Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 47
Temps de recherche: 0.0566s

médecine

L'intelligence artificielle peut prédire l'activité sur et hors cible des outils CRISPR qui ciblent l'ARN au lieu de l'ADN, selon une nouvelle recherche publiée dans Nature Biotechnology.

L'étude menée par des chercheurs de l'université de New York, de l'université Columbia et du New York Genome Center associe un modèle d'apprentissage profond à des écrans CRISPR pour contrôler l'expression des gènes humains de différentes manières, comme si l'on appuyait sur un interrupteur pour les éteindre complètement ou si l'on utilisait un bouton d'atténuation pour réduire partiellement leur activité. Ces contrôles précis des gènes pourraient être utilisés pour développer de nouvelles thérapies basées sur CRISPR.

CRISPR est une technologie d'édition de gènes qui a de nombreuses applications en biomédecine et au-delà, du traitement de la drépanocytose à la fabrication de feuilles de moutarde plus savoureuses. Elle fonctionne souvent en ciblant l'ADN à l'aide d'une enzyme appelée Cas9. Ces dernières années, les scientifiques ont découvert un autre type de CRISPR qui cible l'ARN à l'aide d'une enzyme appelée Cas13.

Les CRISPR ciblant l'ARN peuvent être utilisés dans un large éventail d'applications, notamment l'édition de l'ARN, l'élimination de l'ARN pour bloquer l'expression d'un gène particulier et le criblage à haut débit pour déterminer les candidats médicaments prometteurs. Des chercheurs de l'Université de New York et du New York Genome Center ont créé une plateforme de criblage CRISPR ciblant l'ARN et utilisant Cas13 pour mieux comprendre la régulation de l'ARN et identifier la fonction des ARN non codants. L'ARN étant le principal matériel génétique des virus, notamment du SRAS-CoV-2 et de la grippe, les CRISPR ciblant l'ARN sont également prometteurs pour le développement de nouvelles méthodes de prévention ou de traitement des infections virales. Par ailleurs, dans les cellules humaines, lorsqu'un gène est exprimé, l'une des premières étapes est la création d'ARN à partir de l'ADN du génome.

L'un des principaux objectifs de l'étude est de maximiser l'activité des CRISPR ciblant l'ARN sur l'ARN cible prévu et de minimiser l'activité sur d'autres ARN qui pourraient avoir des effets secondaires préjudiciables pour la cellule. L'activité hors cible comprend à la fois les mésappariements entre l'ARN guide et l'ARN cible, ainsi que les mutations d'insertion et de délétion. 

Les études antérieures sur les CRISPR ciblant l'ARN se sont concentrées uniquement sur l'activité sur la cible et les mésappariements ; la prédiction de l'activité hors cible, en particulier les mutations d'insertion et de délétion, n'a pas fait l'objet d'études approfondies. Dans les populations humaines, environ une mutation sur cinq est une insertion ou une délétion ; il s'agit donc d'un type important de cibles potentielles à prendre en compte dans la conception des CRISPR.

"À l'instar des CRISPR ciblant l'ADN tels que Cas9, nous prévoyons que les CRISPR ciblant l'ARN tels que Cas13 auront un impact considérable sur la biologie moléculaire et les applications biomédicales dans les années à venir", a déclaré Neville Sanjana, professeur agrégé de biologie à l'université de New York, professeur agrégé de neurosciences et de physiologie à l'école de médecine Grossman de l'université de New York, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude. "La prédiction précise des guides et l'identification hors cible seront d'une grande valeur pour ce nouveau domaine de développement et pour les thérapies.

Dans leur étude publiée dans Nature Biotechnology, Sanjana et ses collègues ont effectué une série de criblages CRISPR de ciblage de l'ARN dans des cellules humaines. Ils ont mesuré l'activité de 200 000 ARN guides ciblant des gènes essentiels dans les cellules humaines, y compris les ARN guides "parfaitement adaptés" et les désadaptations, insertions et suppressions hors cible.

Le laboratoire de Sanjana s'est associé à celui de David Knowles, expert en apprentissage automatique, pour concevoir un modèle d'apprentissage profond baptisé TIGER (Targeted Inhibition of Gene Expression via guide RNA design) qui a été entraîné sur les données des cribles CRISPR. En comparant les prédictions générées par le modèle d'apprentissage profond et les tests en laboratoire sur des cellules humaines, TIGER a été capable de prédire l'activité sur cible et hors cible, surpassant les modèles précédents développés pour la conception de guides sur cible Cas13 et fournissant le premier outil de prédiction de l'activité hors cible des CRISPR ciblant l'ARN.

"L'apprentissage automatique et l'apprentissage profond montrent leur force en génomique parce qu'ils peuvent tirer parti des énormes ensembles de données qui peuvent maintenant être générés par les expériences modernes à haut débit. Il est important de noter que nous avons également pu utiliser l'"apprentissage automatique interprétable" pour comprendre pourquoi le modèle prédit qu'un guide spécifique fonctionnera bien", a déclaré M. Knowles, professeur adjoint d'informatique et de biologie des systèmes à la School of Engineering and Applied Science de l'université Columbia, membre de la faculté principale du New York Genome Center et coauteur principal de l'étude.

"Nos recherches antérieures ont montré comment concevoir des guides Cas13 capables d'éliminer un ARN particulier. Avec TIGER, nous pouvons maintenant concevoir des guides Cas13 qui trouvent un équilibre entre l'élimination sur la cible et l'évitement de l'activité hors cible", a déclaré Hans-Hermann (Harm) Wessels, coauteur de l'étude et scientifique principal au New York Genome Center, qui était auparavant chercheur postdoctoral dans le laboratoire de Sanjana.

 Les chercheurs ont également démontré que les prédictions hors cible de TIGER peuvent être utilisées pour moduler précisément le dosage des gènes - la quantité d'un gène particulier qui est exprimée - en permettant l'inhibition partielle de l'expression des gènes dans les cellules avec des guides de mésappariement. Cela peut être utile pour les maladies dans lesquelles il y a trop de copies d'un gène, comme le syndrome de Down, certaines formes de schizophrénie, la maladie de Charcot-Marie-Tooth (une maladie nerveuse héréditaire), ou dans les cancers où l'expression aberrante d'un gène peut conduire à une croissance incontrôlée de la tumeur.

Notre modèle d'apprentissage profond peut nous indiquer non seulement comment concevoir un ARN guide qui supprime complètement un transcrit, mais aussi comment le "régler", par exemple en lui faisant produire seulement 70 % du transcrit d'un gène spécifique", a déclaré Andrew Stirn, doctorant à Columbia Engineering et au New York Genome Center, et coauteur de l'étude.

En associant l'intelligence artificielle à un crible CRISPR ciblant l'ARN, les chercheurs pensent que les prédictions de TIGER permettront d'éviter une activité CRISPR hors cible indésirable et de stimuler le développement d'une nouvelle génération de thérapies ciblant l'ARN.

"À mesure que nous recueillons des ensembles de données plus importants à partir des cribles CRISPR, les possibilités d'appliquer des modèles d'apprentissage automatique sophistiqués sont de plus en plus rapides. Nous avons la chance d'avoir le laboratoire de David à côté du nôtre pour faciliter cette merveilleuse collaboration interdisciplinaire. Grâce à TIGER, nous pouvons prédire les cibles non ciblées et moduler avec précision le dosage des gènes, ce qui ouvre la voie à de nouvelles applications passionnantes pour les CRISPR ciblant l'ARN dans le domaine de la biomédecine", a déclaré Sanjana.

Cette dernière étude fait progresser la large applicabilité des CRISPR ciblant l'ARN pour la génétique humaine et la découverte de médicaments, en s'appuyant sur les travaux antérieurs de l'équipe de l'Université de New York pour développer des règles de conception de l'ARN guide, cibler les ARN dans divers organismes, y compris des virus comme le SRAS-CoV-2, concevoir des protéines et des ARN thérapeutiques, et exploiter la biologie de la cellule unique pour révéler des combinaisons synergiques de médicaments contre la leucémie.

Auteur: Internet

Info: L'IA combinée à CRISPR contrôle précisément l'expression des gènes par l'Université de New York. https://phys.org/, 3 juillet 2023 - Nature Biotechnology. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning, Nature Biotechnology (2023). DOI: 10.1038/s41587-023-01830-8

[ génie génétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

femmes-hommes

L'esprit pourrait affecter les machines selon les sexes
Pendant 26 ans, des conversations étranges ont eu lieu dans un laboratoire du sous-sol de l'université de Princeton. On utilise des ordinateurs au rendement aléatoire et les expériences font se concentrer des participants sur le contrôle d'une ou de plusieurs machines. Après plusieurs million d'épreuves on peut détecter de petits signes "statistiquement significatifs" comme quoi les esprits semblent pouvoir agir sur les machines. Cependant les chercheurs font attention à ne pas annoncer que les esprits ont cet effet ou qu'ils connaissent la nature de cette communication.
Les services secrets, la défense et les agences de l'espace ont également montré de l'intérêt pour cette recherche. Le premier support que les chercheurs ont employé était un bruit aléatoire à haute fréquence. Les chercheurs ont branché des circuits au dispositif pour traduire ce bruit en code binaire. Chaque participant, après un protocole pré-enregistré, devait développer une intention dans son esprit pour faire que le générateur ait plus ou moins de zéros. Les effets furent faibles mais mesurables. Depuis les mêmes résultats se sont reproduits avec d'autres expériences, telles qu'en impliquant un pendule relié à un mécanisme commandé par ordinateur. Quand la machine libère le pendule pour qu'il se balance, les participants se concentrent sur modifier le taux avec lequel le pendule ralentit. D'autres expériences impliquent une machine à tambour que les participants essayent de commander et une machine de cascade mécanique dans laquelle un dispositif laisse tomber des milliers de petites boules noires de polystyrène, le but est que ces boules tombent dans une rangée de fentes. Les participants essayent alors de les diriger pour les faire tomber d'un côté de ou de l'autre. Au final les participants ont pu "diriger " un bit sur 10.000 issus des données mesurées dans tous les essais. Ce qui pourrait sembler petit, mais le doyen Radin, scientifique à l'institut des sciences de Noetic et ancien chercheur aux laboratoires Bell et de AT&T, dit que c'était prévisible. Radin compare l'état actuel de cette recherche avec celui où les scientifiques commencèrent à étudier l'électricité statique et ne surent pas, au début, que les niveaux d'humidité pouvaient affecter la quantité de l'électricité statique produite.
Les chercheurs ne comprennent pas grand-chose sur ce phénomène, mais ils savent que les résultats ne sont pas affectés par la distance ou le temps. Les participants, par exemple, peuvent avoir le même impact sur une machine de l'extérieur de la salle ou d'ailleurs dans le pays. Ils peuvent également avoir le même effet s'ils ont une intention avant qu'elle soit allumée ou même s'ils lisent un livre ou écoutent la musique tandis alors que la machine fonctionne. Les conditions environnementales - telles que la température ambiante - n'importent pas, mais l'humeur et l'attitude des gens qui contrôlent l'appareil oui. Cela aide, si par exemple le participant croit qu'il peut affecter la machine. Jahn dit que la résonance avec la machine est un autre facteur important. Il la compare à ce qui se produit quand un grand musicien semble faire un avec son violon. Le sexe importe aussi. Les hommes tendent à obtenir des résultats assortis à leurs intentions, bien que le degré de l'effet soit souvent petit. Les femmes tendent à obtenir un plus grand effet, mais pas nécessairement celui qu'elles prévoient. Par exemple, elles voudraient diriger des boules dans la machine aléatoire de cascade pour une chute vers la gauche, mais elles tombent plutôt vers la droite. Les résultats qui sont également plus grands si un mâle et une femelle travaillent ensemble, les couple de même sexe ne produisent aucun résultat significatif. Les couple de sexe opposé qui sont impliqué de manière romantique donnent de bien meilleurs résultats - souvent sept fois plus grands que quand les mêmes individus sont examinés seuls.
Brenda Dunne, psychologue développementaliste et directrice du laboratoire dit que dans ces cas les résultats reflètent souvent le styles des deux modèles de sexes. Les effets sont plus grands, en accord avec ce que seule la femelle tendrait à produire, et plus ciblés, en accord avec ce que seul le mâle produirait.
"C'est presque comme si il y avait deux modèles ou deux variables et qu'elles étaient complémentaires" dit Dunne." le modèle masculin est associé à l'intention, le modèle féminin est plus associé à la résonance."
Que signifie tout ceci ? Personne ne le sait. Radin et Jahn indiquent que ce n'est pas parce qu'il y a une corrélation entre l'intention du participant et les actions de la machine que cela signifie qu'un cause l'autre. " Il y a une inférence (qui les deux sont connexes) mais aucune évidence directe" dit Radin qui indique que le phénomène pourrait être semblable à l'indétermination d'Heisenberg dans lequel deux particules séparées l'une de l'autre semblent être reliées sans qu'on sache comment... sous quelle forme de communication.
"la différence est nous ne parlons pas en envoyant des signaux du cerveau à la machine par un circuit" dit Jahn au sujet de ces essais. "quoi qu'il se passe, se passe par un itinéraire que nous ne connaissons pas. Nous savons seulement quelque chose au sujet des conditions qui la favorisent.." Bien que les effets produits dans ces expériences soient faibles, ils ont toujours été répétés, cependant pas toujours de façon prévisible. Un participant peut avoir un effet un jour et répéter l'expérience le jour suivant sans résultats.
Le laboratoire a beaucoup de détracteurs qui pointent sur des défauts de la méthode et écartent ce travail le traitant de divertissement, comparant ses résultats aux automobilistes qui souhaitent qu'une lumière rouge passe au vert et pensent que le changement de lumière est causé par eux.
Stanley Jeffers, professeur de physique à l'université d'York à Toronto, a tenté des expériences semblables, mais il ne put pas répliquer les résultats. Les chercheurs de deux laboratoires allemands, fonctionnant en coopération avec Pegg, ne purent également pas répliquer ces résultats à l'aide du même équipement utilisé par Pegg.
"Si leurs annonces veulent être prises au sérieux par la science elles doivent être répliquées" dit Jeffers. "Si elles ne peuvent pas être répliquées, cela ne signifie pas qu'elles sont fausses, mais la science y perdra rapidement son intérêt."
Dunne, psychologue développementaliste dit que Pegg a répété ses propres expériences et a obtenu des résultats significatifs. Et ces méta-analyses - une douzaine - faites depuis les années 80 ont donné une base pour les résultats de Pegg dans les expériences faites par d'autres chercheurs. La Méta-analyse utilise de grands stocks de données à travers de beaucoup d'expériences et les combine statistiquement pour voir si les effets répètent la même combinaison. "Nous analysons les déviations statistiques par rapport à la chance au travers de cette batterie d'expériences" dit Jahn... "quand on fait assez de ces expériences, les effets analysés ont un poids statistique. Il n'y a aucun doute sur la validité de ces effets."
Radin, qui n'est pas affilié au Pegg, écarte les critiques qui disent que ce groupe ne pratique pas de science solide. "Ce domaine a reçu bien plus d'examen minutieux et critique que beaucoup d'autres, ordinaires... les personnes qui font ce genre de recherche sont bien conscientes du fait que leur recherche doit être faite au mieux. Le laboratoire de Pegg a pris les meilleurs principes de science rigoureuse et s'est appliqué a des questions extrêmement difficiles et a proposé quelques jolies réponses intéressantes."
Jahn pense que les critiques s'attendent à ce que les phénomènes suivent les règles habituelles de la cause et de l'effet. Au lieu de cela, il pense qu'ils appartiennent à la catégorie de ce que Karl Jung a appelé "des phénomènes acausal," qui incluent des choses comme la synchronicité. "Cela se joue par des règles plus compliquées, plus lunatiques, évasives... ... mais cela joue." dit Jahn
Jeffers est sceptique " cela ne peut se passer de deux manières - dire qu'on est des scientifiques honorables et avoir des affirmations pour un effet particulier dans des conditions contrôlées, et ensuite quand les résultats ne marchent pas, dire que les méthodes scientifiques rigoureuses ne s'appliquent pas." Mais Jahn dit que justement que puisque que les scientifiques ne peuvent pas expliquer ces phénomènes cela ne signifie pas qu'ils ne sont pas vrais. "si ces choses existent... je pense que notre société a le droit de demander à la science d'y faire attention et de fournir un certain outillage pour avoir affaire avec de manière constructive.

Auteur: Zetter Kim

Info: Juillet 2005, Fortean Times

[ mâles-femelles ] [ vus-scientifiquement ] [ parapsychologie ] [ femmes-hommes ]

 

Commentaires: 0

univers vibratoire

Les hippies avaient raison : Tout est vibrations, mec !

Pourquoi certaines choses sont-elles conscientes et d'autres apparemment pas ? Un oiseau est-il conscient ? Une batte ? Un cafard ? Une bactérie ? Un électron ?

Toutes ces questions sont autant d'aspects du récurrent problème sur l'âme et le corps, qui résiste depuis des milliers d'années à une conclusion généralement satisfaisante.

La problématique du corps et de l'esprit a fait l'objet d'un important changement de nom au cours des deux dernières décennies et est généralement reconnue aujourd'hui comme une "grande difficulté quand à la conscience", après que le philosophe David Chalmers de l'Université de New York ait travaillé sur ce concept dans un article devenu classique en 1995 et avec son ouvrage "The Conscious Mind : In Search of a Fundamental Theory", en 1996.

Posons-nous la question maintenant : Les hippies ont-ils vraiment résolu ce problème ? Mon collègue Jonathan Schooler de l'Université de Californie, Santa Barbara, et moi pensons que oui, avec cette intuition radicale qu'il s'agit bien de vibrations...

Au cours de la dernière décennie, nous avons développé une "théorie de la résonance de la conscience" qui suggère que la résonance, autrement dit les vibrations synchronisées, est au coeur non seulement de la conscience humaine mais aussi de la réalité physique en général.

Et les hippies là-dedans ? Eh bien, nous sommes d'accord que les vibrations, la résonance, représente le mécanisme clé derrière la conscience humaine, ainsi que la conscience animale plus généralement. Et, comme on le verra plus loin, c'est le mécanisme de base de toutes les interactions physiques.

Toutes les choses dans notre univers sont constamment en mouvement, vibrantes. Même les objets qui semblent stationnaires vibrent, oscillent, résonnent à différentes fréquences. La résonance est un type de mouvement, caractérisé par une oscillation entre deux états. Et en fin de compte, toute matière n'est qu'une vibration de divers domaines sous-jacents.

Un phénomène intéressant se produit lorsque différents objets/processus vibrants se rapprochent : ils commencent souvent, après un certain temps, à vibrer ensemble à la même fréquence. Ils se "synchronisent", parfois d'une manière qui peut sembler mystérieuse. C'est ce qu'on appelle aujourd'hui le phénomène d'auto-organisation spontanée. L'examen de ce phénomène conduit à une compréhension potentiellement profonde de la nature de la conscience et de l'univers en général.

TOUTES LES CHOSES RÉSONNENT À CERTAINES FRÉQUENCES

Stephen Strogatz donne divers exemples tirés de la physique, biologie, chimie et des neurosciences pour illustrer ce qu'il appelle la "synchronisation" dans son livre de 2003 également titré "Sync". Notamment :

- Les lucioles de certaines espèces se mettent à clignoter leurs petits feux en synchronisation lors de grands rassemblements de lucioles, d'une manière qui est être difficile à expliquer avec les approches traditionnelles.

- Les neurones "s'allument" à grande échelle dans le cerveau humain à des fréquences spécifiques, la conscience des mammifères étant généralement associée à divers types de synchronisation neuronale.

- Les lasers sont produits lorsque des photons de même puissance et de même fréquence sont émis ensemble.

- La rotation de la lune est exactement synchronisée avec son orbite autour de la Terre, de sorte que nous voyons toujours la même face. La résonance est un phénomène véritablement universel et au coeur de ce qui peut parfois sembler être des tendances mystérieuses vers l'auto-organisation.

Pascal Fries, neurophysiologiste allemand de l'Institut Ernst Strüngmann, a exploré dans ses travaux très cités au cours des deux dernières décennies la façon dont divers modèles électriques, en particulier les ondes gamma, thêta et bêta, travaillent ensemble dans le cerveau pour produire divers types de conscience humaine.

Ces noms font référence à la vitesse des oscillations électriques dans les différentes régions du cerveau, mesurée par des électrodes placées à l'extérieur du crâne. Les ondes gamma sont généralement définies comme étant d'environ 30 à 90 cycles par seconde (hertz), les thêta de 4 à 7 Hz et les bêta de 12,5 à 30 hz. Il ne s'agit pas de limites strictes - ce sont des règles empiriques - et elles varient quelque peu d'une espèce à l'autre.

Ainsi, thêta et bêta sont significativement plus lentes que les ondes gamma. Mais les trois travaillent ensemble pour produire, ou au moins faciliter (la relation exacte entre les schémas électriques du cerveau et la conscience est encore bien en débat), les différents types de conscience humaine.

Fries appelle son concept "communication par la cohérence" ou CTC. Pour Fries, c'est une question de synchronisation neuronale. La synchronisation, en termes de taux d'oscillation électrique partagés, permet une communication fluide entre les neurones et les groupes de neurones. Sans cohérence (synchronisation), les entrées arrivent à des phases aléatoires du cycle d'excitabilité des neurones et sont inefficaces, ou du moins beaucoup moins efficaces, pour communiquer.

Notre théorie de la résonance de la conscience s'appuie sur le travail de Fries et de beaucoup d'autres, dans une approche plus large qui peut aider à expliquer non seulement la conscience humaine et mammifère, mais aussi la conscience plus largement. Nous spéculons aussi métaphysiquement sur la nature de la conscience comme phénomène général pour toute matière.

EST-CE QUE TOUT EST AU MOINS UN PEU CONSCIENT ?

D'après le comportement observé des entités qui nous entourent, des électrons aux atomes en passant par les molécules, les bactéries, les paramécies, les souris, les chauves-souris, les rats, etc. Cela peut paraître étrange à première vue, mais le "panpsychisme" - l'idée que toute matière a une certaine conscience associée - est une position de plus en plus acceptée par rapport à la nature de la conscience.

Le panpsychiste soutient que la conscience (subjectivité) n'a pas émergé ; au contraire, elle est toujours associée à la matière, et vice versa (les deux faces d'une même médaille), mais l'esprit associé à la plupart de la matière dans notre univers est généralement très simple. Un électron ou un atome, par exemple, ne jouissent que d'une infime quantité de conscience. Mais comme la matière "se complexifie", l'esprit se complexifie, et vice versa.

Les organismes biologiques ont accéléré l'échange d'information par diverses voies biophysiques, y compris les voies électriques et électrochimiques. Ces flux d'information plus rapides permet d'atteindre des niveaux de conscience à l'échelle macroscopique plus élevés que ceux qui se produiraient dans des structures d'échelle similaire comme des blocs rocheux ou un tas de sable, simplement parce qu'il y a une connectivité beaucoup plus grande et donc plus "en action" dans les structures biologiques que dans un bloc ou un tas de sable. Roches et les tas de sable n'ont que des voies thermiques avec une bande passante très limitée.

Les blocs rocheux et les tas de sable sont de "simples agrégats" ou collections d'entités conscientes plus rudimentaires (probablement au niveau atomique ou moléculaire seulement), plutôt que des combinaisons d'entités micro-conscientes qui se combinent en une entité macro-consciente de niveau supérieur, ce qui est la marque de la vie biologique.

Par conséquent, le type de communication entre les structures résonnantes est essentiel pour que la conscience s'étende au-delà du type rudimentaire de conscience que nous nous attendons à trouver dans des structures physiques plus fondamentales.

La thèse centrale de notre approche est la suivante : les liens particuliers qui permettent à la macro-conscience de se produire résultent d'une résonance partagée entre de nombreux composants micro-conscients. La vitesse des ondes de résonance présentes est le facteur limitant qui détermine la taille de chaque entité consciente.

Au fur et à mesure qu'une résonance partagée s'étend à de plus en plus de constituants, l'entité consciente particulière devient plus grande et plus complexe. Ainsi, la résonance partagée dans un cerveau humain qui atteint la synchronisation gamma, par exemple, comprend un nombre beaucoup plus important de neurones et de connexions neuronales que ce n'est le cas pour les rythmes bêta ou thêta.

Des structures résonnantes qui résonnent de haut en bas.

Notre théorie de la résonance de la conscience tente de fournir un cadre unifié qui inclut la neuroscience et l'étude de la conscience humaine, mais aussi des questions plus fondamentales de neurobiologie et de biophysique. Elle va au cœur des différences qui comptent quand il s'agit de la conscience et de l'évolution des systèmes physiques.

C'est une question de vibrations, mais c'est aussi une question de type de vibrations et, surtout, de vibrations partagées.

Mets tout ça dans ta pipe. Et fume, mon pote.

Auteur: Tam Hunt

Info: https://blogs.scientificamerican.com, 5 décembre 2018

[ chair-esprit ] [ spéculation ]

 
Commentaires: 2
Ajouté à la BD par miguel

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel

mondialisation

Les erreurs de l'État impérial mondial et les erreurs des autres
On m'a fait remarquer que les bizarreries de la réconciliation sans vérité que j'ai rencontrées aux Philippines eu égard à l'importance persistante de la famille Marcos, malgré le discrédit généralisé de la période où elle était aux commandes (1965-1986), n'est pas aussi étrange qu'il y paraît.
Après tout, Jeb Bush a récemment annoncé son intention de briguer la présidence des États-Unis en 2016, et George W. Bush, malgré sa présidence déplorable, est considéré comme un atout politique. Il s'active à faire campagne et à récolter des fonds en faveur de son jeune frère. Aux Philippines, contrairement aux États-Unis, il y a eu une rupture politique provoquée par le mouvement Pouvoir du peuple, qui a écarté le clan Marcos du pouvoir et a porté directement à la présidence Corey Aquino, la veuve de Benigno Aquino Jr., l'opposant à Marcos assassiné. Même aujourd'hui, ce triomphe populiste est célébré comme un jour de fierté nationale pour le pays, et Benigno Noynoy Aquino III siège au palais de Malacañang comme le président élu du pays. Pourtant, les réalités politiques aux Philippines, comme aux États-Unis, sont plus connues pour leur continuité avec un passé discrédité que pour les changements qui rejettent et surmontent ce passé.
Barack Obama agissait dans un contexte politique certes différent aux États-Unis lorsqu'il a mis de côté les allégations bien fondées de criminalité adressées à l'équipe au pouvoir pendant la présidence de Bush, affirmant prudemment que le pays devait regarder vers l'avant et non derrière lorsqu'il s'agit de la responsabilité pénale de ses anciens dirigeants politiques. Bien sûr, c'est l'opposé de ce qui a été fait avec les dirigeants allemands et japonais survivants après la Deuxième Guerre mondiale avec les procès largement acclamés de Nuremberg et de Tokyo [ainsi qu'avec Saddam Hussein et Muammar Khadafi, NdT] ; et cela ne peut pas devenir la norme aux États-Unis par rapport aux crimes des gens ordinaires, ni même à l'égard des crimes louables des lanceurs d'alerte du genre de ceux attribués à Chelsea Manning, Julian Assange et Edward Snowden. Une telle impunité sélective semble être le prix que les démocraties impériales paient pour éviter la guerre civile dans le pays, et préférable à une unité obtenue par des formes autoritaires de gouvernement.
Pour cette seule raison, l'approche moralement régressive d'Obama de la responsabilité est politiquement compréhensible et prudente. L'Amérique est polarisée, et la partie la plus frustrée et la plus en colère des citoyens embrasse la culture de l'arme à feu et reste probablement ardemment en faveur de la sorte de militarisme et de ferveur patriotique qui avait été si fortement mise en avant pendant la présidence Bush.
Des pensées dans ce sens m'ont conduit à une série de réflexions plus larges. Les erreurs que font les Philippines, certes épouvantables en termes de droits humains, sont au moins principalement confinées dans les limites territoriales du pays et font des victimes parmi leurs propres citoyens. A titre de comparaison, les erreurs de politique étrangère commises par les États-Unis font des victimes principalement chez les autres, bien qu'ils en fassent souvent payer le prix, en même temps, aux Américains les plus marginaux et les plus vulnérables. Comme société, beaucoup regrettent les effets de la guerre au Vietnam ou de la guerre d'Irak sur la sérénité et l'estime de soi de la société américaine, mais en tant qu'Américains, nous ne faisons que rarement, sinon jamais, une pause pour déplorer les immenses pertes infligées à l'expérience sociétale qu'ont vécue ceux qui vivent sur ces lointains champs de bataille de l'ambition géopolitique. Ces sociétés victimes sont les récepteurs passifs de cette expérience destructrice, et possèdent rarement la capacité ou même la volonté politique de riposter. Telle est l'asymétrie des relations impériales.
On estime qu'entre 1,6 et 3,8 millions de Vietnamiens sont morts pendant la guerre du Vietnam en comparaison des 58 000 Américains. Des proportions similaires sont présentes dans les guerres d'Afghanistan et d'Irak, même sans considérer les perturbations et les destructions endurées. En Irak, depuis 2003, on estime qu'entre 600 000 et 1 millions d'Irakiens ont été tués et que plus de 2 millions ont été déplacés dans le pays, et que 500 000 Irakiens sont encore réfugiés en raison de la guerre, tandis que les États-Unis ont perdu quelque chose comme 4 500 membres de leur personnel combattant. Les statistiques du champ de bataille ne doivent pas nous aveugler sur le caractère absolu de chaque décès du point de vue de leurs proches, mais elles révèlent une dimension centrale de la distribution des coûts humains relatifs de la guerre entre un gouvernement qui intervient et la société cible. Ce calcul de la mort au combat commence à raconter l'histoire de la dévastation d'une société étrangère : les dangers résiduels qui peuvent se matérialiser dans la mort et des blessures mutilantes longtemps après que les armes se sont tues, à cause des munitions létales non explosées qui tapissent le pays pour des générations, la contamination du sol par l'agent Orange et les ogives contenant de l'uranium appauvri, sans oublier les traumatismes et les nombreux rappels quotidiens de souvenirs de guerre sous la forme des paysages dévastés et des sites culturels détruits laissés en héritage.
Selon presque tous les points de vue éthiques, il semblerait qu'une certaine conception de la responsabilité internationale devrait restreindre l'usage de la force dans des situations autres que celles autorisées par le droit international. Mais ce n'est pas la manière dont le monde fonctionne. Les erreurs et les actes répréhensibles qui se produisent dans une guerre étrangère lointaine sont rarement reconnus, ils ne sont jamais punis et jamais aucune compensation n'est offerte. Paradoxalement, seuls les dirigeants de ces territoires sont tenus de rendre des comptes (par exemple Saddam Hussein, Slobodan Milosevic et Mouammar Kadhafi). Le gouvernement des États-Unis, et plus précisément le Pentagone, a pour principe de dire au monde qu'il ne recueille aucune donnée sur les victimes civiles associées à ses opérations militaires internationales. En partie, il y a une attitude de déni, qui minimise les épreuves infligées aux pays étrangers et, pour une autre partie, il y a le baume d'une insistance officielle sous-jacente que les États-Unis font tous les efforts possibles pour éviter les victimes civiles. Dans le contexte des attaques de drones, Washington soutient avec insistance qu'il y a peu de victimes civiles, mesurées par le nombre de décès, mais n'admet jamais qu'il y a un nombre bien plus important de civils qui vivent ensuite dans la terreur intense et permanente d'être visés ou involontairement frappés à mort par un missile errant [pas errant pour tout le monde, malheureusement, NdT].
Compte tenu des structures étatiques et impériales de l'ordre mondial, il n'est pas surprenant que si peu d'attention soit portée à ces questions. Les erreurs d'un État impérial mondial ont des répercussions matérielles bien au-delà de leurs frontières, tandis que les erreurs d'un État normal résonnent à l'intérieur du pays comme dans une chambre d'écho. Les torts de ceux qui agissent pour l'État impérial mondial sont protégés des regards par l'impunité de fait liée à leur force, tandis que les torts de ceux qui agissent pour un État normal sont de de plus en plus sujets à des procédures judiciaires internationales. Lorsque c'est arrivé après la Deuxième Guerre mondiale, cela s'est appelé justice des vainqueurs ; lorsque cela arrive aujourd'hui, en particulier avec la jurisprudence borgne de la légalité libérale, c'est expliqué en référence à la prudence et au réalisme, à la nécessité d'être pragmatique, de faire ce qu'il est possible, d'accepter les limites, d'accorder un procès équitable à ceux qui sont accusés, de dissuader certaines tendances aux dérives dangereuses.
Cela ne changera pas jusqu'à ce que l'une de ces deux choses se produise : soit la mise en place d'une instance mondiale pour interpréter et appliquer le droit pénal [ce tribunal existe, le TPI, mais les US ont obtenu une dérogation pour eux-mêmes (sic!), NdT], soit une modification considérable de la conscience politique des États impériaux mondiaux par l'internalisation d'un ethos de responsabilité envers les sociétés étrangères et leurs habitants. Cette description des progrès nécessaires du droit et de la justice devrait nous faire prendre conscience à quel point de telles attentes restent utopiques.
Actuellement, il n'y a qu'un seul et unique État impérial mondial, les États-Unis d'Amérique. Certains suggèrent que les prouesses économiques de la Chine créent un centre rival de pouvoir et d'influence, qui pourrait être reconnu comme un second État impérial mondial. Cela semble erroné. La Chine peut être plus résiliente et elle est certainement moins militariste dans sa conception de la sécurité et de la poursuite de ses intérêts, mais elle n'est pas mondiale, ni ne mène de guerres lointaines. De plus, la langue, la monnaie et la culture chinoises ne jouissent pas de la portée mondiale de l'anglais, du dollar américain et du capitalisme franchisé. Indubitablement, la Chine est actuellement l'État le plus important dans le monde, mais sa réalité est en accord avec les idées du Traité de Wesphalie relatives à la souveraineté territoriale, tandis que les États-Unis opèrent mondialement dans toutes les régions pour consolider leur statut d'unique État impérial mondial. En effet, le premier État de ce type dans l'histoire du monde.

Auteur: Falk Richard

Info: 30 mars 2015, Source zcomm.org

[ USA ] [ géopolitique ]

 

Commentaires: 0

strates biologiques

Les chemins aléatoires de l'évolution mènent à un même endroit

Une étude statistique massive suggère que le résultat final de l’évolution – la forme physique – est prévisible.

(Photo  : Différentes souches de levure cultivées dans des conditions identiques développent des mutations différentes, mais parviennent finalement à des limites évolutives similaires.)

Dans son laboratoire du quatrième étage de l'Université Harvard, Michael Desai a créé des centaines de mondes identiques afin d'observer l'évolution à l'œuvre. Chacun de ses environnements méticuleusement contrôlés abrite une souche distincte de levure de boulangerie. Toutes les 12 heures, les assistants robots de Desai arrachent la levure à la croissance la plus rapide de chaque monde – sélectionnant celle qui est la plus apte à vivre – et jettent le reste. Desai surveille ensuite les souches à mesure qu'elles évoluent au cours de 500 générations. Son expérience, que d'autres scientifiques considèrent comme d'une ampleur sans précédent, cherche à mieux comprendre une question qui préoccupe depuis longtemps les biologistes : si nous pouvions recommencer le monde, la vie évoluerait-elle de la même manière ?

De nombreux biologistes affirment que ce ne serait pas le cas et que des mutations fortuites au début du parcours évolutif d’une espèce influenceraient profondément son destin. "Si vous rejouez le déroulement du vivant, vous pourriez avoir une mutation initiale qui vous emmènera dans une direction totalement différente", a déclaré Desai, paraphrasant une idée avancée pour la première fois par le biologiste Stephen Jay Gould dans les années 1980.

Les cellules de levure de Desai remettent en question cette croyance. Selon les résultats publiés dans Science en juin, toutes les variétés de levures de Desai ont atteint à peu près le même point final d'évolution (tel que mesuré par leur capacité à se développer dans des conditions de laboratoire spécifiques), quel que soit le chemin génétique précis emprunté par chaque souche. C'est comme si 100 taxis de la ville de New York acceptaient d'emprunter des autoroutes distinctes dans une course vers l'océan Pacifique et que 50 heures plus tard, ils convergeaient tous vers la jetée de Santa Monica.

Les résultats suggèrent également un décalage entre l’évolution au niveau génétique et au niveau de l’organisme dans son ensemble. Les mutations génétiques se produisent pour la plupart de manière aléatoire, mais la somme de ces changements sans but crée d’une manière ou d’une autre un modèle prévisible. Cette distinction pourrait s’avérer précieuse, dans la mesure où de nombreuses recherches en génétique se sont concentrées sur l’impact des mutations dans des gènes individuels. Par exemple, les chercheurs se demandent souvent comment une seule mutation pourrait affecter la tolérance d’un microbe aux toxines ou le risque de maladie d’un humain. Mais si les découvertes de Desai s'avèrent valables pour d'autres organismes, elles pourraient suggérer qu'il est tout aussi important d'examiner comment un grand nombre de changements génétiques individuels fonctionnent de concert au fil du temps.

"En biologie évolutive, il existe une sorte de tension entre penser à chaque gène individuellement et la possibilité pour l'évolution de modifier l'organisme dans son ensemble", a déclaré Michael Travisano, biologiste à l'université du Minnesota. "Toute la biologie s'est concentrée sur l'importance des gènes individuels au cours des 30 dernières années, mais le grand message à retenir de cette étude est que ce n'est pas nécessairement important". 

La principale force de l’expérience de Desai réside dans sa taille sans précédent, qui a été qualifiée d’« audacieuse » par d’autres spécialistes du domaine. La conception de l'expérience est ancrée dans le parcours de son créateur ; Desai a suivi une formation de physicien et, depuis qu'il a lancé son laboratoire il y a quatre ans, il a appliqué une perspective statistique à la biologie. Il a imaginé des moyens d'utiliser des robots pour manipuler avec précision des centaines de lignées de levure afin de pouvoir mener des expériences évolutives à grande échelle de manière quantitative. Les scientifiques étudient depuis longtemps l’évolution génétique des microbes, mais jusqu’à récemment, il n’était possible d’examiner que quelques souches à la fois. L'équipe de Desai, en revanche, a analysé 640 lignées de levure qui avaient toutes évolué à partir d'une seule cellule parent. L'approche a permis à l'équipe d'analyser statistiquement l'évolution.

"C'est l'approche physicienne de l'évolution, réduisant tout aux conditions les plus simples possibles", a déclaré Joshua Plotkin, biologiste évolutionniste à l'Université de Pennsylvanie qui n'a pas participé à la recherche mais a travaillé avec l'un des auteurs. "Ce qui pourrait permettre de définir la part du hasard dans l'évolution, quelle est la part du point de départ et la part du bruit de mesure."

Le plan de Desai était de suivre les souches de levure à mesure qu'elles se développaient dans des conditions identiques, puis de comparer leurs niveaux de condition physique finaux, déterminés par la rapidité avec laquelle elles se développaient par rapport à leur souche ancestrale d'origine. L’équipe a utilisé des bras robotisés spécialement conçus pour transférer les colonies de levure vers une nouvelle maison toutes les 12 heures. Les colonies qui s’étaient le plus développées au cours de cette période passèrent au cycle suivant et le processus se répéta pendant 500 générations. Sergey Kryazhimskiy , chercheur postdoctoral dans le laboratoire de Desai, passait parfois la nuit dans le laboratoire, analysant l'aptitude de chacune des 640 souches à trois moments différents. Les chercheurs ont ensuite pu comparer la variation de la condition physique entre les souches et découvrir si les capacités initiales d'une souche affectaient sa position finale. Ils ont également séquencé les génomes de 104 souches pour déterminer si les mutations précoces modifiaient les performances finales.

Des études antérieures ont indiqué que de petits changements au début du parcours évolutif peuvent conduire à de grandes différences plus tard, une idée connue sous le nom de contingence historique. Des études d'évolution à long terme sur la bactérie E. coli, par exemple, ont montré que les microbes peuvent parfois évoluer pour manger un nouveau type d'aliment, mais que des changements aussi importants ne se produisent que lorsque certaines mutations habilitantes se produisent en premier. Ces mutations précoces n’ont pas d’effet important en elles-mêmes, mais elles jettent les bases nécessaires pour des mutations ultérieures qui en auront.

Mais en raison de la petite échelle de ces études, Desai ne savait pas clairement si ces cas constituaient l'exception ou la règle. "Obtenez-vous généralement de grandes différences dans le potentiel évolutif qui surviennent au cours du cours naturel de l'évolution, ou l'évolution est-elle en grande partie prévisible?" il répond "Pour répondre à cette question, nous avions besoin de la grande échelle de notre expérience."

Comme dans les études précédentes, Desai a constaté que les mutations précoces influencent l'évolution future, en façonnant le chemin que prend la levure. Mais dans cette expérience, ce chemin n'a pas eu d'incidence sur la destination finale. "Ce type particulier de contingence rend en fait l'évolution de la forme physique  plus prévisible, et pas moins prévisible", a déclaré M. Desai.

Desai a montré que, tout comme une seule visite à la salle de sport profite plus à un amateur flappi par la TV qu'à un athlète, les microbes qui commençent par croître lentement tirent bien plus parti des mutations bénéfiques que leurs homologues plus en forme qui démarrent sur les chapeaux de roue. " Si vous êtes à la traîne au début à cause de la malchance, vous aurez tendance à aller mieux dans le futur ", a déclaré Desai. Il compare ce phénomène au principe économique des rendements décroissants - après un certain point, chaque unité d'effort supplémentaire aide de moins en moins.

Les scientifiques ne savent pas pourquoi toutes les voies génétiques chez la levure semblent arriver au même point final, une question que Desai et d'autres acteurs du domaine trouvent particulièrement intrigante. La levure a développé des mutations dans de nombreux gènes différents, et les scientifiques n'ont trouvé aucun lien évident entre eux. On ne sait donc pas exactement comment ces gènes interagissent dans la cellule, voire pas du tout. "Il existe peut-être une autre couche du métabolisme que personne ne maîtrise", a déclaré Vaughn Cooper, biologiste à l'Université du New Hampshire qui n'a pas participé à l'étude.

Il n’est pas non plus clair si les résultats soigneusement contrôlés de Desai sont applicables à des organismes plus complexes ou au monde réel chaotique, où l’organisme et son environnement changent constamment. "Dans le monde réel, les organismes réussissent dans différentes choses, en divisant l'environnement", a déclaré Travisano. Il prédit que les populations situées au sein de ces niches écologiques seraient toujours soumises à des rendements décroissants, en particulier à mesure qu'elles s'adaptent. Mais cela reste une question ouverte, a-t-il ajouté.

Cependant, certains éléments suggèrent que les organismes complexes peuvent également évoluer rapidement pour se ressembler davantage. Une étude publiée en mai a analysé des groupes de drosophiles génétiquement distinctes alors qu'elles s'adaptaient à un nouvel environnement. Malgré des trajectoires évolutives différentes, les groupes ont développé des similitudes dans des attributs tels que la fécondité et la taille du corps après seulement 22 générations. " Ainsi beaucoup de gens pensent à un gène pour un trait, une façon déterministe de résoudre des problèmes par l'évolution ", a déclaré David Reznick, biologiste à l'Université de Californie à Riverside. " Cela montre que ce n'est pas vrai ; on peut évoluer pour être mieux adapté à l'environnement de nombreuses façons. "





 

Auteur: Internet

Info: Quanta Magazine, Emily Singer, September 11, 2014

[ bio-mathématiques ] [ individu-collectif ] [ équilibre grégaire ] [ compensation mutationnelle ]

 
Commentaires: 1
Ajouté à la BD par miguel

chronos

Le temps est une différence de pression : la respiration comme média environnemental dans "Exhalation" de Ted Chiang

Dans la nouvelle de science-fiction "Exhalation" de Ted Chiang, publiée en 2008, le souffle est le médiateur de la fin du monde.

Ce texte raconte l'histoire d'une espèce mécanique alimentée par l'air. Chaque jour, les membres de cette espèce consomment deux poumons d'aluminium remplis d'air, et chaque jour, ils les remplissent à nouveau à partir d'un réservoir caché sous terre. Leur univers comporte de nombreuses villes et quartiers, mais il est délimité par un "mur de chrome solide" qui s'étend jusqu'au ciel. Un jour, une cérémonie traditionnelle du nouvel an, qui dure toujours exactement une heure (chronométrée avec la précision mécanique de l'espèce), dure quelques minutes de plus. C'est surprenant. La nouvelle se répand et ils découvrent que la manifestation s'est prolongée dans tout leur univers. Les horloges elles-mêmes semblent fonctionner correctement ; c'est plutôt le temps lui-même qui s'est ralenti d'une manière ou d'une autre. Le narrateur, un anatomiste, soupçonne que la vérité réside dans le cerveau des espèces et décide de procéder à une autodissection avec un appareil de sa conception. De même que la nature de la conscience échappe aux humains organiques, elle échappe aussi aux automates de Chiang. Certains pensent que leur esprit est inscrit sur d'innombrables feuilles d'or dans leur cerveau ; d'autres soupçonnent que le flux d'air agit sur d'autres supports plus subtils. Au cours de son autodissection, le narrateur découvre la vérité : la conscience n'est pas inscrite dans le cerveau, mais constituée par la circulation de l'air dans le cerveau, qui forme et reforme les connexions électriques avec une plasticité infinie. De cette révélation, le narrateur déduit que le temps lui-même ne ralentit pas, mais que c'est plutôt la force de l'air à travers le cerveau qui ralentit, altérant la cognition. La deuxième loi de la thermodynamique : l'entropie augmente dans un système fermé, ce que l'univers doit être en fait. Chaque action, pensée et mouvement augmente l'entropie de leur univers, "hâtant l'arrivée de cet équilibre fatal", c'est-à-dire la possibilité de la mort.

Comme de nombreuses histoires de Chiang, "Exhalation" explore les conséquences culturelles étendues d'un concept scientifique, en l'occurrence l'entropie. À travers les principes physiques de la thermodynamique, la respiration met en scène une ironie tragique dans le système mondial. Le travail de maintien d'un type particulier de vie rend toute autre vie impossible. Je lis "Exhalation" comme une riche archive de possibilités théoriques médiatiques, car Chiang relie les problèmes de la technologie, de la médiation, de la conscience, de l'incarnation, de la temporalité et de l'environnement. La respiration est le pivot qui maintient ces concepts ensemble, et en particulier, selon moi, la relation de la respiration avec le temps. Dans cet article, je lis "Exhalation" à la fois à travers et en tant que théorie des médias pour suggérer que la mesure et la perception du temps, qui sont depuis longtemps des problèmes fondamentaux pour les études sur les médias, sont devenues des questions environnementales urgentes. Nous pouvons appréhender ces temporalités environnementales par le biais de la respiration, qui ne fonctionne pas de manière linéaire mais plutôt récursive, franchissant une certaine échelle dans sa répétition.

"Exhalation" met en scène deux types de temps différents : celui de la perception intérieure et celui de la comptabilité extérieure. D'une part, le temps est le sentiment incarné qu'un moment suit le suivant. D'autre part, le temps est la comptabilité de technologies théoriquement impartiales, elles-mêmes étalonnées par rapport à des phénomènes physiques. Le fait que le monde d'"Exhalation" soit entièrement mécanique permet à Chiang d'établir une analogie fluide entre ces deux sens du temps. Le drame découle donc de la découverte par le narrateur que ces sens, qui partagent supposément un substrat matériel, sont devenus non calibrés. Le véritable substrat, découvre le narrateur, n'est pas la matière en elle-même, mais plutôt la différence entre les matières. "Voici pourquoi", écrit le narrateur,

...j'ai dit que l'air n'est pas la source de la vie. L'air ne peut être ni créé ni détruit ; la quantité totale d'air dans l'univers reste constante, et si l'air était tout ce dont nous avons besoin pour vivre, nous ne mourrions jamais. Mais en réalité, la source de la vie est une différence de pression atmosphérique, le flux d'air des espaces où il est épais vers ceux où il est mince.... En réalité, nous ne consommons pas d'air.

En tant que matière, l'air ne s'épuise pas. Au contraire, les actions de l'espèce évacuent la différence, augmentent l'aléatoire et éliminent ainsi l'action mécanique et sa temporalité concomitante.

À première vue, l'approche du temps de Chiang est conforme à certains modèles fondamentaux des études sur les médias, pour lesquels le temps est un effet secondaire de sa technologisation. Pour Harold Innis, critique du début du XXe siècle, par exemple, les supports d'enregistrement disponibles dans une civilisation donnée déterminent les relations possibles avec le temps. Une civilisation basée sur le papier favorise la synchronisation sur de grandes distances, facilitée par la vitesse de circulation du papier, tandis qu'une civilisation basée sur la pierre serait plus diachronique, favorisant les supports statiques qui couvrent de grandes étendues de temps. Les idées d'Innis ont inspiré des approches ultérieures des médias numériques. Pour le théoricien des médias Wolfgang Ernst, les médias numériques sont "critiques en termes de temps", dans la mesure où ils dépendent d'un timing précis pour fonctionner. Le temps numérique est mesuré par des cristaux de quartz qui marquent les tics du temps UNIX, qui compte le début de l'histoire à partir du jeudi 1er janvier 1970, lorsque le carbone atmosphérique ne mesurait que 325 ppm. Ernst fait la distinction entre le temps "dur" et le temps "mou", c'est-à-dire le temps imposé aux machines par la physique et le temps inventé par les machines dans leur fonctionnement. Si le temps dur de la physique se poursuit en dehors de l'objet médiatique, notre appréhension de ce temps est inéluctablement liée à la durabilité du temps mou, généré par les machines.

Je suis loin d'être le seul à m'opposer à ces modèles de temporalité des médias. Je pense, par exemple, à l'argument de Sarah Sharma selon lequel ces modèles sont obsédés par la vitesse : l'hypothèse selon laquelle les médias accélèrent la temporalité et réduisent l'espace, rapprochant les cultures et effaçant le temps passé à attendre que les messages soient transmis. Pour Sharma, la vitesse est trop simple ; en revanche, elle affirme que le principal sujet temporel des médias est la synchronicité, dont la négociation et le maintien exigent un travail culturel et matériel constant. La relation au temps, tout comme la relation à l'environnement, est liée à la position politique de chacun. Elle est également liée au corps. John Durham Peters affirme que le corps humain lui-même est un support temporel, qui calibre une multiplicité vertigineuse d'échelles de temps. Les rythmes circadiens intègrent la "pulsation" géophysique du jour et de la nuit dans les êtres vivants. Vu dans ce cadre, le rythme inconscient de la respiration n'est qu'une partie d'un système médiatique complexe de temporalité qui se calibre et se recalibre constamment. Je souhaite faire progresser le rythme dans mon analyse. Shintaro Miyazaki affirme que le rythme a toujours été un aspect central, bien que méconnu, de la culture algorithmique. Le rythme supplante la notion d'"horloge" ou d'"impulsion", qui ne rendent pas compte de la négociation constante entre les états de la matière caractéristiques des médias numériques. Le rythme nomme alors le travail actif de synchronisation de la médiation. Il s'ensuit que nous pourrions caractériser le drame d'"Exhalation", et peut-être notre crise climatique actuelle, comme une désarticulation du rythme.

Au fur et à mesure que la nouvelle de la découverte du narrateur se répand, la panique face à la nouvelle possibilité de mort se répand également. Pendant quelques pages, "Exhalation" devient une allégorie manifeste des réactions humaines au changement climatique. "Nombreux sont ceux qui réclament une limitation stricte des activités afin de minimiser l'épaississement de notre atmosphère", écrit le narrateur, "les accusations de gaspillage d'air ont dégénéré en rixes furieuses". Une secte quasi-religieuse, les Inverseurs, gagne en popularité. Dans une parodie de la géo-ingénierie, ils construisent un moteur qui comprime l'air, augmentant ainsi la pression atmosphérique globale. "Hélas, observe le narrateur, le moteur lui-même était alimenté par l'air du réservoir..... Il n'a pas inversé l'égalisation, mais a permis d'augmenter la pression de l'air. Il n'a pas inversé l'égalisation mais, comme tout ce qui existe dans le monde, l'a exacerbée". Face à l'impossibilité d'empêcher la dégradation de l'atmosphère, les mécaniciens tentent de remodeler le cerveau lui-même, parallèlement aux adaptations transhumaines aux climats inhospitaliers. Tout cela n'aboutit à rien. Le narrateur termine l'histoire en spéculant sur un avenir possible, lorsqu'un explorateur intrépide franchira le mur de chrome et transformera le système fermé en un système ouvert. Les automates pourraient revivre, grâce à l'introduction d'une nouvelle pression, d'un nouveau souffle, mais leur esprit et leur culture ne survivraient pas.

Mais le souffle n'est rien d'autre qu'une technologie de survie. Je pense ici au travail de Jean-Thomas Tremblay sur le souffle en tant que technique féministe, ou aux archives d'Ashton Crawley sur le souffle dans les pratiques culturelles et spirituelles des Noirs. Les logiques médiatisées de sa mise en péril, de sa vulnérabilité et de sa force sont, comme l'affirme Tremblay, "autant une déclaration phénoménologique qu'une déclaration historique et culturelle". À ces archives respiratoires, j'ajouterais le souffle en tant que médiation environnementale. Cette médiation se produit à différents niveaux, depuis le brouillage par la respiration des frontières entre les médias et le corps jusqu'à la respiration en tant que modèle de réflexion sur le temps environnemental. Il est essentiel de noter qu'il ne s'agit pas d'un temps avec un début ou une fin, mais plutôt de cycles imbriqués de naissance et de décomposition, la médiation s'empilant sur elle-même. Quels nouveaux rythmes peuvent émerger ?

La temporalité de la conclusion d'"Exhalation" apporte une réponse provisoire. Les derniers paragraphes offrent une "valédiction"*, le narrateur s'adressant directement au lecteur. "Le même sort que celui qui m'a frappé t'attend-il ?" demandent-ils. Alors que la majeure partie du récit se déroule au passé, la fin s'inscrit dans un futur imaginé et s'adresse au lecteur à l'impératif : "Visualisez tout cela la prochaine fois que vous regarderez le monde gelé qui vous entoure, et il redeviendra, dans votre esprit, animé et vital. Telle est la temporalité de la spéculation, que Chiang présente comme un mode de réflexion sur l'effondrement écologique, qui ne prend pas l'effondrement comme une donnée et ne croit pas naïvement qu'il peut être évité. Il y a une fin, et il y a ce qui vient après la fin. L'après-fin est un espace de possibilités endeuillées :

Notre univers aurait pu glisser vers l'équilibre en n'émettant rien de plus qu'un sifflement silencieux. Le fait qu'il ait engendré une telle plénitude est un miracle, qui n'a d'égal que l'univers qui vous a donné naissance.

Respirer, c'est être médiateur du temps, pour soi mais aussi pour les autres. C'est être le médiateur de la possibilité du prochain souffle à venir, c'est coordonner et relier une multitude de systèmes naturels et culturels. Dans le cadre de la crise climatique, nous savons désormais de manière concluante que nos médias industriels sont à bout de souffle. Le défi que nous lance "Exhalation" est de les refaçonner pour qu'ils puissent soutenir le souffle.

Auteur: Moro Jeffrey

Info: https://jeffreymoro.com/blog/2022-04-01-defense-talk/ - 7 Jan 2021. Présentation faite dans le cadre du panel Environmental Media au MLA 2021, qui s'est tenu virtuellement. Pour les références du texte, voir directement sur le site. Trad Mg et DeepL. *Formule qui recommande le destinataire à la protection divine

[ homme-machine ] [ cadence ] [ science-fiction ] [ analyse de texte ] [ réchauffement climatique ] [ Gaïa ] [ tétravalence ] [ accélérationnisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde verrouillé

Comment un tour de passe-passe mathématique a sauvé la physique des particules

La renormalisation est peut-être l'avancée la plus importante de la physique théorique depuis 50 ans. 

Dans les années 1940, certains physiciens avant-gardistes tombèrent sur une nouvelle couche de la réalité. Les particules n'existaient plus et les champs - entités expansives et ondulantes qui remplissent l'espace comme un océan - étaient dedans. Une ondulation dans un champ était un électron, une autre un photon, et leurs interactions semblaient expliquer tous les événements électromagnétiques.

Il n'y avait qu'un seul problème : la théorie était constituée d'espoirs et de prières. Ce n'est qu'en utilisant une technique appelée "renormalisation", qui consiste à occulter soigneusement des quantités infinies, que les chercheurs purent éviter les prédictions erronées. Le processus fonctionnait, mais même ceux qui développaient la théorie soupçonnaient qu'il s'agissait d'un château de cartes reposant sur un tour de passe-passe mathématique tortueux.

"C'est ce que j'appellerais un processus divertissant", écrira plus tard Richard Feynman. "Le fait de devoir recourir à de tels tours de passe-passe nous a empêchés de prouver que la théorie de l'électrodynamique quantique est mathématiquement cohérente.

La justification vint des décennies plus tard, d'une branche de la physique apparemment sans rapport. Les chercheurs qui étudiaient la magnétisation découvrirent que la renormalisation ne concernait aucunement les infinis. Elle évoquait plutôt la séparation de l'univers en domaines de tailles distinctes, point de vue qui guide aujourd'hui de nombreux domaines de la physique.

La renormalisation, écrit David Tong, théoricien à l'université de Cambridge, est "sans doute l'avancée la plus importante de ces 50 dernières années dans le domaine de la physique théorique".

L'histoire de deux charges

Selon certains critères, les théories des champs sont les théories les plus fructueuses de toute la science. La théorie de l'électrodynamique quantique (QED), qui constitue l'un des piliers du modèle standard de la physique des particules, a permis de faire des prédictions théoriques qui correspondent aux résultats expérimentaux avec une précision d'un sur un milliard.

Mais dans les années 1930 et 1940, l'avenir de la théorie était loin d'être assuré. L'approximation du comportement complexe des champs donnait souvent des réponses absurdes et infinies, ce qui amena certains théoriciens à penser que les théories des champs étaient peut-être une impasse.

Feynman et d'autres cherchèrent de toutes nouvelles perspectives - éventuellement même susceptibles de ramener les particules sur le devant de la scène - mais ils finirent par trouver un moyen de contourner l'obstacle. Ils constatèrent que les équations QED  permettaient d'obtenir des prédictions respectables, à condition qu'elles soient corrigées par la procédure impénétrable de renormalisation.

L'exercice est le suivant. Lorsqu'un calcul QED conduit à une somme infinie, il faut l'abréger. Mettez la partie qui tend vers l'infini dans un coefficient - un nombre fixe - placé devant la somme. Remplacez ce coefficient par une mesure finie provenant du laboratoire. Enfin, laissez la somme nouvellement apprivoisée retourner à l'infini.

Pour certains, cette méthode s'apparente à un jeu de dupes. "Ce ne sont tout simplement pas des mathématiques raisonnables", écrivit Paul Dirac, théoricien quantique novateur.

Le cœur du problème - germe de sa solution éventuelle - se trouve dans la manière dont les physiciens ont traité la charge de l'électron.

Dans ce schéma la charge électrique provient du coefficient - la valeur qui engloutit l'infini au cours du brassage mathématique. Pour les théoriciens qui s'interrogeaient sur la signification physique de la renormalisation, la théorie QED laissait entendre que l'électron avait deux charges : une charge théorique, qui était infinie, et la charge mesurée, qui ne l'était pas. Peut-être que le noyau de l'électron contenait une charge infinie. Mais dans la pratique, les effets de champ quantique (qu'on peut visualiser comme un nuage virtuel de particules positives) masquaient l'électron, de sorte que les expérimentateurs ne mesuraient qu'une charge nette modeste.

Deux physiciens, Murray Gell-Mann et Francis Low, concrétisèrent cette idée en 1954. Ils ont relié les deux charges des électrons à une charge "effective" qui varie en fonction de la distance. Plus on se rapproche (et plus on pénètre le manteau positif de l'électron), plus la charge est importante.

Leurs travaux furent les premiers à lier la renormalisation à l'idée d'échelle. Ils laissaient entendre que les physiciens quantiques avaient trouvé la bonne réponse à la mauvaise question. Plutôt que de se préoccuper des infinis, ils auraient dû s'attacher à relier le minuscule à l'énorme.

La renormalisation est "la version mathématique d'un microscope", a déclaré Astrid Eichhorn, physicienne à l'université du Danemark du Sud, qui utilise la renormalisation pour ses recherches en théorie de la gravité quantique. "Et inversement, vous pouvez commencer par le système microscopique et faire un zoom arrière. C'est une combinaison de microscope et de télescope".

La renormalisation capture la tendance de la nature à se subdiviser en mondes essentiellement indépendants.

Les aimants sauvent la mise

Un deuxième indice apparut dans le monde de la matière condensée, ici les physiciens s'interrogeaient sur la manière dont un modèle magnétique grossier parvenait à saisir les détails de certaines transformations. Le modèle d'Ising n'était guère plus qu'une grille de flèches atomiques qui ne pouvaient pointer que vers le haut ou vers le bas, mais il prédisait les comportements d'aimants réels avec une perfection improbable.

À basse température, la plupart des atomes s'alignent, ce qui magnétise le matériau. À haute température, ils deviennent désordonnés et le réseau se démagnétise. Mais à un point de transition critique, des îlots d'atomes alignés de toutes tailles coexistent. Il est essentiel de noter que la manière dont certaines quantités varient autour de ce "point critique" semble identique dans le modèle d'Ising, dans les aimants réels de différents matériaux et même dans des systèmes sans rapport, tels que la transition à haute pression où l'eau devient indiscernable de la vapeur d'eau. La découverte de ce phénomène, que les théoriciens ont appelé universalité, était aussi bizarre que de découvrir que les éléphants et les aigrettes se déplacent exactement à la même vitesse de pointe.

Les physiciens n'ont pas pour habitude de s'occuper d'objets de tailles différentes en même temps. Mais ce comportement universel autour des points critiques les obligea à tenir compte de toutes les échelles de longueur à la fois.

Leo Kadanoff, chercheur dans le domaine de la matière condensée, a compris comment procéder en 1966. Il a mis au point une technique de "spin par blocs", en décomposant une grille d'Ising trop complexe pour être abordée de front, en blocs modestes comportant quelques flèches par côté. Il calcula l'orientation moyenne d'un groupe de flèches et  remplaça tout le bloc par cette valeur. En répétant le processus, il lissa les détails fins du réseau, faisant un zoom arrière pour comprendre le comportement global du système.

Enfin, Ken Wilson -  ancien étudiant de Gell-Mann qui avait les pieds tant dans le monde de la physique des particules et de la matière condensée -  réunit les idées de Gell-Mann et de Low avec celles de Kadanoff. Son "groupe de renormalisation", qu'il décrivit pour la première fois en 1971, justifiait les calculs tortueux de la QED et a fourni une échelle permettant de gravir les échelons des systèmes universels. Ce travail a valu à Wilson un prix Nobel et a changé la physique pour toujours.

Selon Paul Fendley, théoricien de la matière condensée à l'université d'Oxford, la meilleure façon de conceptualiser le groupe de renormalisation de Wilson est de le considérer comme une "théorie des théories" reliant le microscopique au macroscopique.

Considérons la grille magnétique. Au niveau microscopique, il est facile d'écrire une équation reliant deux flèches voisines. Mais extrapoler cette simple formule à des trillions de particules est en fait impossible. Vous raisonnez à la mauvaise échelle.

Le groupe de renormalisation de Wilson décrit la transformation d'une théorie des éléments constitutifs en une théorie des structures. On commence avec une théorie de petits éléments, par exemple les atomes d'une boule de billard. On tourne la manivelle mathématique de Wilson et on obtient une théorie connexe décrivant des groupes de éléments, par exemple les molécules d'une boule de billard. En continuant de tourner la manivelle, on obtient des groupes de plus en plus grands - grappes de molécules de boules de billard, secteurs de boules de billard, et ainsi de suite. Finalement, vous voilà en mesure de calculer quelque chose d'intéressant, comme la trajectoire d'une boule de billard entière.

Telle est la magie du groupe de renormalisation : Il permet d'identifier les quantités à grande échelle qu'il est utile de mesurer et les détails microscopiques alambiqués qui peuvent être ignorés. Un surfeur s'intéresse à la hauteur des vagues, et non à la bousculade des molécules d'eau. De même, en physique subatomique, la renormalisation indique aux physiciens quand ils peuvent s'occuper d'un proton relativement simple plutôt que de son enchevêtrement de quarks intérieurs.

Le groupe de renormalisation de Wilson suggère également que les malheurs de Feynman et de ses contemporains venaient du fait qu'ils essayaient de comprendre l'électron d'infiniment près. "Nous ne nous attendons pas à ce que  ces théories soient valables jusqu'à des échelles [de distance] arbitrairement petites", a déclaré James Fraser, philosophe de la physique à l'université de Durham, au Royaume-Uni. Ajoutant : "La coupure absorbe notre ignorance de ce qui se passe aux niveaux inférieurs".

En d'autres termes, la QED et le modèle standard ne peuvent tout simplement pas dire quelle est la charge nue de l'électron à une distance de zéro nanomètre. Il s'agit de ce que les physiciens appellent des théories "effectives". Elles fonctionnent mieux sur des distances bien définies. L'un des principaux objectifs de la physique des hautes énergies étant de découvrir ce qui se passe exactement lorsque les particules deviennent encore plus proches.

Du grand au petit

Aujourd'hui, le "dippy process" de Feynman est devenu aussi omniprésent en physique que le calcul, et ses mécanismes révèlent les raisons de certains des plus grands succès de la discipline et de ses défis actuels. Avec la renormalisation, les câpres submicroscopiques compliqués ont tendance à disparaître. Ils sont peut-être réels, mais ils n'ont pas d'incidence sur le tableau d'ensemble. "La simplicité est une vertu", a déclaré M. Fendley. "Il y a un dieu là-dedans.

Ce fait mathématique illustre la tendance de la nature à se diviser en mondes essentiellement indépendants. Lorsque les ingénieurs conçoivent un gratte-ciel, ils ignorent les molécules individuelles de l'acier. Les chimistes analysent les liaisons moléculaires mais ignorent superbement les quarks et les gluons. La séparation des phénomènes par longueur, quantifiée par le groupe de renormalisation, a permis aux scientifiques de passer progressivement du grand au petit au cours des siècles, plutôt que briser toutes les échelles en même temps.

En même temps, l'hostilité de la renormalisation à l'égard des détails microscopiques va à l'encontre des efforts des physiciens modernes, avides de signes du domaine immédiatement inférieur. La séparation des échelles suggère qu'ils devront creuser en profondeur pour surmonter le penchant de la nature à dissimuler ses points les plus fins à des géants curieux comme nous.

"La renormalisation nous aide à simplifier le problème", explique Nathan Seiberg, physicien théoricien à l'Institute for Advanced Study de Princeton, dans le New Jersey. Mais "elle cache aussi ce qui se passe à très courte distance. On ne peut pas avoir le beurre et l'argent du beurre".


Auteur: Internet

Info: https://www.quantamagazine.org/. Charlie Wood, september 17, 2020

 

Commentaires: 0

Ajouté à la BD par miguel

bêtise bipolaire

Il ne fait aucun doute que les IA sont biaisées. Mais beaucoup déclarent que ces problématiques de l'IA existent parce que nous humains sommes imparfaits, plus que les machines. "Les machines sont-elles condamnées à hériter des préjugés humains ?", titrent les journaux. "Les préjugés humains sont un énorme problème pour l'IA. Voilà comment on va arranger ça." Mais ces récits perpétuent une dangereuse erreur algorithmique qu'il faut éviter.

Oui, les humains sont subjectifs. Oui, malgré les efforts conscients et inconscients de ne pas l'être, nous faisons de la discrimination, nous stéréotypons et portons toutes sortes de jugements de valeur sur les gens, les produits et la politique. Mais nos préjugés ne sont pas correctement mesurés ou modélisés par les machines. Non, les tendances machine sont dues à la logique même de la collecte des données : le système binaire.

Le système binaire est la chaîne de 0 et 1 à la base de tous les systèmes informatiques. Cette méthode mathématique permet de réduire et de calculer efficacement les grands nombres et, deuxièmement, elle permet la conversion de l'alphabet et de la ponctuation en ASCII (American Standard Code for Information Interchange).

Mais ne vous laissez pas berner : Ces 0 et 1 ne signifient pas que la machine comprend le monde et les langages comme nous le faisons : "La plupart d'entre nous, la plupart du temps, suivons des instructions qui nous sont données par ordinateur plutôt que l'inverse ", explique l'historien des technologies George Dyson. Afin de pouvoir communiquer avec les ordinateurs, nous sommes ajustés et orientés vers leur logique, et non vers la nôtre.

Le système binaire réduit tout à des 0 et des 1 insignifiants, quand la vie et l'intelligence font fonctionner XY en tandem. lui rend la lecture et le traitement des données quantitatives plus pratiques, plus efficaces et plus rentables pour les machines. Mais c'est au détriment des nuances, de la richesse, du contexte, des dimensions et de la dynamique de nos langues, cultures, valeurs et expériences.

Il ne faut pas accabler ici les développeurs de la Silicon Valley pour ce système binaire biaisé - mais plutôt Aristote.

Le parti pris binaire d'Aristote
Si vous pensez à Aristote, vous pensez probablement au philosophe grec antique comme à un des pères fondateurs de la démocratie, et non comme l'ancêtre de siècles de logique mécanique et de méthodes scientifiques erronées. C'est cependant sa théorie du "dualisme", selon laquelle quelque chose est soit vrai soit faux, logique ou illogique, qui nous a mis dans cette situation délicate en premier lieu.

Vers 350 av. J.-C., Aristote voulut réduire et structurer la complexité du monde. Pour ce faire, il fit des emprunts à la Table des Opposés de Pythagore, dans laquelle deux éléments sont comparés :

fini, infini... impair, pair... un, beaucoup... droite, gauche... repos, mouvement... droit, tordu... etc.

Mais au lieu d'appliquer ce dualisme à la géométrie neutre comme l'avait fait Pythagore, Aristote l'appliqua aux personnes, aux animaux et à la société. Ce faisant, il conçut un patriarcat hiérarchique social polarisé clivant, enraciné dans ses valeurs internes et ses préjugés : Les objets qu'il ordonnait avoir plus de valeur devinrent des 1, et ceux de moindre importance des 0. En ce qui concerne les femmes, par exemple, il écrivit : "La relation de l'homme à la femme est par nature une relation de supérieur à inférieur et de souverain à gouverné."

Hélas, le système de classification hiérarchique d'Aristote a été implémenté dans l'IA, la pondérant en faveur d'hommes comme lui. Le système même sur lequel toute la technologie moderne est construite contient les artefacts du sexisme d'il y a 2 000 ans.

1 = vrai = rationnel = droit = masculin
0 = faux = émotionnel = gauche = féminin
Si Aristote avait créé la démocratie - et la démocratie est censée être une véritable représentation - femmes et gens de couleur auraient dû avoir un accès égal à l'éducation, avoir voix au chapitre dans les forums et avoir le droit de vote en 350 av. JC. Il n'aurait pas été nécessaire de se battre jusqu'en 1920 pour que le vote féminin soit ratifié aux Etats-Unis. Il n'y aurait pas eu d'esclavage et pas besoin du mouvement pour les droits civiques. Tout le monde aurait été classé et considéré comme égal dès le départ.

Le classement biaisé d'Aristote est maintenant verrouillé et renforcé par plus de 15 millions d'ingénieurs.
Aristote aurait dû lire les notes de son prédécesseur, Socrate. Selon les souvenirs de Platon, Socrate considérait les oracles féminins de Delphes comme "un guide essentiel du développement personnel et de l'état". De plus, dans le Symposium de Platon, Socrate se souvient de l'époque où il était l'élève de Diotima de Mantinea, une femme philosophe dont il tenait en haute estime l'intelligence. Dans le livre V, Socrate est crédité d'avoir suggéré que les femmes sont également qualifiées pour diriger et gouverner : "Il n'y a pas de pratique des gouverneurs d'une ville qui appartient à une femme parce qu'elle est une femme, ou à un homme parce qu'il est un homme."

Mais au lieu que les idées de Socrate sur l'égalité enracinent les idées occidentales sur l'intelligence, nous nous sommes retrouvés avec la logique d'Aristote et son classement biaisé sans être conscients de ses origines binaires et anti-démocratiques.

Mais ne blâmons pas seulement Aristote. Deux autres coquins ont contribué à ces problèmes sociaux et scientifiques : Descartes et Leibniz.

Descartes - philosophe français du XVIIe siècle qui a inventé l'expression "je pense, donc je suis" -, a implanté l'idée qu'un sujet n'a ni matière ni valeur autre que ce que le visiteur attribue et déduit. (S'il avait dit "Nous pensons, donc nous sommes", cela aurait mieux reflété comment nous sommes symbiotiquement informés par les perceptions les uns et des autres.)

En outre, Descartes a proposé une plus grande séparation de l'esprit du corps et des émotions dans son traité de 1641, Méditations sur la Première Philosophie. Il a soutenu que nos esprits sont dans le domaine du spirituel tandis que nos corps et nos émotions sont dans le domaine du physique, et que les deux royaumes ne peuvent pas s'influencer mutuellement. Ce qui a causé des problèmes en IA parce que maintenant nous empilons des unités d'émotions sur des couches de classification binaires d'une manière artificielle et non intégrée. Encore du binaire.

La logique déductive-inductive de Descartes, qu'il explora dans son discours sur la méthode de 1637, fut créée parce qu'il était désabusé par les méthodes non systématiques des scientifiques de son temps. Il fit valoir que les mathématiques ont été construites sur une "base solide", et a donc cherché à établir un nouveau système de vérité fondée sur Aristote 1 = vrai = valide, et 0 = faux = invalide. La différence étant qu'il a mis les lignes de la logique syllogistique d'Aristote au sein d'une structure arborescente. Structures arborescentes qui sont maintenant utilisées dans les réseaux neuronaux récurrents du NLP (Natural Language Processing)

Vint ensuite Leibniz, le philosophe et avocat allemand inventa le calcul indépendamment de son contemporain, Newton. Il créa le système binaire entre 1697 et 1701 afin d'obtenir des verdicts "oui/non" plus rapides et ainsi réduire les grands nombres en unités plus faciles à gérer de 0 et 1.

Contrairement aux autres, Leibniz était sinophile. En 1703, le prêtre jésuite Bouvet lui avait envoyé une copie du Yi King (le Livre des Changements), artefact culturel chinois dont l'origine remonte à 5.000 ans. Il était fasciné par les similitudes apparentes entre les lignes horizontales et les intervalles des hexagrammes du Yi King et les 0 et 1 des lignes verticales de son système binaire. Il interpréta faussement ces intervalles comme étant du vide (donc zéro) croyant (à tort) que les hexagrammes confirmaient que son système binaire était la bonne base pour un système logique universel.

Leibniz fit trois autres erreurs majeures. Tout d'abord, il a fit pivoter les hexagrammes de leurs positions horizontales naturelles vers les positions verticales pour les faire correspondre à ses lignes binaires. Deuxièmement, il les sépara du contexte des symboles chinois et des chiffres correspondants. Troisièmement, puisqu'il n'était pas chinois et qu'il ne comprenait pas l'héritage philosophique ou la langue, il supposa que les hexagrammes représentaient les nombres 0 et 1 lorsqu'ils représentent des énergies négatives et positives, Yin Yang, homme et femme. Erreurs qui signifient que Leibniz perdit beaucoup d'informations et de connaissances venant des codes du Yi King et de la vraie signification de ses hexagrammes.

Au lieu de créer un système universel cohérent, le système binaire de Leibniz renforça les modèles de pensée occidentale de Descartes amplifiant la base biaisée d'Aristote, nous verrouillant davantage, nous et les machines que nous avons créées, vers une logique non naturelle.

Le système binaire dans l'informatique moderne
Les classifications binaires d'Aristote sont donc maintenant évidentes dans tous les systèmes de données d'aujourd'hui, servant, préservant, propageant et amplifiant les biais partout dans les couches d'apprentissage machine.

Exemples de biais binaires dans les front-end utilisateur et le traitement des données :

glissement à droite = 1, glissement à gauche = 0
cliquer sur "like" sur Facebook = 1, pas cliquer sur like = 0
nos émotions complexes étant attribuées grossièrement comme positives = 1, négatives = 0 dans les cadres du NPL
convertir des paires d'objets comparés et leurs caractéristiques en 0 ou 1, par exemple pomme = 1, orange = 0, ou lisse = 1, bosselé = 0
lignes et colonnes pleines de 0 et de 1 dans des graphes géants "big data"
Mais le problème de la logique binaire est qu'elle ne permet pas de comprendre et de modéliser pourquoi et comment les gens ont choisi une option plutôt qu'une autre. Les machines enregistrent simplement que les gens ont fait un choix, et qu'il y a un résultat

Les machines sont donc étalonnées à partir de ces biais binaires, pas à partir des nôtres. Bien sûr, nous sommes remplis de nos propres défauts et faiblesses très humains, mais les cadres conceptuels informatiques existants sont incapables de corriger ces erreurs (et les ingénieurs n'écrivent que du code qui correspond aux limites de l'ancienne logique).

Heureusement, il existe une alternative. Les philosophies occidentales d'Aristote, de Descartes et de Leibniz sont opposées aux philosophies orientales, elles fondées sur l'équilibre naturel, la cohérence et l'intégration. Le concept chinois de Yin Yang, par exemple, met l'accent sur la dynamique égale et symbiotique du masculin et du féminin en nous et dans l'univers. Ces idées décrites dans le Yi King, que Leibniz n'a pas reconnues.

La nature rejette également le binaire. Des milliards d'années avant que le parti pris d'Aristote ne s'imprime dans la logique informatique occidentale, la nature codifiait l'intelligence comme la coexistence entrelacée de la femme X et de l'homme Y dans notre ADN. De plus, la recherche quantique a montré que les particules peuvent avoir des états de superposition enchevêtrés où elles sont à la fois 0 et 1 en même temps, tout comme le Yin Yang. La nature ne fonctionne pas en binaire, pas même avec les pigeons. Alors pourquoi le faisons-nous en informatique ?

Nous ne classons et ne qualifions pas nécessairement le monde qui nous entoure avec les préjugés hiérarchiques binaires d'Aristote. Mais la façon dont les données sont recueillies est noir (0) et blanc (1), avec des nuances de gris fournies par des pourcentages de ces données, alors que la nature et les philosophies orientales montrent que nos perceptions ne sont que vagues de couleurs mélangées ou arc-en-ciel.

Tant que nous n'aurons pas conçu des modes de catégorisation non binaires et plus holistiques en IA, les ordinateurs ne seront pas en mesure de modéliser l'image animée en technicolor de notre intelligence. Ce n'est qu'alors que les machines représenteront nos divers langages, raisonnements, valeurs, cultures, qualités et comportements humains.

Auteur: Twain Liu

Info: https://qz.com/1515889/aristotles-binary-philosophies-created-todays-ai-bias/?utm_source=facebook&utm_medium=partner-share&utm_campaign=partner-bbc

[ rationalisme occidental ] [ logique formelle ] [ intelligence artificielle ] [ Asie ] [ sciences ]

 
Commentaires: 1
Ajouté à la BD par miguel

univers protonique

Forces tourbillonnantes et pressions d’écrasement mesurées dans le proton

Des expériences très attendues qui utilisent la lumière pour imiter la gravité révèlent pour la première fois la répartition des énergies, des forces et des pressions à l’intérieur d’une particule subatomique.

(Image : Les forces poussent dans un sens près du centre du proton et dans l’autre sens près de sa surface.)

Les physiciens ont commencé à explorer le proton comme s’il s’agissait d’une planète subatomique. Les cartes en coupe affichent de nouveaux détails de l'intérieur de la particule. Le noyau du proton présente des pressions plus intenses que dans toute autre forme connue de matière. À mi-chemin de la surface, des tourbillons de force s’affrontent les uns contre les autres. Et la " planète " dans son ensemble est plus petite que ne le suggéraient les expériences précédentes.

Les recherches expérimentales marquent la prochaine étape dans la quête visant à comprendre la particule qui ancre chaque atome et constitue la majeure partie de notre monde.

"Nous y voyons vraiment l'ouverture d'une direction complètement nouvelle qui changera notre façon de considérer la structure fondamentale de la matière", a déclaré Latifa Elouadrhiri , physicienne au Thomas Jefferson National Accelerator Facility à Newport News, en Virginie, qui participe à l'effort.

Les expériences jettent littéralement un nouvel éclairage sur le proton. Au fil des décennies, les chercheurs ont méticuleusement cartographié l’influence électromagnétique de la particule chargée positivement. Mais dans la nouvelle recherche, les physiciens du Jefferson Lab cartographient plutôt l'influence gravitationnelle du proton, à savoir la répartition des énergies, des pressions et des contraintes de cisaillement, qui courbent le tissu espace-temps dans et autour de la particule. Pour ce faire, les chercheurs exploitent une manière particulière par laquelle des paires de photons, des particules de lumière, peuvent imiter un graviton, la particule supposée qui transmet la force de gravité. En envoyant un ping au proton avec des photons, ils déduisent indirectement comment la gravité interagirait avec lui, réalisant ainsi un rêve vieux de plusieurs décennies consistant à interroger le proton de cette manière alternative.

"C'est un tour de force", a déclaré Cédric Lorcé , physicien à l'Ecole Polytechnique en France, qui n'a pas participé aux travaux. "Expérimentalement, c'est extrêmement compliqué." 

Des photons aux gravitons


Les physiciens ont appris énormément sur le proton au cours des 70 dernières années en le frappant à plusieurs reprises avec des électrons. Ils savent que sa charge électrique s’étend sur environ 0,8 femtomètre, ou quadrillionièmes de mètre, à partir de son centre. Ils savent que les électrons entrants ont tendance à être projetés sur l’un des trois quarks – des particules élémentaires avec des fractions de charge – qui bourdonnent à l’intérieur. Ils ont également observé la conséquence profondément étrange de la théorie quantique où, lors de collisions plus violentes, les électrons semblent rencontrer une mer mousseuse composée de bien plus de quarks ainsi que de gluons, porteurs de la force dite forte, qui colle les quarks ensemble.

Toutes ces informations proviennent d’une seule configuration : vous lancez un électron sur un proton, et les particules échangent un seul photon – le porteur de la force électromagnétique – et se repoussent. Cette interaction électromagnétique indique aux physiciens comment les quarks, en tant qu'objets chargés, ont tendance à s'organiser. Mais le proton a bien plus à offrir que sa charge électrique.

(Photo : Latifa Elouadrhiri, scientifique principale du laboratoire Jefferson, a dirigé la collecte de données à partir desquelles elle et ses collaborateurs calculent désormais les propriétés mécaniques du proton.) 

" Comment la matière et l'énergie sont-elles distribuées ? " a demandé Peter Schweitzer , physicien théoricien à l'Université du Connecticut. "Nous ne savons pas."

Schweitzer a passé la majeure partie de sa carrière à réfléchir au côté gravitationnel du proton. Plus précisément, il s'intéresse à une matrice de propriétés du proton appelée tenseur énergie-impulsion. " Le tenseur énergie-impulsion sait tout ce qu'il y a à savoir sur la particule ", a-t-il déclaré.

Dans la théorie de la relativité générale d'Albert Einstein, qui présente l'attraction gravitationnelle comme des objets suivant des courbes dans l'espace-temps, le tenseur énergie-impulsion indique à l'espace-temps comment se plier. Elle décrit, par exemple, la disposition de l'énergie (ou, de manière équivalente, de la masse) – la source de ce qui est la part du lion de la torsion de l'espace-temps. Elle permet également d'obtenir des informations sur la répartition de la dynamique, ainsi que sur les zones de compression ou d'expansion, ce qui peut également donner une légère courbure à l'espace-temps.

Si nous pouvions connaître la forme de l'espace-temps entourant un proton, élaborée indépendamment par des physiciens russes et   américains dans les années 1960, nous pourrions en déduire toutes les propriétés indexées dans son tenseur énergie-impulsion. Celles-ci incluent la masse et le spin du proton, qui sont déjà connus, ainsi que l'agencement des pressions et des forces du proton, une propriété collective que les physiciens nomment " Druck term ", d'après le mot " pression"  en allemand. Ce terme est " aussi important que la masse et la rotation, et personne ne sait ce que c'est ", a déclaré Schweitzer – même si cela commence à changer.

Dans les années 60, il semblait que la mesure du tenseur énergie-momentum et le calcul du terme de Druck nécessiteraient une version gravitationnelle de l'expérience de diffusion habituelle : On envoie une particule massive sur un proton et on laisse les deux s'échanger un graviton - la particule hypothétique qui constitue les ondes gravitationnelles - plutôt qu'un photon. Mais en raison de l'extrême subtilité de la gravité, les physiciens s'attendent à ce que la diffusion de gravitons se produise 39 fois plus rarement que la diffusion de photons. Les expériences ne peuvent pas détecter un effet aussi faible.

"Je me souviens avoir lu quelque chose à ce sujet quand j'étais étudiant", a déclaré Volker Burkert , membre de l'équipe du Jefferson Lab. Ce qu’il faut retenir, c’est que " nous ne pourrons probablement jamais rien apprendre sur les propriétés mécaniques des particules ".Gravitation sans gravité

Les expériences gravitationnelles sont encore inimaginables aujourd’hui. Mais les recherches menées en fin des années 1990 et au début des années 2000 par les physiciens Xiangdong Ji et, travaillant séparément, feu Maxim Polyakov, ont révélé une solution de contournement.

Le schéma général est le suivant. Lorsque vous tirez légèrement un électron sur un proton, il délivre généralement un photon à l'un des quarks et le détourne. Mais lors d’un événement sur un milliard, quelque chose de spécial se produit. L’électron entrant envoie un photon. Un quark l'absorbe puis émet un autre photon un battement de cœur plus tard. La principale différence est que cet événement rare implique deux photons au lieu d’un : des photons entrants et sortants. Les calculs de Ji et Polyakov ont montré que si les expérimentateurs pouvaient collecter les électrons, protons et photons résultants, ils pourraient déduire des énergies et des impulsions de ces particules ce qui s'est passé avec les deux photons. Et cette expérience à deux photons serait essentiellement aussi informative que l’impossible expérience de diffusion de gravitons.

Comment deux photons pourraient-ils connaître la gravité ? La réponse fait appel à des mathématiques très complexes. Mais les physiciens proposent deux façons de comprendre pourquoi cette astuce fonctionne.

Les photons sont des ondulations dans le champ électromagnétique, qui peuvent être décrites par une seule flèche, ou vecteur, à chaque emplacement de l'espace indiquant la valeur et la direction du champ. Les gravitons seraient des ondulations dans la géométrie de l’espace-temps, un domaine plus complexe représenté par une combinaison de deux vecteurs en chaque point. Capturer un graviton donnerait aux physiciens deux vecteurs d’informations. En dehors de cela, deux photons peuvent remplacer un graviton, puisqu’ils transportent également collectivement deux vecteurs d’information.

Une interprétation mathématiques alternative est celle-ci. Pendant le moment qui s'écoule entre le moment où un quark absorbe le premier photon et celui où il émet le second, le quark suit un chemin à travers l'espace. En sondant ce chemin, nous pouvons en apprendre davantage sur des propriétés telles que les pressions et les forces qui entourent le chemin.

"Nous ne faisons pas d'expérience gravitationnelle", a déclaré Lorcé. Mais " nous devrions obtenir un accès indirect à la manière dont un proton devrait interagir avec un graviton ". 

Sonder la planète Proton
En 2000, les physiciens du Jefferson Lab ont réussi à obtenir quelques résultats de diffusion à deux photons. Cette démonstration de faisabilité les a incités à construire une nouvelle expérience et, en 2007, ils ont fait entrer des électrons dans des protons suffisamment de fois pour obtenir environ 500 000 collisions imitant les gravitons. L'analyse des données expérimentales a pris une décennie de plus.

À partir de leur index des propriétés de flexion de l’espace-temps, l’équipe a extrait le terme insaisissable de Druck, publiant son estimation des pressions internes du proton dans Nature en 2018.

Ils ont découvert qu’au cœur du proton, la force puissante génère des pressions d’une intensité inimaginable : 100 milliards de milliards de milliards de pascals, soit environ 10 fois la pression au cœur d’une étoile à neutrons. Plus loin du centre, la pression chute et finit par se retourner vers l'intérieur, comme c'est nécessaire pour que le proton ne se brise pas. "Voilà qui résulte de l'expérience", a déclaré Burkert. "Oui, un proton est réellement stable." (Cette découverte n’a cependant aucune incidence sur la désintégration des protons , ce qui implique un type d’instabilité différent prédit par certaines théories spéculatives.)

Le groupe Jefferson Lab a continué à analyser le terme Druck. Ils ont publié une estimation des forces de cisaillement (forces internes poussant parallèlement à la surface du proton) dans le cadre d'une étude publiée en décembre. Les physiciens ont montré que près de son noyau, le proton subit une force de torsion qui est neutralisée par une torsion dans l’autre sens plus près de la surface. Ces mesures soulignent également la stabilité de la particule. Les rebondissements étaient attendus sur la base des travaux théoriques de Schweitzer et Polyakov. "Néanmoins, le voir émerger de l'expérience pour la première fois est vraiment stupéfiant", a déclaré Elouadrhiri.

Ils utilisent désormais ces outils pour calculer la taille du proton d'une nouvelle manière. Dans les expériences de diffusion traditionnelles, les physiciens avaient observé que la charge électrique de la particule s'étendait à environ 0,8 femtomètre de son centre (c'est-à-dire que les quarks qui la composent bourdonnent dans cette région). Mais ce " rayon de charge " présente quelques bizarreries. Dans le cas du neutron, par exemple — l'équivalent neutre du proton, dans lequel deux quarks chargés négativement ont tendance à rester profondément à l'intérieur de la particule tandis qu'un quark chargé positivement passe plus de temps près de la surface — le rayon de charge apparaît comme un nombre négatif.  "Cela ne veut pas dire que la taille est négative ; ce n'est tout simplement pas une mesure fiable ", a déclaré Schweitzer.

La nouvelle approche mesure la région de l’espace-temps considérablement courbée par le proton. Dans une prépublication qui n'a pas encore été évaluée par des pairs, l'équipe du Jefferson Lab a calculé que ce rayon pourrait être environ 25 % plus petit que le rayon de charge, soit seulement 0,6 femtomètre.

Les limites de la planète Proton

D'un point de vue conceptuel, ce type d'analyse adoucit la danse floue des quarks pour en faire un objet solide, semblable à une planète, avec des pressions et des forces agissant sur chaque point de volume. Cette planète gelée ne reflète pas entièrement le proton bouillonnant dans toute sa gloire quantique, mais c'est un modèle utile. "C'est une interprétation", a déclaré M. Schweitzer.

Et les physiciens soulignent que ces cartes initiales sont approximatives, pour plusieurs raisons.

Premièrement, mesurer avec précision le tenseur énergie-impulsion nécessiterait des énergies de collision beaucoup plus élevées que celles que Jefferson Lab peut produire. L’équipe a travaillé dur pour extrapoler soigneusement les tendances à partir des énergies relativement faibles auxquelles elles peuvent accéder, mais les physiciens ne sont toujours pas sûrs de la précision de ces extrapolations.

(Photo : Lorsqu'il était étudiant, Volker Burkert a lu qu'il était impossible de mesurer directement les propriétés gravitationnelles du proton. Aujourd'hui, il participe à une collaboration au laboratoire Jefferson qui est en train de découvrir indirectement ces mêmes propriétés.)

De plus, le proton est plus que ses quarks ; il contient également des gluons, qui se déplacent sous leurs propres pressions et forces. L'astuce à deux photons ne peut pas détecter les effets des gluons. Une autre équipe du Jefferson Lab a utilisé une astuce analogue ( impliquant une interaction double-gluon ) pour publier l'année dernière une carte gravitationnelle préliminaire de ces effets des gluons dans Nature, mais elle était également basée sur des données limitées et à faible énergie.

"C'est une première étape", a déclaré Yoshitaka Hatta, physicien au Brookhaven National Laboratory qui a eu l'idée de commencer à étudier le proton gravitationnel après les travaux du groupe Jefferson Lab en 2018.

Des cartes gravitationnelles plus précises des quarks du proton et de ses gluons pourraient être disponibles dans les années 2030, lorsque le collisionneur électron-ion, une expérience actuellement en construction à Brookhaven, entrera en activité.

Pendant ce temps, les physiciens poursuivent leurs expériences numériques. Phiala Shanahan, physicienne nucléaire et des particules au Massachusetts Institute of Technology, dirige une équipe qui calcule le comportement des quarks et des gluons à partir des équations de la force forte. En 2019, elle et ses collaborateurs ont estimé les pressions et les forces de cisaillement, et en octobre, en ont estimé le rayon, entre autres propriétés. Jusqu'à présent, leurs résultats numériques ont été largement alignés sur les résultats physiques du Jefferson Lab. "Je suis certainement très excitée par la cohérence entre les résultats expérimentaux récents et nos données", a déclaré Mme Shanahan.

Même les aperçus flous du proton obtenus jusqu'à présent ont légèrement remodelé la compréhension des chercheurs sur la particule.

Certaines conséquences sont pratiques. Au CERN, l'organisation européenne qui gère le Grand collisionneur de hadrons, le plus grand broyeur de protons au monde, les physiciens pensaient auparavant que dans certaines collisions rares, les quarks pouvaient se trouver n'importe où dans les protons en collision. Mais les cartes inspirées par la gravitation suggèrent que les quarks ont tendance à rester près du centre dans de tels cas.

"Les modèles utilisés au CERN ont déjà été mis à jour", a déclaré François-Xavier Girod, physicien du Jefferson Lab qui a travaillé sur les expériences.

Les nouvelles cartes pourraient également offrir des pistes pour résoudre l’un des mystères les plus profonds du proton : pourquoi les quarks se lient en protons. Il existe un argument intuitif selon lequel, comme la force puissante entre chaque paire de quarks s'intensifie à mesure qu'ils s'éloignent, comme un élastique, les quarks ne peuvent jamais échapper à leurs camarades.

Mais les protons sont fabriqués à partir des membres les plus légers de la famille des quarks. Et les quarks légers peuvent également être considérés comme de longues ondes s'étendant au-delà de la surface du proton. Cette image suggère que la liaison du proton pourrait se produire non pas via la traction interne de bandes élastiques, mais par une interaction externe entre ces quarks ondulés et étirés. La cartographie de pression montre l’attraction de la force forte s’étendant jusqu’à 1,4 femtomètres et au-delà, renforçant ainsi l’argument en faveur de ces théories alternatives.

"Ce n'est pas une réponse définitive", a déclaré Girod, "mais cela indique que ces simples images avec des bandes élastiques ne sont pas pertinentes pour les quarks légers."



Auteur: Internet

Info: https://filsdelapensee.ch - Charlie Bois, 14 mars 2024

[ chromodynamique quantique ]

 

Commentaires: 0

Ajouté à la BD par miguel