Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 65
Temps de recherche: 0.0472s

coûts cachés

Depuis trente ans, l’industrie électronique pille notre eau, qu’il neige, qu’il pleuve ou qu’on crève de chaud. En 2019, le site crollois de STMicroelectronics en a englouti 3,5 millions de mètres cubes. Depuis, il a agrandi sa ligne de production et lancé la nouvelle extension qui lui vaut cet été la visite de Macron. En ajoutant les voisins de Soitec et de Memscap, la "Silicon Valley française" exige 6 millions de mètres cubes d’eau par an, contraignant les collectivités à multiplier les infrastructures. Le pillage va s’accroître, puisque Macron annonce qu’on va produire "quatre fois plus" d’ici 2030. Le schéma d’aménagement et de gestion des eaux (Sage) adopté en 2018 annonce à cette échéance une hausse de 30 à 44 % des prélèvements destinés à Bernin et Crolles.

Ça ne suffit toujours pas. La "transition numérique et écologique" réclame son volume d’eau. Le 25 novembre 2021, la société a donc déposé une demande en préfecture pour créer deux forages dans la nappe de l’Isère cette fois, à l’aplomb de son site de Crolles, pour "sécuriser ses ressources en eau ; (…) maintenir le bon fonctionnement de ses ateliers de fabrication, et (…) poursuivre le développement de son activité́ au sein de son établissement de Crolles". La demande mentionne des besoins particuliers "lors des épisodes estivaux qui nécessitent la mise en service d’installations de réfrigération des ateliers très consommatrices d’eau".

Autorisation accordée sans difficulté par la Direction régionale de l’environnement, de l’aménagement et du logement (Dreal) le 19 mars 2022. Tandis que les fontaines publiques n’abreuvent plus personne, STMicroelectronics fore à plus de 20 mètres de profondeur pour pomper, "dans les eaux souterraines, y compris dans les nappes d’accompagnement de cours d’eau", 2,6 millions de mètres cubes d’eau supplémentaires par an, soit 300 m3 par heure.

Vingt ans et des canicules plus tard, Jean-François Clappaz, le vice-président à l’économie de la communauté de communes du Grésivaudan adresse cette demande inouïe à Macron : frapper le site de micro-électronique d’extra-territorialité pour l’exonérer de la règle du "zéro artificialisation nette" prévue dans la loi sur le climat. Objectif de cet élu incivique :

Faire en sorte qu’il (NdA : le site) ne soit pas impacté dans son évolution future par les mètres carrés indispensables à l’extension du site (sic) (…) Un investissement de 5,7 milliards d’euros nécessite que la loi s’adapte aux contraintes que l’on aura. Sinon, il ne pourra pas se réaliser, que ce soit pour ST et le ruisseau du Craponoz à côté, ou Soitec.

Le techno-gratin trahit en toute désinvolture ses habitudes d’arrangements administrativopolitiques. Il nous revient ce rapport de visite de la Drire, (Direction régionale de l'industrie, de la recherche et de l'environnement) en mars 2003, à propos des fumées polluantes de l’usine de Crolles :

La société STMicroelectronics (…) souhaite que les normes fixées en NOx par l'arrêté préfectoral du 08.10.01 soient revues compte tenu des difficultés à respecter la norme fixée (100 mg/Nm3)." Et donc, "les valeurs limite d'émission en NOx peuvent être fixées à 120 mg/Nm(gaz naturel) et 200 mg/Nm3 (FOD)."

[...]

Macron, Breton, les technocrates européens et français, imposent l’accélération à marche forcée de la production/destruction. En 2030, l’Europe produira peut-être deux fois plus de semiconducteurs. STMicroelectronics fournira toujours plus de puces aux Smartiens incapables de survivre sans connexion. En 2030, selon la géographe Magali Reghezza-Zitt, membre du Haut conseil pour le climat, Grenoble subira 37 jours de canicule. A cette échéance, le schéma d’aménagement et de gestion des eaux prévoit la fonte de la moitié des petits et des moyens glaciers qui alimentent la Romanche, le Drac et leurs nappes alluviales [...].

Comme dit Martial Saddier, le président haut-savoyard du comité de bassin RhôneMéditerranée (tout le bassin étant alimenté par les glaciers) : "aujourd’hui, on mange le capital". Qu’importe. En 2030, STMicroelectronics fera comme son concurrent taïwanais TSMC, qui engloutit 156 000 tonnes d’eau par jour : se faisant livrer par camions citernes lors des périodes de sécheresse.

Auteur: PMO Pièces et main-d'oeuvre

Info: https://www.piecesetmaindoeuvre.com/IMG/pdf/stmicro_les_incendiaires_et_les_voleurs_d_eau.pdf

[ greenwashing ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

sciences

Intellectuellement Pythagore fut un des hommes les plus importants qui aient jamais vécu, autant lorsqu'il fut sage que dans ses  imprudences.

Les mathématiques, au sens de l'argumentation déductive démonstrative, commencent avec lui et, en lui, sont intimement liées à une forme particulière de mysticisme. L'influence des mathématiques sur la philosophie, en partie due à lui, aura été depuis son époque à la fois profonde et malencontreuse. 

A l'origine la plupart des sciences étaient liées à une certaine forme de fausse croyance, ce qui leur donnait une valeur fictive. L'astronomie était liée à l'astrologie, la chimie à l'alchimie alors que les mathématiques étaient associées à un type d'erreur plus raffiné. Les connaissances mathématiques apparaissaient certaines, exactes et applicables au monde réel; de plus, elles étaient obtenues par simple réflexion, sans avoir besoin d'observation. Par conséquent, on pensait qu'elles fournissaient un idéal, en rapport duquel les connaissances empiriques quotidiennes étaient  inférieures. On supposait, sur la base des mathématiques, que la pensée est supérieure au sens, l'intuition à l'observation.

Si le monde des sens ne convient pas aux mathématiques, tant pis pour le monde des sens.  On a alots, via moult méthodes, cherché à se rapprocher de l'idéal du mathématicien, et les suggestions qui en ont résulté furent la source de beaucoup d'erreurs dans la métaphysique et la théorie de la connaissance.

Cette forme de philosophie commence avec Pythagore. Pythagore, comme tout le monde le sait, a dit "tout est nombre". Cette déclaration, interprétée de manière moderne, est logiquement un non-sens, mais ce qu'il voulait dire n'était pas exactement un non-sens. Il avait découvert l'importance des nombres en musique, et le lien qu'il a établi entre la musique et l'arithmétique survit dans les termes mathématiques "moyenne harmonique" et "progression harmonique". Il considérait les nombres comme des formes, telles qu'elles apparaissent sur les dés ou sur les cartes à jouer. On parle encore de nombres au carrés et au cube, termes que nous lui devons. Il évoqua aussi des nombres oblongs, triangulaires, pyramidaux, etc. C'était le nombre de cailloux (ou, comme on devrait dire plus naturellement, de billes) nécessaires pour réaliser les formes en question. Il pensait vraisemblablement que le monde est atomique et que les corps sont constitués de molécules composées d'atomes disposés sous diverses formes.

Il espérait ainsi mettre de l'arithmétique au centre de l'étude fondamentale de la physique comme de l'esthétique.

La religion personnelle dérive de l'extase, la théologie des mathématiques ; et les deux se trouvent chez Pythagore. Les mathématiques sont, je crois, la principale source de la croyance en une vérité éternelle et exacte, ainsi qu'en un monde intelligible suprasensible. La géométrie traite de cercles exacts, mais aucun objet sensible n'est exactement circulaire ; quelle que soit le soin avec lequel nous utilisons nos boussoles, il y aura des imperfections et des irrégularités. Cela suggère l'idée que tout raisonnement exact s'applique aux objets idéaux par opposition aux objets sensibles; il est naturel d'aller plus loin et d'affirmer que la pensée est plus noble que le sens, et les objets de la pensée plus réels que ceux de la perception sensorielle. Les doctrines mystiques sur la relation entre le temps et l'éternité sont également renforcées par les mathématiques pures, car les objets mathématiques, tels que les nombres, s'ils sont réels, sont éternels et ne s'inscrivent pas dans le temps. Ces objets éternels peuvent être conçus comme les pensées de Dieu. 

D'où la doctrine de Platon selon laquelle Dieu est un géomètre et la croyance de Sir James Jeans selon laquelle il est accro à l'arithmétique. La religion rationaliste par opposition à la religion apocalyptique aura été, depuis Pythagore, et notamment depuis Platon, complètement dominée par les mathématiques et la méthode mathématique. La combinaison des mathématiques et de la théologie, qui a commencé avec Pythagore, a caractérisé la philosophie religieuse en Grèce, au Moyen Âge et dans les temps modernes jusqu'à Kant. L'orphisme avant Pythagore était analogue aux mystérieuse religions asiatiques.

Mais chez Platon, Saint Augustin, Thomas d'Aquin, Descartes, Spinoza et Kant, il y a un mélange intime de religion et de raisonnement, d'aspiration morale et d'admiration logique de ce qui est intemporel, qui vient de Pythagore et qui distingue la théologie intellectualisée de l'Europe du mysticisme plus direct de l'Asie. 

Ce n'est que très récemment qu'il a été possible de dire clairement en quoi Pythagore avait tort. Je ne connais personne qui ait eu autant d'influence que lui dans le domaine de la pensée. Je dis cela parce que ce qui apparaît comme du platonisme se révèle, après analyse, être essentiellement du pythagorisme. Toute la conception d'un monde éternel, révélé à l'intellect mais non aux sens, est dérivée de lui. Sans lui, les chrétiens n'auraient pas considéré le Christ comme le monde ; sans lui, les théologiens n'auraient pas cherché des preuves logiques de Dieu et de l'immortalité. Mais en lui, tout cela reste implicite.

Auteur: Russell Bertrand

Info: A History of Western Philosophy (1945), Book One. Ancient Philosophy, Part II. The Pre-Socratics, Ch. III: Pythagoras, p. 29 & pp. 34-37

[ historique ] [ Grèce antique ] [ langage ]

 

Commentaires: 0

Ajouté à la BD par miguel

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

homme-machine

Une nouvelle approche du calcul réinvente l'intelligence artificielle

Par l'imprégnation d'énormes vecteurs de sens sémantique, nous pouvons amener les machines à raisonner de manière plus abstraite et plus efficace qu'auparavant.

M
algré le succès retentissant de ChatGPT et d'autres grands modèles de langage, les réseaux de neurones artificiels (ANN) qui sous-tendent ces systèmes pourraient être sur la mauvaise voie.

D'une part, les ANN sont "super gourmands en énergie", a déclaré Cornelia Fermüller , informaticienne à l'Université du Maryland. "Et l'autre problème est [leur] manque de transparence." De tels systèmes sont si compliqués que personne ne comprend vraiment ce qu'ils font, ou pourquoi ils fonctionnent si bien. Ceci, à son tour, rend presque impossible de les amener à raisonner par analogie, ce que font les humains - en utilisant des symboles pour les objets, les idées et les relations entre eux.

Ces lacunes proviennent probablement de la structure actuelle des RNA et de leurs éléments constitutifs : les neurones artificiels individuels. Chaque neurone reçoit des entrées, effectue des calculs et produit des sorties. Les RNA modernes sont des réseaux élaborés de ces unités de calcul, formés pour effectuer des tâches spécifiques.

Pourtant, les limites des RNA sont évidentes depuis longtemps. Considérez, par exemple, un ANN qui sépare les cercles et les carrés. Une façon de le faire est d'avoir deux neurones dans sa couche de sortie, un qui indique un cercle et un qui indique un carré. Si vous voulez que votre ANN discerne également la couleur de la forme - bleu ou rouge - vous aurez besoin de quatre neurones de sortie : un pour le cercle bleu, le carré bleu, le cercle rouge et le carré rouge. Plus de fonctionnalités signifie encore plus de neurones.

Cela ne peut pas être la façon dont notre cerveau perçoit le monde naturel, avec toutes ses variations. "Vous devez proposer que, eh bien, vous avez un neurone pour toutes les combinaisons", a déclaré Bruno Olshausen , neuroscientifique à l'Université de Californie à Berkeley. "Donc, vous auriez dans votre cerveau, [disons,] un détecteur Volkswagen violet."

Au lieu de cela, Olshausen et d'autres soutiennent que l'information dans le cerveau est représentée par l'activité de nombreux neurones. Ainsi, la perception d'une Volkswagen violette n'est pas codée comme les actions d'un seul neurone, mais comme celles de milliers de neurones. Le même ensemble de neurones, tirant différemment, pourrait représenter un concept entièrement différent (une Cadillac rose, peut-être).

C'est le point de départ d'une approche radicalement différente de l'informatique connue sous le nom d'informatique hyperdimensionnelle. La clé est que chaque élément d'information, comme la notion d'une voiture, ou sa marque, son modèle ou sa couleur, ou tout cela ensemble, est représenté comme une seule entité : un vecteur hyperdimensionnel.

Un vecteur est simplement un tableau ordonné de nombres. Un vecteur 3D, par exemple, comprend trois nombres : les coordonnées x , y et z d'un point dans l'espace 3D. Un vecteur hyperdimensionnel, ou hypervecteur, pourrait être un tableau de 10 000 nombres, par exemple, représentant un point dans un espace à 10 000 dimensions. Ces objets mathématiques et l'algèbre pour les manipuler sont suffisamment flexibles et puissants pour amener l'informatique moderne au-delà de certaines de ses limites actuelles et favoriser une nouvelle approche de l'intelligence artificielle.

"C'est ce qui m'a le plus enthousiasmé, pratiquement de toute ma carrière", a déclaré Olshausen. Pour lui et pour beaucoup d'autres, l'informatique hyperdimensionnelle promet un nouveau monde dans lequel l'informatique est efficace et robuste, et les décisions prises par les machines sont entièrement transparentes.

Entrez dans les espaces de grande dimension

Pour comprendre comment les hypervecteurs rendent le calcul possible, revenons aux images avec des cercles rouges et des carrés bleus. Nous avons d'abord besoin de vecteurs pour représenter les variables SHAPE et COLOR. Ensuite, nous avons également besoin de vecteurs pour les valeurs pouvant être affectées aux variables : CERCLE, CARRÉ, BLEU et ROUGE.

Les vecteurs doivent être distincts. Cette distinction peut être quantifiée par une propriété appelée orthogonalité, ce qui signifie être à angle droit. Dans l'espace 3D, il existe trois vecteurs orthogonaux entre eux : un dans la direction x , un autre dans la direction y et un troisième dans la direction z . Dans un espace à 10 000 dimensions, il existe 10 000 vecteurs mutuellement orthogonaux.

Mais si nous permettons aux vecteurs d'être presque orthogonaux, le nombre de ces vecteurs distincts dans un espace de grande dimension explose. Dans un espace à 10 000 dimensions, il existe des millions de vecteurs presque orthogonaux.

Créons maintenant des vecteurs distincts pour représenter FORME, COULEUR, CERCLE, CARRÉ, BLEU et ROUGE. Parce qu'il y a tellement de vecteurs presque orthogonaux possibles dans un espace de grande dimension, vous pouvez simplement assigner six vecteurs aléatoires pour représenter les six éléments ; ils sont presque garantis d'être presque orthogonaux. "La facilité de créer des vecteurs presque orthogonaux est une raison majeure d'utiliser la représentation hyperdimensionnelle", a écrit Pentti Kanerva , chercheur au Redwood Center for Theoretical Neuroscience de l'Université de Californie à Berkeley, dans un article influent de 2009.

L'article s'appuyait sur des travaux effectués au milieu des années 1990 par Kanerva et Tony Plate, alors étudiant au doctorat avec Geoff Hinton à l'Université de Toronto. Les deux ont développé indépendamment l'algèbre pour manipuler les hypervecteurs et ont fait allusion à son utilité pour le calcul en haute dimension.

Étant donné nos hypervecteurs pour les formes et les couleurs, le système développé par Kanerva et Plate nous montre comment les manipuler à l'aide de certaines opérations mathématiques. Ces actions correspondent à des manières de manipuler symboliquement des concepts.

La première opération est la multiplication. C'est une façon de combiner les idées. Par exemple, multiplier le vecteur FORME par le vecteur CERCLE lie les deux en une représentation de l'idée "LA FORME est CERCLE". Ce nouveau vecteur "lié" est presque orthogonal à la fois à SHAPE et à CIRCLE. Et les composants individuels sont récupérables - une caractéristique importante si vous souhaitez extraire des informations à partir de vecteurs liés. Étant donné un vecteur lié qui représente votre Volkswagen, vous pouvez dissocier et récupérer le vecteur pour sa couleur : VIOLET.

La deuxième opération, l'addition, crée un nouveau vecteur qui représente ce qu'on appelle une superposition de concepts. Par exemple, vous pouvez prendre deux vecteurs liés, "SHAPE is CIRCLE" et "COLOR is RED", et les additionner pour créer un vecteur qui représente une forme circulaire de couleur rouge. Là encore, le vecteur superposé peut être décomposé en ses constituants.

La troisième opération est la permutation ; cela implique de réorganiser les éléments individuels des vecteurs. Par exemple, si vous avez un vecteur tridimensionnel avec des valeurs étiquetées x , y et z , la permutation peut déplacer la valeur de x vers y , y vers z et z vers x. "La permutation vous permet de construire une structure", a déclaré Kanerva. "Ça permet de gérer des séquences, des choses qui se succèdent." Considérons deux événements, représentés par les hypervecteurs A et B. Nous pouvons les superposer en un seul vecteur, mais cela détruirait les informations sur l'ordre des événements. La combinaison de l'addition et de la permutation préserve l'ordre ; les événements peuvent être récupérés dans l'ordre en inversant les opérations.

Ensemble, ces trois opérations se sont avérées suffisantes pour créer une algèbre formelle d'hypervecteurs permettant un raisonnement symbolique. Mais de nombreux chercheurs ont été lents à saisir le potentiel de l'informatique hyperdimensionnelle, y compris Olshausen. "Cela n'a tout simplement pas été pris en compte", a-t-il déclaré.

Exploiter le pouvoir

En 2015, un étudiant d'Olshausen nommé Eric Weiss a démontré un aspect des capacités uniques de l'informatique hyperdimensionnelle. Weiss a compris comment représenter une image complexe comme un seul vecteur hyperdimensionnel contenant des informations sur tous les objets de l'image, y compris leurs propriétés, telles que les couleurs, les positions et les tailles.

"Je suis pratiquement tombé de ma chaise", a déclaré Olshausen. "Tout d'un coup, l'ampoule s'est allumée."

Bientôt, d'autres équipes ont commencé à développer des algorithmes hyperdimensionnels pour reproduire des tâches simples que les réseaux de neurones profonds avaient commencé à effectuer environ deux décennies auparavant, comme la classification d'images.

Considérons un ensemble de données annotées composé d'images de chiffres manuscrits. Un algorithme analyse les caractéristiques de chaque image en utilisant un schéma prédéterminé. Il crée ensuite un hypervecteur pour chaque image. Ensuite, l'algorithme ajoute les hypervecteurs pour toutes les images de zéro pour créer un hypervecteur pour l'idée de zéro. Il fait ensuite la même chose pour tous les chiffres, créant 10 hypervecteurs "de classe", un pour chaque chiffre.

Maintenant, l'algorithme reçoit une image non étiquetée. Il crée un hypervecteur pour cette nouvelle image, puis compare l'hypervecteur aux hypervecteurs de classe stockés. Cette comparaison détermine le chiffre auquel la nouvelle image ressemble le plus.

Pourtant, ce n'est que le début. Les points forts de l'informatique hyperdimensionnelle résident dans la capacité de composer et de décomposer des hypervecteurs pour le raisonnement. La dernière démonstration en date a eu lieu en mars, lorsqu'Abbas Rahimi et ses collègues d'IBM Research à Zurich ont utilisé l'informatique hyperdimensionnelle avec des réseaux de neurones pour résoudre un problème classique de raisonnement visuel abstrait - un défi important pour les RNA typiques, et même certains humains. Connu sous le nom de matrices progressives de Raven, le problème présente des images d'objets géométriques dans, disons, une grille 3 par 3. Une position dans la grille est vide. Le sujet doit choisir, parmi un ensemble d'images candidates, l'image qui correspond le mieux au blanc.

"Nous avons dit:" C'est vraiment ... l'exemple qui tue pour le raisonnement abstrait visuel, allons-y "", a déclaré Rahimi.

Pour résoudre le problème à l'aide de l'informatique hyperdimensionnelle, l'équipe a d'abord créé un dictionnaire d'hypervecteurs pour représenter les objets dans chaque image ; chaque hypervecteur du dictionnaire représente un objet et une combinaison de ses attributs. L'équipe a ensuite formé un réseau de neurones pour examiner une image et générer un hypervecteur bipolaire - un élément peut être +1 ou -1 - aussi proche que possible d'une superposition d'hypervecteurs dans le dictionnaire ; l'hypervecteur généré contient donc des informations sur tous les objets et leurs attributs dans l'image. "Vous guidez le réseau de neurones vers un espace conceptuel significatif", a déclaré Rahimi.

Une fois que le réseau a généré des hypervecteurs pour chacune des images de contexte et pour chaque candidat pour l'emplacement vide, un autre algorithme analyse les hypervecteurs pour créer des distributions de probabilité pour le nombre d'objets dans chaque image, leur taille et d'autres caractéristiques. Ces distributions de probabilité, qui parlent des caractéristiques probables à la fois du contexte et des images candidates, peuvent être transformées en hypervecteurs, permettant l'utilisation de l'algèbre pour prédire l'image candidate la plus susceptible de remplir l'emplacement vacant.

Leur approche était précise à près de 88 % sur un ensemble de problèmes, tandis que les solutions de réseau neuronal uniquement étaient précises à moins de 61 %. L'équipe a également montré que, pour les grilles 3 par 3, leur système était presque 250 fois plus rapide qu'une méthode traditionnelle qui utilise des règles de logique symbolique pour raisonner, car cette méthode doit parcourir un énorme livre de règles pour déterminer la bonne prochaine étape.

Un début prometteur

Non seulement l'informatique hyperdimensionnelle nous donne le pouvoir de résoudre symboliquement des problèmes, mais elle résout également certains problèmes épineux de l'informatique traditionnelle. Les performances des ordinateurs d'aujourd'hui se dégradent rapidement si les erreurs causées, par exemple, par un retournement de bit aléatoire (un 0 devient 1 ou vice versa) ne peuvent pas être corrigées par des mécanismes de correction d'erreurs intégrés. De plus, ces mécanismes de correction d'erreurs peuvent imposer une pénalité sur les performances allant jusqu'à 25 %, a déclaré Xun Jiao , informaticien à l'Université de Villanova.

Le calcul hyperdimensionnel tolère mieux les erreurs, car même si un hypervecteur subit un nombre important de retournements de bits aléatoires, il reste proche du vecteur d'origine. Cela implique que tout raisonnement utilisant ces vecteurs n'est pas significativement impacté face aux erreurs. L'équipe de Jiao a montré que ces systèmes sont au moins 10 fois plus tolérants aux pannes matérielles que les ANN traditionnels, qui sont eux-mêmes des ordres de grandeur plus résistants que les architectures informatiques traditionnelles. "Nous pouvons tirer parti de toute [cette] résilience pour concevoir du matériel efficace", a déclaré Jiao.

Un autre avantage de l'informatique hyperdimensionnelle est la transparence : l'algèbre vous indique clairement pourquoi le système a choisi la réponse qu'il a choisie. Il n'en va pas de même pour les réseaux de neurones traditionnels. Olshausen, Rahimi et d'autres développent des systèmes hybrides dans lesquels les réseaux de neurones cartographient les éléments du monde physique en hypervecteurs, puis l'algèbre hyperdimensionnelle prend le relais. "Des choses comme le raisonnement analogique vous tombent dessus", a déclaré Olshausen. "C'est ce que nous devrions attendre de tout système d'IA. Nous devrions pouvoir le comprendre comme nous comprenons un avion ou un téléviseur.

Tous ces avantages par rapport à l'informatique traditionnelle suggèrent que l'informatique hyperdimensionnelle est bien adaptée à une nouvelle génération de matériel extrêmement robuste et à faible consommation d'énergie. Il est également compatible avec les "systèmes informatiques en mémoire", qui effectuent le calcul sur le même matériel qui stocke les données (contrairement aux ordinateurs von Neumann existants qui transfèrent inefficacement les données entre la mémoire et l'unité centrale de traitement). Certains de ces nouveaux appareils peuvent être analogiques, fonctionnant à très basse tension, ce qui les rend économes en énergie mais également sujets aux bruits aléatoires. Pour l'informatique de von Neumann, ce caractère aléatoire est "le mur que vous ne pouvez pas franchir", a déclaré Olshausen. Mais avec l'informatique hyperdimensionnelle, "vous pouvez simplement percer".

Malgré ces avantages, l'informatique hyperdimensionnelle en est encore à ses balbutiements. "Il y a un vrai potentiel ici", a déclaré Fermüller. Mais elle souligne qu'il doit encore être testé contre des problèmes du monde réel et à des échelles plus grandes, plus proches de la taille des réseaux de neurones modernes.

"Pour les problèmes à grande échelle, cela nécessite un matériel très efficace", a déclaré Rahimi. "Par exemple, comment [faites-vous] une recherche efficace sur plus d'un milliard d'articles ?"

Tout cela devrait venir avec le temps, a déclaré Kanerva. "Il y a d'autres secrets [que] les espaces de grande dimension détiennent", a-t-il déclaré. "Je vois cela comme le tout début du temps pour le calcul avec des vecteurs."

Auteur: Ananthaswamy Anil

Info: https://www.quantamagazine.org/ Mais 2023

[ machine learning ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

CAPACITÉS COGNITIVES DU DAUPHIN

Au-delà de leur physiologie cérébrale, les dauphins font preuve de capacités extrêmement rares dans le domaine animal. Comme les humains, les dauphins peuvent imiter, aussi bien sur le mode gestuel que sur le mode vocal, ce qui est soi est déjà exceptionnel. Si certains oiseaux peuvent imiter la voix, ils n’imitent pas les attitudes. Les singes, de leur côté, imitent les gestes et non les mots. Le dauphin est capable des deux. Les dauphins chassent les poissons et se nourrissent d’invertébrés, mais ils usent pour ce faire de techniques complexes et variables, acquises durant l’enfance grâce à l’éducation. L’usage des outils ne leur est pas inconnu : un exemple frappant de cette capacité est la façon dont deux dauphins captifs s’y sont pris pour extraire une murène cachée dans le creux d’un rocher à l’intérieur de leur bassin. L’un d’eux a d’abord attrapé un petit poisson scorpion très épineux, qui passait dans le secteur, et l’ayant saisi dans son rostre, s’en est servi comme d’un outil pour extraire la murène de sa cachette. S’exprimant à propos de leur intelligence, le Dr Louis M.Herman, Directeur du Kewalo Basin Marine Mammal Laboratory de l’Université d’Hawaii, note que les dauphins gardent en mémoire des événements totalement arbitraires, sans le moindre rapport avec leur environnement naturel et sans aucune incidence biologique quant à leur existence.

Recherches sur le langage des dauphins

Beaucoup d’humains trouvent intrigante l’idée de communiquer avec d’autres espèces. A cet égard, le dauphin constitue un sujet attractif, particulièrement dans le domaine du langage animal, du fait de ses capacités cognitives et de son haut degré de socialisation. Dès le début des années soixante, c’est le neurologue John Lilly qui, le premier, s’est intéressé aux vocalisations des cétacés. Les recherches de Lilly se poursuivirent durant toute une décennie, tout en devenant de moins en moins conventionnelles. Le savant alla même jusqu’à tester les effets du L.S.D. sur les émissions sonores des dauphins et dut finalement interrompre ses recherches en 1969, lorsque cinq de ses dauphins se suicidèrent en moins de deux semaines. Malheureusement, nombre de découvertes ou de déclarations de John Lilly sont franchement peu crédibles et ont jeté le discrédit sur l’ensemble des recherches dans le domaine du langage animal. De ce fait, ces recherches sont aujourd’hui rigoureusement contrôlées et très méticuleuses, de sorte que les assertions des scientifiques impliquées dans ce secteur restent désormais extrêmement réservées.

Louis Herman est sans doute l’un des plus importants chercheurs à mener des études sur la communication et les capacités cognitives des dauphins. Son instrument de travail privilégié est la création de langues artificielles, c’est-à-dire de langages simples crées pour l’expérience, permettant d’entamer des échanges avec les dauphins. Louis Herman a surtout concentré ses travaux sur le phénomène de la "compréhension" du langage bien plus que sur la "production" de langage, arguant que la compréhension est le premier signe d’une compétence linguistique chez les jeunes enfants et qu’elle peut être testée de façon rigoureuse. En outre, la structure grammaticale qui fonde les langages enseignés s’inspire le plus souvent de celle de l’anglais. Certains chercheurs ont noté qu’il aurait été mieux venu de s’inspirer davantage de langues à tons ou à flexions, comme le chinois, dont la logique aurait parue plus familière aux cétacés. Dans les travaux d’Herman, on a appris à deux dauphins, respectivement nommés Akeakamai (Ake) et Phoenix, deux langues artificielles. Phoenix a reçu l’enseignement d’un langage acoustique produit par un générateur de sons électroniques. Akeakamai, en revanche, a du apprendre un langage gestuel (version simplifiée du langage des sourds-muets), c’est-à-dire visuel. Les signaux de ces langues artificiels représentent des objets, des modificateurs d’objet (proche, loin, gros, petit, etc.) ou encore des actions. Ni les gestes ni les sons ne sont sensés représenter de façon analogique les objets ou les termes relationnels auxquels ils se réfèrent. Ces langages utilisent également une syntaxe, c’est-à-dire des règles de grammaire simples, ce qui signifie que l’ordre des mots influe sur le sens de la phrase. Phoenix a appris une grammaire classique, enchaînant les termes de gauche à droite (sujet-verbe-complément) alors que la grammaire enseignée à Ake allait dans l’autre sens et exigeait de sa part qu’elle voit l’ensemble du message avant d’en comprendre le sens correctement. Par exemple, dans le langage gestuel de Ake, la séquence des signaux PIPE-SURFBOARD-FETCH ("tuyau – planche à surf – apporter") indiquait l’ordre d’amener la planche de surf jusqu’au tuyau, alors que SURFBOARD-PIPE-FETCH ("planche-tuyau- rapporter") signifiait qu’il fallait, au contraire, amener le tuyau jusqu’ à la planche de surf. Phoenix et Ake ont ainsi appris environ 50 mots, lesquels, permutés l’un avec l’autre au sein de séquences courtes, leur permirent bientôt de se servir couramment de plus de mille phrases, chacune produisant une réponse neuve et non apprise.

Compte tenu de l’influence possible de la position dans l’espace des expérimentateurs sur l’expérimentation, les lieux d’apprentissage et les entraîneurs se voyaient changés de session en session. Dans le même temps, des observateurs "aveugles", qui ne connaissaient pas les ordres et ne voyaient pas les entraîneurs, notaient simplement le comportement des dauphins, afin de vérifier ensuite qu’il correspondait bien aux commandes annoncées. Les entraîneurs allaient jusqu’à porter des cagoules noires, afin de ne révéler aucune expression ou intention faciale et se tenaient immobiles, à l’exception des mains. Les dauphins se montrèrent capables de reconnaître les signaux du langage gestuels aussi bien lorsqu’il étaient filmés puis rediffusés sur un écran vidéo que lorsque ces mêmes signes étaient exécutés à l’air libre par l’entraîneur. Même le fait de ne montrer que des mains pâles sur un fond noir ou des taches de lumière blanche reproduisant la dynamique des mains, a largement suffi aux dauphins pour comprendre le message ! Il semble donc que les dauphins répondent davantage aux symboles abstraits du langage qu’à tout autre élément de la communication.

Par ailleurs, si les dauphins exécutent aisément les ordres qu’on leur donne par cette voie gestuelle, ils peuvent également répondre de façon correcte à la question de savoir si un objet précis est présent ou absent, en pressant le levier approprié (le clair pour PRESENT, le sombre pour ABSENT). Ceci démontre évidement leur faculté de "déplacement mental", qui consiste à manipuler l’image d’objets qui ne se trouvent pas dans les environs. Des expériences additionnelles ont conduit à préciser comment le dauphin conçoit l’étiquetage des objets, comment il les qualifie de son point de vue mental. "Nous avons constaté" nous apprend Louis Herman, "qu’au regard du dauphin, le signe CERCEAU n’est pas seulement le cerceau précis utilisé dans le cadre de cette expérience précise, c’est plutôt TOUT OBJET DE GRANDE TAILLE PERCE D’UN GRAND TROU AU MILIEU. Un seul concept général associe donc pour le dauphin les cerceaux ronds, carrés, grands et petits, flottants ou immergés, que l’on utilise généralement lors de la plupart des expériences". Parmi les choses que le Dr Herman estime n’avoir pu enseigner aux dauphins, il y a le concept du "non" en tant que modificateur logique. L’ordre de "sauter au-dessus d’une non-balle" indique en principe que le dauphin doit sauter au-dessus de n’importe quoi, sauf d’une balle ! Mais cela n’est pas compris, pas plus, affirme toujours Herman, que le concept de "grand" ou de "petit".

Communication naturelle chez les dauphins

On sait que les dauphins émettent de nombreux sifflements, de nature très diverse. La fonction de la plupart d’entre eux demeure toujours inconnue mais on peut affirmer aujourd’hui que la moitié d’entre eux au moins constitue des "signatures sifflées". Un tel signal se module dans une fourchette de 5 à 20 kilohertz et dure moins d’une seconde. Il se distingue des autres sifflements - et de la signature de tous les autres dauphins – par ses contours particuliers et ses variations de fréquences émises sur un temps donné, ainsi que le montrent les sonogrammes. Les jeunes développent leur propre signature sifflée entre l’âge de deux mois et d’un an. Ces sifflements resteront inchangés douze ans au moins et le plus souvent pour la durée entière de la vie de l’animal. Par ailleurs, au-delà de leur seule fonction nominative, certains des sifflements du dauphin apparaissent comme de fidèles reproductions de ceux de leurs compagnons et servent manifestement à interpeller les autres par leur nom. Lorsqu’ils sont encore très jeunes, les enfants mâles élaborent leur propre signature sifflée, qui ressemble fort à celle de leur mère. En revanche, les jeunes femelles doivent modifier les leurs, précisément pour se distinguer de leur mère.

Ces différences reflètent sans doute celles qui existent dans les modes de vie des femelles et des mâles. Puisque les filles élèvent leur propre enfant au sein du groupe maternel, un sifflement distinct est donc indispensable pour pouvoir distinguer la maman de la grand mère. La signature sifflée masculine, presque identique à celle de la mère, permet tout au contraire d’éviter l’inceste et la consanguinité. Le psychologue James Ralston et l’informaticien Humphrey Williams ont découvert que la signature sifflée pouvait véhiculer bien plus que la simple identité du dauphin qui l’émet. En comparant les sonogrammes des signatures sifflées durant les activités normales et lors de situations stressantes, ils découvrirent que la signature sifflée, tout en conservant sa configuration générale, pouvait changer en termes de tonalité et de durée et transmettre ainsi des informations sur l’état émotionnel de l’animal. Les modifications causé par cet état émotionnel sur les intonations de la signature varient en outre selon les individus. Les dauphins semblent donc utiliser les sifflement pour maintenir le contact lorsqu’ils se retrouvent entre eux ou lorsqu’ils rencontrent d’autres groupes, mais aussi, sans doute, pour coordonner leur activités collectives. Par exemple, des sifflements sont fréquemment entendus lorsque le groupe entier change de direction ou d’activité.

De son côté, Peter Tyack (Woods Hole Oceanographic Institute) a travaillé aux côtés de David Staelin, professeur d’ingénierie électronique au M.I.T., afin de développer un logiciel d’ordinateur capable de détecter les "matrices sonores" et les signaux répétitifs parmi le concert de couinements, piaulements et autres miaulements émis par les dauphins. Une recherche similaire est menée par l’Université de Singapore (Dolphin Study Group). Avec de tels outils, les chercheurs espèrent en apprendre davantage sur la fonction précise des sifflements.

Dauphins sociaux

Les observations menées sur des individus sauvages aussi bien qu’en captivité révèlent un très haut degré d’ordre social dans la société dauphin. Les femelles consacrent un an à leur grossesse et puis les trois années suivantes à élever leur enfant. Les jeunes s’éloignent en effet progressivement de leur mère dès leur troisième année, restant près d’elle jusqu’à six ou dix ans ! – et rejoignent alors un groupe mixte d’adolescents, au sein duquel ils demeurent plusieurs saisons. Parvenus à l’âge pleinement adulte, vers 15 ans en moyenne, les mâles ne reviennent plus que rarement au sein du "pod" natal. Cependant, à l’intérieur de ces groupes d’adolescents, des liens étroits se nouent entre garçons du même âge, qui peuvent persister la vie entière. Lorsque ces mâles vieillissent, ils ont tendance à s’associer à une bande de femelles afin d’y vivre une paisible retraite. Bien que les dauphins pratiquent bien volontiers la promiscuité sexuelle, les familles matriarcales constituent de fortes unités de base de la société dauphin. Lorsqu’une femelle donne naissance à son premier enfant, elle rejoint généralement le clan de sa propre mère et élève son delphineau en compagnie d’autres bébés, nés à la même saison. La naissance d’un nouveau-né donne d’ailleurs souvent lieu à des visites d’autres membres du groupe, mâles ou femelles, qui s’étaient séparés de leur mère depuis plusieurs années. Les chercheurs ont également observé des comportements de "baby-sitting", de vieilles femelles, des soeurs ou bien encore d’autres membres du groupe, voire même un ancien mâle prenant alors en charge la surveillance des petits. On a ainsi pu observer plusieurs dauphins en train de mettre en place une véritable "cour de récréation", les femelles se plaçant en U et les enfants jouant au milieu ! (D’après un texte du Dr Poorna Pal)

Moi, dauphin.

Mais qu’en est-il finalement de ce moi central au coeur de ce monde circulaire sans relief, sans couleurs constitué de pixels sonores ? C’est là que les difficultés deviennent insurmontables tant qu’un "contact" n’aura pas été vraiment établi par le dialogue car le "soi" lui-même, le "centre de la personne" est sans doute construit de façon profondément différente chez l’homme et chez le dauphin. H.Jerison parle carrément d’une "conscience collective". Les mouvements de groupe parfaitement coordonnés et quasi-simultanés, à l’image des bancs de poissons ou des troupeaux de gnous, que l’on observe régulièrement chez eux, suppose à l’évidence une pensée "homogène" au groupe, brusquement transformé en une "personne plurielle". On peut imaginer ce sentiment lors d’un concert de rock ou d’une manifestation, lorsqu’une foule entière se tend vers un même but mais ces attitudes-là sont grossières, globales, peu nuancées. Toute autre est la mise à l’unisson de deux, trois, cinq (les "gangs" de juvéniles mâles associés pour la vie) ou même de plusieurs centaines de dauphins ensemble (de formidables "lignes de front" pour la pêche, qui s’étendent sur des kilomètres) et là, bien sûr, nous avons un comportement qui traduit un contenu mental totalement inconnu de nous. On sait que lorsqu’un dauphin voit, tout le monde l’entend. En d’autres termes chaque fois qu’un membre du groupe focalise son faisceau de clicks sur une cible quelconque, l’écho lui revient mais également à tous ceux qui l’entourent. Imaginons que de la même manière, vous regardiez un beau paysage. La personne qui vous tournerait le dos et se tiendrait à l’arrière derrière vous pourrait le percevoir alors aussi bien que vous le faites. Cette vision commune, qui peut faire croire à de la télépathie, n’est pas sans conséquence sur le contenu mental de chaque dauphin du groupe, capable de fusionner son esprit à ceux des autres quand la nécessité s’en fait sentir. Ceci explique sans doute la formidable capacité d’empathie des dauphins mais aussi leur fidélité "jusqu’à la mort" quand il s’agit de suivre un compagnon qui s’échoue. Chez eux, on ne se sépare pas plus d’un ami en détresse qu’on ne se coupe le bras quand il est coincé dans une portière de métro ! En d’autres circonstances, bien sûr, le dauphin voyage seul et il "rassemble" alors sa conscience en un soi individualisé, qui porte un nom, fait des choix et s’intègre dans une lignée. Il en serait de même pour l’homme si les mots pouvaient faire surgir directement les images qu’ils désignent dans notre cerveau, sans passer par le filtre d’une symbolisation intermédiaire. Si quelqu’un me raconte sa journée, je dois d’abord déchiffrer ses mots, les traduire en image et ensuite me les "représenter". Notre système visuel étant indépendant de notre système auditif, un processus de transformation préalable est nécessaire à la prise de conscience du message. Au contraire, chez le dauphin, le système auditif est à la fois un moyen de communication et un moyen de cognition "constructiviste" (analyse sensorielle de l’environnement). La symbolisation n’est donc pas nécessaire aux transferts d’images, ce qui n’empêche nullement qu’elle puisse exister au niveau des concepts abstraits. Quant à cette conscience fusion-fission, cet "ego fluctuant à géométrie variable", ils préparent tout naturellement le dauphin à s’ouvrir à d’autres consciences que la sienne. D’où sans doute, son besoin de nous sonder, de nous comprendre et de nous "faire" comprendre. Un dauphin aime partager son cerveau avec d’autres, tandis que l’homme vit le plus souvent enfermé dans son crâne. Ces êtres-là ont décidément beaucoup à nous apprendre...

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ mimétisme ] [ sémiotique ] [ intelligence grégaire ]

 

Commentaires: 0