Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 42
Temps de recherche: 0.0452s

strates biologiques

Les chemins aléatoires de l'évolution mènent à un même endroit

Une étude statistique massive suggère que le résultat final de l’évolution – la forme physique – est prévisible.

(Photo  : Différentes souches de levure cultivées dans des conditions identiques développent des mutations différentes, mais parviennent finalement à des limites évolutives similaires.)

Dans son laboratoire du quatrième étage de l'Université Harvard, Michael Desai a créé des centaines de mondes identiques afin d'observer l'évolution à l'œuvre. Chacun de ses environnements méticuleusement contrôlés abrite une souche distincte de levure de boulangerie. Toutes les 12 heures, les assistants robots de Desai arrachent la levure à la croissance la plus rapide de chaque monde – sélectionnant celle qui est la plus apte à vivre – et jettent le reste. Desai surveille ensuite les souches à mesure qu'elles évoluent au cours de 500 générations. Son expérience, que d'autres scientifiques considèrent comme d'une ampleur sans précédent, cherche à mieux comprendre une question qui préoccupe depuis longtemps les biologistes : si nous pouvions recommencer le monde, la vie évoluerait-elle de la même manière ?

De nombreux biologistes affirment que ce ne serait pas le cas et que des mutations fortuites au début du parcours évolutif d’une espèce influenceraient profondément son destin. "Si vous rejouez le déroulement du vivant, vous pourriez avoir une mutation initiale qui vous emmènera dans une direction totalement différente", a déclaré Desai, paraphrasant une idée avancée pour la première fois par le biologiste Stephen Jay Gould dans les années 1980.

Les cellules de levure de Desai remettent en question cette croyance. Selon les résultats publiés dans Science en juin, toutes les variétés de levures de Desai ont atteint à peu près le même point final d'évolution (tel que mesuré par leur capacité à se développer dans des conditions de laboratoire spécifiques), quel que soit le chemin génétique précis emprunté par chaque souche. C'est comme si 100 taxis de la ville de New York acceptaient d'emprunter des autoroutes distinctes dans une course vers l'océan Pacifique et que 50 heures plus tard, ils convergeaient tous vers la jetée de Santa Monica.

Les résultats suggèrent également un décalage entre l’évolution au niveau génétique et au niveau de l’organisme dans son ensemble. Les mutations génétiques se produisent pour la plupart de manière aléatoire, mais la somme de ces changements sans but crée d’une manière ou d’une autre un modèle prévisible. Cette distinction pourrait s’avérer précieuse, dans la mesure où de nombreuses recherches en génétique se sont concentrées sur l’impact des mutations dans des gènes individuels. Par exemple, les chercheurs se demandent souvent comment une seule mutation pourrait affecter la tolérance d’un microbe aux toxines ou le risque de maladie d’un humain. Mais si les découvertes de Desai s'avèrent valables pour d'autres organismes, elles pourraient suggérer qu'il est tout aussi important d'examiner comment un grand nombre de changements génétiques individuels fonctionnent de concert au fil du temps.

"En biologie évolutive, il existe une sorte de tension entre penser à chaque gène individuellement et la possibilité pour l'évolution de modifier l'organisme dans son ensemble", a déclaré Michael Travisano, biologiste à l'université du Minnesota. "Toute la biologie s'est concentrée sur l'importance des gènes individuels au cours des 30 dernières années, mais le grand message à retenir de cette étude est que ce n'est pas nécessairement important". 

La principale force de l’expérience de Desai réside dans sa taille sans précédent, qui a été qualifiée d’« audacieuse » par d’autres spécialistes du domaine. La conception de l'expérience est ancrée dans le parcours de son créateur ; Desai a suivi une formation de physicien et, depuis qu'il a lancé son laboratoire il y a quatre ans, il a appliqué une perspective statistique à la biologie. Il a imaginé des moyens d'utiliser des robots pour manipuler avec précision des centaines de lignées de levure afin de pouvoir mener des expériences évolutives à grande échelle de manière quantitative. Les scientifiques étudient depuis longtemps l’évolution génétique des microbes, mais jusqu’à récemment, il n’était possible d’examiner que quelques souches à la fois. L'équipe de Desai, en revanche, a analysé 640 lignées de levure qui avaient toutes évolué à partir d'une seule cellule parent. L'approche a permis à l'équipe d'analyser statistiquement l'évolution.

"C'est l'approche physicienne de l'évolution, réduisant tout aux conditions les plus simples possibles", a déclaré Joshua Plotkin, biologiste évolutionniste à l'Université de Pennsylvanie qui n'a pas participé à la recherche mais a travaillé avec l'un des auteurs. "Ce qui pourrait permettre de définir la part du hasard dans l'évolution, quelle est la part du point de départ et la part du bruit de mesure."

Le plan de Desai était de suivre les souches de levure à mesure qu'elles se développaient dans des conditions identiques, puis de comparer leurs niveaux de condition physique finaux, déterminés par la rapidité avec laquelle elles se développaient par rapport à leur souche ancestrale d'origine. L’équipe a utilisé des bras robotisés spécialement conçus pour transférer les colonies de levure vers une nouvelle maison toutes les 12 heures. Les colonies qui s’étaient le plus développées au cours de cette période passèrent au cycle suivant et le processus se répéta pendant 500 générations. Sergey Kryazhimskiy , chercheur postdoctoral dans le laboratoire de Desai, passait parfois la nuit dans le laboratoire, analysant l'aptitude de chacune des 640 souches à trois moments différents. Les chercheurs ont ensuite pu comparer la variation de la condition physique entre les souches et découvrir si les capacités initiales d'une souche affectaient sa position finale. Ils ont également séquencé les génomes de 104 souches pour déterminer si les mutations précoces modifiaient les performances finales.

Des études antérieures ont indiqué que de petits changements au début du parcours évolutif peuvent conduire à de grandes différences plus tard, une idée connue sous le nom de contingence historique. Des études d'évolution à long terme sur la bactérie E. coli, par exemple, ont montré que les microbes peuvent parfois évoluer pour manger un nouveau type d'aliment, mais que des changements aussi importants ne se produisent que lorsque certaines mutations habilitantes se produisent en premier. Ces mutations précoces n’ont pas d’effet important en elles-mêmes, mais elles jettent les bases nécessaires pour des mutations ultérieures qui en auront.

Mais en raison de la petite échelle de ces études, Desai ne savait pas clairement si ces cas constituaient l'exception ou la règle. "Obtenez-vous généralement de grandes différences dans le potentiel évolutif qui surviennent au cours du cours naturel de l'évolution, ou l'évolution est-elle en grande partie prévisible?" il répond "Pour répondre à cette question, nous avions besoin de la grande échelle de notre expérience."

Comme dans les études précédentes, Desai a constaté que les mutations précoces influencent l'évolution future, en façonnant le chemin que prend la levure. Mais dans cette expérience, ce chemin n'a pas eu d'incidence sur la destination finale. "Ce type particulier de contingence rend en fait l'évolution de la forme physique  plus prévisible, et pas moins prévisible", a déclaré M. Desai.

Desai a montré que, tout comme une seule visite à la salle de sport profite plus à un amateur flappi par la TV qu'à un athlète, les microbes qui commençent par croître lentement tirent bien plus parti des mutations bénéfiques que leurs homologues plus en forme qui démarrent sur les chapeaux de roue. " Si vous êtes à la traîne au début à cause de la malchance, vous aurez tendance à aller mieux dans le futur ", a déclaré Desai. Il compare ce phénomène au principe économique des rendements décroissants - après un certain point, chaque unité d'effort supplémentaire aide de moins en moins.

Les scientifiques ne savent pas pourquoi toutes les voies génétiques chez la levure semblent arriver au même point final, une question que Desai et d'autres acteurs du domaine trouvent particulièrement intrigante. La levure a développé des mutations dans de nombreux gènes différents, et les scientifiques n'ont trouvé aucun lien évident entre eux. On ne sait donc pas exactement comment ces gènes interagissent dans la cellule, voire pas du tout. "Il existe peut-être une autre couche du métabolisme que personne ne maîtrise", a déclaré Vaughn Cooper, biologiste à l'Université du New Hampshire qui n'a pas participé à l'étude.

Il n’est pas non plus clair si les résultats soigneusement contrôlés de Desai sont applicables à des organismes plus complexes ou au monde réel chaotique, où l’organisme et son environnement changent constamment. "Dans le monde réel, les organismes réussissent dans différentes choses, en divisant l'environnement", a déclaré Travisano. Il prédit que les populations situées au sein de ces niches écologiques seraient toujours soumises à des rendements décroissants, en particulier à mesure qu'elles s'adaptent. Mais cela reste une question ouverte, a-t-il ajouté.

Cependant, certains éléments suggèrent que les organismes complexes peuvent également évoluer rapidement pour se ressembler davantage. Une étude publiée en mai a analysé des groupes de drosophiles génétiquement distinctes alors qu'elles s'adaptaient à un nouvel environnement. Malgré des trajectoires évolutives différentes, les groupes ont développé des similitudes dans des attributs tels que la fécondité et la taille du corps après seulement 22 générations. " Ainsi beaucoup de gens pensent à un gène pour un trait, une façon déterministe de résoudre des problèmes par l'évolution ", a déclaré David Reznick, biologiste à l'Université de Californie à Riverside. " Cela montre que ce n'est pas vrai ; on peut évoluer pour être mieux adapté à l'environnement de nombreuses façons. "





 

Auteur: Internet

Info: Quanta Magazine, Emily Singer, September 11, 2014

[ bio-mathématiques ] [ individu-collectif ] [ équilibre grégaire ] [ compensation mutationnelle ]

 
Commentaires: 1
Ajouté à la BD par miguel

auto-programmation

Pieuvres et calmars modifient et corrigent (édit en anglais) leur ARN, tout en laissant l'ADN intact. Des changements qui pourraient expliquer l'intelligence et la flexibilité des céphalopodes dépourvus de coquille

De nombreux écrivains se plaignent lorsqu'un rédacteur  vient éditer et donc modifier leur article, mais les conséquences de la modification d'un seul mot ne sont généralement pas si graves.

Ce n'est pas le cas des instructions génétiques pour la fabrication des protéines. Même une petite modification peut empêcher une protéine de faire son travail correctement, ce qui peut avoir des conséquences mortelles. Ce n'est qu'occasionnellement qu'un changement est bénéfique. Il semble plus sage de conserver les instructions génétiques telles qu'elles sont écrites. À moins d'être une pieuvre.

Les pieuvres sont comme des extraterrestres qui vivent parmi nous : elles font beaucoup de choses différemment des animaux terrestres ou même des autres créatures marines. Leurs tentacules flexibles goûtent ce qu'ils touchent et ont leur esprit propre. Les yeux des pieuvres sont daltoniens, mais leur peau peut détecter la lumière par elle-même. Les pieuvres sont des maîtres du déguisement, changeant de couleur et de texture de peau pour se fondre dans leur environnement ou effrayer leurs rivaux. Et plus que la plupart des créatures, les pieuvres font gicler l'équivalent moléculaire de l'encre rouge sur leurs instructions génétiques avec un abandon stupéfiant, comme un rédacteur en chef déchaîné.

Ces modifications-éditions concernent l'ARN, molécule utilisée pour traduire les informations du plan génétique stocké dans l'ADN, tout en laissant l'ADN intact.

Les scientifiques ne savent pas encore avec certitude pourquoi les pieuvres et d'autres céphalopodes sans carapace, comme les calmars et les seiches, sont des modificateurs aussi prolifiques. Les chercheurs se demandent si cette forme d'édition génétique a donné aux céphalopodes une longueur d'avance sur le plan de l'évolution (ou un tentacule) ou si cette capacité n'est qu'un accident parfois utile. Les scientifiques étudient également les conséquences que les modifications de l'ARN peuvent avoir dans diverses conditions. Certaines données suggèrent que l'édition pourrait donner aux céphalopodes une partie de leur intelligence, mais au prix d'un ralentissement de l'évolution de leur ADN.

"Ces animaux sont tout simplement magiques", déclare Caroline Albertin, biologiste spécialiste du développement comparatif au Marine Biological Laboratory de Woods Hole (Massachusetts). "Ils ont toutes sortes de solutions différentes pour vivre dans le monde d'où ils viennent. L'édition de l'ARN pourrait contribuer à donner à ces créatures un grand nombre de solutions aux problèmes qu'elles peuvent rencontrer.

(vidéo - Contrairement à d'autres animaux à symétrie bilatérale, les pieuvres ne rampent pas dans une direction prédéterminée. Des vidéos de pieuvres en train de ramper montrent qu'elles peuvent se déplacer dans n'importe quelle direction par rapport à leur corps, et qu'elles changent de direction de rampe sans avoir à tourner leur corps. Dans le clip, la flèche verte indique l'orientation du corps de la pieuvre et la flèche bleue indique la direction dans laquelle elle rampe.)

Le dogme central de la biologie moléculaire veut que les instructions pour construire un organisme soient contenues dans l'ADN. Les cellules copient ces instructions dans des ARN messagers, ou ARNm. Ensuite, des machines cellulaires appelées ribosomes lisent les ARNm pour construire des protéines en enchaînant des acides aminés. La plupart du temps, la composition de la protéine est conforme au modèle d'ADN pour la séquence d'acides aminés de la protéine.

Mais l'édition de l'ARN peut entraîner des divergences par rapport aux instructions de l'ADN, créant ainsi des protéines dont les acides aminés sont différents de ceux spécifiés par l'ADN.

L'édition modifie chimiquement l'un des quatre éléments constitutifs de l'ARN, ou bases. Ces bases sont souvent désignées par les premières lettres de leur nom : A, C, G et U, pour adénine, cytosine, guanine et uracile (la version ARN de la base ADN thymine). Dans une molécule d'ARN, les bases sont liées à des sucres ; l'unité adénine-sucre, par exemple, est appelée adénosine.

Il existe de nombreuses façons d'éditer des lettres d'ARN. Les céphalopodes excellent dans un type d'édition connu sous le nom d'édition de l'adénosine à l'inosine, ou A-to-I. Cela se produit lorsqu'une enzyme appelée ADAR2 enlève un atome d'azote et deux atomes d'hydrogène de l'adénosine (le A). Ce pelage chimique transforme l'adénosine en inosine (I).

 Les ribosomes lisent l'inosine comme une guanine au lieu d'une adénine. Parfois, ce changement n'a aucun effet sur la chaîne d'acides aminés de la protéine résultante. Mais dans certains cas, la présence d'un G à la place d'un A entraîne l'insertion d'un acide aminé différent dans la protéine. Ce type d'édition de l'ARN modifiant la protéine est appelé recodage de l'ARN.

Les céphalopodes à corps mou ont adopté le recodage de l'ARN à bras-le-corps, alors que même les espèces étroitement apparentées sont plus hésitantes à accepter les réécritures, explique Albertin. "Les autres mollusques ne semblent pas le faire dans la même mesure.

L'édition de l'ARN ne se limite pas aux créatures des profondeurs. Presque tous les organismes multicellulaires possèdent une ou plusieurs enzymes d'édition de l'ARN appelées enzymes ADAR, abréviation de "adénosine désaminase agissant sur l'ARN", explique Joshua Rosenthal, neurobiologiste moléculaire au Marine Biological Laboratory.

Les céphalopodes possèdent deux enzymes ADAR. L'homme possède également des versions de ces enzymes. "Dans notre cerveau, nous modifions une tonne d'ARN. Nous le faisons beaucoup", explique Rosenthal. Au cours de la dernière décennie, les scientifiques ont découvert des millions d'endroits dans les ARN humains où se produit l'édition.

Mais ces modifications changent rarement les acides aminés d'une protéine. Par exemple, Eli Eisenberg, de l'université de Tel Aviv, et ses collègues ont identifié plus de 4,6 millions de sites d'édition dans les ARN humains. Parmi ceux-ci, seuls 1 517 recodent les protéines, ont rapporté les chercheurs l'année dernière dans Nature Communications. Parmi ces sites de recodage, jusqu'à 835 sont partagés avec d'autres mammifères, ce qui suggère que les forces de l'évolution ont préservé l'édition à ces endroits.

(Encadré :  Comment fonctionne l'édition de l'ARN ?

Dans une forme courante d'édition de l'ARN, une adénosine devient une inosine par une réaction qui supprime un groupe aminé et le remplace par un oxygène (flèches). L'illustration montre une enzyme ADAR se fixant à un ARN double brin au niveau du "domaine de liaison de l'ARNdb". La région de l'enzyme qui interagit pour provoquer la réaction, le "domaine de la désaminase", est positionnée près de l'adénosine qui deviendra une inosine.)

Les céphalopodes portent le recodage de l'ARN à un tout autre niveau, dit Albertin. L'encornet rouge (Doryteuthis pealeii) possède 57 108 sites de recodage, ont rapporté Rosenthal, Eisenberg et leurs collègues en 2015 dans eLife. Depuis, les chercheurs ont examiné plusieurs espèces de pieuvres, de calmars et de seiches, et ont à chaque fois trouvé des dizaines de milliers de sites de recodage.

Les céphalopodes à corps mou, ou coléoïdes, pourraient avoir plus de possibilités d'édition que les autres animaux en raison de l'emplacement d'au moins une des enzymes ADAR, ADAR2, dans la cellule. La plupart des animaux éditent les ARN dans le noyau - le compartiment où l'ADN est stocké et copié en ARN - avant d'envoyer les messages à la rencontre des ribosomes. Mais chez les céphalopodes, les enzymes se trouvent également dans le cytoplasme, l'organe gélatineux des cellules, ont découvert Rosenthal et ses collègues (SN : 4/25/20, p. 10).

Le fait d'avoir des enzymes d'édition dans deux endroits différents n'explique pas complètement pourquoi le recodage de l'ARN chez les céphalopodes dépasse de loin celui des humains et d'autres animaux. Cela n'explique pas non plus les schémas d'édition que les scientifiques ont découverts.

L'édition de l'ARN amènerait de la flexibilité aux céphalopodes

L'édition n'est pas une proposition "tout ou rien". Il est rare que toutes les copies d'un ARN dans une cellule soient modifiées. Il est beaucoup plus fréquent qu'un certain pourcentage d'ARN soit édité tandis que le reste conserve son information originale. Le pourcentage, ou fréquence, de l'édition peut varier considérablement d'un ARN à l'autre ou d'une cellule ou d'un tissu à l'autre, et peut dépendre de la température de l'eau ou d'autres conditions. Chez le calmar à nageoires longues, la plupart des sites d'édition de l'ARN étaient édités 2 % ou moins du temps, ont rapporté Albertin et ses collègues l'année dernière dans Nature Communications. Mais les chercheurs ont également trouvé plus de 205 000 sites qui étaient modifiés 25 % du temps ou plus.

Dans la majeure partie du corps d'un céphalopode, l'édition de l'ARN n'affecte pas souvent la composition des protéines. Mais dans le système nerveux, c'est une autre histoire. Dans le système nerveux du calmar à nageoires longues, 70 % des modifications apportées aux ARN producteurs de protéines recodent ces dernières. Dans le système nerveux de la pieuvre californienne à deux points (Octopus bimaculoides), les ARN sont recodés trois à six fois plus souvent que dans d'autres organes ou tissus.

(Photo -  L'encornet rouge recode l'ARN à plus de 50 000 endroits. Le recodage de l'ARN pourrait aider le calmar à réagir avec plus de souplesse à son environnement, mais on ne sait pas encore si le recodage a une valeur évolutive. Certains ARNm possèdent plusieurs sites d'édition qui modifient les acides aminés des protéines codées par les ARNm. Dans le système nerveux de l'encornet rouge, par exemple, 27 % des ARNm ont trois sites de recodage ou plus. Certains contiennent 10 sites ou plus. La combinaison de ces sites d'édition pourrait entraîner la fabrication de plusieurs versions d'une protéine dans une cellule.)

Le fait de disposer d'un large choix de protéines pourrait donner aux céphalopodes "plus de souplesse pour réagir à l'environnement", explique M. Albertin, "ou leur permettre de trouver diverses solutions au problème qui se pose à eux". Dans le système nerveux, l'édition de l'ARN pourrait contribuer à la flexibilité de la pensée, ce qui pourrait expliquer pourquoi les pieuvres peuvent déverrouiller des cages ou utiliser des outils, pensent certains chercheurs. L'édition pourrait être un moyen facile de créer une ou plusieurs versions d'une protéine dans le système nerveux et des versions différentes dans le reste du corps, explique Albertin.

Lorsque l'homme et d'autres vertébrés ont des versions différentes d'une protéine, c'est souvent parce qu'ils possèdent plusieurs copies d'un gène. Doubler, tripler ou quadrupler les copies d'un gène "permet de créer tout un terrain de jeu génétique pour permettre aux gènes de s'activer et d'accomplir différentes fonctions", explique M. Albertin. Mais les céphalopodes ont tendance à ne pas dupliquer les gènes. Leurs innovations proviennent plutôt de l'édition.

Et il y a beaucoup de place pour l'innovation. Chez le calmar, les ARNm servant à construire la protéine alpha-spectrine comportent 242 sites de recodage. Toutes les combinaisons de sites modifiés et non modifiés pourraient théoriquement créer jusqu'à 7 x 1072 formes de la protéine, rapportent Rosenthal et Eisenberg dans le numéro de cette année de l'Annual Review of Animal Biosciences (Revue annuelle des biosciences animales). "Pour mettre ce chiffre en perspective, écrivent les chercheurs, il suffit de dire qu'il éclipse le nombre de toutes les molécules d'alpha-spectrine (ou, d'ailleurs, de toutes les molécules de protéines) synthétisées dans toutes les cellules de tous les calmars qui ont vécu sur notre planète depuis l'aube des temps.

Selon Kavita Rangan, biologiste moléculaire à l'université de Californie à San Diego, ce niveau de complexité incroyable ne serait possible que si chaque site était indépendant. Rangan a étudié le recodage de l'ARN chez le calmar californien (Doryteuthis opalescens) et le calmar à nageoires longues. La température de l'eau incite les calmars à recoder les protéines motrices appelées kinésines qui déplacent les cargaisons à l'intérieur des cellules.

Chez l'encornet rouge, l'ARNm qui produit la kinésine-1 comporte 14 sites de recodage, a découvert Mme Rangan. Elle a examiné les ARNm du lobe optique - la partie du cerveau qui traite les informations visuelles - et du ganglion stellaire, un ensemble de nerfs impliqués dans la génération des contractions musculaires qui produisent des jets d'eau pour propulser le calmar.

Chaque tissu produit plusieurs versions de la protéine. Rangan et Samara Reck-Peterson, également de l'UC San Diego, ont rapporté en septembre dernier dans un article publié en ligne sur bioRxiv.org que certains sites avaient tendance à être édités ensemble. Leurs données suggèrent que l'édition de certains sites est coordonnée et "rejette très fortement l'idée que l'édition est indépendante", explique Rangan. "La fréquence des combinaisons que nous observons ne correspond pas à l'idée que chaque site a été édité indépendamment.

L'association de sites d'édition pourrait empêcher les calmars et autres céphalopodes d'atteindre les sommets de complexité dont ils sont théoriquement capables. Néanmoins, l'édition de l'ARN offre aux céphalopodes un moyen d'essayer de nombreuses versions d'une protéine sans s'enfermer dans une modification permanente de l'ADN, explique M. Rangan.

Ce manque d'engagement laisse perplexe Jianzhi Zhang, généticien évolutionniste à l'université du Michigan à Ann Arbor. "Pour moi, cela n'a pas de sens", déclare-t-il. "Si vous voulez un acide aminé particulier dans une protéine, vous devez modifier l'ADN. Pourquoi changer l'ARN ?

L'édition de l'ARN a-t-elle une valeur évolutive ?

L'édition de l'ARN offre peut-être un avantage évolutif. Pour tester cette idée, Zhang et Daohan Jiang, alors étudiant de troisième cycle, ont comparé les sites "synonymes", où les modifications ne changent pas les acides aminés, aux sites "non synonymes", où le recodage se produit. Étant donné que les modifications synonymes ne modifient pas les acides aminés, les chercheurs ont considéré que ces modifications étaient neutres du point de vue de l'évolution. Chez l'homme, le recodage, ou édition non synonyme, se produit sur moins de sites que l'édition synonyme, et le pourcentage de molécules d'ARN qui sont éditées est plus faible que sur les sites synonymes.

"Si nous supposons que l'édition synonyme est comme un bruit qui se produit dans la cellule, et que l'édition non-synonyme est moins fréquente et [à un] niveau plus bas, cela suggère que l'édition non-synonyme est en fait nuisible", explique Zhang. Même si le recodage chez les céphalopodes est beaucoup plus fréquent que chez les humains, dans la plupart des cas, le recodage n'est pas avantageux, ou adaptatif, pour les céphalopodes, ont affirmé les chercheurs en 2019 dans Nature Communications.

Il existe quelques sites communs où les pieuvres, les calmars et les seiches recodent tous leurs ARN, ont constaté les chercheurs, ce qui suggère que le recodage est utile dans ces cas. Mais il s'agit d'une petite fraction des sites d'édition. Zhang et Jiang ont constaté que quelques autres sites édités chez une espèce de céphalopode, mais pas chez les autres, étaient également adaptatifs.

Si ce n'est pas si utile que cela, pourquoi les céphalopodes ont-ils continué à recoder l'ARN pendant des centaines de millions d'années ? L'édition de l'ARN pourrait persister non pas parce qu'elle est adaptative, mais parce qu'elle crée une dépendance, selon Zhang.

Zhang et Jiang ont proposé un modèle permettant de nuire (c'est-à-dire une situation qui permet des modifications nocives de l'ADN). Imaginez, dit-il, une situation dans laquelle un G (guanine) dans l'ADN d'un organisme est muté en A (adénine). Si cette mutation entraîne un changement d'acide aminé nocif dans une protéine, la sélection naturelle devrait éliminer les individus porteurs de cette mutation. Mais si, par chance, l'organisme dispose d'un système d'édition de l'ARN, l'erreur dans l'ADN peut être corrigée par l'édition de l'ARN, ce qui revient à transformer le A en G. Si la protéine est essentielle à la vie, l'ARN doit être édité à des niveaux élevés de sorte que presque chaque copie soit corrigée.

 Lorsque cela se produit, "on est bloqué dans le système", explique M. Zhang. L'organisme est désormais dépendant de la machinerie d'édition de l'ARN. "On ne peut pas la perdre, car il faut que le A soit réédité en G pour survivre, et l'édition est donc maintenue à des niveaux élevés.... Au début, on n'en avait pas vraiment besoin, mais une fois qu'on l'a eue, on en est devenu dépendant".

Zhang soutient que ce type d'édition est neutre et non adaptatif. Mais d'autres recherches suggèrent que l'édition de l'ARN peut être adaptative.

L'édition de l'ARN peut fonctionner comme une phase de transition, permettant aux organismes de tester le passage de l'adénine à la guanine sans apporter de changement permanent à leur ADN. Au cours de l'évolution, les sites où les adénines sont recodées dans l'ARN d'une espèce de céphalopode sont plus susceptibles que les adénines non éditées d'être remplacées par des guanines dans l'ADN d'une ou de plusieurs espèces apparentées, ont rapporté les chercheurs en 2020 dans PeerJ. Et pour les sites fortement modifiés, l'évolution chez les céphalopodes semble favoriser une transition de A à G dans l'ADN (plutôt qu'à la cytosine ou à la thymine, les deux autres éléments constitutifs de l'ADN). Cela favorise l'idée que l'édition peut être adaptative.

D'autres travaux récents de Rosenthal et de ses collègues, qui ont examiné les remplacements de A en G chez différentes espèces, suggèrent que le fait d'avoir un A modifiable est un avantage évolutif par rapport à un A non modifiable ou à un G câblé.

(Tableau :  Quelle est la fréquence de l'enregistrement de l'ARN ?

Les céphalopodes à corps mou, notamment les pieuvres, les calmars et les seiches, recodent l'ARN dans leur système nerveux sur des dizaines de milliers de sites, contre un millier ou moins chez l'homme, la souris, la mouche des fruits et d'autres espèces animales. Bien que les scientifiques aient documenté le nombre de sites d'édition, ils auront besoin de nouveaux outils pour tester directement l'influence du recodage sur la biologie des céphalopodes.

Schéma avec comparaison des nombre de sites de recodage de l'ARN chez les animaux

J.J.C. ROSENTHAL ET E. EISENBERG/ANNUAL REVIEW OF ANIMAL BIOSCIENCES 2023 )

Beaucoup de questions en suspens

Les preuves pour ou contre la valeur évolutive du recodage de l'ARN proviennent principalement de l'examen de la composition génétique totale, ou génomes, de diverses espèces de céphalopodes. Mais les scientifiques aimeraient vérifier directement si les ARN recodés ont un effet sur la biologie des céphalopodes. Pour ce faire, il faudra utiliser de nouveaux outils et faire preuve de créativité.

Rangan a testé des versions synthétiques de protéines motrices de calmars et a constaté que deux versions modifiées que les calmars fabriquent dans le froid se déplaçaient plus lentement mais plus loin le long de pistes protéiques appelées microtubules que les protéines non modifiées. Mais il s'agit là de conditions artificielles de laboratoire, sur des lames de microscope. Pour comprendre ce qui se passe dans les cellules, Mme Rangan aimerait pouvoir cultiver des cellules de calmar dans des boîtes de laboratoire. Pour l'instant, elle doit prélever des tissus directement sur le calmar et ne peut obtenir que des instantanés de ce qui se passe. Les cellules cultivées en laboratoire pourraient lui permettre de suivre ce qui se passe au fil du temps.

M. Zhang explique qu'il teste son hypothèse de l'innocuité en amenant la levure à s'intéresser à l'édition de l'ARN. La levure de boulanger (Saccharomyces cerevisiae) ne possède pas d'enzymes ADAR. Mais Zhang a modifié une souche de cette levure pour qu'elle soit porteuse d'une version humaine de l'enzyme. Les enzymes ADAR rendent la levure malade et la font croître lentement, explique-t-il. Pour accélérer l'expérience, la souche qu'il utilise a un taux de mutation supérieur à la normale et peut accumuler des mutations G-A. Mais si l'édition de l'ARN peut corriger ces mutations, il est possible d'obtenir des résultats positifs. Mais si l'édition de l'ARN peut corriger ces mutations, la levure porteuse d'ADAR pourrait se développer mieux que celles qui n'ont pas l'enzyme. Et après de nombreuses générations, la levure pourrait devenir dépendante de l'édition, prédit Zhang.

Albertin, Rosenthal et leurs collègues ont mis au point des moyens de modifier les gènes des calmars à l'aide de l'éditeur de gènes CRISPR/Cas9. L'équipe a créé un calmar albinos en utilisant CRISPR/Cas9 pour supprimer, ou désactiver, un gène qui produit des pigments. Les chercheurs pourraient être en mesure de modifier les sites d'édition dans l'ADN ou dans l'ARN et de tester leur fonction, explique Albertin.

Cette science n'en est qu'à ses débuts et l'histoire peut mener à des résultats inattendus. Néanmoins, grâce à l'habileté des céphalopodes en matière d'édition, la lecture de cet article ne manquera pas d'être intéressante.

 

Auteur: Internet

Info: https://www.sciencenews.org/article/octopus-squid-rna-editing-dna-cephalopods, Tina Hesman Saey, 19 may 2023

[ poulpes ] [ calamars ] [ homme-animal ]

 

Commentaires: 0

Ajouté à la BD par miguel