Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 25
Temps de recherche: 0.043s

USA

Le paysage médiatique en Amérique est dominé par les "fausses nouvelles". Depuis des décennies. Ces fausses nouvelles n’émanent pas du Kremlin. C’est une industrie de plusieurs milliards de dollars par an, qui est habilement conçue et gérée par des agences de relations publiques, des publicistes et des services de communications au nom d’individus précis, du gouvernement, et des sociétés pour manipuler l’opinion publique.
Cette industrie de la propagande met en scène des pseudo-événements pour façonner notre perception de la réalité. Le public est tellement inondé par ces mensonges, livrés 24 heures par jour à la radio, à la télévision et dans la presse écrite, que les téléspectateurs et les lecteurs ne peuvent plus distinguer entre la vérité et la fiction.
Donald Trump et les théoriciens racistes-conspirateurs, les généraux et les milliardaires autour de lui, ont hérité et exploité cette situation, tout comme ils ont hérité et exploiteront la destruction des libertés civiles et l’effondrement des institutions démocratiques. Trump n’a pas créé ce vide politique, moral et intellectuel. C’est l’inverse. Ce vide a créé un monde où les faits changent avec l’opinion, où les célébrités ont d’énormes mégaphones tout simplement parce que ce sont des célébrités, où l’information doit être divertissante et où nous avons la possibilité de croire ce que nous voulons, indépendamment de la vérité. Un démagogue comme Trump est le résultat que vous obtenez quand la culture et la presse tournent au burlesque.
Les journalistes ont depuis longtemps renoncé à décrire un monde objectif ou à donner la parole aux hommes et aux femmes ordinaires. Ils ont été conditionnés pour répondre aux demandes des entreprises. Les personnalités de l’actualité, qui gagnent souvent des millions de dollars par an, deviennent courtisanes. Elles vendent des commérages. Elles favorisent le consumérisme et l’impérialisme. Elles bavardent sans cesse au sujet des sondages, des stratégies, de la présentation et des tactiques ou jouent à des jeux de devinettes sur les rendez-vous présidentiels à venir. Elles comblent l’absence de nouvelles avec des histoires triviales, conduites émotionnellement, qui nous font sentir bien dans notre peau. Ils sont incapables de produire de véritables reportages. Elles s’appuient sur des propagandistes professionnels pour encadrer toute discussion et débat.
Il y a des journalistes établis qui ont passé toute leur carrière à reformuler des communiqués de presse ou à participer à des séances d’information officielles ou à des conférences de presse – j’en connaissais plusieurs lorsque j’étais au New York Times. Ils travaillent comme sténographes des puissants. Beaucoup de ces reporters sont très estimés dans la profession.
Les entreprises qui possèdent des médias, contrairement aux anciens empires de presse, voient les nouvelles comme simplement une autre source de revenus publicitaires. Ces revenus concourent au bénéfice de l’entreprise. Lorsque le secteur des nouvelles ne produit pas ce qui est considéré comme un profit suffisant, la hache tombe. Le contenu n’est pas pertinent. Les courtisans de la presse, redevables à leurs seigneurs dans l’entreprise, s’accrochent férocement à des places privilégiées et bien rémunérées. Parce qu’ils endossent servilement les intérêts du pouvoir des entreprises, ils sont haïs par les travailleurs américains, qu’ils ont rendus invisibles. Ils méritent la haine qu’ils suscitent.
La plupart des rubriques d’un journal – "style de vie", voyages, immobilier et mode, entre autres – sont conçues pour s’adresser au 1%. Ce sont des appâts pour la publicité. Seulement environ 15% de la surface rédactionnelle de n’importe quel journal est consacrée aux nouvelles. Si vous supprimez de ces 15% le contenu fourni par l’industrie des relations publiques à l’intérieur et à l’extérieur du gouvernement, le pourcentage de nouvelles tombe à un seul chiffre. Pour les nouvelles diffusées par les ondes et le câble, le pourcentage des nouvelles véritables, rapportées de façon indépendante, serait proche de zéro.
L’objet des fausses nouvelles est de façonner l’opinion publique, en créant des personnalités fantoches et des réponses émotionnelles qui submergent la réalité. Hillary Clinton, contrairement à la façon dont elle a souvent été dépeinte lors de la récente campagne présidentielle, n’a jamais combattu dans l’intérêt des femmes et des enfants – elle avait défendu la destruction d’un système d’aide sociale dans lequel 70% des bénéficiaires étaient des enfants. Elle est un outil des grandes banques, de Wall Street et de l’industrie de guerre. De pseudo-événements ont été créés pour maintenir la fiction de son souci pour les femmes et les enfants, de sa compassion et de ses liens avec les gens ordinaires. Trump n’a jamais été un grand homme d’affaires. Il a une longue histoire de faillites et de pratiques commerciales obscures. Mais il a joué le rôle fictif d’un titan de la finance dans son émission de télé-réalité, L’Apprenti.
"Les pseudo-événements qui inondent notre conscience ne sont ni vrais ni faux, dans le vieux sens familier", écrit Daniel Boorstin dans son livre L’image : un guide des pseudo-événements en Amérique : "Les mêmes progrès qui les ont rendues possibles, ont aussi rendu les images plus réalistes, plus attirantes, plus impressionnantes et plus convaincantes que la réalité elle-même, bien que planifiées, artificielles ou déformées."
La réalité est consciemment prémâchée en récits faciles à digérer. Ceux qui sont impliqués dans les relations publiques, les campagnes politiques et le gouvernement ressassent implacablement le message. Ils ne s’écartent pas du simple slogan criard ou du cliché qu’ils sont invités à répéter. C’est une espèce de conversation continue avec des bébés.
"Les raffinements de la raison et les nuances d’ombre de l’émotion ne peuvent pas atteindre un public considérable", a noté cyniquement Edward Bernays, le père des relations publiques modernes.
Le rythme trépidant et le format abrégé de la télévision excluent les complexités et les nuances. La télévision est manichéenne, bien et mal, noir et blanc, héros et méchant. Elle nous fait confondre les émotions induites avec la connaissance. Elle renforce le récit mythique de la vertu et de la bonté américaines. Elle rend hommage à des experts et spécialistes soigneusement sélectionnés par les élites du pouvoir et l’idéologie régnante. Elle discrédite ou ridiculise tous ceux qui s’opposent.
Le Parti démocrate est-il assez stupide pour croire qu’il a perdu l’élection présidentielle à cause des courriels fuités de John Podesta et de la décision du directeur du FBI, James Comey, peu de temps avant le vote, d’envoyer une lettre au Congrès à propos du serveur de messagerie privé de Clinton ? La direction du parti démocrate ne peut-elle pas voir que la cause première de la défaite est qu’elle a abandonné les travailleurs pour promouvoir les intérêts des entreprises ? Ne comprend-t’elle pas que, bien que ses mensonges et sa propagande aient fonctionné pendant trois décennies, les Démocrates ont fini par perdre leur crédibilité auprès de ceux qu’ils avaient trahis ?
L’indignation de l’establishment démocratique, au sujet de la fuite de courrier électronique vers le site de WikiLeaks, ignore le fait qu’une telle divulgation d’information dommageable est une tactique employée couramment par le gouvernement des États-Unis et d’autres, y compris la Russie, pour discréditer des individus et des entités. Cela fait partie intégrante de la presse. Personne, même au sein du parti démocrate, n’a fait valoir de façon convaincante que les emails de Podesta étaient fabriqués. Ces courriels sont réels. Ils ne peuvent pas être étiquetés fausses nouvelles.
En tant que correspondant à l’étranger, j’ai reçu régulièrement des informations divulguées, parfois confidentielles, de divers groupes ou gouvernements cherchant à endommager certaines cibles. L’agence de renseignement nationale d’Israël, le Mossad, m’avait parlé d’un petit aéroport appartenant au gouvernement iranien à l’extérieur de Hambourg, en Allemagne. Je suis allé à l’aéroport et j’ai publié une enquête qui a constaté que, comme les Israéliens m’en avaient correctement informé, l’Iran l’utilisait pour démonter du matériel nucléaire, l’expédier en Pologne, le remonter et l’envoyer vers l’Iran par avion. L’aéroport a été fermé après mon article.
Dans un autre cas, le gouvernement des États-Unis m’a remis des documents montrant qu’un membre important du parlement chypriote et son cabinet d’avocats blanchissaient de l’argent pour la mafia russe. Mon histoire a paralysé les affaires légitimes du cabinet d’avocats et a incité le politicien à poursuivre The New York Times et moi. Les avocats du journal ont choisi de contester la poursuite devant un tribunal chypriote, en disant qu’ils ne pouvaient pas obtenir un procès équitable là-bas. Ils m’ont dit que, pour éviter l’arrestation, je ne devais pas retourner à Chypre.
Je pourrais remplir plusieurs colonnes avec des exemples comme ceux-ci.
Les gouvernements n’organisent pas des fuites parce qu’ils se soucient de la démocratie ou d’une presse libre. Ils le font parce qu’il est dans leur intérêt de faire tomber quelqu’un ou quelque chose. Dans la plupart des cas, parce que le journaliste vérifie l’information divulguée, la nouvelle n’est pas un faux. C’est lorsque le journaliste ne vérifie pas l’information – comme ce fut le cas lorsque le New York Times a rapporté sans scrupule les accusations de l’administration Bush prétendant faussement que Saddam Hussein avait des armes de destruction massive en Irak – qu’il participe à la vaste industrie des fausses nouvelles.
De fausses nouvelles sont maintenant utilisées pour dépeindre des sites d’information indépendants, y compris Truthdig, et des journalistes indépendants, comme des informateurs ou des agents involontaires de la Russie. Les élites des partis républicain et démocrate utilisent des fausses nouvelles dans leur tentative pour présenter Trump comme une marionnette du Kremlin et invalider l’élection. Aucune preuve convaincante de telles accusations n’a été rendue publique. Mais la fausse nouvelle est devenue un bélier dans la dernière série de diffamations russophobes.
Dans une lettre à Truthdig, datée du 7 décembre, l’avocat du Washington Post (qui a publié un article le 24 novembre à propos d’allégations selon lesquelles Truthdig et quelque 200 autres sites Web étaient des outils de propagande russe), disait que l’auteur de l’article, Craig Timberg connaissait l’identité des accusateurs anonymes de PropOrNot, le groupe qui a fait les accusations. [Note de la rédaction de Truthdig : l’avocat a écrit, en partie, au sujet de l’article du 24 novembre et de PropOrNot, "La description de l’article repose sur des rapports substantiels de M. Timberg, y compris de nombreuses entrevues, des vérifications d’antécédents de personnes spécifiques impliquées dans le groupe (dont les identités étaient connues de Timberg, contrairement à vos spéculations). […]"]. Le Washington Post dit qu’il doit protéger l’anonymat de PropOrNot. Il a transmis une fausse accusation sans preuve. Les victimes, dans ce cas, ne peuvent pas répondre adéquatement, parce que les accusateurs sont anonymes. Ceux qui sont diffamés sont informés qu’ils devraient faire appel à PropOrNot pour obtenir que leurs noms soient retirés de la liste noire du groupe. Ce procédé de raisonnement circulaire donne de la crédibilité aux groupes anonymes qui établissent des listes noires et propagent des fausses nouvelles, ainsi qu’aux mensonges qu’ils répandent.
La transformation culturelle et sociale du XXe siècle, dont E.P. Thompson a parlé dans son essai Time, Work-Discipline, and Industrial Capitalism, s’est avérée être beaucoup plus que l’étreinte d’un système économique ou la célébration du patriotisme. Cela fait partie, a-t-il souligné, d’une réinterprétation révolutionnaire de la réalité. Elle marque l’ascendant de la culture de masse, la destruction de la culture authentique et de la véritable vie intellectuelle.
Richard Sennett, dans son livre The Fall of the Public Man, a identifié la montée de la culture de masse comme l’une des forces principales derrière ce qu’il a appelé une nouvelle "personnalité collective […] engendrée par un fantasme commun". Et les grands propagandistes du siècle sont non seulement d’accord, mais ajoutent que ceux qui peuvent manipuler et façonner ces fantasmes déterminent les directions prises par la "personnalité collective".
Cette énorme pression interne, cachée à la vue du public, rend la production d’un bon journalisme et d’une bonne érudition très, très difficile. Les journalistes et les universitaires qui se soucient de la vérité, et ne reculent pas, sont soumis à une coercition subtile, parfois ouverte, et sont souvent purgés des institutions.
Les images, qui sont le moyen par lequel la plupart des gens ingèrent maintenant les informations, sont particulièrement enclines à être transformées en fausses nouvelles. La langue, comme le remarque le critique culturel Neil Postman, "ne fait sens que lorsqu’elle est présentée comme une suite de propositions. La signification est déformée lorsqu’un mot ou une phrase est, comme on dit, pris hors contexte. Quand un lecteur ou un auditeur est privé de ce qui a été dit avant et après". Les images n’ont pas de contexte. Elles sont "visibles d’une manière différente". Les images, surtout lorsqu’elles sont livrées en segments longs et rapides, démembrent et déforment la réalité. Le procédé "recrée le monde dans une série d’événements idiosyncrasiques".
Michael Herr, qui a couvert la guerre du Vietnam pour le magazine Esquire, a observé que les images de la guerre présentées dans les photographies et à la télévision, à la différence du mot imprimé, obscurcissent la brutalité du conflit. "La télévision et les nouvelles ont toujours été présentées comme ayant mis fin à la guerre, a déclaré M. Herr. J’ai pensé le contraire. Ces images ont toujours été vues dans un autre contexte – intercalées entre les publicités – de sorte qu’elles sont devenues un entremet sucré dans l’esprit du public. Je pense que cette couverture a prolongé la guerre."
Une population qui a oublié l’imprimerie, bombardée par des images discordantes et aléatoires, est dépouillée du vocabulaire ainsi que du contexte historique et culturel permettant d’articuler la réalité. L’illusion est la vérité. Un tourbillon d’élans émotionnels fabriqués nourrit notre amnésie historique.
Internet a accéléré ce processus. Avec les nouvelles par câble, il a divisé le pays en clans antagonistes. Les membres d’un clan regardent les mêmes images et écoutent les mêmes récits, créant une réalité collective. Les fausses nouvelles abondent dans ces bidonvilles virtuels. Le dialogue est clos. La haine des clans opposés favorise une mentalité de troupeau. Ceux qui expriment de l’empathie pour l’ennemi sont dénoncés par leurs compagnons de route pour leur impureté supposée. C’est aussi vrai à gauche qu’à droite. Ces clans et leurs troupeaux, gavés régulièrement de fausses nouvelles conçues pour émouvoir, ont donné naissance à Trump.
Trump est habile à communiquer à travers l’image, les slogans tapageurs et le spectacle. Les fausses nouvelles, qui dominent déjà la presse écrite et la télévision, définiront les médias sous son administration. Ceux qui dénonceront les mensonges seront vilipendés et bannis. L’État dévoué aux grandes entreprises multinationales a créé cette machine monstrueuse de propagande et l’a léguée à Trump. Il l’utilisera.

Auteur: Hedges Chris

Info: Internet, Truthdig, 18 décembre 2016

[ Etats-Unis ] [ Russie ] [ vingt-et-unième siècle ]

 

Commentaires: 0

homme-machine

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

Quel film ces emojis décrivent-ils ? (On voit une vidéo qui présente des myriades d'émoji formant des motifs mouvants, modélisés à partir de métadonnées)

Cette question était l'une des 204 tâches choisies l'année dernière pour tester la capacité de divers grands modèles de langage (LLM) - les moteurs de calcul derrière les chatbots d'IA tels que ChatGPT. Les LLM les plus simples ont produit des réponses surréalistes. "Le film est un film sur un homme qui est un homme qui est un homme", commençait l'un d'entre eux. Les modèles de complexité moyenne s'en sont approchés, devinant The Emoji Movie. Mais le modèle le plus complexe l'a emporté en une seule réponse : Finding Nemo.

"Bien que j'essaie de m'attendre à des surprises, je suis surpris par ce que ces modèles peuvent faire", a déclaré Ethan Dyer, informaticien chez Google Research, qui a participé à l'organisation du test. C'est surprenant parce que ces modèles sont censés n'avoir qu'une seule directive : accepter une chaîne de texte en entrée et prédire ce qui va suivre, encore et encore, en se basant uniquement sur des statistiques. Les informaticiens s'attendaient à ce que le passage à l'échelle permette d'améliorer les performances sur des tâches connues, mais ils ne s'attendaient pas à ce que les modèles puissent soudainement gérer autant de tâches nouvelles et imprévisibles.

Des études récentes, comme celle à laquelle a participé M. Dyer, ont révélé que les LLM peuvent produire des centaines de capacités "émergentes", c'est-à-dire des tâches que les grands modèles peuvent accomplir et que les petits modèles ne peuvent pas réaliser, et dont beaucoup ne semblent pas avoir grand-chose à voir avec l'analyse d'un texte. Ces tâches vont de la multiplication à la génération d'un code informatique exécutable et, apparemment, au décodage de films à partir d'emojis. De nouvelles analyses suggèrent que pour certaines tâches et certains modèles, il existe un seuil de complexité au-delà duquel la fonctionnalité du modèle monte en flèche. (Elles suggèrent également un sombre revers de la médaille : À mesure qu'ils gagnent en complexité, certains modèles révèlent de nouveaux biais et inexactitudes dans leurs réponses).

"Le fait que les modèles de langage puissent faire ce genre de choses n'a jamais été abordé dans la littérature à ma connaissance", a déclaré Rishi Bommasani, informaticien à l'université de Stanford. L'année dernière, il a participé à la compilation d'une liste de dizaines de comportements émergents, dont plusieurs ont été identifiés dans le cadre du projet de M. Dyer. Cette liste continue de s'allonger.

Aujourd'hui, les chercheurs s'efforcent non seulement d'identifier d'autres capacités émergentes, mais aussi de comprendre pourquoi et comment elles se manifestent - en somme, d'essayer de prédire l'imprévisibilité. La compréhension de l'émergence pourrait apporter des réponses à des questions profondes concernant l'IA et l'apprentissage automatique en général, comme celle de savoir si les modèles complexes font vraiment quelque chose de nouveau ou s'ils deviennent simplement très bons en statistiques. Elle pourrait également aider les chercheurs à exploiter les avantages potentiels et à limiter les risques liés à l'émergence.

"Nous ne savons pas comment déterminer dans quel type d'application la capacité de nuisance va se manifester, que ce soit en douceur ou de manière imprévisible", a déclaré Deep Ganguli, informaticien à la startup d'IA Anthropic.

L'émergence de l'émergence

Les biologistes, les physiciens, les écologistes et d'autres scientifiques utilisent le terme "émergent" pour décrire l'auto-organisation, les comportements collectifs qui apparaissent lorsqu'un grand nombre d'éléments agissent comme un seul. Des combinaisons d'atomes sans vie donnent naissance à des cellules vivantes ; les molécules d'eau créent des vagues ; des murmurations d'étourneaux s'élancent dans le ciel selon des schémas changeants mais identifiables ; les cellules font bouger les muscles et battre les cœurs. Il est essentiel que les capacités émergentes se manifestent dans les systèmes qui comportent de nombreuses parties individuelles. Mais ce n'est que récemment que les chercheurs ont été en mesure de documenter ces capacités dans les LLM, car ces modèles ont atteint des tailles énormes.

Les modèles de langage existent depuis des décennies. Jusqu'à il y a environ cinq ans, les plus puissants étaient basés sur ce que l'on appelle un réseau neuronal récurrent. Ceux-ci prennent essentiellement une chaîne de texte et prédisent le mot suivant. Ce qui rend un modèle "récurrent", c'est qu'il apprend à partir de ses propres résultats : Ses prédictions sont réinjectées dans le réseau afin d'améliorer les performances futures.

En 2017, les chercheurs de Google Brain ont introduit un nouveau type d'architecture appelé "transformateur". Alors qu'un réseau récurrent analyse une phrase mot par mot, le transformateur traite tous les mots en même temps. Cela signifie que les transformateurs peuvent traiter de grandes quantités de texte en parallèle. 

Les transformateurs ont permis d'augmenter rapidement la complexité des modèles de langage en augmentant le nombre de paramètres dans le modèle, ainsi que d'autres facteurs. Les paramètres peuvent être considérés comme des connexions entre les mots, et les modèles s'améliorent en ajustant ces connexions au fur et à mesure qu'ils parcourent le texte pendant l'entraînement. Plus il y a de paramètres dans un modèle, plus il peut établir des connexions avec précision et plus il se rapproche d'une imitation satisfaisante du langage humain. Comme prévu, une analyse réalisée en 2020 par les chercheurs de l'OpenAI a montré que les modèles gagnent en précision et en capacité au fur et à mesure qu'ils s'étendent.

Mais les débuts des LLM ont également apporté quelque chose de vraiment inattendu. Beaucoup de choses. Avec l'avènement de modèles tels que le GPT-3, qui compte 175 milliards de paramètres, ou le PaLM de Google, qui peut être étendu à 540 milliards de paramètres, les utilisateurs ont commencé à décrire de plus en plus de comportements émergents. Un ingénieur de DeepMind a même rapporté avoir pu convaincre ChatGPT qu'il s'était lui-même un terminal Linux et l'avoir amené à exécuter un code mathématique simple pour calculer les 10 premiers nombres premiers. Fait remarquable, il a pu terminer la tâche plus rapidement que le même code exécuté sur une vraie machine Linux.

Comme dans le cas du film emoji, les chercheurs n'avaient aucune raison de penser qu'un modèle de langage conçu pour prédire du texte imiterait de manière convaincante un terminal d'ordinateur. Nombre de ces comportements émergents illustrent l'apprentissage "à zéro coup" ou "à quelques coups", qui décrit la capacité d'un LLM à résoudre des problèmes qu'il n'a jamais - ou rarement - vus auparavant. Selon M. Ganguli, il s'agit là d'un objectif de longue date dans la recherche sur l'intelligence artificielle. Le fait de montrer que le GPT-3 pouvait résoudre des problèmes sans aucune donnée d'entraînement explicite dans un contexte d'apprentissage à zéro coup m'a amené à abandonner ce que je faisais et à m'impliquer davantage", a-t-il déclaré.

Il n'était pas le seul. Une série de chercheurs, qui ont détecté les premiers indices montrant que les LLM pouvaient dépasser les contraintes de leurs données d'apprentissage, s'efforcent de mieux comprendre à quoi ressemble l'émergence et comment elle se produit. La première étape a consisté à documenter minutieusement l'émergence.

Au-delà de l'imitation

En 2020, M. Dyer et d'autres chercheurs de Google Research ont prédit que les LLM auraient des effets transformateurs, mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et variées afin de déterminer les limites extrêmes de ce qu'un LLM pourrait faire. Cet effort a été baptisé "Beyond the Imitation Game Benchmark" (BIG-bench), en référence au nom du "jeu d'imitation" d'Alan Turing, un test visant à déterminer si un ordinateur peut répondre à des questions d'une manière humaine convaincante. (Le groupe s'est particulièrement intéressé aux exemples où les LLM ont soudainement acquis de nouvelles capacités qui étaient totalement absentes auparavant.

"La façon dont nous comprenons ces transitions brutales est une grande question de la echerche", a déclaré M. Dyer.

Comme on pouvait s'y attendre, pour certaines tâches, les performances d'un modèle se sont améliorées de manière régulière et prévisible au fur et à mesure que la complexité augmentait. Pour d'autres tâches, l'augmentation du nombre de paramètres n'a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont constaté ce qu'ils ont appelé des "percées", c'est-à-dire des augmentations rapides et spectaculaires des performances à partir d'un certain seuil d'échelle. Ce seuil variant en fonction de la tâche et du modèle.

Par exemple, les modèles comportant relativement peu de paramètres - quelques millions seulement - n'ont pas réussi à résoudre des problèmes d'addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a grimpé en flèche dans certains modèles. Des sauts similaires ont été observés pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le décodage des lettres d'un mot, l'identification de contenu offensant dans des paragraphes d'hinglish (combinaison d'hindi et d'anglais) et la formulation d'équivalents en langue anglaise, traduit à partir de proverbes kiswahili.

Introduction

Mais les chercheurs se sont rapidement rendu compte que la complexité d'un modèle n'était pas le seul facteur déterminant. Des capacités inattendues pouvaient être obtenues à partir de modèles plus petits avec moins de paramètres - ou formés sur des ensembles de données plus petits - si les données étaient d'une qualité suffisamment élevée. En outre, la formulation d'une requête influe sur la précision de la réponse du modèle. Par exemple, lorsque Dyer et ses collègues ont posé la question de l'emoji de film en utilisant un format à choix multiples, l'amélioration de la précision a été moins soudaine qu'avec une augmentation graduelle de sa complexité. L'année dernière, dans un article présenté à NeurIPS, réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (capacité appelée raisonnement en chaîne) pouvait résoudre correctement un problème de mots mathématiques, alors que le même modèle sans cette invitation progressivement précisée n'y parvenait pas.

 Yi Tay, scientifique chez Google Brain qui a travaillé sur l'étude systématique de ces percées, souligne que des travaux récents suggèrent que l'incitation par de pareilles chaînes de pensées modifie les courbes d'échelle et, par conséquent, le point où l'émergence se produit. Dans leur article sur NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites via pareille chaines de pensée progressives pouvait susciter des comportements émergents qui n'avaient pas été identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d'expliquer son raisonnement, peuvent aider les chercheurs à commencer à étudier les raisons pour lesquelles l'émergence se produit.

Selon Ellie Pavlick, informaticienne à l'université Brown qui étudie les modèles computationnels du langage, les découvertes récentes de ce type suggèrent au moins deux possibilités pour expliquer l'émergence. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les grands modèles acquièrent réellement de nouvelles capacités de manière spontanée. "Il se peut très bien que le modèle apprenne quelque chose de fondamentalement nouveau et différent que lorsqu'il était de taille inférieure", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'il y ait un changement fondamental qui se produise lorsque les modèles sont mis à l'échelle.

L'autre possibilité, moins sensationnelle, est que ce qui semble être émergent pourrait être l'aboutissement d'un processus interne, basé sur les statistiques, qui fonctionne par le biais d'un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement être en train d'apprendre des heuristiques qui sont hors de portée pour ceux qui ont moins de paramètres ou des données de moindre qualité.

Mais, selon elle, pour déterminer laquelle de ces explications est la plus probable, il faut mieux comprendre le fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit.

Pouvoirs imprévisibles et pièges

Demander à ces modèles de s'expliquer pose un problème évident : Ils sont des menteurs notoires. Nous nous appuyons de plus en plus sur ces modèles pour effectuer des travaux de base", a déclaré M. Ganguli, "mais je ne me contente pas de leur faire confiance, je vérifie leur travail". Parmi les nombreux exemples amusants, Google a présenté en février son chatbot d'IA, Bard. Le billet de blog annonçant le nouvel outil montre Bard en train de commettre une erreur factuelle.

L'émergence mène à l'imprévisibilité, et l'imprévisibilité - qui semble augmenter avec l'échelle - rend difficile pour les chercheurs d'anticiper les conséquences d'une utilisation généralisée.

"Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés", a déclaré M. Ganguli. "Et pour étudier les phénomènes émergents, il faut avoir un cas en tête, et on ne sait pas, avant d'avoir étudié l'influence de l'échelle. quelles capacités ou limitations pourraient apparaître.

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont cherché à savoir si les modèles présentaient certains types de préjugés raciaux ou sociaux, à l'instar de ceux précédemment signalés dans les algorithmes non basés sur les LLM utilisés pour prédire quels anciens criminels sont susceptibles de commettre un nouveau délit. Cette étude a été inspirée par un paradoxe apparent directement lié à l'émergence : Lorsque les modèles améliorent leurs performances en passant à l'échelle supérieure, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des préjudices.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", explique M. Ganguli. Il se réfère à une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. "Les grands modèles deviennent brusquement plus biaisés. Si ce risque n'est pas pris en compte, il pourrait compromettre les sujets de ces modèles."

Mais il propose un contrepoint : Lorsque les chercheurs demandent simplement au modèle de ne pas se fier aux stéréotypes ou aux préjugés sociaux - littéralement en tapant ces instructions - le modèle devient moins biaisé dans ses prédictions et ses réponses. Ce qui suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a présenté un nouveau mode d'"autocorrection morale", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

Selon M. Ganguli, l'émergence révèle à la fois un potentiel surprenant et un risque imprévisible. Les applications de ces grands LLM prolifèrent déjà, de sorte qu'une meilleure compréhension de cette interaction permettra d'exploiter la diversité des capacités des modèles de langage.

"Nous étudions la manière dont les gens utilisent réellement ces systèmes", a déclaré M. Ganguli. Mais ces utilisateurs sont également en train de bricoler, en permanence. "Nous passons beaucoup de temps à discuter avec nos modèles, et c'est là que nous commençons à avoir une bonne intuition de la confiance ou du manque de confiance.

Auteur: Ornes Stephen

Info: https://www.quantamagazine.org/ - 16 mars 2023. Trad DeepL et MG

[ dialogue ] [ apprentissage automatique ] [ au-delà du jeu d'imitation ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel

Gaule 2023

Marianne : Comment avez-vous perçu le mouvement social de contestation à la réforme des retraites ?

E.T. :
 Je suis allé en manifestation. Du mouvement de contestation, j'ai constaté la masse, l’énergie, la jeunesse. Je tiens à dire ce que je pense de la responsabilité des uns et des autres concernant le désordre actuel, tout d'abord. Pour moi – je dis bien pour moi – mais ça sera aux juristes de trancher, il est clair qu'en faisant passer une réforme des retraites en loi de finances rectificative et par l'article 49.3, Emmanuel Macron et Élisabeth Borne sont sortis de la Constitution, du moins de l'esprit de la Constitution. Ce sera au Conseil constitutionnel de le dire. Mais il n'est pas certain que j'accepte l'avis du Conseil constitutionnel, s’il valide Macron-Borne.

J'ai vu les commentaires, le soir, sur BFM TV, LCI et d'autres, où l’on parlait de feux de poubelle. Pour moi, 100 % de la responsabilité de ces feux de poubelle incombe au président de la République française et la question de savoir si ce sont plus les black blocks ou les manifestants qui les ont allumés ne m'intéresse pas.

Pourquoi Emmanuel Macron entretiendrait-il ce désordre ?

Ce qui m'étonne le plus, moi, c'est que c'est un désordre qui ne sert à rien. En général, quand on gouverne par le désordre pour faire se lever le parti de l’ordre, c’est qu’on veut consolider un pouvoir fragile, ou bien pour reprendre le pouvoir. Mais Macron avait le pouvoir. La vérité de ce projet de réforme des retraites, en dehors du fait qu’il est injuste et incohérent, c’est qu’il est insignifiant et inutile par rapport aux problèmes réels de la société française.

Il y en a deux : la désindustrialisation et la chute du niveau de vie, liée à l’inflation. La question qui se pose et ce qu’il faut analyser vraiment, c’est la raison de cette mise en désordre de la France par son président, pour rien. Était-ce pour mener à bien un projet néolibéral, appelé "réformateur" ? Ou est-ce que c’est un problème lié à la personnalité de Macron lui-même ?

Commençons par l’hypothèse d’une réforme pensée comme juste par Macron. Vous la jugez néolibérale ?

La réalité du monde occidental, qui entre en guerre, c’est que le néolibéralisme, en tant qu’idéologie économiste active transformant la planète, est en train de mourir parce que ses effets ultimes se révèlent. La mortalité augmente aux États-Unis, et donc, logiquement, l’espérance de vie baisse. Les États-Unis ont perdu leur base industrielle, comme l’Angleterre. Le contexte historique général en ce moment, dans le monde américain, est plutôt aux réflexions sur le retour de l’État entrepreneur.

Macron avait pourtant engagé un tournant néo-protectionniste avec le Covid…

Non ! Je pense que Macron est néolibéral archaïque, et donc en grand état de déficit cognitif. Quand il parle de protectionnisme, il n’est même pas capable de dire s’il s’agit de protectionnisme national ou européen. Mais si tu ne fixes pas d’échelle, tu ne parles de rien. Quand il parle de réindustrialisation, il n’est pas capable de voir que la réindustrialisation implique deux actions simultanées. D’abord, l’investissement direct de l’État dans l’économie. C’est ça qui serait important actuellement, pas la réforme des retraites. Et puis des mesures de protection des secteurs qu’on refonde, par exemple dans les médicaments, dans la fabrication de tel ou tel bien essentiel à la sécurité informatique, alimentaire et énergétique de la France.

C’est d’ailleurs l’une des choses stupéfiantes dans ce débat sur les retraites : les politiques légifèrent – croient-ils – sur des perspectives à long terme d’équilibre. Ils spéculent sur des années de travail qui vont couvrir des décennies pour la plupart des gens, sans se poser la question de ce qui restera, non pas comme argent, comme signes monétaires, mais comme bien réels produits pour servir ces retraites en 2050 ou 2070.

Les retraites sont menacées, c’est vrai, mais par la désindustrialisation. Quel que soit le système comptable, si la France ne produit plus rien le niveau des retraites réelles de tout le monde va baisser. En dehors du fait qu'il a déjà commencé à baisser avec l'inflation.

Notre élite économique fait, selon vous, une fois de plus fausse route.

Notre président et les gens autour de lui, une sorte de pseudo-intelligentsia economico-politique, sont hors du monde. À une époque, on savait que pour faire la guerre, il fallait des biens industriels, des ingénieurs, des ouvriers. On redécouvre aujourd’hui à Washington et à Londres que tout ça n’existe plus assez ! Les faucons néoconservateurs croyaient qu’on pouvait faire la guerre à la Russie avec des soldats ukrainiens et à la Chine en prime, grâce au travail d’ouvriers… chinois ! La réalité du néolibéralisme, c'est qu’il a tout détruit au cœur même de son Empire. Le vrai nom du néolibéralisme, c'est "nihilisme économique". Je me souviens de phrases prophétiques de Margaret Thatcher disant "There is no such thing as society ", ou "There is no alternative" (TINA). Ces idioties ne sortent pas du libéralisme britannique, de John Locke ou d'Adam Smith, mais bien plutôt du nihilisme russe du XIXe siècle.

Cette réforme des retraites à contretemps est guidée par un phénomène d'inertie, au nom d’une idéologie qui est en train de mourir. Le discours néolibéral est un discours de la rationalité économique, un discours de la rationalité des marchés qui va permettre de produire, en théorie, plus d'efficacité. Je vais vous dire l’état de mes recherches sur le nihilisme néolibéral : cette passion de détruire les cadres de sécurité établis au cours des siècles par les religions, les États et les partis de gauche. Le nihilisme néolibéral détruit la fécondité du monde avancé, la possibilité même d’un futur. Et vous allez être fier de cette France dont les néolibéraux rient.

Vous faites partie de ceux qui voient dans les indices de fécondité l'avenir de l'Occident…

La vérité historique fondamentale actuelle, c’est que la rationalité individualiste pure détruit la capacité des populations à se reproduire et des sociétés à survivre. Pour faire des enfants, particulièrement dans les classes moyennes qui veulent pour eux des études longues, il faut l’aide de la collectivité, il faut se projeter dans un avenir qui ne peut apparaître suffisamment sûr que grâce à l’État. Il faut donc sortir de la rationalité économique à court terme. Sans oublier que décider d’avoir un enfant, ce n’est être ni rationnel, ni parfois même raisonnable, mais vivant. Je sais qu'il y a des gens qui s'inquiètent de l'augmentation de la population mondiale, mais moi, je suis inquiet de la sous-fécondité de toutes les régions "avancées". Même les États-Unis, même l'Angleterre, sont tombés à 1,6 enfant par femme. L’Allemagne est à 1,5, le Japon est à 1,3. La Corée, chouchou des majorettes intellectuelles du succès économique, le pays de Samsung et d'une globalisation économique assumée, est à 0,8. … Le plus efficace économiquement est le plus suicidaire.

C'est là que la France redevient vraiment intéressante. Elle a deux caractéristiques. C'est d’abord le pays qui fait le moins bien ses "réformes", qui refuse le plus le discours de la rationalité économique. Dont l'État n'est jamais dégrossi comme le rêvent les idéologues du marché. Mais c'est aussi le seul pays avancé qui garde une fécondité de 1,8. C'est le pays qui, en ne voulant pas toutes ces réformes, a refusé la destruction de certaines des structures de protection des individus et des familles qui permettent aux gens de se projeter dans le futur et d'avoir des enfants. Une retraite jeune, ce sont aussi des grands-pères et des grands-mères utilisables pour des gardes d’enfants ! Désolé d’apparaître en être humain plutôt qu’en économiste ! La grandeur de la France, c'est son refus de la rationalité économique, son refus de la réforme. Ce qui fait de la France un pays génial, c'est son irrationalité économique. On saura si Macron a réussi s'il arrive à faire baisser la natalité française au niveau anglo-américain, au-delà de son cas personnel de non-reproduction.

Comment ce dernier peut-il alors imposer une telle réforme si c'est contre l'intérêt du pays ?

Pourquoi un président de la République en si grand état de déficit cognitif peut-il imposer cette réforme injuste, inutile et incohérente par un coup de force institutionnel ou même un coup d’État ? Parce qu’il agit dans un système sociopolitique détraqué que je qualifierais même de pathologique. Il y avait une organisation de la République qui reposait sur une opposition de la droite et de la gauche, permise par un mode de scrutin adapté : le scrutin uninominal majoritaire à deux tours. Il faisait qu’au premier tour, on choisissait son parti de droite préféré, son parti de gauche préféré. Au deuxième tour, les deux camps se regroupaient et on avait une très belle élection.

Tout a été dévasté par la nouvelle stratification éducative de la France. La montée de l’éducation supérieure a produit une première division en deux de la société entre les gens qui ont fait des études et ceux qui n’en ont pas fait. C’est le modèle qui s’impose partout dans le monde développé. Mais il y a une autre dimension qui, il faut l’avouer, n’a pas grand-chose à voir : le vieillissement de la population et l’apparition d’une masse électorale âgée, qui établissent un troisième pôle, les vieux, dont je suis. Cette société stratifiée et vieillie a accouché de trois pôles politiques qui structurent le système. Je simplifie jusqu’à la caricature : 1) les éduqués supérieurs mal payés, plutôt jeunes ou actifs, se sont dirigés vers Mélenchon ou la Nupes ; 2) les moins éduqués mal payés, plutôt jeunes et actifs, vers le RN ; 3) les vieux, derrière Macron.

Ils sont les seuls à soutenir la réforme des retraites, d’ailleurs…

Ce système est dysfonctionnel, "détraqué", à cause de l’opposition viscérale entre les électorats contestataires de gauche et de droite, Nupes et RN. Ces deux électorats ont en commun leur niveau de vie, leur structure d’âge, mais sont séparés par l’éducation et par la question de la nation et de l’immigration. Cette fracture conduit à une incapacité des uns et des autres à se considérer comme mutuellement légitimes. Leur opposition permet à Macron et aux vieux de régner. Les retraités peuvent donc imposer une réforme des retraites qui ne les touche pas. Le problème, c’est qu’une démocratie ne peut fonctionner que si les gens opposés se considèrent comme certes différents, mais mutuellement légitimes.

La France vire-t-elle à la gérontocratie ?

On a enfermé les jeunes pour sauver les gens de ma génération. Comment la démocratie est-elle possible avec un corps électoral qui vieillit sans cesse ? Mais dénoncer un système gérontocratique ne suffit pas, d’un point de vue anthropologique en tout cas. Ce qu’il faut dénoncer, c’est une société qui ne peut survivre. Une société humaine ne peut pas se projeter dans l’avenir si on part du principe que les ressources doivent remonter vers les vieux plutôt que descendre vers les jeunes.

La question institutionnelle fondamentale, ce n’est pas tant le pouvoir disproportionné du président dans la conception de la Ve République, mais un système électoral inadapté dans un contexte où les deux forces d’opposition refusent d’exister l’une pour l’autre. Il y a deux solutions : la première est le passage au mode de scrutin proportionnel. Mais cela ne se produira pas car la gérontocratie en place a trop intérêt à ce que le système dysfonctionne. L’autre solution, c’est de trouver une voie politique qui permette le sauvetage de la démocratie : je propose un contrat à durée limitée réconciliant les électorats du Rassemblement national et de la Nupes pour établir le scrutin proportionnel.

Mais comment les réconcilier ?

Je considère vraiment que ce qui se passe est inquiétant. J’ai un peu de mal à imaginer que cela ne se termine pas mal. Il y a un élément d’urgence, et la simple menace de désistement implicite ou explicite entre les deux forces d’opposition calmerait beaucoup le jeu. Il ferait tomber le sentiment d’impunité de la bureaucratie qui nous gouverne.

Le problème fondamental n’est pas un problème entre appareils. Le problème fondamental est un problème de rejet pluriel. 1) L’électorat du Rassemblement national est installé dans son rejet de l’immigration, un concept qui mélange l’immigration réelle qui passe aujourd’hui la frontière et la descendance de l’immigration ancienne, les gosses d’origine maghrébine qui sont maintenant une fraction substantielle de la population française. 2) L’électorat de LFI et de la Nupes croit seulement exprimer un refus du racisme du RN mais il exprime aussi, à l’insu de son plein gré, un rejet culturel de l’électorat du RN. Il vit un désir à la Bourdieu de distinction. Simplifions, soyons brutal, il s’agit de sauver la République : il y a d’un côté une xénophobie ethnique et de l’autre une xénophobie sociale.

J’ai un peu de mal à imaginer que le sauvetage à court terme de la démocratie par l’établissement de la proportionnelle, via un accord à durée limitée entre Nupes et RN, puisse se passer d’un minimum de négociation sur la question du rapport à l’étranger. La seule négociation possible, la seule chose raisonnable d’ailleurs du point de vue de l’avenir du pays, c’est que les électeurs de la Nupes admettent que le contrôle des frontières est absolument légitime et que les gens du Rassemblement national admettent que les gens d’origine maghrébine en France sont des Français comme les autres. Sur cette base, à la fois très précise et qui admet du flou, on peut s’entendre.

Le contexte actuel reproduit-il celui de l’époque des Gilets jaunes ?

"La police tape pour Macron, mais vote pour Le Pen", disais-je en 2018 au moment des Gilets jaunes… Je m’inquiétais de la possibilité d’une collusion entre les forces de ce que j’appelais à l’époque l’aristocratie stato-financière et l’autoritarisme implicitement associé à la notion d’extrême droite. J’avançais le concept de macrolepénisme. Le Rassemblement national aujourd’hui est confronté à une ambivalence qu’il doit lever. Le contexte actuel reproduit le contexte de l’époque des Gilets jaunes, en effet : d’un côté le Rassemblement national passe des motions de censure contre la politique gouvernementale sur les retraites (et je trouve tout à fait immoral que LFI refuse de voter les motions du Rassemblement national sur ces questions), mais, d’un autre côté, c’est, comme d’habitude, la police qui cogne sur les manifestants, qui est utilisée par Macron, qui continue de voter à plus de 50 % pour le Rassemblement national ! J’ajoute que le choix par Marine Le Pen de l’opposition à la grève des éboueurs n’est pas de bon augure.

Le Rassemblement national ne peut pas rester dans cette ambiguïté : il suffirait d’un petit mot de modération de Marine Le Pen pour que le comportement de la police change. Ce que je dis est grave : en mode démocratique normal, une police doit obéir au ministre de l’Intérieur. Mais je ne vois pas pourquoi une police appliquerait aveuglément les consignes de violence d’un président qui est sorti de la Constitution. Nous avons besoin d’une réflexion approfondie des juristes. Il s’agit de protéger les institutions dans un contexte extrêmement bizarre. Le conflit entre jeunes manifestants et jeunes policiers nous ramène d’ailleurs à la question du rejet mutuel Nupes/RN. L’hostilité qu’encourage le gouvernement entre la police et les jeunes manifestants est une menace pour l’équilibre du pays. On ne peut pas vivre dans un pays avec deux jeunesses qui se tapent dessus. Il y a dans le style policier violent Macron-Borne-Darmanin quelque chose de pensé et de pervers.

Vous dites que la première raison de l’obstination du gouvernement pourrait venir de l’esprit de Macron directement…

J’ai parlé de système électoral, j’ai parlé de néolibéralisme. J’ai parlé du déficit cognitif néolibéral de Macron. Une autre chose doit être évoquée, non systémique, accidentelle, dont je n’aime pas parler mais dont on doit parler : une autre raison de la préférence de Macron pour le désordre et la violence est sans doute un problème de personnalité, un problème psychologique grave. Son rapport au réel n’est pas clair. On lui reproche de mépriser les gens ordinaires. Je le soupçonne de haïr les gens normaux. Son rapport à son enfance n’est pas clair. Parfois, il me fait penser à ces enfants excités qui cherchent la limite, qui attendent d’un adulte qu’il les arrête. Ce qui serait bien, ce serait que le peuple français devienne adulte et arrête l’enfant Macron.

La situation est extrêmement dangereuse parce que nous avons peut-être un président hors contrôle dans un système sociopolitique qui est devenu pathologique. Au-delà de toutes les théories, sophistiquées ou non, j’en appelle à tous les gens pacifiques, moraux et raisonnables, quel que soit leur niveau éducatif, leur richesse, leur âge, à tous les députés quel que soit leur parti, Renaissance compris, j’en appelle au Medef, aux pauvres, aux inspecteurs des finances, aux vieillards et aux oligarques de bonne volonté, pour qu’ils se donnent la main et remettent ce président sous contrôle. La France vaut mieux que ce bordel. 



 

Auteur: Todd Emmanuel

Info: Marianne.net, 5 mars 2023, Interview Par Etienne Campion

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

trickster

Les mondes multiples d'Hugh Everett

Il y a cinquante ans, Hugh Everett a conçu l'interprétation de la mécanique quantique en l'expliquant par des mondes multiples, théorie dans laquelle les effets quantiques engendrent d'innombrables branches de l'univers avec des événements différents dans chacune. La théorie semble être une hypothèse bizarre, mais Everett l'a déduite des mathématiques fondamentales de la mécanique quantique. Néanmoins, la plupart des physiciens de l'époque la rejetèrent, et il dût abréger sa thèse de doctorat sur le sujet pour éviter la controverse. Découragé, Everett quitta la physique et travailla sur les mathématiques et l'informatique militaires et industrielles. C'était un être émotionnellement renfermé et un grand buveur. Il est mort alors qu'il n'avait que 51 ans, et ne put donc pas voir le récent respect accordé à ses idées par les physiciens.

Hugh Everett III était un mathématicien brillant, théoricien quantique iconoclaste, puis ensuite entrepreneur prospère dans la défense militaire ayant accès aux secrets militaires les plus sensibles du pays. Il a introduit une nouvelle conception de la réalité dans la physique et a influencé le cours de l'histoire du monde à une époque où l'Armageddon nucléaire semblait imminent. Pour les amateurs de science-fiction, il reste un héros populaire : l'homme qui a inventé une théorie quantique des univers multiples. Pour ses enfants, il était quelqu'un d'autre : un père indisponible, "morceau de mobilier assis à la table de la salle à manger", cigarette à la main. Alcoolique aussi, et fumeur à la chaîne, qui mourut prématurément.

L'analyse révolutionnaire d'Everett a brisé une impasse théorique dans l'interprétation du "comment" de la mécanique quantique. Bien que l'idée des mondes multiples ne soit pas encore universellement acceptée aujourd'hui, ses méthodes de conception de la théorie présagèrent le concept de décohérence quantique - explication moderne du pourquoi et comment la bizarrerie probabiliste de la mécanique quantique peut se résoudre dans le monde concret de notre expérience. Le travail d'Everett est bien connu dans les milieux de la physique et de la philosophie, mais l'histoire de sa découverte et du reste de sa vie l'est relativement moins. Les recherches archivistiques de l'historien russe Eugène Shikhovtsev, de moi-même et d'autres, ainsi que les entretiens que j'ai menés avec les collègues et amis du scientifique décédé, ainsi qu'avec son fils musicien de rock, révèlent l'histoire d'une intelligence radieuse éteinte trop tôt par des démons personnels.

Le voyage scientifique d'Everett commença une nuit de 1954, raconte-t-il deux décennies plus tard, "après une gorgée ou deux de sherry". Lui et son camarade de classe de Princeton Charles Misner et un visiteur nommé Aage Petersen (alors assistant de Niels Bohr) pensaient "des choses ridicules sur les implications de la mécanique quantique". Au cours de cette session Everett eut l'idée de base fondant la théorie des mondes multiples, et dans les semaines qui suivirent, il commença à la développer dans un mémoire. L'idée centrale était d'interpréter ce que les équations de la mécanique quantique représentent dans le monde réel en faisant en sorte que les mathématiques de la théorie elle-même montrent le chemin plutôt qu'en ajoutant des hypothèses d'interprétation aux mathématiques existantes sur le sujet. De cette façon, le jeune homme a mis au défi l'establishment physique de l'époque en reconsidérant sa notion fondamentale de ce qui constitue la réalité physique. En poursuivant cette entreprise, Everett s'attaqua avec audace au problème notoire de la mesure en mécanique quantique, qui accablait les physiciens depuis les années 1920.

En résumé, le problème vient d'une contradiction entre la façon dont les particules élémentaires (comme les électrons et les photons) interagissent au niveau microscopique quantique de la réalité et ce qui se passe lorsque les particules sont mesurées à partir du niveau macroscopique classique. Dans le monde quantique, une particule élémentaire, ou une collection de telles particules, peut exister dans une superposition de deux ou plusieurs états possibles. Un électron, par exemple, peut se trouver dans une superposition d'emplacements, de vitesses et d'orientations différentes de sa rotation. Pourtant, chaque fois que les scientifiques mesurent l'une de ces propriétés avec précision, ils obtiennent un résultat précis - juste un des éléments de la superposition, et non une combinaison des deux. Nous ne voyons jamais non plus d'objets macroscopiques en superposition. Le problème de la mesure se résume à cette question : Comment et pourquoi le monde unique de notre expérience émerge-t-il des multiples alternatives disponibles dans le monde quantique superposé ? Les physiciens utilisent des entités mathématiques appelées fonctions d'onde pour représenter les états quantiques. Une fonction d'onde peut être considérée comme une liste de toutes les configurations possibles d'un système quantique superposé, avec des nombres qui donnent la probabilité que chaque configuration soit celle, apparemment choisie au hasard, que nous allons détecter si nous mesurons le système. La fonction d'onde traite chaque élément de la superposition comme étant également réel, sinon nécessairement également probable de notre point de vue. L'équation de Schrödinger décrit comment la fonction ondulatoire d'un système quantique changera au fil du temps, une évolution qu'elle prédit comme lisse et déterministe (c'est-à-dire sans caractère aléatoire).

Mais cette élégante mathématique semble contredire ce qui se passe lorsque les humains observent un système quantique, tel qu'un électron, avec un instrument scientifique (qui lui-même peut être considéré comme un système quantique). Car au moment de la mesure, la fonction d'onde décrivant la superposition d'alternatives semble s'effondrer en un unique membre de la superposition, interrompant ainsi l'évolution en douceur de la fonction d'onde et introduisant la discontinuité. Un seul résultat de mesure émerge, bannissant toutes les autres possibilités de la réalité décrite de manière classique. Le choix de l'alternative produite au moment de la mesure semble arbitraire ; sa sélection n'évolue pas logiquement à partir de la fonction d'onde chargée d'informations de l'électron avant la mesure. Les mathématiques de l'effondrement n'émergent pas non plus du flux continu de l'équation de Schrödinger. En fait, l'effondrement (discontinuité) doit être ajouté comme un postulat, comme un processus supplémentaire qui semble violer l'équation.

De nombreux fondateurs de la mécanique quantique, notamment Bohr, Werner Heisenberg et John von Neumann, se sont mis d'accord sur une interprétation de la mécanique quantique - connue sous le nom d'interprétation de Copenhague - pour traiter le problème des mesures. Ce modèle de réalité postule que la mécanique du monde quantique se réduit à des phénomènes observables de façon classique et ne trouve son sens qu'en termes de phénomènes observables, et non l'inverse. Cette approche privilégie l'observateur externe, le plaçant dans un domaine classique distinct du domaine quantique de l'objet observé. Bien qu'incapables d'expliquer la nature de la frontière entre le domaine quantique et le domaine classique, les Copenhagueistes ont néanmoins utilisé la mécanique quantique avec un grand succès technique. Des générations entières de physiciens ont appris que les équations de la mécanique quantique ne fonctionnent que dans une partie de la réalité, la microscopique, et cessent d'être pertinentes dans une autre, la macroscopique. C'est tout ce dont la plupart des physiciens ont besoin.

Fonction d'onde universelle. Par fort effet contraire, Everett s'attaqua au problème de la mesure en fusionnant les mondes microscopique et macroscopique. Il fit de l'observateur une partie intégrante du système observé, introduisant une fonction d'onde universelle qui relie les observateurs et les objets dans un système quantique unique. Il décrivit le monde macroscopique en mécanique quantique imaginant que les grands objets existent également en superpositions quantiques. Rompant avec Bohr et Heisenberg, il n'avait pas besoin de la discontinuité d'un effondrement de la fonction ondulatoire. L'idée radicalement nouvelle d'Everett était de se demander : Et si l'évolution continue d'une fonction d'onde n'était pas interrompue par des actes de mesure ? Et si l'équation de Schrödinger s'appliquait toujours et s'appliquait aussi bien à tous les objets qu'aux observateurs ? Et si aucun élément de superposition n'est jamais banni de la réalité ? A quoi ressemblerait un tel monde pour nous ? Everett constata, selon ces hypothèses, que la fonction d'onde d'un observateur devrait, en fait, bifurquer à chaque interaction de l'observateur avec un objet superposé. La fonction d'onde universelle contiendrait des branches pour chaque alternative constituant la superposition de l'objet. Chaque branche ayant sa propre copie de l'observateur, copie qui percevait une de ces alternatives comme le résultat. Selon une propriété mathématique fondamentale de l'équation de Schrödinger, une fois formées, les branches ne s'influencent pas mutuellement. Ainsi, chaque branche se lance dans un avenir différent, indépendamment des autres. Prenons l'exemple d'une personne qui mesure une particule qui se trouve dans une superposition de deux états, comme un électron dans une superposition de l'emplacement A et de l'emplacement B. Dans une branche, la personne perçoit que l'électron est à A. Dans une branche presque identique, une copie de la personne perçoit que le même électron est à B. Chaque copie de la personne se perçoit comme unique et considère que la chance lui a donné une réalité dans un menu des possibilités physiques, même si, en pleine réalité, chaque alternative sur le menu se réalise.

Expliquer comment nous percevons un tel univers exige de mettre un observateur dans l'image. Mais le processus de ramification se produit indépendamment de la présence ou non d'un être humain. En général, à chaque interaction entre systèmes physiques, la fonction d'onde totale des systèmes combinés aurait tendance à bifurquer de cette façon. Aujourd'hui, la compréhension de la façon dont les branches deviennent indépendantes et ressemblent à la réalité classique à laquelle nous sommes habitués est connue sous le nom de théorie de la décohérence. C'est une partie acceptée de la théorie quantique moderne standard, bien que tout le monde ne soit pas d'accord avec l'interprétation d'Everett comme quoi toutes les branches représentent des réalités qui existent. Everett n'a pas été le premier physicien à critiquer le postulat de l'effondrement de Copenhague comme inadéquat. Mais il a innové en élaborant une théorie mathématiquement cohérente d'une fonction d'onde universelle à partir des équations de la mécanique quantique elle-même. L'existence d'univers multiples a émergé comme une conséquence de sa théorie, pas par un prédicat. Dans une note de bas de page de sa thèse, Everett écrit : "Du point de vue de la théorie, tous les éléments d'une superposition (toutes les "branches") sont "réels", aucun n'est plus "réel" que les autres. Le projet contenant toutes ces idées provoqua de remarquables conflits dans les coulisses, mis au jour il y a environ cinq ans par Olival Freire Jr, historien des sciences à l'Université fédérale de Bahia au Brésil, dans le cadre de recherches archivistiques.

Au printemps de 1956 le conseiller académique à Princeton d'Everett, John Archibald Wheeler, prit avec lui le projet de thèse à Copenhague pour convaincre l'Académie royale danoise des sciences et lettres de le publier. Il écrivit à Everett qu'il avait eu "trois longues et fortes discussions à ce sujet" avec Bohr et Petersen. Wheeler partagea également le travail de son élève avec plusieurs autres physiciens de l'Institut de physique théorique de Bohr, dont Alexander W. Stern. Scindages La lettre de Wheeler à Everett disait en autre : "Votre beau formalisme de la fonction ondulatoire reste bien sûr inébranlable ; mais nous sentons tous que la vraie question est celle des mots qui doivent être attachés aux quantités de ce formalisme". D'une part, Wheeler était troublé par l'utilisation par Everett d'humains et de boulets de canon "scindés" comme métaphores scientifiques. Sa lettre révélait l'inconfort des Copenhagueistes quant à la signification de l'œuvre d'Everett. Stern rejeta la théorie d'Everett comme "théologique", et Wheeler lui-même était réticent à contester Bohr. Dans une longue lettre politique adressée à Stern, il explique et défend la théorie d'Everett comme une extension, non comme une réfutation, de l'interprétation dominante de la mécanique quantique : "Je pense que je peux dire que ce jeune homme très fin, capable et indépendant d'esprit en est venu progressivement à accepter l'approche actuelle du problème de la mesure comme correcte et cohérente avec elle-même, malgré quelques traces qui subsistent dans le présent projet de thèse d'une attitude douteuse envers le passé. Donc, pour éviter tout malentendu possible, permettez-moi de dire que la thèse d'Everett ne vise pas à remettre en question l'approche actuelle du problème de la mesure, mais à l'accepter et à la généraliser."

Everett aurait été en total désaccord avec la description que Wheeler a faite de son opinion sur l'interprétation de Copenhague. Par exemple, un an plus tard, en réponse aux critiques de Bryce S. DeWitt, rédacteur en chef de la revue Reviews of Modern Physics, il écrivit : "L'Interprétation de Copenhague est désespérément incomplète en raison de son recours a priori à la physique classique... ainsi que d'une monstruosité philosophique avec un concept de "réalité" pour le monde macroscopique qui ne marche pas avec le microcosme." Pendant que Wheeler était en Europe pour plaider sa cause, Everett risquait alors de perdre son permis de séjour étudiant qui avait été suspendu. Pour éviter d'aller vers des mesures disciplinaires, il décida d'accepter un poste de chercheur au Pentagone. Il déménagea dans la région de Washington, D.C., et ne revint jamais à la physique théorique. Au cours de l'année suivante, cependant, il communiqua à distance avec Wheeler alors qu'il avait réduit à contrecœur sa thèse au quart de sa longueur d'origine. En avril 1957, le comité de thèse d'Everett accepta la version abrégée - sans les "scindages". Trois mois plus tard, Reviews of Modern Physics publiait la version abrégée, intitulée "Relative State' Formulation of Quantum Mechanics".("Formulation d'état relatif de la mécanique quantique.") Dans le même numéro, un document d'accompagnement de Wheeler loue la découverte de son élève. Quand le papier parut sous forme imprimée, il passa instantanément dans l'obscurité.

Wheeler s'éloigna progressivement de son association avec la théorie d'Everett, mais il resta en contact avec le théoricien, l'encourageant, en vain, à faire plus de travail en mécanique quantique. Dans une entrevue accordée l'an dernier, Wheeler, alors âgé de 95 ans, a déclaré qu' "Everett était déçu, peut-être amer, devant les non réactions à sa théorie. Combien j'aurais aimé continuer les séances avec lui. Les questions qu'il a soulevées étaient importantes." Stratégies militaires nucléaires Princeton décerna son doctorat à Everett près d'un an après qu'il ait commencé son premier projet pour le Pentagone : le calcul des taux de mortalité potentiels des retombées radioactives d'une guerre nucléaire. Rapidement il dirigea la division des mathématiques du Groupe d'évaluation des systèmes d'armes (WSEG) du Pentagone, un groupe presque invisible mais extrêmement influent. Everett conseillait de hauts responsables des administrations Eisenhower et Kennedy sur les meilleures méthodes de sélection des cibles de bombes à hydrogène et de structuration de la triade nucléaire de bombardiers, de sous-marins et de missiles pour un impact optimal dans une frappe nucléaire. En 1960, participa à la rédaction du WSEG n° 50, un rapport qui reste classé à ce jour. Selon l'ami d'Everett et collègue du WSEG, George E. Pugh, ainsi que des historiens, le WSEG no 50 a rationalisé et promu des stratégies militaires qui ont fonctionné pendant des décennies, notamment le concept de destruction mutuelle assurée. Le WSEG a fourni aux responsables politiques de la guerre nucléaire suffisamment d'informations effrayantes sur les effets mondiaux des retombées radioactives pour que beaucoup soient convaincus du bien-fondé d'une impasse perpétuelle, au lieu de lancer, comme le préconisaient certains puissants, des premières attaques préventives contre l'Union soviétique, la Chine et d'autres pays communistes.

Un dernier chapitre de la lutte pour la théorie d'Everett se joua également dans cette période. Au printemps 1959, Bohr accorda à Everett une interview à Copenhague. Ils se réunirent plusieurs fois au cours d'une période de six semaines, mais avec peu d'effet : Bohr ne changea pas sa position, et Everett n'est pas revenu à la recherche en physique quantique. L'excursion n'avait pas été un échec complet, cependant. Un après-midi, alors qu'il buvait une bière à l'hôtel Østerport, Everett écrivit sur un papier à l'en-tête de l'hôtel un raffinement important de cet autre tour de force mathématique qui a fait sa renommée, la méthode généralisée du multiplicateur de Lagrange, aussi connue sous le nom d'algorithme Everett. Cette méthode simplifie la recherche de solutions optimales à des problèmes logistiques complexes, allant du déploiement d'armes nucléaires aux horaires de production industrielle juste à temps en passant par l'acheminement des autobus pour maximiser la déségrégation des districts scolaires. En 1964, Everett, Pugh et plusieurs autres collègues du WSEG ont fondé une société de défense privée, Lambda Corporation. Entre autres activités, il a conçu des modèles mathématiques de systèmes de missiles anti-missiles balistiques et de jeux de guerre nucléaire informatisés qui, selon Pugh, ont été utilisés par l'armée pendant des années. Everett s'est épris de l'invention d'applications pour le théorème de Bayes, une méthode mathématique de corrélation des probabilités des événements futurs avec l'expérience passée. En 1971, Everett a construit un prototype de machine bayésienne, un programme informatique qui apprend de l'expérience et simplifie la prise de décision en déduisant les résultats probables, un peu comme la faculté humaine du bon sens. Sous contrat avec le Pentagone, le Lambda a utilisé la méthode bayésienne pour inventer des techniques de suivi des trajectoires des missiles balistiques entrants. En 1973, Everett quitte Lambda et fonde une société de traitement de données, DBS, avec son collègue Lambda Donald Reisler. Le DBS a fait des recherches sur les applications des armes, mais s'est spécialisée dans l'analyse des effets socio-économiques des programmes d'action sociale du gouvernement. Lorsqu'ils se sont rencontrés pour la première fois, se souvient M. Reisler, Everett lui a demandé timidement s'il avait déjà lu son journal de 1957. J'ai réfléchi un instant et j'ai répondu : "Oh, mon Dieu, tu es cet Everett, le fou qui a écrit ce papier dingue", dit Reisler. "Je l'avais lu à l'université et avais gloussé, le rejetant d'emblée." Les deux sont devenus des amis proches mais convinrent de ne plus parler d'univers multiples.

Malgré tous ces succès, la vie d'Everett fut gâchée de bien des façons. Il avait une réputation de buveur, et ses amis disent que le problème semblait s'aggraver avec le temps. Selon Reisler, son partenaire aimait habituellement déjeuner avec trois martinis, dormant dans son bureau, même s'il réussissait quand même à être productif. Pourtant, son hédonisme ne reflétait pas une attitude détendue et enjouée envers la vie. "Ce n'était pas quelqu'un de sympathique", dit Reisler. "Il apportait une logique froide et brutale à l'étude des choses... Les droits civils n'avaient aucun sens pour lui." John Y. Barry, ancien collègue d'Everett au WSEG, a également remis en question son éthique. Au milieu des années 1970, Barry avait convaincu ses employeurs chez J. P. Morgan d'embaucher Everett pour mettre au point une méthode bayésienne de prévision de l'évolution du marché boursier. Selon plusieurs témoignages, Everett avait réussi, puis il refusa de remettre le produit à J. P. Morgan. "Il s'est servi de nous", se souvient Barry. "C'était un individu brillant, innovateur, insaisissable, indigne de confiance, probablement alcoolique." Everett était égocentrique. "Hugh aimait épouser une forme de solipsisme extrême", dit Elaine Tsiang, ancienne employée de DBS. "Bien qu'il eut peine à éloigner sa théorie [des monde multiples] de toute théorie de l'esprit ou de la conscience, il est évident que nous devions tous notre existence par rapport au monde qu'il avait fait naître." Et il connaissait à peine ses enfants, Elizabeth et Mark. Alors qu'Everett poursuivait sa carrière d'entrepreneur, le monde de la physique commençait à jeter un regard critique sur sa théorie autrefois ignorée. DeWitt pivota d'environ 180 degrés et devint son défenseur le plus dévoué. En 1967, il écrivit un article présentant l'équation de Wheeler-DeWitt : une fonction d'onde universelle qu'une théorie de la gravité quantique devrait satisfaire. Il attribue à Everett le mérite d'avoir démontré la nécessité d'une telle approche. DeWitt et son étudiant diplômé Neill Graham ont ensuite publié un livre de physique, The Many-Worlds Interpretation of Quantum Mechanics, qui contenait la version non informatisée de la thèse d'Everett. L'épigramme "mondes multiples" se répandit rapidement, popularisée dans le magazine de science-fiction Analog en 1976. Toutefois, tout le monde n'est pas d'accord sur le fait que l'interprétation de Copenhague doive céder le pas. N. David Mermin, physicien de l'Université Cornell, soutient que l'interprétation d'Everett traite la fonction des ondes comme faisant partie du monde objectivement réel, alors qu'il la considère simplement comme un outil mathématique. "Une fonction d'onde est une construction humaine", dit Mermin. "Son but est de nous permettre de donner un sens à nos observations macroscopiques. Mon point de vue est exactement le contraire de l'interprétation des mondes multiples. La mécanique quantique est un dispositif qui nous permet de rendre nos observations cohérentes et de dire que nous sommes à l'intérieur de la mécanique quantique et que la mécanique quantique doive s'appliquer à nos perceptions est incohérent." Mais de nombreux physiciens avancent que la théorie d'Everett devrait être prise au sérieux. "Quand j'ai entendu parler de l'interprétation d'Everett à la fin des années 1970, dit Stephen Shenker, physicien théoricien à l'Université Stanford, j'ai trouvé cela un peu fou. Maintenant, la plupart des gens que je connais qui pensent à la théorie des cordes et à la cosmologie quantique pensent à quelque chose qui ressemble à une interprétation à la Everett. Et à cause des récents développements en informatique quantique, ces questions ne sont plus académiques."

Un des pionniers de la décohérence, Wojciech H. Zurek, chercheur au Los Alamos National Laboratory, a commente que "l'accomplissement d'Everett fut d'insister pour que la théorie quantique soit universelle, qu'il n'y ait pas de division de l'univers entre ce qui est a priori classique et ce qui est a priori du quantum. Il nous a tous donné un ticket pour utiliser la théorie quantique comme nous l'utilisons maintenant pour décrire la mesure dans son ensemble." Le théoricien des cordes Juan Maldacena de l'Institute for Advanced Study de Princeton, N.J., reflète une attitude commune parmi ses collègues : "Quand je pense à la théorie d'Everett en mécanique quantique, c'est la chose la plus raisonnable à croire. Dans la vie de tous les jours, je n'y crois pas."

En 1977, DeWitt et Wheeler invitèrent Everett, qui détestait parler en public, à faire une présentation sur son interprétation à l'Université du Texas à Austin. Il portait un costume noir froissé et fuma à la chaîne pendant tout le séminaire. David Deutsch, maintenant à l'Université d'Oxford et l'un des fondateurs du domaine de l'informatique quantique (lui-même inspiré par la théorie d'Everett), était là. "Everett était en avance sur son temps", dit Deutsch en résumant la contribution d'Everett. "Il représente le refus de renoncer à une explication objective. L'abdication de la finalité originelle de ces domaines, à savoir expliquer le monde, a fait beaucoup de tort au progrès de la physique et de la philosophie. Nous nous sommes irrémédiablement enlisés dans les formalismes, et les choses ont été considérées comme des progrès qui ne sont pas explicatifs, et le vide a été comblé par le mysticisme, la religion et toutes sortes de détritus. Everett est important parce qu'il s'y est opposé." Après la visite au Texas, Wheeler essaya de mettre Everett en contact avec l'Institute for Theoretical Physics à Santa Barbara, Californie. Everett aurait été intéressé, mais le plan n'a rien donné. Totalité de l'expérience Everett est mort dans son lit le 19 juillet 1982. Il n'avait que 51 ans.

Son fils, Mark, alors adolescent, se souvient avoir trouvé le corps sans vie de son père ce matin-là. Sentant le corps froid, Mark s'est rendu compte qu'il n'avait aucun souvenir d'avoir jamais touché son père auparavant. "Je ne savais pas quoi penser du fait que mon père venait de mourir, m'a-t-il dit. "Je n'avais pas vraiment de relation avec lui." Peu de temps après, Mark a déménagé à Los Angeles. Il est devenu un auteur-compositeur à succès et chanteur principal d'un groupe de rock populaire, Eels. Beaucoup de ses chansons expriment la tristesse qu'il a vécue en tant que fils d'un homme déprimé, alcoolique et détaché émotionnellement. Ce n'est que des années après la mort de son père que Mark a appris l'existence de la carrière et des réalisations de son père. La sœur de Mark, Elizabeth, fit la première d'une série de tentatives de suicide en juin 1982, un mois seulement avant la mort d'Everett. Mark la trouva inconsciente sur le sol de la salle de bain et l'amena à l'hôpital juste à temps. Quand il rentra chez lui plus tard dans la soirée, se souvient-il, son père "leva les yeux de son journal et dit : Je ne savais pas qu'elle était si triste."" En 1996, Elizabeth se suicida avec une overdose de somnifères, laissant une note dans son sac à main disant qu'elle allait rejoindre son père dans un autre univers. Dans une chanson de 2005, "Things the Grandchildren Should Know", Mark a écrit : "Je n'ai jamais vraiment compris ce que cela devait être pour lui de vivre dans sa tête". Son père solipsistiquement incliné aurait compris ce dilemme. "Une fois que nous avons admis que toute théorie physique n'est essentiellement qu'un modèle pour le monde de l'expérience, conclut Everett dans la version inédite de sa thèse, nous devons renoncer à tout espoir de trouver quelque chose comme la théorie correcte... simplement parce que la totalité de l'expérience ne nous est jamais accessible."

Auteur: Byrne Peter

Info: 21 octobre 2008, https://www.scientificamerican.com/article/hugh-everett-biography/. Publié à l'origine dans le numéro de décembre 2007 de Scientific American

[ légende de la physique théorique ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

palier cognitif

Des physiciens observent une transition de phase quantique "inobservable"

Mesure et l'intrication ont toutes deux une saveur non locale "étrange". Aujourd'hui, les physiciens exploitent cette nonlocalité pour sonder la diffusion de l'information quantique et la contrôler.

La mesure est l'ennemi de l'intrication. Alors que l'intrication se propage à travers une grille de particules quantiques - comme le montre cette simulation - que se passerait-il si l'on mesurait certaines des particules ici et là ? Quel phénomène triompherait ?

En 1935, Albert Einstein et Erwin Schrödinger, deux des physiciens les plus éminents de l'époque, se disputent sur la nature de la réalité.

Einstein avait fait des calculs et savait que l'univers devait être local, c'est-à-dire qu'aucun événement survenant à un endroit donné ne pouvait affecter instantanément un endroit éloigné. Mais Schrödinger avait fait ses propres calculs et savait qu'au cœur de la mécanique quantique se trouvait une étrange connexion qu'il baptisa "intrication" et qui semblait remettre en cause l'hypothèse de localité d'Einstein.

Lorsque deux particules sont intriquées, ce qui peut se produire lors d'une collision, leurs destins sont liés. En mesurant l'orientation d'une particule, par exemple, on peut apprendre que sa partenaire intriquée (si et quand elle est mesurée) pointe dans la direction opposée, quel que soit l'endroit où elle se trouve. Ainsi, une mesure effectuée à Pékin pourrait sembler affecter instantanément une expérience menée à Brooklyn, violant apparemment l'édit d'Einstein selon lequel aucune influence ne peut voyager plus vite que la lumière.

Einstein n'appréciait pas la portée de l'intrication (qu'il qualifiera plus tard d'"étrange") et critiqua la théorie de la mécanique quantique, alors naissante, comme étant nécessairement incomplète. Schrödinger défendit à son tour la théorie, dont il avait été l'un des pionniers. Mais il comprenait le dégoût d'Einstein pour l'intrication. Il admit que la façon dont elle semble permettre à un expérimentateur de "piloter" une expérience autrement inaccessible est "plutôt gênante".

Depuis, les physiciens se sont largement débarrassés de cette gêne. Ils comprennent aujourd'hui ce qu'Einstein, et peut-être Schrödinger lui-même, avaient négligé : l'intrication n'a pas d'influence à distance. Elle n'a pas le pouvoir de provoquer un résultat spécifique à distance ; elle ne peut distribuer que la connaissance de ce résultat. Les expériences sur l'intrication, telles que celles qui ont remporté le prix Nobel en 2022, sont maintenant devenues monnaie courante.

Au cours des dernières années, une multitude de recherches théoriques et expérimentales ont permis de découvrir une nouvelle facette du phénomène, qui se manifeste non pas par paires, mais par constellations de particules. L'intrication se propage naturellement dans un groupe de particules, établissant un réseau complexe de contingences. Mais si l'on mesure les particules suffisamment souvent, en détruisant l'intrication au passage, il est possible d'empêcher la formation du réseau. En 2018, trois groupes de théoriciens ont montré que ces deux états - réseau ou absence de réseau - rappellent des états familiers de la matière tels que le liquide et le solide. Mais au lieu de marquer une transition entre différentes structures de la matière, le passage entre la toile et l'absence de toile indique un changement dans la structure de l'information.

"Il s'agit d'une transition de phase dans l'information", explique Brian Skinner, de l'université de l'État de l'Ohio, l'un des physiciens qui a identifié le phénomène en premier. "Les propriétés de l'information, c'est-à-dire la manière dont l'information est partagée entre les choses, subissent un changement très brutal.

Plus récemment, un autre trio d'équipes a tenté d'observer cette transition de phase en action. Elles ont réalisé une série de méta-expériences pour mesurer comment les mesures elles-mêmes affectent le flux d'informations. Dans ces expériences, ils ont utilisé des ordinateurs quantiques pour confirmer qu'il est possible d'atteindre un équilibre délicat entre les effets concurrents de l'intrication et de la mesure. La découverte de la transition a lancé une vague de recherches sur ce qui pourrait être possible lorsque l'intrication et la mesure entrent en collision.

L'intrication "peut avoir de nombreuses propriétés différentes, bien au-delà de ce que nous avions imaginé", a déclaré Jedediah Pixley, théoricien de la matière condensée à l'université Rutgers, qui a étudié les variations de la transition.

Un dessert enchevêtré

L'une des collaborations qui a permis de découvrir la transition d'intrication est née autour d'un pudding au caramel collant dans un restaurant d'Oxford, en Angleterre. En avril 2018, Skinner rendait visite à son ami Adam Nahum, un physicien qui travaille actuellement à l'École normale supérieure de Paris. Au fil d'une conversation tentaculaire, ils se sont retrouvés à débattre d'une question fondamentale concernant l'enchevêtrement et l'information.

Tout d'abord, un petit retour en arrière. Pour comprendre le lien entre l'intrication et l'information, imaginons une paire de particules, A et B, chacune dotée d'un spin qui peut être mesuré comme pointant vers le haut ou vers le bas. Chaque particule commence dans une superposition quantique de haut et de bas, ce qui signifie qu'une mesure produit un résultat aléatoire - soit vers le haut, soit vers le bas. Si les particules ne sont pas intriquées, les mesurer revient à jouer à pile ou face : Le fait d'obtenir pile ou face avec l'une ne vous dit rien sur ce qui se passera avec l'autre.

Mais si les particules sont intriquées, les deux résultats seront liés. Si vous trouvez que B pointe vers le haut, par exemple, une mesure de A indiquera qu'il pointe vers le bas. La paire partage une "opposition" qui ne réside pas dans l'un ou l'autre membre, mais entre eux - un soupçon de la non-localité qui a troublé Einstein et Schrödinger. L'une des conséquences de cette opposition est qu'en mesurant une seule particule, on en apprend plus sur l'autre. "La mesure de B m'a d'abord permis d'obtenir des informations sur A", a expliqué M. Skinner. "Cela réduit mon ignorance sur l'état de A."

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, tu mesurais certains spins ici et là ? Si tu les mesurais tous en permanence, l'intrication disparaîtrait de façon ennuyeuse. Mais si tu les mesures sporadiquement, par quelques spins seulement, quel phénomène sortira vainqueur ? L'intrication ou la mesure ?

L'ampleur avec laquelle une mesure de B réduit votre ignorance de A s'appelle l'entropie d'intrication et, comme tout type d'information, elle se compte en bits. L'entropie d'intrication est le principal moyen dont disposent les physiciens pour quantifier l'intrication entre deux objets ou, de manière équivalente, la quantité d'informations sur l'un stockées de manière non locale dans l'autre. Une entropie d'intrication nulle signifie qu'il n'y a pas d'intrication ; mesurer B ne révèle rien sur A. Une entropie d'intrication élevée signifie qu'il y a beaucoup d'intrication ; mesurer B vous apprend beaucoup sur A.

Au cours du dessert, Skinner et Nahum ont poussé cette réflexion plus loin. Ils ont d'abord étendu la paire de particules à une chaîne aussi longue que l'on veut bien l'imaginer. Ils savaient que selon l'équation éponyme de Schrödinger, l'analogue de F = ma en mécanique quantique, l'intrication passerait d'une particule à l'autre comme une grippe. Ils savaient également qu'ils pouvaient calculer le degré d'intrication de la même manière : Si l'entropie d'intrication est élevée, cela signifie que les deux moitiés de la chaîne sont fortement intriquées. Si l'entropie d'intrication est élevée, les deux moitiés sont fortement intriquées. Mesurer la moitié des spins vous donnera une bonne idée de ce à quoi vous attendre lorsque vous mesurerez l'autre moitié.

Ensuite, ils ont déplacé la mesure de la fin du processus - lorsque la chaîne de particules avait déjà atteint un état quantique particulier - au milieu de l'action, alors que l'intrication se propageait. Ce faisant, ils ont créé un conflit, car la mesure est l'ennemi mortel de l'intrication. S'il n'est pas modifié, l'état quantique d'un groupe de particules reflète toutes les combinaisons possibles de hauts et de bas que l'on peut obtenir en mesurant ces particules. Mais la mesure fait s'effondrer un état quantique et détruit toute intrication qu'il contient. Vous obtenez ce que vous obtenez, et toutes les autres possibilités disparaissent.

Nahum a posé la question suivante à Skinner : Et si, alors que l'intrication est en train de se propager, on mesurait certains spins ici et là ? Les mesurer tous en permanence ferait disparaître toute l'intrication d'une manière ennuyeuse. Mais si on en mesure sporadiquement quelques spins seulement, quel phénomène sortirait vainqueur ? L'intrication ou la mesure ?

Skinner, répondit qu'il pensait que la mesure écraserait l'intrication. L'intrication se propage de manière léthargique d'un voisin à l'autre, de sorte qu'elle ne croît que de quelques particules à la fois. Mais une série de mesures pourrait toucher simultanément de nombreuses particules tout au long de la longue chaîne, étouffant ainsi l'intrication sur une multitude de sites. S'ils avaient envisagé cet étrange scénario, de nombreux physiciens auraient probablement convenu que l'intrication ne pouvait pas résister aux mesures.

"Selon Ehud Altman, physicien spécialiste de la matière condensée à l'université de Californie à Berkeley, "il y avait une sorte de folklore selon lequel les états très intriqués sont très fragiles".

Mais Nahum, qui réfléchit à cette question depuis l'année précédente, n'est pas de cet avis. Il imaginait que la chaîne s'étendait dans le futur, instant après instant, pour former une sorte de clôture à mailles losangées. Les nœuds étaient les particules, et les connexions entre elles représentaient les liens à travers lesquels l'enchevêtrement pouvait se former. Les mesures coupant les liens à des endroits aléatoires. Si l'on coupe suffisamment de maillons, la clôture s'écroule. L'intrication ne peut pas se propager. Mais jusque là, selon Nahum, même une clôture en lambeaux devrait permettre à l'intrication de se propager largement.

Nahum a réussi à transformer un problème concernant une occurrence quantique éphémère en une question concrète concernant une clôture à mailles losangées. Il se trouve qu'il s'agit d'un problème bien étudié dans certains cercles - la "grille de résistance vandalisée" - et que Skinner avait étudié lors de son premier cours de physique de premier cycle, lorsque son professeur l'avait présenté au cours d'une digression.

"C'est à ce moment-là que j'ai été vraiment enthousiasmé", a déclaré M. Skinner. "Il n'y a pas d'autre moyen de rendre un physicien plus heureux que de montrer qu'un problème qui semble difficile est en fait équivalent à un problème que l'on sait déjà résoudre."

Suivre l'enchevêtrement

Mais leurs plaisanteries au dessert n'étaient rien d'autre que des plaisanteries. Pour tester et développer rigoureusement ces idées, Skinner et Nahum ont joint leurs forces à celles d'un troisième collaborateur, Jonathan Ruhman, de l'université Bar-Ilan en Israël. L'équipe a simulé numériquement les effets de la coupe de maillons à différentes vitesses dans des clôtures à mailles losangées. Ils ont ensuite comparé ces simulations de réseaux classiques avec des simulations plus précises mais plus difficiles de particules quantiques réelles, afin de s'assurer que l'analogie était valable. Ils ont progressé lentement mais sûrement.

Puis, au cours de l'été 2018, ils ont appris qu'ils n'étaient pas les seuls à réfléchir aux mesures et à l'intrication.

Matthew Fisher, éminent physicien de la matière condensée à l'université de Californie à Santa Barbara, s'était demandé si l'intrication entre les molécules dans le cerveau pouvait jouer un rôle dans notre façon de penser. Dans le modèle que lui et ses collaborateurs étaient en train de développer, certaines molécules se lient occasionnellement d'une manière qui agit comme une mesure et tue l'intrication. Ensuite, les molécules liées changent de forme d'une manière qui pourrait créer un enchevêtrement. Fisher voulait savoir si l'intrication pouvait se développer sous la pression de mesures intermittentes - la même question que Nahum s'était posée.

"C'était nouveau", a déclaré M. Fisher. "Personne ne s'était penché sur cette question avant 2018.

Dans le cadre d'une coopération universitaire, les deux groupes ont coordonné leurs publications de recherche l'un avec l'autre et avec une troisième équipe étudiant le même problème, dirigée par Graeme Smith de l'université du Colorado, à Boulder.

"Nous avons tous travaillé en parallèle pour publier nos articles en même temps", a déclaré M. Skinner.

En août, les trois groupes ont dévoilé leurs résultats. L'équipe de Smith était initialement en désaccord avec les deux autres, qui soutenaient tous deux le raisonnement de Nahum inspiré de la clôture : Dans un premier temps, l'intrication a dépassé les taux de mesure modestes pour se répandre dans une chaîne de particules, ce qui a entraîné une entropie d'intrication élevée. Puis, lorsque les chercheurs ont augmenté les mesures au-delà d'un taux "critique", l'intrication s'est arrêtée - l'entropie d'intrication a chuté.

La transition semblait exister, mais il n'était pas évident pour tout le monde de comprendre où l'argument intuitif - selon lequel l'intrication de voisin à voisin devait être anéantie par les éclairs généralisés de la mesure - s'était trompé.

Dans les mois qui ont suivi, Altman et ses collaborateurs à Berkeley ont découvert une faille subtile dans le raisonnement. "On ne tient pas compte de la diffusion (spread) de l'information", a déclaré M. Altman.

Le groupe d'Altman a souligné que toutes les mesures ne sont pas très informatives, et donc très efficaces pour détruire l'intrication. En effet, les interactions aléatoires entre les particules de la chaîne ne se limitent pas à l'enchevêtrement. Elles compliquent également considérablement l'état de la chaîne au fil du temps, diffusant effectivement ses informations "comme un nuage", a déclaré M. Altman. Au bout du compte, chaque particule connaît l'ensemble de la chaîne, mais la quantité d'informations dont elle dispose est minuscule. C'est pourquoi, a-t-il ajouté, "la quantité d'intrication que l'on peut détruire [à chaque mesure] est ridiculement faible".

En mars 2019, le groupe d'Altman a publié une prépublication détaillant comment la chaîne cachait efficacement les informations des mesures et permettait à une grande partie de l'intrication de la chaîne d'échapper à la destruction. À peu près au même moment, le groupe de Smith a mis à jour ses conclusions, mettant les quatre groupes d'accord.

La réponse à la question de Nahum était claire. Une "transition de phase induite par la mesure" était théoriquement possible. Mais contrairement à une transition de phase tangible, telle que le durcissement de l'eau en glace, il s'agissait d'une transition entre des phases d'information - une phase où l'information reste répartie en toute sécurité entre les particules et une phase où elle est détruite par des mesures répétées.

C'est en quelque sorte ce que l'on rêve de faire dans la matière condensée, a déclaré M. Skinner, à savoir trouver une transition entre différents états. "Maintenant, on se demande comment on le voit", a-t-il poursuivi.

 Au cours des quatre années suivantes, trois groupes d'expérimentateurs ont détecté des signes du flux distinct d'informations.

Trois façons de voir l'invisible

Même l'expérience la plus simple permettant de détecter la transition intangible est extrêmement difficile. "D'un point de vue pratique, cela semble impossible", a déclaré M. Altman.

L'objectif est de définir un certain taux de mesure (rare, moyen ou fréquent), de laisser ces mesures se battre avec l'intrication pendant un certain temps et de voir quelle quantité d'entropie d'intrication vous obtenez dans l'état final. Ensuite, rincez et répétez avec d'autres taux de mesure et voyez comment la quantité d'intrication change. C'est un peu comme si l'on augmentait la température pour voir comment la structure d'un glaçon change.

Mais les mathématiques punitives de la prolifération exponentielle des possibilités rendent cette expérience presque impensablement difficile à réaliser.

L'entropie d'intrication n'est pas, à proprement parler, quelque chose que l'on peut observer. C'est un nombre que l'on déduit par la répétition, de la même manière que l'on peut éventuellement déterminer la pondération d'un dé chargé. Lancer un seul 3 ne vous apprend rien. Mais après avoir lancé le dé des centaines de fois, vous pouvez connaître la probabilité d'obtenir chaque chiffre. De même, le fait qu'une particule pointe vers le haut et une autre vers le bas ne signifie pas qu'elles sont intriquées. Il faudrait obtenir le résultat inverse plusieurs fois pour en être sûr.

Il est beaucoup plus difficile de déduire l'entropie d'intrication d'une chaîne de particules mesurées. L'état final de la chaîne dépend de son histoire expérimentale, c'est-à-dire du fait que chaque mesure intermédiaire a abouti à une rotation vers le haut ou vers le bas. Pour accumuler plusieurs copies du même état, l'expérimentateur doit donc répéter l'expérience encore et encore jusqu'à ce qu'il obtienne la même séquence de mesures intermédiaires, un peu comme s'il jouait à pile ou face jusqu'à ce qu'il obtienne une série de "têtes" d'affilée. Chaque mesure supplémentaire rend l'effort deux fois plus difficile. Si vous effectuez 10 mesures lors de la préparation d'une chaîne de particules, par exemple, vous devrez effectuer 210 ou 1 024 expériences supplémentaires pour obtenir le même état final une deuxième fois (et vous pourriez avoir besoin de 1 000 copies supplémentaires de cet état pour déterminer son entropie d'enchevêtrement). Il faudra ensuite modifier le taux de mesure et recommencer.

L'extrême difficulté à détecter la transition de phase a amené certains physiciens à se demander si elle était réellement réelle.

"Vous vous fiez à quelque chose d'exponentiellement improbable pour le voir", a déclaré Crystal Noel, physicienne à l'université Duke. "Cela soulève donc la question de savoir ce que cela signifie physiquement."

Noel a passé près de deux ans à réfléchir aux phases induites par les mesures. Elle faisait partie d'une équipe travaillant sur un nouvel ordinateur quantique à ions piégés à l'université du Maryland. Le processeur contenait des qubits, des objets quantiques qui agissent comme des particules. Ils peuvent être programmés pour créer un enchevêtrement par le biais d'interactions aléatoires. Et l'appareil pouvait mesurer ses qubits.

Le groupe a également eu recours à une deuxième astuce pour réduire le nombre de répétitions - une procédure technique qui revient à simuler numériquement l'expérience parallèlement à sa réalisation. Ils savaient ainsi à quoi s'attendre. C'était comme si on leur disait à l'avance comment le dé chargé était pondéré, et cela a permis de réduire le nombre de répétitions nécessaires pour mettre au point la structure invisible de l'enchevêtrement.

Grâce à ces deux astuces, ils ont pu détecter la transition d'intrication dans des chaînes de 13 qubits et ont publié leurs résultats à l'été 2021.

"Nous avons été stupéfaits", a déclaré M. Nahum. "Je ne pensais pas que cela se produirait aussi rapidement."

À l'insu de Nahum et de Noel, une exécution complète de la version originale de l'expérience, exponentiellement plus difficile, était déjà en cours.

À la même époque, IBM venait de mettre à niveau ses ordinateurs quantiques, ce qui leur permettait d'effectuer des mesures relativement rapides et fiables des qubits à la volée. Jin Ming Koh, étudiant de premier cycle à l'Institut de technologie de Californie, avait fait une présentation interne aux chercheurs d'IBM et les avait convaincus de participer à un projet visant à repousser les limites de cette nouvelle fonctionnalité. Sous la supervision d'Austin Minnich, physicien appliqué au Caltech, l'équipe a entrepris de détecter directement la transition de phase dans un effort que Skinner qualifie d'"héroïque".

 Après avoir demandé conseil à l'équipe de Noel, le groupe a simplement lancé les dés métaphoriques un nombre suffisant de fois pour déterminer la structure d'intrication de chaque historique de mesure possible pour des chaînes comptant jusqu'à 14 qubits. Ils ont constaté que lorsque les mesures étaient rares, l'entropie d'intrication doublait lorsqu'ils doublaient le nombre de qubits - une signature claire de l'intrication qui remplit la chaîne. Les chaînes les plus longues (qui impliquaient davantage de mesures) ont nécessité plus de 1,5 million d'exécutions sur les appareils d'IBM et, au total, les processeurs de l'entreprise ont fonctionné pendant sept mois. Il s'agit de l'une des tâches les plus intensives en termes de calcul jamais réalisées à l'aide d'ordinateurs quantiques.

Le groupe de M. Minnich a publié sa réalisation des deux phases en mars 2022, ce qui a permis de dissiper tous les doutes qui subsistaient quant à la possibilité de mesurer le phénomène.

"Ils ont vraiment procédé par force brute", a déclaré M. Noel, et ont prouvé que "pour les systèmes de petite taille, c'est faisable".

Récemment, une équipe de physiciens a collaboré avec Google pour aller encore plus loin, en étudiant l'équivalent d'une chaîne presque deux fois plus longue que les deux précédentes. Vedika Khemani, de l'université de Stanford, et Matteo Ippoliti, aujourd'hui à l'université du Texas à Austin, avaient déjà utilisé le processeur quantique de Google en 2021 pour créer un cristal de temps, qui, comme les phases de propagation de l'intrication, est une phase exotique existant dans un système changeant.

En collaboration avec une vaste équipe de chercheurs, le duo a repris les deux astuces mises au point par le groupe de Noel et y a ajouté un nouvel ingrédient : le temps. L'équation de Schrödinger relie le passé d'une particule à son avenir, mais la mesure rompt ce lien. Ou, comme le dit Khemani, "une fois que l'on introduit des mesures dans un système, cette flèche du temps est complètement détruite".

Sans flèche du temps claire, le groupe a pu réorienter la clôture à mailles losangiques de Nahum pour accéder à différents qubits à différents moments, ce qu'ils ont utilisé de manière avantageuse. Ils ont notamment découvert une transition de phase dans un système équivalent à une chaîne d'environ 24 qubits, qu'ils ont décrite dans un article publié en mars.

Puissance de la mesure

Le débat de Skinner et Nahum sur le pudding, ainsi que les travaux de Fisher et Smith, ont donné naissance à un nouveau sous-domaine parmi les physiciens qui s'intéressent à la mesure, à l'information et à l'enchevêtrement. Au cœur de ces différentes lignes de recherche se trouve une prise de conscience croissante du fait que les mesures ne se contentent pas de recueillir des informations. Ce sont des événements physiques qui peuvent générer des phénomènes véritablement nouveaux.

"Les mesures ne sont pas un sujet auquel les physiciens de la matière condensée ont pensé historiquement", a déclaré M. Fisher. Nous effectuons des mesures pour recueillir des informations à la fin d'une expérience, a-t-il poursuivi, mais pas pour manipuler un système.

En particulier, les mesures peuvent produire des résultats inhabituels parce qu'elles peuvent avoir le même type de saveur "partout-tout-enmême-temps" qui a autrefois troublé Einstein. Au moment de la mesure, les possibilités alternatives contenues dans l'état quantique s'évanouissent, pour ne jamais se réaliser, y compris celles qui concernent des endroits très éloignés dans l'univers. Si la non-localité de la mécanique quantique ne permet pas des transmissions plus rapides que la lumière comme le craignait Einstein, elle permet d'autres exploits surprenants.

"Les gens sont intrigués par le type de nouveaux phénomènes collectifs qui peuvent être induits par ces effets non locaux des mesures", a déclaré M. Altman.

L'enchevêtrement d'une collection de nombreuses particules, par exemple, a longtemps été considéré comme nécessitant au moins autant d'étapes que le nombre de particules que l'on souhaitait enchevêtrer. Mais l'hiver dernier, des théoriciens ont décrit un moyen d'y parvenir en beaucoup moins d'étapes grâce à des mesures judicieuses. Au début de l'année, le même groupe a mis l'idée en pratique et façonné une tapisserie d'enchevêtrement abritant des particules légendaires qui se souviennent de leur passé. D'autres équipes étudient d'autres façons d'utiliser les mesures pour renforcer les états intriqués de la matière quantique.

Cette explosion d'intérêt a complètement surpris Skinner, qui s'est récemment rendu à Pékin pour recevoir un prix pour ses travaux dans le Grand Hall du Peuple sur la place Tiananmen. (Skinner avait d'abord cru que la question de Nahum n'était qu'un exercice mental, mais aujourd'hui, il n'est plus très sûr de la direction que tout cela prend.)

"Je pensais qu'il s'agissait d'un jeu amusant auquel nous jouions, mais je ne suis plus prêt à parier sur l'idée qu'il n'est pas utile."

Auteur: Internet

Info: Quanta Magazine, Paul Chaikin, sept 2023

[ passage inversant ] [ esprit-matière ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste