Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 62
Temps de recherche: 0.0631s

humain miroir

La perception humaine de l'espace s'étend tout comme l'univers réel !

Le cerveau humain a une façon intéressante d'évaluer la proximité ou la distance d'un objet dans l'espace. Si vous regardez la nuit depuis votre voiture, il y a de fortes chances que la Lune vous paraisse se déplacer à vos côtés. Une nouvelle étude neuroscientifique a permis de découvrir pourquoi la zone de la mémoire de notre cerveau perçoit les images proches et lointaines et comment ces exagérations peuvent créer davantage de connexions cérébrales à mesure que nous vieillissons.

L'hippocampe est une zone du cerveau impliquée dans l'apprentissage et la mémoire. Dans l'étude actuelle, les auteurs ont constaté que les neurones associés à la planification, à la mémoire et à la navigation spatiale transforment l'espace en une forme géométrique hyperbolique non linéaire - pensez à un sablier en expansion qui grossit à mesure que vous vous en éloignez. Pour en revenir à l'exemple de la lune, les jeunes enfants ont pu constater que la lune les suivait ou qu'elle était suffisamment proche pour qu'ils l'attrapent.

Bien sûr, la Lune ne se déplace pas et sa taille est déformée par sa distance. Les résultats ont montré que la taille de l'image augmente avec le temps passé dans un lieu. La taille perçue par notre cerveau est également directement liée à la quantité d'informations qu'il peut traiter : les jeunes cerveaux sont peut-être plus enclins à naviguer et à percevoir l'espace de manière linéaire. Avec de nouvelles expériences, l'hippocampe est capable d'affiner ses connexions neuronales et de traiter davantage d'informations sur l'image.

Le cerveau "s'élargit" avec l'expérience

Comprendre comment les réseaux neuronaux du cerveau traitent la navigation spatiale pourrait aider à étudier les troubles neurocognitifs. La maladie d'Alzheimer, par exemple, est une maladie dans laquelle l'hippocampe est l'une des premières zones du cerveau à être détruite, ce qui affecte la mémoire de la personne.

"Notre étude démontre que le cerveau n'agit pas toujours de manière linéaire. Au contraire, les réseaux neuronaux fonctionnent le long d'une courbe en expansion, qui peut être analysée et comprise à l'aide de la géométrie hyperbolique et de la théorie de l'information", explique l'auteur principal, Tatyana Sharpee, professeur à l'Institut Salk et titulaire de la chaire Edwin K. Hunter, dans un communiqué de presse. "Il est passionnant de constater que les réponses neuronales dans cette région du cerveau forment une carte qui s'élargit avec l'expérience, en fonction du temps passé dans un lieu donné. L'effet s'est même maintenu pour des écarts de temps minuscules, lorsque l'animal courait plus lentement ou plus rapidement dans l'environnement."

L'équipe de recherche a utilisé des méthodes informatiques avancées pour comprendre le fonctionnement du cerveau. L'une de ces techniques consiste à utiliser la géométrie hyperbolique pour disséquer les signaux biologiques. Des travaux antérieurs ont utilisé la géométrie hyperbolique pour étudier le fonctionnement des molécules odorantes et de la perception des odeurs.

La géométrie hyperbolique s'est avérée efficace pour comprendre les réponses neuronales et pour cartographier les molécules et les événements sensoriels. Les chercheurs ont recueilli leurs informations auprès de rats qui ont passé du temps à explorer un nouvel environnement. Plus le rat passe de temps dans une zone, plus il acquiert d'informations sur l'espace qui l'entoure. Cela a permis à leur carte neuronale de s'étendre et de se développer.

"Ces résultats offrent une nouvelle perspective sur la manière dont les représentations neuronales peuvent être modifiées par l'expérience", explique Huanqiu Zhang, étudiant diplômé du laboratoire de M. Sharpee. "Les principes géométriques identifiés dans notre étude peuvent également guider les futurs efforts de compréhension de l'activité neuronale dans divers systèmes cérébraux.

Auteur: Internet

Info: Nature Neuroscience, repris par Jocelyn Solis-Moreira ,7 janvier 2023

[ horizon grégaire intégré ] [ vieillir grandir ]

 

Commentaires: 0

Ajouté à la BD par miguel

corps-esprit

Vous voulez être plus efficace au travail ? Prenez exemple sur les musiciens de jazz

Vous voulez être plus efficace lorsque vous travaillez ? Les musiciens de jazz pourraient avoir des choses à vous apprendre. Une étude a montré que ces derniers étaient capables d'atteindre un état de transe : le " flux ", durant lequel ils sont entièrement dévolus à leur tâche et plus créatifs.

Ce travail de recherche, publié dans la revue Neuropsychologia, porte sur ce que l'on appelle le " flux " (" flow ", en anglais). Un terme qui désigne un état de concentration absolu durant lequel le corps et l'esprit sont entièrement absorbés par une seule et même tâche. Le psychologue américano-hongrois Mihály Csíkszentmihályi a été le premier à s'intéresser à ce sujet dans les années 1970, au cours de recherches sur le processus créatif.

​​Depuis, les recherches en psychologie ont démontré que l'expérience du flux peut accroître les performances physiques et mentales. N'importe qui peut expérimenter des moments de flux durant son temps libre ou au travail. Mais les athlètes et les artistes sont plus susceptibles d'être fréquemment plongés dans cet état psychologique.

C'est pourquoi des chercheurs affiliés à l'université Drexel (États-Unis) ont recruté une trentaine de guitaristes de jazz pour comprendre les processus cérébraux clés associés au flux. Ils étaient plus ou moins expérimentés, en fonction du nombre de représentations publiques qu'ils avaient données. 

Une affaire d'expérience

Les scientifiques ont placé des électrodes sur leur tête pour enregistrer leurs ondes cérébrales pendant qu'ils improvisaient sur des séquences d'accords et des rythmes qui leur avaient été fournis. Par ailleurs, les guitaristes devaient évaluer le degré de flux qu'ils ont ressenti pendant qu'ils jouaient de la guitare. Des experts ont également écouté les morceaux que les participants avaient créés pour déterminer dans quelle mesure ces derniers avaient fait preuve de créativité.

Il s'avère que les performances jugées les plus créatives sont celles durant lesquelles les guitaristes ont dit être dans un état de flux. Les musiciens les plus aguerris avaient davantage tendance à expérimenter des moments de flux pendant qu'ils jouaient leur instrument que les novices, ce qui laisse penser que l'expérience est une condition préalable pour accéder à un état de flux. 

D'un point de vue cérébral, les chercheurs ont constaté que les musiciens expérimentés qui ont vécu des instants de flux pendant qu'ils jouaient de la guitare présentaient une activité réduite dans les parties de leur lobe frontal, connues pour être impliquées dans les fonctions exécutives. À l'inverse, les aires cérébrales impliquées dans l'audition et la vision étaient davantage sollicitées, ce qui est logique étant donné que les guitaristes improvisaient tout en lisant des suites d'accords et en écoutant des rythmes musicaux. 

Le " flux ", un état de transe ?

Ces découvertes montrent à quel point le cerveau est dans un état mental différent de l'éveil ordinaire quand on fait l'expérience du flux. Cela prouve que " le flux créatif correspond à un traitement optimisé d'un domaine spécifique, rendu possible par une pratique intensive associée à un contrôle cognitif réduit ", comme l'écrivent les chercheurs dans leur étude, que le média The Conversation a relayée.

Ce travail de recherche approfondit notre compréhension des mécanismes cérébraux propres au flux. Il montre que cet état demande une certaine maîtrise technique. Lorsque l'on est plongé dans le flux, les choses semblent se dérouler avec facilité. On a l'impression de maîtriser totalement ce que l'on fait. Ce sentiment de maîtrise est d'ailleurs ce qui rend les moments de flux si agréables. 

​​​​​​​Pour en faire l'expérience régulièrement, il faut s'évertuer à devenir meilleur dans ce que l'on fait en se fixant, par exemple, des défis stimulants à relever. Mais attention à ce qu'ils ne soient pas irréalistes. Sinon, le stress se substituera au flux.

Auteur: Internet

Info: https://www.futura-sciences.com/ 24 avril 2024

[ concentration ] [ absorption ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

pédagogie

Apprentissage par récompense ou par punition: quelles différences ?
Apprendre à rechercher le plaisir ("récompenses") et à éviter la douleur ("punitions") joue un rôle fondamental pour la survie de tout animal, homme inclus. C'est ce que viennent de démontrer dans un article paru dans la revue Nature Communications, des chercheurs issus du CNRS - et notamment du Groupe d'analyse et de théorie économique Lyon St-Etienne
Malgré leur égale importance, l'apprentissage par récompense est beaucoup mieux compris que l'apprentissage par punition, d'un point de vue non seulement psychologique mais aussi neurobiologique. La principale raison à cela est que l'apprentissage par récompense est plus simple: il suffit de répéter les choix qui ont amené dans le passé à l'obtention du plaisir. En d'autres termes, il y a une association directe entre le "bon choix à faire" et le stimulus qui motive l'apprentissage (la récompense, qui a une valeur positive).
La figure montre des activations cérébrales dans deux régions, le striatum ventral (en vert) et l'insula antérieur (en rouge), qui sont connues pour travailler en opposition et être impliquées dans l'apprentissage par récompense et celui par punition, respectivement. Dans notre étude nous montrons que la contextualisation des valeurs supprime la nécessité d'activer l'insula, lors de l'apprentissage par punition, produisant un transfert d'activation du système de punition vers le système de récompense à mesure que les actions acquièrent une valeur relative positive.
L'apprentissage par punition est cognitivement plus complexe, car cette association n'est justement pas directe. Prenons l'exemple d'un animal qui est poursuivi par un prédateur. Le bon choix consisterait à se cacher dans un trou pour fuir le prédateur et amènerait à la disparition du stimulus qui motive l'apprentissage (le prédateur, qui a une valeur négative). Par conséquent, il est difficile d'expliquer comment ce bon choix se maintient en l'absence du stimulus. Les théories courantes ont ainsi du mal à démontrer comment les hommes peuvent être aussi performants dans le domaine de la punition que dans celui de la récompense.
L'équipe de recherche a découvert récemment un algorithme permettant au cerveau humain d'apprendre à éviter des punitions aussi efficacement qu'il apprend à rechercher des récompenses. La clef de voûte de cet algorithme - appelé "RELATIVE" - consiste à calculer les résultats des actions de manière dépendante du contexte dans lequel le résultat est obtenu. Ainsi, dans l'apprentissage par punition, le résultat d'une action qui a une valeur nulle (voire légèrement négative) - se cacher dans un trou - est rapporté au contexte dans lequel ce résultat a été obtenu, qui a une valeur très négative - être poursuivi par un prédateur. Si l'on considère que la valeur de l'action est plus grande que la valeur moyenne du contexte, le bon choix acquiert ainsi une valeur "relative" positive. Il permet donc un apprentissage par récompense aussi bien que par punition.
Grâce à l'imagerie par résonance magnétique cérébrale, l'équipe de recherche a aussi pu valider cet algorithme d'un point de vue neurobiologique, en montrant qu'il explique les variations d'activité cérébrale dans le cortex préfrontal médian, une zone du cerveau connue pour être impliquée dans la prise de décision. L'IRM a également permis de trancher un débat contradictoire important en sciences et dans la littérature: y a-t-il des systèmes ou réseaux distincts dans le cerveau pour l'apprentissage basé sur la récompense et celui basé sur la punition ?
L'analyse démontre qu'au départ, lorsque les sujets ne semblent pas encore avoir bien appris la valeur du contexte, le système d'apprentissage basé sur la récompense (le striatum ventral) et celui basé sur la punition (l'insula) sont tous les deux activés. Puis, à mesure que la contextualisation des valeurs négatives se met en place, l'insula s'active de moins en moins, et les essais d'apprentissage dans le contexte de punition se mettent à impliquer le striatum ventral qui s'active de plus en plus.

Auteur: Internet

Info: Contextual modulation of value signals in reward and punishment learning. Stefano Palminteri, Mehdi Khamassi, Mateus Joffily, Georgio Coricelli, Nature Communications, 25 août 2015

[ reptilien ]

 

Commentaires: 0

machine-homme

Meta a dévoilé une intelligence artificielle capable de lire dans vos pensées. En s’appuyant sur les signaux électromagnétiques du cerveau, l’IA peut comprendre les images que vous avez en tête et les reproduire.

Meta concentre désormais ses efforts sur l’intelligence artificielle. Ces derniers mois, les chercheurs du groupe de Mark Zuckerberg ont dévoilé une pléthore d’innovations s’appuyant sur l’IA. Citons notamment Voicebox, une intelligence artificielle capable d’imiter une voix humaine, le modèle de langage Llama 2, ou MusicGen, un outil qui peut produire une musique à la demande.

Le géant de Menlo Park ne compte pas s’arrêter là. Sur son site web, Meta vient de mettre en ligne un rapport consacré à une IA conçue pour décoder ce qu’il se passe dans le cerveau humain. L’intelligence artificielle est en effet capable de comprendre les images qu’un individu a en tête. Par la suite, l’IA va reproduire les images aperçues dans les pensées de celui-ci.

Comment l’IA peut lire dans le cerveau ?

Pour parvenir à cette prouesse, Meta s’appuie sur la magnéto-encéphalographie, ou MEG, une technique d’imagerie cérébrale qui mesure l’activité électromagnétique du cerveau. En collectant "des milliers de mesures d’activité cérébrale" par seconde, le système va "décoder le déploiement des représentations visuelles dans le cerveau". Meta a mis au point un "modèle de décodage" basé sur l’IA pour comprendre les champs magnétiques produits par l’activité neuronale.

Une fois que les données ont été traitées, elles vont être reliées aux représentations visuelles mises au point l’IA en amont. Ces représentations sont générées par un encodeur d’image, qui dispose d’un " riche ensemble " de visuels différents. En d’autres termes, les images déjà disponibles vont être comparées aux images décelées dans le cerveau. C’est là que l’" encodeur cérébral " entre en jeu. Enfin, l’IA va produire une " image plausible " en se basant sur les visuels dans les pensées de la cible. Notez que les visuels sont générés en continu à partir du cerveau, ce qui offre un aperçu unique de ce qu’il se passe dans l’esprit humain.

Dans le cadre de son expérience, l’entreprise a d’abord montré une image, fournie par l’IA, à des bénévoles. En parallèle, une machine MEG scannait les signaux de leur cerveau. Meta a partagé plusieurs exemples des résultats générés dans son rapport. Dans la plupart des cas, le résultat final n’est pas tombé loin de l’image montrée à l’origine. L’IA parvient généralement à reproduire l’objet principal de l’image en s’appuyant sur les ondes et sa bibliothèque de visuels.

" Nos résultats montrent que le MEG peut être utilisé pour déchiffrer, avec une précision d’une milliseconde, la montée des représentations complexes générées dans le cerveau ", résume Meta.

Les limites de l’IA

À ce stade, l’IA doit d’abord être entraînée sur l’activité cérébrale d’un individu avant d’être utilisée pour décrypter des pensées. Le système doit passer par une période de formation, qui va l’habituer à interpréter des ondes cérébrales spécifiques. De la même manière, un modèle linguistique doit être formé sur base d’une montagne de textes avant de pouvoir animer un chatbot.

De plus, rien n’indique que cette technologie, encore à ses balbutiements, puisse permettre de décoder des images qui ne sont pas d’abord traitées par l’IA. Tout en promettant d’autres avancées à l’avenir, Meta estime que sa technologie pourrait permettre de concevoir des " interfaces cerveau-ordinateur non invasives " pour venir en aide aux personnes qui ont perdu la capacité de parler.

Notez qu’il ne s’agit pas de la première fois qu’une IA parvient à lire dans les pensées humaines. Cet été, des chercheurs américains ont dévoilé une IA capable de deviner la musique qu’une personne est en train d’écouter uniquement en collectant les données issues du cerveau. Là encore, les scientifiques se sont appuyés sur les signaux électriques émis par le cerveau. 

Auteur: Internet

Info: https://www.01net.com/, 19 octobre 2023, source : Meta

[ homme-machine ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

sciences

La pratique de la méditation modifie l'organisation du cerveau
Les adeptes de la méditation de pleine conscience apprennent dans leur pratique à accueillir les sensations, les émotions et les états d'esprit sans leur résister ni les juger. Ils cherchent simplement à être dans le moment présent.
Plusieurs études ont démontré que ce type de méditation pouvait avoir des effets bénéfiques à long terme sur la stabilité émotionnelle et, par conséquent, sur des désordres comme l'anxiété et la dépression majeure. Une nouvelle recherche révèle que cet entrainement de l'esprit aurait une influence sur le réseau cérébral par défaut chez des personnes ayant une longue expérience de la méditation quand elles sont au repos. Les différences sur le plan cérébral indiqueraient que la méditation favorise la concentration et la réflexion de manière plus objective par rapport à soi.
"Nous avons étudié le cerveau de 13 adeptes de méditation ayant plus de 1000 heures d'entrainement et celui de 11 débutants à l'aide d'analyses de connectivité fonctionnelle", dit Véronique Taylor, première auteure de cette recherche publiée dans la revue Social Cognitive and Affective Neuroscience Advance Access en mars dernier et réalisée dans le laboratoire du professeur Mario Beauregard, de l'Université de Montréal.
La connectivité fonctionnelle fait référence à la synchronisation entre deux ou plusieurs régions cérébrales qui changent dans le temps, soit pendant une tâche concrète ou au repos. Cette méthode d'analyse peut s'appliquer à des données d'imagerie par résonance magnétique fonctionnelle. "Les participants demeuraient quelques minutes dans le scanner et on leur demandait de ne rien faire", explique Mme Taylor, qui termine actuellement son doctorat en psychologie sous la direction du professeur Pierre Rainville.
Ces analyses ont permis aux chercheurs de repérer le réseau cérébral par défaut des sujets, c'est-à-dire un ensemble de régions s'activant au repos, lorsque la personne n'effectue aucune activité particulière.
"Nous voulions ainsi vérifier si les effets de la méditation de pleine conscience persistaient au-delà de la pratique, poursuit la doctorante. Selon notre hypothèse, le réseau cérébral par défaut des adeptes de la méditation serait structuré autrement. Le réseau par défaut est associé à la rêverie, aux pensées relatives à soi quand nous ne faisons "rien". En fait, nous pensions y trouver une organisation différente parce que ces individus sont habitués à être dans le moment présent et leurs pensées ne partent donc pas dans tous les sens lorsqu'ils sont au repos."
Effectivement, les résultats obtenus font voir une plus faible synchronisation entre les cortex préfrontaux ventro-médian et dorso-médian. "La partie dorsale est engagée dans les processus cognitifs associés au soi et la partie ventrale concerne plutôt l'évaluation émotive du soi, mentionne Véronique Taylor. Le fait que ces zones sont moins inter reliées montre que ces personnes réfléchiraient sur elles-mêmes de façon plus objective." Elle ajoute que plus les participants avaient de l'expérience en méditation, plus cette connexion était faible, ce qui, selon elle, "donne du poids à ces résultats".
Fait curieux et intéressant: ces mêmes sujets présentaient une plus forte synchronisation entre certaines zones qui convergent toutes vers le lobe pariétal droit. "Cette région est reconnue pour avoir un rôle déterminant dans l'attention, ce qui indiquerait peut-être un effet bénéfique à long terme de la méditation, mais qui reste à être prouvé par des recherches étudiant spécifiquement les processus attentionnels", signale l'étudiante.
Bien que les sujets aient été testés au repos, Véronique Taylor constate par elle-même les retombées tangibles de la méditation de pleine conscience au quotidien. "Je pratique la méditation depuis quelques années et je remarque que mon attention est plus soutenue, plus suivie lorsque je me concentre."
Il y a encore beaucoup à découvrir sur le pouvoir de la méditation, croit-elle. En attendant, elle suggère à tous de s'y mettre. "Cela ne coute rien et on peut méditer n'importe où et n'importe quand... et les avantages sont réels!"

Auteur: Internet

Info:

[ méditation ] [ zen ] [ parapsychologie ]

 

Commentaires: 0

perceptions

Une première étude d’imagerie cérébrale sur les effets du LSD
"Ces travaux sont aux neurosciences ce que le boson de Higgs a été pour la physique des particules".
Cette déclaration, pour le moins accrocheuse, vient de David Nutt, neuropsychopharmacologue et chercheur sénior de l’étude en question qui vient d’être publiée dans la revue PNAS en mars dernier. Et un peu comme pour le boson de Higgs, les résultats ont confirmé la théorie, à savoir que les modifications d’activité cérébrale qui ont été observées rendent très bien compte de ce qu’un "trip à l’acide" peut provoquer comme état mental !
Le protocole expérimental conçu par l’équipe de Nutt a fait appel à une vingtaine de sujets qui venaient deux journées différentes au laboratoire. Dans un cas le sujet recevait 75 microgrammes de LSD intraveineux, et dans l’autre cas un placebo, c’est-à-dire rien d’autre qu’un liquide physiologique. On a pu ainsi comparer les effets réels du LSD versus toute autre modification (produites par exemple par des attentes, des conditionnements, etc.) chez la même personne.
Le protocole est assez impressionnant en termes d’instruments utilisés pour ne rien manquer aux effets de l’acide lysergique diéthylamide (le nom complet du LSD). Trois techniques complémentaires ont ainsi été utilisées : l’ASL (ou "arterial spin labelling", l’IRMf ou imagerie de résonnance magnétique fonctionnelle, et la magnétoencéphalographie (les deux premières étant des lectures indirectes de l’activité nerveuse basées sur le flux sanguin dans les capillaires cérébraux).
L’analyse des résultats obtenus avec ces différentes techniques combinées a permis de mieux comprendre deux grands types d’effets associés à la prise de LSD : les hallucinations visuelles et le sentiment de dissolution du soi.
Dans le premier cas, les trois techniques utilisées ont mis en évidence une augmentation du débit sanguin dans le cortex visuel, une diminution de la puissance des rythmes alpha, et une beaucoup plus grande connectivité fonctionnelle. Trois modifications dont l’importance était corrélée avec l’intensité des expériences subjectives rapportées par les sujets.
Comme le rapporte l’auteur principal de l’étude, Robin Carhart-Harris, c’est un peu comme si les sujet voyaient, mais avec leurs yeux fermés. Autrement dit, c’est l’activité intrinsèque ou endogène de leur cerveau, leur imagination pourrait-on dire, qui alimente alors fortement le système visuel et non plus le monde extérieur. Et de fait, les scientifiques ont pu observer beaucoup de régions cérébrales (liées à l’audition, l’attention, le mouvement) interagir non seulement avec les régions visuelles mais entre elles sous l’influence du LSD. Il y avait donc cet aspect plus "unifié" du cerveau favorisé par la drogue.
Mais en même temps, il y avait aussi un aspect plus "fragmenté" dans d’autres réseaux cérébraux, preuve de plus qu’une même substance peut avoir différents effets dans différents endroits du cerveau, a fortiori une substance aux effets complexes comme le LSD. La baisse de connectivité a surtout été observée entre deux structures cérébrales, le gyrus parahippocampique et le cortex rétrosplénial (une partie du cortex cingulaire postérieur). Et l’intensité de cette "déconnexion" était corrélée au niveau subjectif à celle de l’impression de dissolution du soi et de l’altération du sens des choses.
Encore une fois ici, l’impression de devenir un avec les autres, avec la nature ou même avec l’univers rapportée par des décennies d’utilisation de cette substance trouve ici un corrélat neuronal intéressant. D’autant plus que ces impressions, qui sont souvent interprétées dans un cadre spirituel ou religieux, semblent être associées à des améliorations du bien-être durant un certain temps après que les effets immédiats de la drogue se soient dissipés.
C’est d’ailleurs l’objet d’une autre étude de la même équipe publiée cette fois en février dernier dans Psychological Medicine, et qui montre qu’une certaine "fluidité cognitive" pourrait être conservée un certain temps après l’utilisation de LSD, ouvrant ainsi la voie à un usage thérapeutique, notamment pour la dépression et la rumination mentale qui lui est associée.

Auteur: Internet

Info: http://www.blog-lecerveau.org, 25 avril 2016

[ cognition ]

 

Commentaires: 0

entendement

Les capacités cognitives des oiseaux sont étonnantes
Avoir une "cervelle d'oiseau" est en fait un compliment vu que la densité des neurones confère aux oiseaux un avantage intellectuel.
Des chercheurs ont découvert que les oiseaux chanteurs, les perroquets et d'autres espèces d'oiseaux peuvent avoir dans leur cerveau autant ou plus de neurones que les mammifères, y compris les primates.
Certains oiseaux excellent dans des tâches nécessitant une "pensée supérieure", comme planifier l'avenir, utiliser des outils, compter, et se reconnaître dans un miroir. Ces oiseaux peuvent accomplir ces tâches à un niveau égal voire supérieur à celui des primates en matière de résolution de problèmes, bien que leurs cerveaux soient beaucoup plus petits. Les scientifiques estimaient auparavant que le "câblage" du cerveau des oiseaux était complètement différent de celui des primates, mais cette idée a été réfutée il y a deux ans, par une étude du cerveau des pigeons.
Des scientifiques de l'université Charles à Prague et de la Vanderbilt University à Nashville, dans le Tennessee, pourraient avoir une réponse. Ils ont étudié 28 espèces d'oiseaux et découvert que les oiseaux chanteurs et les perroquets peuvent avoir dans leur cerveau autant ou plus de neurones que les mammifères (notamment dans le prosencéphale qui est lié à des activités plus complexes). Ces neurones plus petits, bien tassés et hautement connectés semblent conférer aux oiseaux des capacités cognitives qui dépasseraient largement les attentes et peut-être même les aptitudes de primates aux cerveaux de la même taille. En résumé, les chercheurs estiment que les cerveaux des oiseaux pourraient fournir une puissance cognitive bien plus élevée que les de mammifères, par unité de masse cervicale.
L'équipe de recherche a acheté ou capturé divers oiseaux (étourneaux, passereaux, choucas et perruches) afin d'en examiner les structures cérébrales. Une fois les cerveaux retirés, les scientifiques ont ciblé le pallium, une structure du cerveau des oiseaux comparable au cortex cérébral des mammifères. Chez les mammifères, des neurones plus grands permettent de connecter les régions cérébrales plus lointaines, mais au prix de la densité. Les oiseaux évitent ce compromis en gardant la plupart de leurs neurones plus près les uns des autres, et en développant un petit nombre de neurones plus grands pour traiter la communication à longue distance.
Le cerveau d'un ara n'est pas plus gros qu'une noix, mais il possède davantage de neurones dans le prosencéphale (utile pour un comportement) que le macaque dont le cerveau a la taille d'un citron. Le cerveau des cacatoès à crête jaune et des galagos pèsent environ 10 g, mais le cacatoès possède deux milliards de neurones, soit le double des galagos. Les perroquets, les oiseaux chanteurs et les corvidés (soit les corbeaux, les corneilles et les freux) présentaient la densité des neurones la plus élevée dans leur prosencéphale. De fait, la taille inférieure du cerveau est compensée par le nombre élevé de cellules cérébrales.
"On s'est longtemps étonné que les oiseaux soient remarquablement intelligents, malgré la petite taille de leur cerveau", commentait Pavel Nymec, l'un des membres de l'équipe de recherche. "Ils peuvent faire des choses que l'on pensait être réservées aux singes et aux autres mammifères. Il y avait un décalage entre la taille de leur cerveau et leurs capacités cognitives."
Ce n'est pas la première fois que l'intelligence inattendue des oiseaux surprend les chercheurs. En 2002, une équipe à l'université d'Oxford a été choquée de voir un corbeau de Nouvelle Calédonie plier un fil de fer pour l'utiliser comme appât. D'autres oiseaux ont fait preuve de capacités très sophistiquées, comme les perroquets gris d'Afrique qui savent compter et les pies qui reconnaissent leur reflet dans un miroir.
Il est prévu d'analyser les cerveaux d'encore plus d'oiseaux, dont les pigeons, les oiseaux aquatiques et les poules pour en étudier les connexions des cerveaux. "Nous aimerions voir si les neurones aviaires présentent un nombre de connexions similaires à celles des primates, mais cela s'inscrira dans un plus grand projet à venir", fut la conclusion.

Auteur: Internet

Info: Proceedings of the National Academy of Sciences, juin 2016

[ homme-animal ] [ sciences ]

 

Commentaires: 0

homme-animal

Les dauphins ne dorment que d’un oeil
Les dauphins ont développé un remarquable mécanisme d’adaptation au milieu océanique qui leur permet de ne faire "dormir" qu’une moitié de leur cerveau à la fois.
"Chez le dauphin, la respiration est un acte volontaire, et non réflexe, comme chez l’homme (un dauphin anesthésié meurt).
Pour arriver ainsi à "dormir tout en restant éveillé", le dauphin "éteint" un de ses hémisphères cérébraux, tandis que l’autre moitié du cerveau assure le contrôle des fonctions vitales et, en premier lieu, la respiration, explique Jon Kershaw, responsable animalier au parc Marineland, à Antibes.
Durant ces périodes de sommeil dit "unihémisphérique", le métabolisme se ralentit et le cétacé ne bouge quasiment plus. les dauphins endormis peuvent ainsi être aperçus, flottants à la surface, un oeil ouvert et une nageoire qui dépasse de l’eau. Ensuite, ils changent de côté, "déconnectent" l’autre moitié de leur cerveau et ferment l’autre oeil.
Le "demi-cerveau" éveillé peut ainsi assurer la position idéale du corps pour se maintenir en surface et contrôler l’ouverture/fermeture de l’évent.
Ce "sommeil unilatéral" a pu être établi en laboratoire. Les chercheurs ont pu mesurer des ondes cérébrales lentes sur l’hémisphère "endormi", tandis que l’autre restait éveillé (ondes rapides). Vingt minutes plus tard, le schéma s’inversait.
Les dauphins dorment environ huit heures par jour de cette façon, par tranches de quelques minutes à deux heures. "En fait, on ne sait pas vraiment s’ils dorment ou s’ils se reposent tout simplement car dès qu’on arrive, les dauphins se réveillent d’un coup, pas comme les otaries qui émergent plus difficilement", souligne Jon Kershaw.
En captivité, les soigneurs du Marineland peuvent observer ces phases de demi-sommeil, notamment lors des périodes de surveillance de nuit lorsqu’un bébé est né chez les dauphins Tursiops du parc. "On les voit doucement dériver à la surface du bassin, surtout entre deux heures et cinq heures du matin", poursuit le responsable.
Une récente étude de neurobiologistes de l’université de Californie (UCLA) a montré que les jeunes dauphins, eux, restent éveillés 24 heures sur 24 durant leurs premières semaines. Les mères surveillent en continu les petits et ne dorment donc pas non plus. Un constat qui va à l’encontre des théories admises jusqu’à ce jour sur le sommeil et le développement des mammifères qui sont de gros dormeurs à la naissance.
Il faudra plusieurs mois pour que le bébé dauphin adopte le rythme de vie normal des cétacés, soit cinq à huit heures de sommeil par jour, et que la maman insomniaque puisse enfin s’accorder quelques moments de repos.
Cette adaptation écologique des mammifères marins est remarquable. L'évolution a dû choisir entre le dilemme de rester éveillé pour respirer ou de mourir en dormant. Chez la baleine globicéphale, certains dauphins d'eau douce ou de milieu marin et chez un sirénien (dugong), le sommeil est unilatéral. L'EEG d'un hémisphère présente des ondes lentes alors que l'oeil controlatéral est fermé, tandis que l'EEG de l'autre hémisphère présente une activité rapide caractéristique (et que l'oeil controlatéral est ouvert). En général, un épisode de sommeil unilatéral dure 20 à 30 minutes et vice versa. Ces animaux peuvent ainsi contrôler leur respiration avec l'hémisphère éveillé. Bien qu'ils présentent des signes de sommeil unilatéraux évidents au point de vue EEG, les dauphins peuvent continuer à nager et ils n'arrêtent jamais leurs mouvements.
Il n'a pas été possible de prouver l'existence de sommeil paradoxal chez les dauphins. Cependant, on peut se demander si des périodes de sommeil paradoxal unilatérales ne pourraient pas coexister avec un éveil controlatéral car les autres signes spécifiques du sommeil paradoxal pourraient ne pas apparaître chez ces animaux qui n'ont pas de mouvements oculaires. L'absence possible de sommeil paradoxal chez les cétacé représente une des énigmes les plus importantes de la phylogenèse du sommeil. Il ne semble pas que cela soit dû à la niche écologique où vit le dauphin puisque le sommeil paradoxal peut être présent chez certains phoques quand ils dorment, non seulement à terre mais aussi dans l'eau.

Auteur: Internet

Info:

[ assoupis ] [ songes ]

 

Commentaires: 0

thérapie

Musique du cerveau - chaque cerveau a une bande sonore, probablement plusieurs. Pouvons-nous la faire travailler pour nous ?
Chaque cerveau a une bande sonore. Son tempo et tonalité changent, selon l'humeur, l'armature de l'esprit et autres dispositifs du cerveau lui-même. Quand cette bande sonore est enregistrée et rejouée - avec les premiers secours, ou les pompiers - elle peut affiner leurs réflexes pendant une crise, et calmer leurs nerfs après.
Lors de la dernière décennie, l'influence de la musique sur le développement cognitif et les études, avec le bien-être émotif, est devenue un champ très couru d'étude scientifique. Pour explorer la pertinence potentielle de la musique avec ces réponses d'urgence, le Dept of Homeland Security's Science & Technology Directorate (S&T) a commencé une étude sous forme d'entrainement neurologique appelée "musique de cerveau" qui utilise de la musique créée à l'avance à partir des propres ondes cérébrales des auditeurs afin de les aider à traiter des maux comme l'insomnie, la fatigue, et les maux de tête provenant d'environnements stressants. Le concept de "musique de cerveau" est d'utiliser la fréquence, l'amplitude, et la durée de sons musicaux pour déplacer le cerveau d'un état impatient vers un état plus détendu.
"La tension vient d'une réponse d'urgence au travail, aussi nous sommes intéressés à trouver des moyens pour aider les ouvriers à rester au top de leur job au travail et d'obtenir un repos de qualité quand ils subissent la pression" dit le manager du S&T Program Robert Burns. "notre but est de trouver de nouveaux moyens pour aider les gens des premiers secours à exécuter leurs tâche au meilleur niveau possible, sans augmenter les tâches, la formation, ou leur niveaux de stress."
Si le cerveau "compose" la musique, le premier travail des scientifiques et d'"attraper" les notes, et c'est exactement ce que le Human Bionics LLC of Purcellville fait. Chaque enregistrement est converti en deux compositions musicales uniques, conçues pour déclencher les réponses naturelles du corps, par exemple en améliorant la productivité au travail, ou pour aider à s'ajuster à des horaires changeant constamment au travail.
Les compositions sont médicalement démontrées comme favorisant un de ces deux états mentaux chez chaque individu : la relaxation - pour réduire le stress et améliorer le sommeil ; et la vigilance - pour améliorer la concentration et la prise de décision. Chaque musique de 2-6 minutes est une composition exécutée sur un instrument simple, habituellement un piano. La musique de relaxation peut ressembler à "une sonate mélodique genre Chopin," tandis que la partie pour la vigilance peut avoir "plutôt le genre Mozart" dit Burns. (il semble donc qu'il y ait un génie classique - ou peut-être deux - en chacun de nous. Écouter une musique d'alerte instrumentale ici : www.dhs.gov/xlibrary/multimedia/snapshots/st_brain_music_active.mp3.
Après que leurs ondes cérébrales aient été mises en musique, on donne à chaque personne un programme d'écoute spécifique, personnalisé à son environnement et besoins de travail. Si elle est utilisée correctement, la musique peut amplifier la productivité et les forces, ou déclencher des réponses naturelles du corps à l'effort.
La musique créée par le Human Bionics LLCest testée comme partie du programme de S&T Readiness Optimization Program (ROP), est un programme de bien-être qui combine l'enseignement de la nutrition et l'entrainement cérébral afin d'évaluer une population de gens de premier secours, d'agents fédéraux, de la police, et des sapeurs-pompiers. Un groupe choisi de sapeurs-pompiers locaux sera le premier à participer au projet.
Ce composant de "musique de cerveau" ou dispositif de protection en cas de renversement, est dérivé d'une technologie brevetée et développée à l'université de Moscou pour employer les ondes cérébrales comme mécanisme de rétroaction afin de corriger certaines conditions physiologiques.
Dans les termes de John Locke, le philosophe britannique, la "musique de cerveau" apporterait une nouvelle signification à son expression célèbre :"un esprit sain dans un corps sain, constitue une courte, mais complète description, de l'état de bonheur en ce monde."
Reste alors Cervantes, qui a écrit : "Celui qui chante effraye et éloigne ses ennuis."

Auteur: Internet

Info:

 

Commentaires: 0

fin de vie

L'augmentation de l'activité cérébrale chez les mourants pourrait être un signe  mesurable d'expérience de mort imminente

Des chercheurs ont constaté que deux des quatre patients comateux avaient des ondes cérébrales qui s'apparentaient à la conscience après avoir été débranchés de leur respirateur artificiel.

(Photo d'un cerveau schématisé traversé par des ondes) En lisant les ondes cérébrales, les chercheurs ont confirmé l'idée selon laquelle les mourants peuvent voir leur vie défiler devant leurs yeux ou vivre des expériences extracorporelles. 

Certaines personnes ayant survécu à un arrêt cardiaque, issues de milieux culturels et religieux différents, ont fait état d'expériences de mort imminente. Il peut s'agir de la sensation de quitter son corps, d'une lumière vive au bout d'un tunnel ou de souvenirs d'événements passés. Aujourd'hui, les chercheurs avancent à grands pas vers une explication scientifique de ces événements.

Dans une étude publiée lundi dans les Proceedings of the National Academy of Sciences, des chercheurs rapportent que deux parmie quatre patients comateux en fin de vie ont connu une poussée d'activité cérébrale qui s'apparente à la conscience après avoir été débranchés de leur respirateur et que leur cœur e soit arrrêté.

Ces résultats indiquent que les scientifiques ont encore des choses à apprendre sur le comportement du cerveau au passage de la mort. L'étude "suggère que nous sommes en train d'identifier un marqueur de la conscience lucide". Tel l'explique Sam Parnia, pneumologue à l'université de New York, qui n'a pas participé à la recherche,.à Sara Reardon, de Science.

Les scientifiques ne savent pas vraiment pourquoi les expériences de mort imminente se produisent. Ces phénomènes mystérieux " représentent un paradoxe biologique qui remet en question notre compréhension fondamentale du cerveau mourant, dont on pense généralement qu’il ne fonctionne pas dans de telles conditions ", selon l’article.

Mais des travaux antérieurs ont également montré une activité cérébrale accrue en fin de vie. Dans une étude réalisée sur des rats en 2013, Jimo Borjigin, co-auteur de la nouvelle étude et neuroscientifique à l'Université du Michigan, a montré  que le cerveau des rongeurs produisait des poussées d'ondes gamma pendant 30 secondes après l'arrêt de leur cœur. Les ondes gamma sont des ondes cérébrales rapides associées à l'attention, à la mémoire de travail et à la mémoire à long terme. Elles indiquent donc, mais ne prouvent pas, que les rats auraient pu être conscients, écrit Stephanie Pappas  dans Live Science. De plus, une étude de 2022 a révélé qu’une personne décédée d’une crise cardiaque alors que son activité cérébrale était mesurée avait également une activité d’ondes gamma après son arrêt cardiaque.

La nouvelle recherche portait sur quatre patients décédés alors que leur activité cérébrale était surveillée par électroencéphalographie (EEG). Tous étaient dans le coma et étaient considérés comme ne pouvant bénéficier d’une assistance médicale, écrit  Hannah Devlin du Guardian. Leurs familles avaient donné la permission aux médecins de retirer les patients du système de réanimation.

Mais les mesures de l'activité cérébrale de deux des patients ont montré des augmentations des ondes gamma après coup. Les surtensions duraient quelques minutes et étaient parfois très fortes. "C'était incroyablement élevé", a déclaré Borjigin à  Clare Wilson du New Scientist .

Les chercheurs ont notamment observé des signaux intenses dans une zone du cerveau qui peut être active lorsque les personnes ont des expériences ou des rêves hors du corps. "Si cette partie du cerveau s'illumine, cela signifie que le patient voit quelque chose, peut entendre quelque chose et qu'il peut ressentir des sensations hors du corps", explique Borjigin à Issam Ahmed de l'Agence France-Presse (AFP).

Les résultats pourraient conduire à des investigations plus approfondies sur le cerveau mourant et sur la conscience lors d'un arrêt cardiaque, écrivent les auteurs.

"Cet article est vraiment important pour le domaine et pour le domaine de la conscience en général", a déclaré à Science Charlotte Martial, scientifique biomédicale qui étudie les expériences de mort imminente à l'Université de Liège en Belgique et qui n'a pas contribué à l'étude .

Il semble clair que cette activation des ondes gamma doit être confirmée chez davantage de patients.

"Plus nous aurons de résultats cohérents, plus il y aura de preuves qu'il s'agit probablement d'un mécanisme qui se produit au moment du décès", a déclaré à Live Science Ajmal Zemmar, neurochirurgien à l'Université de Louisville Health et co-auteur de l'étude de 2022. "Et si nous pouvons localiser cela à un seul endroit, ce sera encore mieux."

 

Auteur: Internet

Info: https://www.smithsonianmag.com/, Will Sullivan, May 5, 2023

[ e.m.i ] [ trépas ] [ pendant ] [ grand passage ]

 

Commentaires: 0

Ajouté à la BD par miguel