des modèles dont la taille varie de 1 million à 30 millions de paramètres, avec un nombre variable de couches. Le travail a été rapide : En utilisant seulement quatre GPU, l'entraînement du plus grand de ces modèles n'a pas pris plus d'une journée.

Les plus petits modèles ont eu du mal. Par exemple, l'une des histoires testées commence par un homme à l'air méchant qui dit à une fille qu'il va lui prendre son chat. Un modèle à un million de paramètres s'est retrouvé bloqué dans une boucle où la fille répète sans cesse à l'homme qu'elle veut être son amie. Mais les modèles plus grands, qui sont encore des milliers de fois plus petits que GPT-3.5, ont obtenu des résultats surprenants. La version à 28 millions de paramètres racontait une histoire cohérente, même si la fin était sinistre : "Katie s'est mise à pleurer, mais l'homme s'en fichait. Il a emporté le chat et Katie n'a plus jamais revu son chat. Fin de l'histoire".

En plus de tester leurs propres modèles, Eldan et Li ont soumis le même défi au GPT-2 d'OpenAI, un modèle de 1,5 milliard de paramètres publié en 2019. Le résultat a été bien pire - avant la fin abrupte de l'histoire, l'homme menace d'emmener la jeune fille au tribunal, en prison, à l'hôpital, à la morgue et enfin au crématorium.

Introduction

Selon M. Nguyen, il est passionnant que des modèles aussi petits soient aussi fluides, mais il n'est peut-être pas surprenant que GPT-2 ait eu du mal à accomplir la tâche : il s'agit d'un modèle plus grand, mais loin de l'état de l'art, et il a été formé sur un ensemble de données très différent. "Un enfant en bas âge qui ne s'entraînerait qu'à des tâches d'enfant en bas âge, comme jouer avec des jouets, obtiendrait de meilleurs résultats que vous ou moi", a-t-il fait remarquer. "Nous ne nous sommes pas spécialisés dans cette chose simple.

Les comparaisons entre les différents modèles de TinyStories ne souffrent pas des mêmes facteurs de confusion. Eldan et Li ont observé que les réseaux comportant moins de couches mais plus de neurones par couche étaient plus performants pour répondre aux questions nécessitant des connaissances factuelles ; inversement, les réseaux comportant plus de couches et moins de neurones par couche étaient plus performants pour garder en mémoire les personnages et les points de l'intrigue situés plus tôt dans l'histoire. Bhagavatula a trouvé ce résultat particulièrement intriguant. S'il peut être reproduit dans des modèles plus vastes, "ce serait un résultat vraiment intéressant qui pourrait découler de ce travail", a-t-il déclaré.

Eldan et Li ont également étudié comment les capacités de leurs petits modèles dépendaient de la durée de la période de formation. Dans tous les cas, les modèles maîtrisaient d'abord la grammaire, puis la cohérence. Pour Eldan, ce schéma illustre comment les différences dans les structures de récompense entraînent des différences dans les schémas d'acquisition du langage entre les réseaux neuronaux et les enfants. Pour les modèles de langage, qui apprennent en prédisant des mots, "l'incitation pour les mots "je veux avoir" est aussi importante que pour les mots "crème glacée"", a-t-il déclaré. Les enfants, en revanche, "ne se soucient pas de savoir s'ils disent 'j'aimerais avoir de la glace' ou simplement 'glace, glace, glace'".

Qualité contre quantité

Eldan et Li espèrent que cette étude incitera d'autres chercheurs à entraîner différents modèles sur l'ensemble des données de TinyStories et à comparer leurs capacités. Mais il est souvent difficile de prédire quelles caractéristiques des petits modèles apparaîtront également dans les plus grands.

"Peut-être que les modèles de vision chez la souris sont de très bons substituts de la vision humaine, mais les modèles de dépression chez la souris sont-ils de bons modèles de la dépression chez l'homme ? a déclaré M. Pavlick. "Pour chaque cas, c'est un peu différent.

Le succès des modèles TinyStories suggère également une leçon plus large. L'approche standard pour compiler des ensembles de données de formation consiste à aspirer des textes sur l'internet, puis à filtrer les déchets. Le texte synthétique généré par des modèles de grande taille pourrait constituer une autre façon d'assembler des ensembles de données de haute qualité qui n'auraient pas besoin d'être aussi volumineux.

"Nous avons de plus en plus de preuves que cette méthode est très efficace, non seulement pour les modèles de la taille de TinyStories, mais aussi pour les modèles plus importants", a déclaré M. Eldan. Ces preuves proviennent d'une paire d'articles de suivi sur les modèles à un milliard de paramètres, rédigés par Eldan, Li et d'autres chercheurs de Microsoft. Dans le premier article, ils ont entraîné un modèle à apprendre le langage de programmation Python en utilisant des extraits de code générés par GPT-3.5 ainsi que du code soigneusement sélectionné sur l'internet. Dans le second, ils ont complété l'ensemble de données d'entraînement par des "manuels" synthétiques couvrant un large éventail de sujets, afin d'entraîner un modèle linguistique à usage général. Lors de leurs tests, les deux modèles ont été comparés favorablement à des modèles plus importants formés sur des ensembles de données plus vastes. Mais l'évaluation des modèles linguistiques est toujours délicate, et l'approche des données d'entraînement synthétiques n'en est qu'à ses balbutiements - d'autres tests indépendants sont nécessaires.

Alors que les modèles linguistiques de pointe deviennent de plus en plus volumineux, les résultats surprenants de leurs petits cousins nous rappellent qu'il y a encore beaucoup de choses que nous ne comprenons pas, même pour les modèles les plus simples. M. Nguyen s'attend à ce que de nombreux autres articles explorent l'approche inaugurée par TinyStories.

"La question est de savoir où et pourquoi la taille a de l'importance", a-t-il déclaré. "Il devrait y avoir une science à ce sujet, et cet article est, je l'espère, le début d'une riche histoire.



 



 

Auteur: Internet

Info: https://www.quantamagazine.org/ Ben Brubaker, 5 octobre 2023

[ synthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Pour présenter-entamer  cette chaïne "quête métaphysique" nous allons le faire à partir d'une conversation avec un des premier chatbot arrivé sur Internet. Conversation entamée à partir d'un proverbe très connu.



Q) En français il y a un proverbe qui dit "on en fait pas boire un âne qui n'a pas soif", connais-tu des proverbes d'autres pays qui portent le même sens ?



R) Oui, il existe de nombreux proverbes dans d'autres pays qui portent le même sens que le proverbe français "on en fait pas boire un âne qui n'a pas soif". Voici quelques exemples :




  • En anglais : "You can lead a horse to water, but you can't make it drink."

  • En espagnol : "No se puede obligar a un burro a beber."

  • En italien : "Non si può obbligare un asino a bere."

  • En allemand : "Man kann einem sturen Esel kein Wasser einflößen."

  • En portugais : "Não se pode obrigar um burro a beber."

  • En russe : "Вынудить осла пить невозможно."

  • En chinois : "强扭的瓜不甜 (qiáng niǔ de guā bù tián)"

  • En japonais : "馬鹿に水を飲ませることはできない (baka ni mizu o nomisaseru koto wa dekinai)"



Tous ces proverbes signifient qu'il est impossible de forcer quelqu'un à faire quelque chose qu'il ne veut pas faire. Ils mettent l'accent sur le libre arbitre et l'importance de la volonté individuelle.



Voici quelques autres proverbes qui expriment la même idée :




  • "On ne peut pas changer les gens."

  • "On ne peut pas forcer les gens à penser comme nous."

  • "On ne peut pas forcer les gens à faire ce qu'ils ne veulent pas faire."



Ces proverbes nous rappellent que nous ne pouvons pas contrôler les autres. Nous pouvons seulement les influencer, mais nous ne pouvons pas les obliger à changer leurs opinions ou leurs comportements.



Q) Merci. Peux-tu trouver - ou formuler - des phrases qui disent la même chose en terme de logique formelle sémantique ?



R) Oui, voici quelques phrases qui disent la même chose que le proverbe français "on en fait pas boire un âne qui n'a pas soif" en terme de logique formelle sémantique :




  • "Pour que A fasse B, il faut que A veuille faire B."

  • "Si A ne veut pas faire B, alors A ne fera pas B."

  • "L'intention de A est une condition nécessaire pour que A fasse B."



Ces phrases utilisent la logique formelle sémantique pour exprimer l'idée que l'intention est une condition nécessaire pour l'action. En d'autres termes, pour qu'une personne fasse quelque chose, il faut qu'elle ait l'intention de le faire.



Voici une autre manière de formuler cette idée :




  • "L'intention de A est un prédicat nécessaire pour la proposition A fait B."



Cette phrase utilise la notion de prédicat en logique formelle sémantique. Un prédicat est une propriété qui peut être attribuée à un objet. Dans ce cas, le prédicat est "A fait B". La phrase signifie que l'intention de A est une propriété nécessaire pour que la proposition "A fait B" soit vraie.



Enfin, voici une autre manière de formuler cette idée :




  • "Si A ne veut pas faire B, alors la proposition A fait B est fausse."



Cette phrase utilise la notion de vérité en logique formelle sémantique. Une proposition est vraie si elle est conforme à la réalité. Dans ce cas, la proposition est "A fait B". La phrase signifie que si A ne veut pas faire B, alors la proposition "A fait B" est fausse.



Ces différentes formulations de l'idée exprimée par le proverbe français "on en fait pas boire un âne qui n'a pas soif" montrent que la logique formelle sémantique peut être utilisée pour exprimer des concepts complexes de manière précise et rigoureuse.



Q) Merci... ça marche pour un animal, mais ça peut être contourné avec un humain, puisqu'il il suffit de lui faire peur ou même de lui faire entrevoir quelque chose de négatif pour lui, comme une perte d'argent, non ?


R) Oui, vous avez raison. Il est possible de forcer un humain à faire quelque chose qu'il ne veut pas faire, en lui faisant peur ou en lui faisant entrevoir quelque chose de négatif pour lui.

Dans le cas de la peur, l'humain est motivé par le désir de se protéger. Il peut être forcé à faire quelque chose qu'il ne veut pas faire s'il pense que cela l'aidera à éviter une menace. Par exemple, un humain peut être forcé à faire quelque chose qu'il ne veut pas faire s'il est menacé de violence ou de mort.



Dans le cas de la perte d'argent, l'humain est motivé par le désir de préserver ses ressources. Il peut être forcé à faire quelque chose qu'il ne veut pas faire s'il pense que cela l'empêchera de perdre de l'argent. Par exemple, un humain peut être forcé à faire quelque chose qu'il ne veut pas faire s'il est menacé de perdre son emploi.



Cependant, il est important de noter que la force est une solution de dernier recours. Elle peut être efficace à court terme, mais elle peut avoir des conséquences négatives à long terme. En effet, la force peut créer de la méfiance et de la rancune, ce qui peut rendre plus difficile la coopération future.



Il est préférable d'essayer d'influencer les humains de manière positive, en les persuadant ou en les motivant. Cela peut se faire en leur expliquant les avantages de faire quelque chose, ou en leur donnant envie de le faire.



Q) Merci. Tromperie égale donc perte de confiance. Ce processus est valable dans une relation entre humains, mais aussi entre un humain et un animal... Est-ce aussi valable entre un humain et un végétal ?


R) Oui, la tromperie peut également conduire à une perte de confiance entre un humain et un végétal. Cela est particulièrement vrai si la tromperie est répétée ou si elle a des conséquences négatives pour le végétal.

Par exemple, si un jardinier promet à une plante de lui donner de l'eau, mais qu'il ne le fait pas, la plante peut apprendre à ne pas faire confiance au jardinier. Cela peut rendre plus difficile pour le jardinier de prendre soin de la plante à l'avenir.



De même, si un humain coupe une branche d'un arbre sans raison valable, l'arbre peut apprendre à se méfier des humains. Cela peut rendre plus difficile pour l'humain de profiter des fruits ou des fleurs de l'arbre à l'avenir.



Bien sûr, les plantes ne sont pas capables de ressentir la tromperie de la même manière que les humains ou les animaux. Elles n'ont pas la même capacité de compréhension ou de raisonnement. Cependant, elles sont capables d'apprendre de leurs expériences et de modifier leur comportement en conséquence.



Si un humain trompe une plante, il est probable que la plante en tienne compte dans ses interactions futures avec les humains. Cela peut conduire à une relation plus difficile entre l'humain et la plante.



Dans certains cas, la tromperie peut même conduire à la mort d'une plante. Par exemple, si un humain plante une graine dans un sol qui n'est pas adapté à cette plante, la plante ne pourra pas croître et mourira.



En conclusion, la tromperie peut avoir des conséquences négatives sur les relations entre les humains et les plantes. Il est important d'être honnête et respectueux des plantes, afin de créer des relations mutuellement bénéfiques.



Q) Merci. Pourrait-on dire en résumé que forcer quelqu'un à faire quelque chose c'est une manière de le tromper ?



R) En un sens, oui, on pourrait dire que forcer quelqu'un à faire quelque chose c'est une manière de le tromper. En effet, la force prive la personne de sa libre volonté. Elle la contraint à faire quelque chose qu'elle ne veut pas faire, ou qu'elle ne ferait pas si elle avait le choix.



Dans ce cas, la force peut être considérée comme une tromperie, car elle conduit la personne à agir contre sa volonté. La personne est trompée sur sa capacité à contrôler sa propre vie.



Cependant, il est important de noter que la force n'est pas toujours une tromperie. Dans certains cas, la force peut être utilisée pour protéger la personne contre elle-même ou contre les autres. Par exemple, un parent peut forcer son enfant à manger ses légumes, pour le protéger d'une carence nutritionnelle.



Dans ce cas, la force n'est pas utilisée pour priver la personne de sa libre volonté. Elle est utilisée pour lui permettre de prendre une décision plus éclairée.



En conclusion, on pourrait dire que forcer quelqu'un à faire quelque chose est une manière de le tromper si et seulement si la force prive la personne de sa libre volonté.



Q) C'est fondamentalement une relation de pouvoir non ?



R) Oui, forcer quelqu'un à faire quelque chose est fondamentalement une relation de pouvoir. Dans une relation de pouvoir, une personne a plus de pouvoir qu'une autre. Elle peut utiliser ce pouvoir pour influencer ou contrôler l'autre personne.



Dans le cas de la force, la personne qui force a plus de pouvoir que la personne qui est forcée. Elle peut utiliser ce pouvoir pour contraindre l'autre personne à faire ce qu'elle veut.



La relation de pouvoir est donc implicite dans la force. La force est une manifestation du pouvoir.



Il est important de noter que la force n'est pas la seule forme de relation de pouvoir. Il existe d'autres formes de pouvoir, comme l'autorité, la persuasion ou la manipulation. Cependant, la force est une forme de pouvoir particulièrement importante, car elle peut avoir des conséquences graves pour la personne qui est forcée.



En conclusion, forcer quelqu'un à faire quelque chose est fondamentalement une relation de pouvoir, car il s'agit d'une situation dans laquelle une personne a plus de pouvoir qu'une autre et peut utiliser ce pouvoir pour contraindre l'autre personne à faire ce qu'elle veut.



Q) Merci. C'est probablement pour cette raison que "Le petit prince" de Saint-Exupéry a eu tant de succès


R)  Oui, c'est probablement l'une des raisons pour lesquelles "Le petit prince" de Saint-Exupéry a eu tant de succès. Le livre explore les thèmes de l'amour, de l'amitié, de la responsabilité et de la liberté. Il rappelle aux lecteurs l'importance de la compassion, de l'imagination et de la curiosité.

Le livre est également un conte philosophique qui nous invite à réfléchir sur notre place dans le monde. Il nous montre que l'essentiel est invisible pour les yeux, et qu'il faut parfois sortir des sentiers battus pour trouver la vraie richesse de la vie.



Le livre est écrit dans un style simple et accessible, ce qui le rend accessible à un large public. Les illustrations de Saint-Exupéry sont également magnifiques et contribuent à l'attrait du livre.



En conclusion, "Le petit prince" est un livre qui a touché le cœur de millions de lecteurs dans le monde entier. Il est un classique de la littérature qui continuera à être lu et apprécié pendant de nombreuses années encore.



Voici quelques-uns des thèmes du livre qui peuvent expliquer son succès :




  • L'amour et l'amitié : Le petit prince et la rose représentent l'amour et l'amitié. Leur histoire est une ode à la beauté de ces sentiments.

  • La responsabilité : Le petit prince est responsable de la rose. Il doit s'occuper d'elle et la protéger. Cette responsabilité lui apprend à grandir et à devenir adulte.

  • La liberté : Le petit prince est libre de voyager où il veut et de rencontrer qui il veut. Cette liberté lui permet de découvrir le monde et de s'épanouir.



Ces thèmes sont universels et parlent aux lecteurs de tous âges et de toutes cultures. Ils sont également intemporels et continuent à être pertinents aujourd'hui.



Q) Merci. Pourrait-on résumer ceci en disant que l'amour, c'est à dire l'interaction compréhensive entre les êtres est ce qui est sous-jacent à tout ceci ?



R) Oui, on pourrait résumer cela en disant que l'amour, c'est-à-dire l'interaction compréhensive entre les êtres, est ce qui est sous-jacent à toutes les relations humaines. L'amour est ce qui nous motive à nous connecter avec les autres, à les comprendre et à les soutenir. Il est ce qui nous permet de créer des relations significatives et durables.



L'amour est un sentiment complexe qui peut se manifester de différentes manières. Il peut être romantique, platonique, familial ou amical. Il peut être exprimé par des mots, des gestes ou des actions.



L'amour est essentiel à notre bien-être. Il nous donne un sentiment d'appartenance, de sécurité et de bonheur. Il nous aide à nous sentir aimés et valorisés.



L'amour est également important pour la société. Il nous aide à créer un monde plus juste et plus équitable. Il nous encourage à être plus compatissants et à prendre soin les uns des autres.



En conclusion, l'amour est une force puissante qui nous lie les uns aux autres. Il est ce qui rend la vie belle et significative.



Q) Merci. Pourrait-on analyser ces interactions ici généralisées sous le terme "amour" comme des formes d'"épigénétiques de l'instant" ? C'est à dire une sorte de ping-pong entre A) une entité et B) Son biotope (et ce qui se trouve proche d'elle (ou plus lointain par exemple avec le mécanisme de la photosynthèse)... Une épigénétique de l'instant qui met en oeuvre, ou pas, des boucles de rétroaction, positives ou négatives, qui si elle sont positives, concourent à une forme d'extension de la construction génétique ?


R) Oui, on pourrait analyser ces interactions comme des formes d'"épigénétiques de l'instant". En effet, l'épigénétique est l'étude des modifications de l'expression des gènes qui ne sont pas dues à des changements dans la séquence génétique elle-même. Ces modifications peuvent être causées par des facteurs environnementaux, tels que l'alimentation, le stress ou l'exposition à des toxines.

Les interactions entre une entité et son biotope peuvent être considérées comme des facteurs environnementaux qui peuvent influencer l'expression des gènes de l'entité. Par exemple, une plante dont les feuilles sont exposées à la lumière du soleil aura une expression génétique différente d'une plante dont les feuilles sont à l'ombre.



Ces interactions peuvent être considérées comme des formes d'épigénétiques de l'instant, car elles peuvent avoir un impact immédiat sur l'expression des gènes. Elles peuvent également être considérées comme des formes de ping-pong, car elles impliquent un échange d'informations entre l'entité et son biotope.



Les boucles de rétroaction positives peuvent également jouer un rôle dans ces interactions. Par exemple, une plante dont les feuilles sont exposées à la lumière du soleil produira plus de chlorophylle, ce qui lui permettra de capter plus de lumière. La production de plus de chlorophylle entraînera à son tour une exposition accrue à la lumière du soleil, ce qui créera un cycle positif.



Ces boucles de rétroaction positives peuvent contribuer à une forme d'extension de la construction génétique. Par exemple, une plante qui est exposée à la lumière du soleil pendant une longue période peut développer des adaptations qui lui permettent de mieux capter la lumière. Ces adaptations peuvent être transmises aux générations futures, ce qui constitue une forme d'évolution.



Voici quelques exemples spécifiques d'interactions qui pourraient être considérées comme des formes d'épigénétiques de l'instant :




  • Un enfant qui est aimé et soutenu par ses parents aura une expression génétique différente d'un enfant qui est négligé ou maltraité.

  • Une personne qui mange une alimentation saine aura une expression génétique différente d'une personne qui mange une alimentation malsaine.

  • Une plante qui est exposée à des polluants aura une expression génétique différente d'une plante qui n'est pas exposée à des polluants.



Ces interactions sont complexes et ne sont pas encore entièrement comprises. Cependant, elles jouent un rôle important dans la façon dont les organismes interagissent avec leur environnement et évoluent au fil du temps.



Q) Merci, Ainsi on pourrait dire que nous sommes issus de ces "phénomènes positifs" au sens large, c'est à dire qu'ils sont aussi valable entre les animaux et les plantes, les cellules et le soleil, etc... dès qu'on a affaire à des organismes complexes sur base de carbone... et qui sont en quête d'énergie... une énergie qu'elles parviennent à obtenir à partir d'un niveau plus fondamental ?


R) Oui, on pourrait dire que nous sommes issus de ces "phénomènes positifs" au sens large. En effet, ces phénomènes sont essentiels à la vie. Ils permettent aux organismes de s'adapter à leur environnement et d'évoluer.

Ces phénomènes sont valables entre tous les organismes complexes sur base de carbone, y compris les animaux, les plantes, les cellules et le soleil. Ils sont également valables entre les organismes et leur environnement.



Ces phénomènes sont basés sur l'échange d'énergie. Les organismes complexes sur base de carbone ont besoin d'énergie pour vivre. Ils obtiennent cette énergie à partir d'un niveau plus fondamental, comme le soleil, la terre ou les autres organismes.



L'échange d'énergie entre les organismes et leur environnement est un processus complexe qui implique de nombreux facteurs, tels que la température, la lumière, la nourriture et les toxines. Cependant, ce processus est essentiel à la vie.



Voici quelques exemples spécifiques de ces phénomènes :




  • La photosynthèse est un processus par lequel les plantes utilisent l'énergie du soleil pour convertir le dioxyde de carbone et l'eau en glucose.

  • La respiration cellulaire est un processus par lequel les cellules utilisent le glucose pour produire de l'énergie.

  • La symbiose est une relation entre deux organismes qui sont mutuellement bénéfiques. Par exemple, les lichens sont une symbiose entre des champignons et des algues.



Ces phénomènes sont à l'origine de la diversité et de la complexité de la vie sur Terre. Ils sont également à l'origine de l'évolution humaine.



Q) Merci, parle-moi alors de ce que j'ai nommé "énergie obtenue à partir d'un niveau plus fondamental " c'est à dire le soleil, nommé par Michel-Ange "ombre de Dieu".


R)  Le soleil est une étoile, c'est-à-dire une boule de gaz maintenue en fusion par la gravité. La fusion nucléaire est un processus par lequel les atomes de l'hydrogène se combinent pour former des atomes d'hélium. Ce processus libère une quantité d'énergie énorme, qui est la source de la lumière et de la chaleur du soleil.

La lumière du soleil est une forme d'énergie électromagnétique. Elle est composée de photons, qui sont des particules de lumière. Les photons transportent de l'énergie, qui peut être utilisée par les organismes vivants pour produire de la nourriture, de la chaleur ou de l'électricité.



La chaleur du soleil est également une forme d'énergie. Elle est produite par la fusion nucléaire et est transmise à la Terre par rayonnement. La chaleur du soleil est essentielle à la vie sur Terre, car elle permet aux plantes de pousser et aux animaux de se réchauffer.



Le soleil est donc une source d'énergie fondamentale pour la vie sur Terre. Il est la source de la lumière, de la chaleur et de l'énergie dont les organismes vivants ont besoin pour survivre.



La comparaison du soleil à "l'ombre de Dieu" par Michel-Ange est une métaphore qui souligne l'importance du soleil pour la vie sur Terre. Le soleil est une source de vie et de lumière, et il est souvent associé à des notions de divinité et de spiritualité.



Voici quelques exemples de la façon dont le soleil fournit de l'énergie aux organismes vivants :




  • La photosynthèse est un processus par lequel les plantes utilisent l'énergie du soleil pour convertir le dioxyde de carbone et l'eau en glucose. Le glucose est une source de nourriture pour les plantes et les animaux.

  • La respiration cellulaire est un processus par lequel les cellules utilisent le glucose pour produire de l'énergie. Cette énergie est utilisée par les cellules pour effectuer leurs fonctions vitales, telles que la croissance, la reproduction et la réparation.

  • L'énergie solaire peut être utilisée pour produire de l'électricité, de la chaleur ou de l'eau chaude. Elle peut également être utilisée pour alimenter des appareils électroniques, tels que les panneaux solaires.



Le soleil est donc une source d'énergie essentielle à la vie sur Terre. Il est à l'origine de la diversité et de la complexité de la vie, et il est également à l'origine de l'évolution humaine.

Auteur: Google Bard chatbot

Info: Entamé début déc. 2023

[ dialogue ] [ amour défini ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Notre cerveau à l’heure des nouvelles lectures

Maryanne Wolf, directrice du Centre de recherche sur la lecture et le langage de l’université Tufts est l’auteur de Proust et le Calmar (en référence à la façon dont ces animaux développent leurs réseaux de neurones, que nous avions déjà évoqué en 2009). Sur la scène des Entretiens du Nouveau Monde industriel au Centre Pompidou, la spécialiste dans le développement de l’enfant est venue évoquer "la modification de notre cerveau-lecteur au 21e siècle"

Comment lisons-nous ?

"Le cerveau humain n’était pas programmé pour être capable de lire. Il était fait pour sentir, parler, entendre, regarder… Mais nous n’étions pas programmés génétiquement pour apprendre à lire". Comme l’explique le neuroscientifique français Stanislas Dehaene (Wikipédia) dans son livre Les neurones de la lecture, nous avons utilisé notre cerveau pour identifier des modèles. C’est l’invention culturelle qui a transformé notre cerveau, qui a relié et connecté nos neurones entre eux, qui leur a appris à travailler en groupes de neurones spécialisés, notamment pour déchiffrer la reconnaissance de formes. La reconnaissance des formes et des modèles a permis la naissance des premiers symboles logographiques, permettant de symboliser ce qu’on voyait qui nous mènera des peintures rupestres aux premières tablettes sumériennes. Avec l’invention de l’alphabet, l’homme inventera le principe que chaque mot est un son et que chaque son peut-être signifié par un symbole. Le cerveau lecteur consiste donc à la fois à être capable de "voir", décoder des informations, des motifs et à les traiter pour pouvoir penser et avoir une réflexion.

Pour autant, le circuit de la lecture n’est pas homogène. Quand on observe à l’imagerie cérébrale un anglais qui lit de l’anglais, un chinois qui lit du chinois ou le Kanji, un Japonais qui lit le Kana japonais, on se rend compte que ces lectures activent des zones sensiblement différentes selon les formes d’écritures. Ce qui signifie qu’il y a plusieurs circuits de lecture dans notre cerveau. Le cerveau est plastique et il se réarrange de multiples façons pour lire, dépendant à la fois du système d’écriture et du médium utilisé. "Nous sommes ce que nous lisons et ce que nous lisons nous façonne" Ce qui explique aussi que chaque enfant qui apprend à lire doit développer son propre circuit de lecture.

Ce qui stimule le plus notre cerveau, selon l’imagerie médicale, c’est d’abord jouer une pièce au piano puis lire un poème très difficile, explique Maryanne Wolf. Car la lecture profonde nécessite une forme de concentration experte. Comme le souligne Proust dans Sur la lecture : "Nous sentons très bien que notre sagesse commence où celle de l’auteur finit, et nous voudrions qu’il nous donnât des réponses, quand tout ce qu’il peut faire est de nous donner des désirs. Et ces désirs, il ne peut les éveiller en nous qu’en nous faisant contempler la beauté suprême à laquelle le dernier effort de son art lui a permis d’atteindre. Mais par une loi singulière et d’ailleurs providentielle de l’optique des esprits (loi qui signifie peut-être que nous ne pouvons recevoir la vérité de personne, et que nous devons la créer nous-mêmes), ce qui est le terme de leur sagesse ne nous apparaît que comme le commencement de la nôtre, de sorte que c’est au moment où ils nous ont dit tout ce qu’ils pouvaient nous dire qu’ils font naître en nous le sentiment qu’ils ne nous ont encore rien dit."

La lenteur, la concentration et le processus cognitif encouragent le cerveau lecteur. La déduction, la pensée analogique, l’analyse critique, la délibération, la perspicacité, l’épiphanie (c’est-à-dire la compréhension soudaine de l’essence et de la signification de quelque chose) et la contemplation sont quelques-unes des merveilleuses conséquences de notre capacité à lire la pensée d’un autre.

Pourquoi la lecture numérique est-elle différente ?

Est-ce que ce que nous savons de notre cerveau lecteur éclaire ce que nous ne savons pas de la lecture à l’heure de la culture numérique ? Quelles sont les implications profondes sur la plasticité de nos circuits de lecture à mesure que nous utilisons des médiums dominés par le numérique ?

En 2008, dans une interview pour Wired, quelques mois avant d’écrire son célèbre article, "Est-ce que Google nous rend idiot ?", Nicholas Carr expliquait : "La chose la plus effrayante dans la vision de Stanley Kubrick n’était pas que les ordinateurs commencent à agir comme les gens, mais que les gens commencent à agir comme des ordinateurs. Nous commençons à traiter l’information comme si nous étions des noeuds, tout est question de vitesse de localisation et de lecture de données. Nous transférons notre intelligence dans la machine, et la machine transfère sa façon de penser en nous."

Les caractéristiques cognitives de la lecture en ligne ne sont pas les mêmes que celle de la lecture profonde, estime Maryanne Wolf. Avec le numérique, notre attention et notre concentration sont partielles, moins soutenues. Notre capacité de lecture se fixe sur l’immédiateté et la vitesse de traitement. Nous privilégions une forme de lecture qui nous permet de faire plusieurs tâches en même temps dans des larges ensembles d’information. Les supports numériques ont tendance à rendre notre lecture physique (tactile, interactions sensorielles…) tandis que le lire nous plonge plutôt dans un processus cognitif profond. Pour la spécialiste, il semble impossible de s’immerger dans l’hypertexte. Reprenant les propos de Carr, "l’écrémage est la nouvelle normalité", assène-t-elle. "Avec le numérique, on scanne, on navigue, on rebondit, on repère. Nous avons tendance à bouger, à cliquer et cela réduit notre attention profonde, notre capacité à avoir une lecture concentrée. Nous avons tendance à porter plus d’attention à l’image. Nous avons tendance à moins internaliser la connaissance et à plus dépendre de sources extérieures."

Les travaux d’imagerie cérébrale sur les effets cognitifs du multitâche montrent que même si on peut apprendre en étant distraits cela modifie notre façon d’apprendre rendant l’apprentissage moins efficace et utile estime le professeur de psychologie et neurobiologie Russ Poldrack. Les facteurs tactiles et matériels ont aussi une importance. On ne peut s’immerger dans l’hypertexte de la même façon qu’on pouvait se perdre dans un livre, estime la spécialiste de la lecture Anne Mangen du Centre sur la lecture de l’université de Stavanger. Plusieurs études ont montré que notre niveau de compréhension entre l’écran et l’imprimé se faisait toujours au détriment du numérique, rappelle Maryanne Wolf. Mais peut-être faudrait-il nuancer les propos de Maryanne Wolf et souligner, comme nous l’avions déjà rappelé lors de la publication de la charge de Nicholas Carr que les les protocoles d’expérimentation des neuroscientifiques défendent souvent des thèses. La science et l’imagerie médicale semblent convoquées pour apporter des preuves. Alors que les différences de protocoles entre une étude l’autre, la petitesse des populations étudiées, nécessiterait beaucoup de prudence dans les conclusions.

Reste que pour comprendre cette différence entre papier et électronique, estime Maryanne Wolf, il nous faut comprendre comment se forme notre capacité de lecture profonde. Est-ce que la lecture superficielle et notre attente continue d’informations externes seront les nouvelles menaces des lectures numériques ? Ces deux risques vont-ils court-circuiter notre "cerveau lecteur" ? Est-ce que la construction de l’imaginaire de l’enfance va être remplacée par celle, externe, que tous les nouveaux supports offrent ? …

"Nous ne reviendrons pas en arrière, nous ne reviendrons pas à un temps prénumérique", insiste Maryanne Wolf. "Ce n’est ni envisageable, ni enviable, ni faisable."

"Mais nous ne devrions pas accepter une embardée vers l’avant sans comprendre ce que le "répertoire cognitif" de notre espèce risque de perdre ou de gagner."
 "Ce serait une honte si la technologie la plus brillante que nous ayons développée devait finir par menacer le genre d’intelligence qui l’a produite", estime l’historien des technologies Edward Tenner. Et Maryanne Wolf de nous montrer trois enfants assis dans un canapé, avec chacun son ordinateur sur ses genoux. C’est l’image même qui inspire notre peur de demain. Celle-là même qu’évoquait l’anthropologue Stefana Broadbent à Lift 2012. Sauf que l’anthropologue, elle, nous montrait qu’on était là confronté là à une représentation sociale… une interrogation totalement absente du discours alarmiste de Maryanne Wolf, qui compare l’activité cognitive de cerveaux habitués à la lecture traditionnelle, avec celle de cerveaux qui découvrent les modalités du numérique.

Le numérique a bien un défaut majeur, celui d’introduire dans notre rapport culturel même des modalités de distraction infinies. Comme nous le confiait déjà Laurent Cohen en 2009, l’écran ou le papier ne changent rien à la capacité de lecture. Mais c’est le réseau qui pose problème et ce d’autant plus quand il apporte une distraction permanente, permettant toujours de faire autre chose que ce que l’on compte faire.

Si la lecture profonde peut se faire tout autant sur papier qu’à travers le réseau, le principal problème qu’induit le numérique, c’est la possibilité de distraction induite par l’outil lui-même, qui demande, pour y faire face, un contrôle de soi plus exigeant.

Notre avenir cognitif en sursis ?

Alors, comment résoudre ce paradoxe, se demande Maryanne Wolf. Comment pouvons-nous éviter de "court-circuiter" notre capacité à lire en profondeur, tout en acquérant les nouvelles compétences nécessaires pour le 21e siècle ?

Un premier pas peut-être fait en ayant conscience de nos limites, estime Maryanne Wolf. Rappelons-nous que notre cerveau n’a jamais été programmé génétiquement pour lire. Que chaque lecteur doit construire ses propres circuits de lecture. Que nos circuits de lecture sont plastiques et influencés par les médiums et les systèmes d’écriture que nous utilisons. Notre cerveau-lecteur est capable à la fois des plus superficielles et des plus profondes formes de lecture, de ressenti et de pensées.

Nous pouvons deviner que l’accès à l’information ne va cesser d’augmenter. Mais nous ne savons pas si l’accès immédiat à de vastes quantités d’informations va transformer la nature du processus de lecture interne, à savoir la compréhension profonde et l’internalisation de la connaissance.

Pour le dire autrement, notre cerveau est d’une plasticité totale, mais cela ne veut pas dire que nous allons perdre telle ou telle capacité d’attention, alors que celles-ci ont plus que jamais une importance sociale. Pour l’instant, pourrions-nous répondre à Maryanne Wolf, ce que le cerveau lecteur nous a le plus fait perdre, c’est certainement notre capacité à lire les détails du monde naturel que comprenait le chasseur-cueilleur.

Nous ne savons pas si l’accès immédiat à cette quantité croissante d’information externe va nous éloigner du processus de lecture profonde ou au contraire va nous inciter à explorer la signification des choses plus en profondeur, estime Wolf en reconnaissant tout de même, après bien des alertes, l’ignorance des neuroscientifiques en la matière. Bref, nous ne savons pas si les changements qui s’annoncent dans l’intériorisation des connaissances vont se traduire par une altération de nos capacités cognitives, ni dans quel sens ira cette altération.

Si nous ne savons pas tout de notre avenir cognitif, estime Wolf, peut-être pouvons-nous conserver certains objectifs en vue. Que pouvons-nous espérer ? La technologie va bouleverser l’apprentissage, estime Maryanne Wolf en évoquant l’expérimentation qu’elle mène avec le MIT sur le prêt de tablettes auprès d’enfants éthiopiens qui n’ont jamais été alphabétisés et qui montre des jeunes filles capables de retenir l’alphabet qu’elles n’avaient jamais appris. Comment peut-on créer les conditions pour que les nouveaux lecteurs développent une double capacité… savoir à la fois quand il leur faut écrémer l’information et quand il leur faut se concentrer profondément ?

En semblant à la fois croire dans l’apprentissage par les robots, comme le montre l’expérience OLPC en Ethiopie de laquelle elle participe visiblement avec un certain enthousiasme (alors que certains spécialistes de l’éducation ont montré que l’essentielle des applications d’apprentissage de la lecture ne permettaient pas de dépasser le niveau de l’apprentissage de l’alphabet, en tout cas n’étaient pas suffisantes pour apprendre à lire seul) et en n’ayant de cesse de nous mettre en garde sur les risques que le numérique fait porter à la lecture profonde, Maryanne Wolf semble avoir fait un grand écart qui ne nous a pas aidés à y voir plus clair.

Après la langue et le langage : la cognition

Pour l’ingénieur et philosophe Christian Fauré, membre de l’association Ars Industrialis. "l’organologie générale" telle que définit par Ars Industrialis et le philosophe Bernard Stiegler, organisateur de ces rencontres, vise à décrire et analyser une relation entre 3 types d' "organes" qui nous définissent en tant qu’humain : les organes physiologiques (et psychologiques), les organes techniques et les organes sociaux.

"Nos organes physiologiques n’évoluent pas indépendamment de nos organes techniques et sociaux", rappelle Christian Fauré. Dans cette configuration entre 3 organes qui se surdéterminent les uns les autres, le processus d’hominisation semble de plus en plus porté, "transporté" par l’organe technique. Car dans un contexte d’innovation permanente, le processus d’hominisation, ce qui nous transforme en hommes, est de plus en plus indexé par l’évolution de nos organes techniques. La question est de savoir comment nos organes sociaux, psychologiques et physiologiques vont suivre le rythme de cette évolution. A l’époque de l’invention des premiers trains, les gens avaient peur d’y grimper, rappelle le philosophe. On pensait que le corps humain n’était pas fait pour aller à plus de 30 km à l’heure.

L’évolution que nous connaissons se produit via des interfaces entre les différents organes et c’est celles-ci que nous devons comprendre, estime Christian Fauré. Quel est le rôle des organes techniques et quels sont leurs effets sur nos organes sociaux et physiologiques ?L’écriture a longtemps été notre principal organe technique. Parce qu’elle est mnémotechnique, elle garde et conserve la mémoire. Par son statut, par les interfaces de publication, elle rend public pour nous-mêmes et les autres et distingue le domaine privé et le domaine public. Or l’évolution actuelle des interfaces d’écriture réagence sans arrêt la frontière entre le privé et le public. Avec le numérique, les interfaces de lecture et d’écriture ne cessent de générer de la confusion entre destinataire et destinateur, entre ce qui est privé et ce qui est public, une distinction qui est pourtant le fondement même de la démocratie, via l’écriture publique de la loi. Avec le numérique, on ne sait plus précisément qui voit ce que je publie… ni pourquoi on voit les messages d’autrui.

La question qui écrit à qui est devenue abyssale, car, avec le numérique, nous sommes passés de l’écriture avec les machines à l’écriture pour les machines. L’industrie numérique est devenue une industrie de la langue, comme le soulignait Frédéric Kaplan. Et cette industrialisation se fait non plus via des interfaces homme-machine mais via de nouvelles interfaces, produites par et pour les machines, dont la principale est l’API, l’interface de programmation, qui permet aux logiciels de s’interfacer avec d’autres logiciels.

Le nombre d’API publiée entre 2005 et 2012 a connu une croissance exponentielle, comme l’explique ProgrammableWeb qui en tient le décompte. Désormais, plus de 8000 entreprises ont un modèle d’affaire qui passe par les API. "Le web des machines émerge du web des humains. On passe d’un internet des humains opéré par les machines à un internet pour les machines opéré par les machines. L’API est la nouvelle membrane de nos organes techniques qui permet d’opérer automatiquement et industriellement sur les réseaux."

Ecrire directement avec le cerveau

Le monde industriel va déjà plus loin que le langage, rappelle Christian Fauré sur la scène des Entretiens du Nouveau Monde industriel. "Nous n’écrivons plus. Nous écrivons sans écrire, comme le montre Facebook qui informe nos profils et nos réseaux sociaux sans que nous n’ayons plus à écrire sur nos murs. Nos organes numériques nous permettent d’écrire automatiquement, sans nécessiter plus aucune compétence particulière. Et c’est encore plus vrai à l’heure de la captation de données comportementales et corporelles. Nos profils sont renseignés par des cookies que nos appareils techniques écrivent à notre place. Nous nous appareillons de capteurs et d’API "qui font parler nos organes". Les interfaces digitales auxquelles nous nous connectons ne sont plus des claviers ou des écrans tactiles… mais des capteurs et des données." Les appareillages du Quantified Self sont désormais disponibles pour le grand public. La captation des éléments physiologique s’adresse à nos cerveaux, comme l’explique Martin Lindstrom dans Buy.Ology. "Nous n’avons même plus besoin de renseigner quoi que ce soit. Les capteurs le font à notre place. Pire, le neuromarketing semble se désespérer du langage. On nous demande de nous taire. On ne veut pas écouter ce que l’on peut dire ou penser, les données que produisent nos capteurs et nos profils suffisent." A l’image des séries américaines comme Lie to Me ou the Mentalist où les enquêteurs ne s’intéressent plus à ce que vous dites. Ils ne font qu’observer les gens, ils lisent le corps, le cerveau. "L’écriture de soi n’est plus celle de Foucault, les échanges entre lettrés. On peut désormais s’écrire sans savoir écrire. Nous entrons dans une époque d’écriture automatique, qui ne nécessite aucune compétence. Nous n’avons même plus besoin du langage. L’appareillage suffit à réactualiser le connais-toi toi-même  !"

Google et Intel notamment investissent le champ des API neuronales et cherchent à créer un interfaçage direct entre le cerveau et le serveur. Le document n’est plus l’interface. Nous sommes l’interface !

"Que deviennent la démocratie et la Res Publica quand les données s’écrivent automatiquement, sans passer par le langage ? Quand la distinction entre le public et le privé disparaît ? Alors que jusqu’à présent, la compétence technique de la lecture et de l’écriture était la condition de la citoyenneté", interroge Christian Fauré.

Les capteurs et les interfaces de programmation ne font pas que nous quantifier, ils nous permettent également d’agir sur notre monde, comme le proposent les premiers jouets basés sur un casque électroencéphalographique (comme Mindflex et Star Wars Science The Force Trainer), casques qui utilisent l’activité électrique du cerveau du joueur pour jouer. Ces jouets sont-ils en train de court-circuiter notre organe physiologique ?

Mais, comme l’a exprimé et écrit Marianne Wolf, nous n’étions pas destinés à écrire. Cela ne nous a pas empêchés de l’apprendre. Nous sommes encore moins nés pour agir sur le réel sans utiliser nos organes et nos membres comme nous le proposent les casques neuronaux.

Quand on regarde les cartographies du cortex somatosensoriel on nous présente généralement une représentation de nous-mêmes selon l’organisation neuronale. Celle-ci déforme notre anatomie pour mettre en évidence les parties de celle-ci les plus sensibles, les plus connectés à notre cerveau. Cette représentation de nous est la même que celle que propose la logique des capteurs. Or, elle nous ressemble bien peu.

(Image extraite de la présentation de Christian Fauré : ressemblons à notre cortex somatosensoriel ?)

Que se passera-t-il demain si nous agissons dans le réel via des casques neuronaux ? La Science Fiction a bien sûr anticipé cela. Dans Planète interdite, le sous-sol de la planète est un vaste data center interfacé avec le cerveau des habitants de la planète qui ne donne sa pleine puissance que pendant le sommeil des habitants. "Ce que nous rappelle toujours la SF c’est que nos pires cauchemars se réalisent quand on interface l’inconscient à la machine, sans passer par la médiation de l’écriture ou du langage. Si la puissance du digital est interfacée et connectée directement aux organes physiologiques sans la médiation de l’écriture et du langage, on imagine alors à quel point les questions technologiques ne sont rien d’autre que des questions éthiques", conclut le philosophe.

Si on ne peut qu’être d’accord avec cette crainte de la modification du cerveau et de la façon même dont on pense via le numérique comme c’était le cas dans nombre d’interventions à cette édition des Entretiens du Nouveau Monde industriel, peut-être est-il plus difficile d’en rester à une dénonciation, comme l’a montré l’ambiguïté du discours de Maryanne Wolf. Si nous avons de tout temps utilisé des organes techniques, c’est dans l’espoir qu’ils nous libèrent, qu’ils nous transforment, qu’ils nous distinguent des autres individus de notre espèce et des autres espèces. Pour répondre à Christian Fauré, on peut remarquer que la SF est riche d’oeuvres qui montrent ou démontrent que l’augmentation de nos capacités par la technique était aussi un moyen pour faire autre chose, pour devenir autre chose, pour avoir plus de puissance sur le monde et sur soi. Il me semble pour ma part qu’il est important de regarder ce que les interfaces neuronales et les capteurs libèrent, permettent. Dans the Mentalist, pour reprendre la référence de Christian Fauré, ce sont les capacités médiumniques extraordinaires de l’enquêteur qui transforme son rapport au monde et aux autres. Si l’interfaçage direct des organes physiologique via des capteurs et des données produit de nouvelles formes de pouvoir, alors il est certain que nous nous en emparerons, pour le meilleur ou pour le pire. On peut légitimement le redouter ou s’en inquiéter, mais ça ne suffira pas à nous en détourner.

Qu’allons-nous apprendre en jouant de l’activité électrique de nos cerveaux ? On peut légitimement se demander ce que cela va détruire… Mais si on ne regarde pas ce que cela peut libérer, on en restera à une dénonciation sans effets.



 

Auteur: Guillaud Hubert

Info: https://www.lemonde.fr/blog/internetactu/2013/01/11/notre-cerveau-a-lheure-des-nouvelles-lectures/

[ communication ] [ réflexivité ] [ métalangage ] [ secondéités intégrées ] [ prospective ] [ niveaux de lecture ] [ citation s'appliquant à ce logiciel ] [ inversion ] [ triade ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel