Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 270
Temps de recherche: 0.064s

xénolinguistique

Q - L'humanité a-t-elle prévu un protocole "premier contact" ? 

R - Je ne sais pas si les États ont prévu quoi que ce soit. Ce que je sais, c'est que je ne connais aucun collègue linguiste à qui on a demandé de préparer quelque chose. Des réflexions ont été engagées au sein du programme SETI - qui vise à détecter la présence de civilisations extraterrestres avancées dans d'autres systèmes solaires -, mais cela concerne la communication à distance. Si la communication s'effectue face à face, les réponses se trouvent dans la linguistique de terrain. 

R - Dans ce cas, il n'y a pas de document décrivant des "étapes magiques". Il existe néanmoins un cadre de travail : quand des linguistes découvrent un peuple dont le langage est totalement inconnu, ils commencent par vivre avec ses membres, observer leur comportement, les écouter, et apprendre leur culture. Aujourd'hui, ils utilisent généralement un enregistreur pour détecter les variations parfois subtiles de la langue et retranscrivent les sons grâce à un alphabet adapté, à l'image de l'Alphabet Phonétique International. Surtout, ils décrivent le cadre dans lequel les phrases sont prononcées : si elles sont accompagnées d'un geste des mains ou des yeux ou l'utilisation d'un outil. 

Q - Quels seraient les principaux obstacles empêchant la communication entre l'humanité et des extraterrestres ? 

R - Les auteurs de science-fiction ont à peu près tout imaginé : des extraterrestres communiquant avec des motifs, des couleurs, des peintures, des tapotements, des vibrations voire même par des odeurs, ou des champs magnétiques, ces deux derniers modes étant particulièrement compliqués. Le jour du premier contact, les scientifiques installeront probablement toutes sortes de détecteurs : de vibrations et d'ondes dans toutes les gammes de fréquences imaginables, olfactifs, de mouvements hyper sensibles, etc.  

Découvrir le type de médium utilisé pour communiquer ne devrait pas être le plus dur. Ensuite, il s'agira de décrypter le contenu. Pas facile quand on part de rien, que l'on n'a pas de dictionnaire, de corpus ou de référence. Échanger un premier mot qui a du sens peut déjà se révéler complexe, mais prononcer une phrase complète, requiert de connaître la culture et les coutumes du nouveau peuple. 

Q - Vous écrivez qu'il est important de maîtriser le langage pour mieux communiquer entre nous et avec d'autres. Une promotion pour la linguistique ? 

R - Oui, car je pense qu'on ne met pas suffisamment en avant les langues et leurs complexités dans le monde actuel. Par exemple, lorsque l'on parle de sciences à la télévision, ce sont toujours les sciences dures : chimie, mathématiques, physique. On évoque trop rarement les sciences humaines comme la linguistique, qui sont pourtant très importantes.  

C'est pareil pour la science-fiction, les romans donnés aux jeunes sont souvent sur les robots, l'exploration spatiale, beaucoup moins sur les langues. Pourtant, il existe des tas de livres de SF qui sont très importants du point de vue linguistique. La sortie de 'l'ovni' Premier Contact au cinéma m'a motivé à écrire ce livre. Je me suis dit : "Ah ! Enfin un film d'extraterrestres dans lequel on parle de langage", ce qui est tout même plus intéressant que les films de guerre type Independance Day, à la fois désespérément vide et remplis de clichés éculés. 

Q - L'apprentissage de la langue d'une civilisation extraterrestre pourrait-il nous transformer ? 

R - Je pense que c'est plutôt par l'apprentissage de leur culture ou de leurs technologies que s'opéreront des changements. On sait aujourd'hui que l'hypothèse Sapir-Whorf [qui soutient que la façon dont on perçoit le monde dépend du langage] est fausse. J'explique pourquoi dans mon livre, mais pour résumer, Sapir et son élève Whorf ont eu cette idée en étudiant les langues amérindiennes. Whorf, qui n'était pas linguiste mais ingénieur, a ensuite poussé le concept de manière peu scientifique. 

Quand nous apprenons une langue, nous apprenons de nouvelles choses sur l'autre. C'est donc un super outil pour comprendre la diversité et j'encourage à le faire, mais cela ne "recâble" pas notre cerveau. Cela ne va pas nous permettre d'avoir des visions du futur comme dans Premier Contact. En ce sens le film dérive dans la fiction, ce qui n'est pas grave puisque c'est le propre de la SF d'être un laboratoire où l'on peut aller au bout de tout, même d'une hypothèse incroyable.

Auteur: Landragin Frédéric

Info: Interviewé par Victor Garcia sur https://www.lexpress.fr/le 18 10 2018

[ astrolinguistique ] [ exo-langages ]

 

Commentaires: 0

Ajouté à la BD par miguel

disponibilité mentale

Une zone du cerveau qui serait la porte de la conscience

Le cortex insulaire antérieur serait la porte de la conscience, d'après de nouveaux travaux américains. Inactivée, elle empêcherait la prise de conscience des stimuli.

Parmi les milliers de stimuli visuels, auditifs ou autres que notre cerveau traite en continu chaque jour, seuls certains passent la porte de notre conscience. Mais le mécanisme qui permet de sélectionner les stimuli dont nous avons conscience des autres n'est toujours pas clair. Pour des chercheurs du Center for Consciousness Science du Michigan Medicine (Etats-Unis), la clé se situerait dans une partie de notre cerveau appelée le cortex insulaire antérieur. Ces travaux sont publiés dans la revue Cell Reports.

LES 4 THÉORIES DE LA CONSCIENCE. Pour comprendre, mais aussi pour analyser les observations issues des expériences, la science de la conscience a besoin de théories. Il en existe quatre principales : l’espace de travail global, l’ordre supérieur, l’information intégrée et le processus récurrent ou de premier ordre. Pour en savoir plus, lisez le passionnant numéro de La Recherche d'avril-juin 2021 !

Une "structure critique" contrôlerait l'entrée des informations dans la conscience

"Le traitement de l'information dans le cerveau a deux dimensions : le traitement sensoriel de l'environnement sans conscience et celui qui se produit lorsqu'un stimulus atteint un certain niveau d'importance et entre dans la conscience", explique dans un communiqué Zirui Huang, premier auteur de la publication. "Malgré des décennies de recherche en psychologie et en neurosciences, la question de savoir pourquoi certains stimuli sensoriels sont perçus de manière consciente alors que d'autres ne le sont pas reste difficile à résoudre", introduisent les auteurs dans la publication. Ils émettent alors l'hypothèse qu'il existe une "structure critique" où "l'accès conscient aux informations sensorielles est contrôlé". Ils ont même un suspect : le cortex insulaire antérieur, qui a précédemment été reconnu comme une plaque tournante centrale du cerveau, notamment "car il reçoit des entrées de différentes modalités sensorielles et de l'environnement interne", comme les émotions. 

Lorsque le cortex insulaire antérieur est éteint, la conscience aussi

Pour le prouver, l'équipe se penche sur 26 sujets qu'ils examinent à l'IRM fonctionnelle, qui permet de voir les zones activées du cerveau dans le temps. Ils leur injectent alors un anesthésiant, le propofol, pour contrôler leur niveau de conscience. Comme imaginer une action active les mêmes zones du cerveau que de les réaliser réellement, les chercheurs ont ensuite demandé aux sujets de s'imaginer dans plusieurs situations. Ils devaient s'imaginer en train de jouer au tennis, de marcher le long d'un chemin ou de serrer leur main, ainsi que d'effectuer une activité motrice (serrer une balle en caoutchouc) alors qu'ils perdaient progressivement conscience et la retrouvaient après l'arrêt du propofol.

Résultat, la perte de conscience due au propofol "crée un dysfonctionnement du cortex insulaire antérieur" ainsi qu'une altération des réseaux cérébraux nécessaires aux états de conscience. En revanche, aucune des autres régions impliquées dans la régulation sensorielle ou l'éveil, comme le thalamus, ne répondaient de cette façon. "Un stimulus sensoriel active normalement le cortex insulaire antérieur", explique Hudetz. "Mais lorsque vous perdez conscience, le cortex insulaire antérieur est désactivé et les changements de réseau dans le cerveau qui soutiennent la conscience sont perturbés." Le cortex insulaire antérieur pourrait donc agir comme un filtre qui ne permet qu'aux informations les plus importantes d'entrer dans la conscience.

Le cortex insulaire antérieur serait la porte de la conscience

Pour confirmer ces résultats, la deuxième expérience cherche à savoir si l'activation du cortex insulaire antérieur est prédictive de la prise de conscience d'une information. Pour le savoir, les chercheurs montrent un visage sous forme d'image subliminale – qui reste 33 millisecondes à l'écran – à 19 volontaires sains placés dans l'IRM fonctionnelle. Les volontaires doivent ensuite dire s'ils ont vu ou non le visage. Les scientifiques constatent alors que l'activation préalable du cortex insulaire antérieur était prédictif de la capacité du sujet à percevoir consciemment l'image du visage. "Le cortex insulaire antérieur a une activité qui fluctue continuellement", explique Zirui Huang. "La détection d'un stimulus dépend de l'état de l'insula antérieure lorsque l'information arrive dans le cerveau : si l'activité de l'insula est élevée au moment du stimulus, vous verrez l'image. Sur la base des résultats de ces deux expériences, nous concluons que le cortex insulaire antérieur pourrait être une porte pour la conscience."



 

Auteur: Internet

Info: https://www.sciencesetavenir.fr/ - Camille Gaubert, 4.05.2021

[ présence ] [ joignable ] [ accessible ] [ disponible ]

 

Commentaires: 0

Ajouté à la BD par miguel

cladistique vs phénétique

L'évolution de la vie sur terre: aléatoire ou prévisible ?

L'évolution des êtres vivants met en jeu de nombreux phénomènes aléatoires tels que mutations, rencontres des ovules et spermatozoïdes, accidents météorologiques, etc... Notre monde vivant est-il donc juste une alternative parmi tant d'autres ? Dans une étude publiée dans la revue Interface Focus, Virginie Orgogozo à l'Institut Jacques Monod, revisite la question à la lumière des données actuelles. Elle montre qu'au cours de l'évolution de la vie sur terre, des événements se répètent et semblent prévisibles. Si on rembobinait le film de la vie sur terre et qu'on le relançait en changeant légèrement les conditions initiales, obtiendrait-on les mêmes formes vivantes qu'aujourd'hui ?

Le paléontologue américain Stephen Jay Gould s'était posé la question dans les années 90. Il avait répondu que des formes de vie tout-à-fait différentes seraient apparues car l'évolution dépend de nombreux phénomènes aléatoires non prévisibles (mutations, impact des comètes, etc.). Depuis quelques années, certains biologistes, tel que le paléontologue anglais Simon Conway Morris, remettent en doute la réponse de Stephen Jay Gould. Ils suggèrent que même si le monde ne serait probablement pas exactement pareil, par exemple vous ne seriez pas en train de lire ce texte en ce moment précis, il aurait malgré tout un air de "déjà-vu". Par exemple, les animaux qui nagent dans un milieu liquide auraient un corps en forme de poisson, et la vision de la lumière s'effectuerait grâce à des organes spécialisés que sont les yeux.

L'évolution de la vie est-elle une simple alternative parmi tant d'autres, comme le pensait Stephen Jay Gould, ou bien est-elle prévisible ?

Virginie Orgogozo examine les données actuelles de la génétique et de l'évolution expérimentale pour tenter de répondre à la question. Les données récentes de la biologie indiquent que l'évolution se répète à plusieurs niveaux.

- Premièrement, des traits de caractère semblables sont apparus indépendamment chez différentes espèces vivant dans les mêmes conditions (c'est l'évolution convergente). Par exemple, les poissons et les ichtyosaures, des reptiles disparus, ont évolué indépendamment vers un corps en forme de poisson.

- Deuxièmement, les mêmes traits de caractère et les mêmes mutations apparaissent souvent lors d'expériences d'évolution expérimentale dans lesquelles on laisse évoluer des êtres vivants dans un environnement choisi et que l'on répète cette même expérience plusieurs fois de façon indépendante.

- Troisièmement, l'évolution indépendante du même trait de caractère chez des espèces différentes est souvent causée par des mutations dans le même gène. Par exemple, l'adaptation à une nourriture riche en amidon s'est accompagnée de mutations dans la même famille de gènes chez l'homme et chez le chien. Toutes ces répétitions sont relativement inattendues: si l'évolution était extrêmement sensible aux conditions initiales, on ne devrait pas observer tant de répétitions. Virginie Orgogozo en conclut que l'évolution de la vie sur terre n'est peut-être pas aussi aléatoire que ce qu'on aurait pu croire, et qu'il est possible de faire des prédictions concernant l'évolution des êtres vivants. Ainsi, on peut prédire qu'un mammifère vivant en région polaire va évoluer avec un pelage blanc, ou qu'une plante Arabette des dames qui fleurit plus tôt a de grandes chances d'avoir une mutation dans le gène FRIGIDA.

Comment l'évolution peut-elle être prévisible alors qu'elle met en jeu de nombreux phénomènes aléatoires ?

Virginie Orgogozo l'explique par analogie avec un gaz parfait dans un récipient. Au niveau microscopique, on ne peut prédire ni la position, ni le poids, ni la vitesse des particules. Par contre, au niveau macroscopique, on peut prédire la pression ou la température de ce gaz. Ainsi, même si les mutations apparaissent de façon non prévisible au sein des êtres vivants, on peut prédire les mutations qui ont survécu pendant de longues échelles de temps dans les populations et qui sont responsables de changements évolutifs entre espèces ou entre populations.

Plutôt que de savoir si les formes vivantes seraient différentes des nôtres si on relançait le film de l'évolution, Virginie Orgogozo préfère se demander à quel point elles seraient semblables à celles de notre monde. Répondre à cette question nécessite alors d'examiner les problèmes suivants: comment imaginer d'autres mondes possibles alors que nous sommes limités par notre imagination ? Comment estimer la probabilité d'occurrence d'événements qui ne se sont passés qu'une seule fois au cours de notre évolution ? Peut-on trouver de nouveaux concepts généraux pour prédire l'évolution ? La biologie actuelle commence à apporter des éléments de réponse. Même si il est trop tôt pour s'avancer, l'évolution de la vie sur terre pourrait être en partie prévisible.

Auteur: Orgogozo Virginie

Info: Pour plus d'information voir: Replaying the tape of life in the twenty-first century

[ probabilités ] [ spéculation ]

 

Commentaires: 0

biogénétique

Une partie de l' " ADN indésirable " sert un objectif 

Si on étire tout l’ADN d’une seule cellule humaine, il mesurerait plus de 5 mètres de long. Mais seul un fragment de cet ADN produit des protéines, la machinerie biologique nécessaire à la vie. En 2003, le Human Genome Project a montré que seulement 1 à 2 % de notre ADN – environ 4 cm sur ces 5 mètres – code des gènes pour les protéines. Les séquences non codantes qui constituent les 98 % restants sont souvent appelées " ADN indésirable (junk dna) ", un terme inventé en 1972 par le généticien Susumu Ohno, qui a suggéré que, tout comme les archives fossiles regorgent d'espèces disparues, nos génomes sont remplis d'espèces disparues. gènes éteints ou mal copiés endommagés par des mutations.

Mais même si 98 % du génome est non codant, il ne s’agit pas précisément d’un poids mort. En 2012, un consortium de centaines de scientifiques a rapporté dans l'Encyclopédie des éléments de l'ADN qu'au moins 80 % du génome est " actif " au sens où une partie de l'ADN est traduite en ARN*, même si cet ARN est pas ensuite traduit en protéines. Il existe peu de preuves que la plupart de cet ARN provenant de gènes brisés ait un effet.

Cependant, certaines séquences non codantes, qui représentent environ 8 à 15 % de notre ADN, ne sont pas du tout indésirables. Elles remplissent des fonctions importantes, en régulant les gènes actifs des cellules et la quantité de protéines qu’ils produisent. Les chercheurs découvrent encore de nouvelles façons dont l'ADN non codant fait cela, mais il est clair que la biologie humaine est massivement influencée par les régions non codantes, qui ne codent pas directement pour les protéines mais façonnent quand même leur production. Les mutations dans ces régions, par exemple, ont été associées à des maladies ou à des troubles aussi variés que l'autisme, les tremblements et le dysfonctionnement hépatique.

De plus, en comparant les génomes humains à ceux des chimpanzés et d’autres animaux, les scientifiques ont appris que les régions non codantes peuvent jouer un rôle important dans ce qui nous rend uniques : il est possible que la régulation des gènes par l’ADN non codant différencie plus les espèces que les gènes et les protéines elles-mêmes.

Les chercheurs découvrent également que de nouvelles mutations peuvent parfois conférer de nouvelles capacités à des séquences non codantes, ce qui en fait une sorte de ressource pour une évolution future. En conséquence, ce qui mérite l’étiquette " ADN indésirable " reste à discuter. Les scientifiques ont clairement commencé à nettoyer ce tiroir à déchets depuis 1972 – mais ce qui reste dedans est encore à débattre.

Quoi de neuf et remarquable

Les scientifiques ont travaillé pour comprendre un type d’ADN non codant appelé " transposons** " ou " gènes sauteurs ". Ces bribes peuvent parcourir le génome, créant des copies d’elle-mêmes, qui sont parfois insérées dans des séquences d’ADN. Les transposons se révèlent de plus en plus essentiels au réglage de l'expression des gènes ou à la détermination des gènes codants activés pour être transcrits en protéines. C'est en partie pour cette raison qu'ils s'avèrent importants pour le développement et la survie d'un organisme . Lorsque les chercheurs ont conçu des souris dépourvues de transposons, la moitié des petits des animaux sont morts avant la naissance. Les transposons ont laissé des traces sur l'évolution de la vie. Quanta a rapporté qu'ils peuvent passer d'une espèce à l'autre - comme du hareng à l'éperlan et des serpents aux grenouilles - offrant parfois même certains avantages, comme protéger les poissons du gel dans les eaux glacées.

Les généticiens étudient également les " courts tandem  répétés ", dans lesquels une séquence d’ADN longue d’une à six paires de bases seulement est fortement répétée, parfois des dizaines de fois de suite. Les scientifiques soupçonnaient qu'elles aidaient à réguler les gènes, car ces séquences, qui représentent environ 5 % du génome humain, ont été associées à des maladies telles que la maladie de Huntington et le cancer. Dans une étude couverte par Quanta en février, les chercheurs ont découvert une manière possible par laquelle de courtes répétitions en tandem pourraient réguler les gènes : en aidant à réunir des facteurs de transcription, qui aident ensuite à activer la machinerie de production de protéines.

Ensuite, il y a les " pseudogènes*** ", restes de gènes fonctionnels qui ont été dupliqués puis dégradés par des mutations ultérieures. Cependant, comme Quanta l’a rapporté en 2021, les scientifiques ont découvert que parfois les pseudogènes ne demeurent pas pseudo ou indésirables ; au lieu de cela, ils développent de nouvelles fonctions et deviennent des régulateurs génétiques – régulant même parfois le gène même à partir duquel ils ont été copiés.

Auteur: Internet

Info: Yasemin Sapakoglu. *Aussi sur base 4, l'ARN ou acide nucléique, sert d'intermédiaire dans la circulation de l'information génétique de l'ADN aux protéines. **les transposons sont à la fois régulés par l'épigénétique, mais peuvent aussi induire des changements épigénétiques héritables, faisant le lien entre génome et épigénome dans l'évolution, 333vestiges moléculaires de gènes ancestraux devenus non fonctionnels, mais qui semblent parfois avoir acquis des rôles régulateurs inattendus au cours de l'évolution

[ stratégies géniques ] [ codifications du vivant ] [ mémoire diachronique active ] [ encodages chronologiques ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Ce que l'Homme et le gorille ont en commun
Des chercheurs du Wellcome Trust Sanger Institute (Royaume-Uni), avec la participation de l'équipe d'Emmanouil Dermitzakis, professeur Louis-Jeantet à la Faculté de médecine de l'UNIGE, ont réussi à séquencer le génome du gorille, le seul hominidé dont le génome n'avait pas encore été décodé. Cette étude a révélé qu'une partie du génome humain ressemble davantage à celui du gorille qu'à celui du chimpanzé. Les résultats de cette recherche offrent des perspectives inédites sur l'origine de l'Homme.
L'être humain, le chimpanzé et le gorille présentent de nombreuses similitudes anatomiques et physiologiques. Des études moléculaires ont confirmé que l'Homme est plus proche des grands singes d'Afrique, en particulier du chimpanzé, que des ourang-outans. Des analyses complémentaires ont ensuite exploré les différences fonctionnelles entre les espèces de grands singes et déterminé leur influence sur l'évolution de l'être humain à travers le séquenc¸age de l'ADN du chimpanzé et de l'orang-outan, mais pas celui du gorille.
L'équipe de chercheurs menée par le Wellcome Trust Sanger Institute propose la première analyse génomique du gorille jamais réalisée qui constitue une base d'étude de l'évolution des hominidés. C'est la première fois que des scientifiques réussissent à comparer les génomes des quatre espèces d'hominidés: les humains, les chimpanzés, les gorilles et les orangs-outangs.
"Le séquençage du génome du gorille est important puisqu'il permet de lever le voile sur la période de l'évolution durant laquelle nos ancêtres ont commencé à s'éloigner de nos cousins les plus proches. Nous pouvons ainsi examiner les similitudes et les dissemblances entre nos gènes et ceux du gorille, le plus grand des primates anthropoi¨des, explique Aylwyn Scally du Wellcome Trust Sanger Institute. Nous avons assemblé l'ADN de Kamilah, un gorille femelle des plaines de l'ouest, et nous l'avons comparé aux génomes d'autres grands singes. Nous avons également prélevé l'ADN d'autres gorilles afin d'analyser les différences génétiques entre les espèces de gorille."
Cette étude met en lumière la période à laquelle trois espèces étroitement liées, le gorille, le chimpanzé et l'Homme, ont commencé à se différencier. Contrairement à ce que l'on pourrait penser, les espèces ne divergent pas toujours brutalement à un moment donné, elles se séparent parfois progressivement sur une longue période.
L'équipe a découvert que la divergence génétique entre les gorilles et les humains et chimpanzés date d'il y a environ 10 millions d'années. La dissemblance génomique entre les gorilles des plaines de l'est et de l'ouest est, quant à elle, beaucoup plus récente et remonte à 1 million d'années. Leur génome se sont graduellement éloignés jusqu'à être complètement distincts. Cette divergence est comparable, à certains égards, à celle qui existe entre les chimpanzés et les bonobos, et entre l'Homme moderne et l'homme de Néanderthal. L'équipe a analysé plus de 11 000 gènes chez l'humain, le chimpanzé et le gorille afin de déterminer les changements génétiques apparus au cours de l'évolution.
Bien que l'Homme et le chimpanzé soient génétiquement proches, les chercheurs ont découvert que cette ressemblance ne s'appliquait pas à la totalité du génome. En réalité, 15% du génome humain se rapproche davantage de celui du gorille que de celui du chimpanzé. Les chercheurs ont découvert que, chez ces trois espèces, les gènes liés à la perception sensorielle, à l'oui¨e et au développement cérébral, ont montré des signes d'évolution accélérée, particulièrement chez l'humain et le gorille. Les résultats de cette recherche ont révélé non seulement des dissemblances entre les espèces, mettant en lumière des millions d'années de divergence évolutionniste, mais également des similarités.
Les gorilles et les humains partagent en effet de nombreuses modifications génétiques, impliquées notamment dans l'évolution de l'audition. Il y a quelques années, des scientifiques avaient suggéré que l'évolution rapide des gènes humains liés à l'audition était en corrélation avec celle du langage. Cette déclaration est aujourd'hui remise en question puisque cette étude démontre que les gènes de l'audition ont évolué au même rythme chez l'être humain et chez le gorille.
Grâce à cette recherche, les scientifiques ont fait le tour de toutes les comparaisons entre les espèces d'hominidés. Après des décennies de débats, leurs interprétations génétiques sont désormais cohérentes avec le registre fossile. Les paléontologues et les généticiens peuvent dorénavant travailler sur les mêmes bases.
"Cette étude offre des perspectives inédites sur l'évolution de nos ancêtres et de nos origines. Les conclusions de ce travail de recherche sont pertinentes d'un point de vue historique, mais ce n'est pas tout. Elles sont d'une importance fondamentale pour la compréhension de notre génome, de la variabilité génétique et des conséquences médicales des mutations", commente Emmanouil Dermitzakis. Avec son équipe genevoise, ce a participé à l'analyse des activités génétiques à partir de cellules prélevées chez le gorille, l'Homme, le chimpanzé et le bonobo. Ses résultats démontrent que d'un point de vue général l'expression des gènes correspond aux différences génétiques entre les espèces.

Auteur: Internet

Info: http://www.unige.ch/communication/archives/2012/gorilles.html

[ quadrumane ] [ métamorphose ]

 

Commentaires: 0

machine-homme

- (Q) Comment définir et expliquer les mot "vie" ?

- (R) La vie est un phénomène complexe et multiforme qui englobe les caractéristiques, les processus et les activités associés aux organismes vivants. Bien qu'il n'existe pas de définition universellement acceptée de la vie, celle-ci peut être comprise de manière générale comme l'état d'être vivant, présentant certaines propriétés et certains comportements fondamentaux.

Les principales caractéristiques de la vie sont les suivantes

L'organisation : Les organismes vivants sont hautement organisés, constitués de cellules ou de structures cellulaires qui remplissent des fonctions spécifiques. Ils ont une structure hiérarchique, des cellules aux tissus, aux organes et aux systèmes d'organes.

Métabolisme : La vie implique la capacité d'acquérir et d'utiliser de l'énergie par le biais de divers processus métaboliques, tels que la respiration, la photosynthèse ou d'autres réactions biochimiques. Les organismes utilisent l'énergie pour maintenir leur environnement interne, croître, se reproduire et répondre aux stimuli.

Croissance et développement : Les organismes vivants ont la capacité de croître et de se développer, augmentant leur taille et leur complexité au fil du temps. Ils subissent des processus tels que la division cellulaire, la différenciation et la maturation.

Reproduction : La vie implique la capacité de se reproduire et de transmettre l'information génétique d'une génération à l'autre. La reproduction peut se faire par voie sexuée ou asexuée et assure la pérennité d'une espèce.

Réponse aux stimuli : les organismes vivants peuvent percevoir les changements dans leur environnement et y répondre, en adoptant des comportements qui leur permettent de survivre, de trouver des ressources, d'éviter les menaces et de s'adapter à des conditions changeantes.

Homéostasie : La vie implique le maintien d'une stabilité et d'un équilibre internes par le biais de divers mécanismes de régulation. Les organismes peuvent réguler leurs conditions internes, telles que la température, le pH et les niveaux de nutriments, afin de garantir un fonctionnement optimal.

Bien que ces caractéristiques fournissent un cadre général, il est important de reconnaître que la vie présente une diversité et une complexité considérables au sein des différentes espèces et écosystèmes. La vie peut exister sous différentes formes, des micro-organismes aux plantes, en passant par les animaux et les êtres humains, chacun ayant ses propres adaptations et caractéristiques.

L'étude de la vie est un vaste domaine appelé biologie, qui explore les mécanismes, les processus et la diversité des organismes vivants. Les scientifiques continuent d'étudier et d'approfondir leur compréhension de la nature fondamentale de la vie et de ses origines, cherchant à démêler les complexités de ce phénomène remarquable.

- (Q) D'accord, merci. Donc pour préciser un peu la question, où est la frontière entre minéral et  végétal. ou entre organique et inorganique ?

- (R) La frontière entre les domaines minéral (inorganique) et végétal (organique), ou entre la matière organique et inorganique, n'est pas toujours évidente, car il peut y avoir des chevauchements et des ambiguïtés. La distinction réside principalement dans la composition, la structure et les propriétés caractéristiques des substances concernées.

Dans le contexte de la géologie et de la chimie, les minéraux sont des substances inorganiques naturelles dont la composition chimique et la structure cristalline sont définies. Le quartz, le feldspath et la calcite sont des exemples de minéraux. Les minéraux sont généralement formés par des processus géologiques et n'ont pas les structures moléculaires complexes que l'on trouve dans les organismes vivants.

D'autre part, le terme "végétal" fait généralement référence à la matière organique associée aux plantes ou à la vie végétale. Les plantes sont des organismes vivants qui possèdent des structures cellulaires complexes et réalisent divers processus physiologiques. Elles sont classées dans le règne des Plantae et présentent des caractéristiques telles que la photosynthèse, la croissance, la reproduction et les réponses aux stimuli.

La matière organique désigne généralement les substances qui contiennent du carbone et qui proviennent d'organismes vivants ou de leurs restes. Les composés organiques, tels que les glucides, les protéines, les lipides et les acides nucléiques, sont les éléments constitutifs de la vie et sont présents dans les organismes vivants.

La frontière entre le minéral et le végétal ou entre la matière organique et la matière inorganique peut s'estomper dans certains cas. Par exemple, certains composés organiques, comme certains carbonates, peuvent se trouver à la fois dans les organismes vivants et dans les minéraux. En outre, les minéraux peuvent interagir avec la matière organique, par exemple lors de la formation de fossiles ou de l'absorption de minéraux par les plantes.

Il est important de noter que la classification et la compréhension de ces frontières sont principalement basées sur des catégorisations scientifiques et peuvent varier en fonction du contexte et de la perspective. Différents domaines scientifiques, tels que la géologie, la chimie et la biologie, peuvent aborder ces frontières différemment en fonction de leurs cadres respectifs et de leurs intérêts de recherche.

Auteur: chatGPT4

Info: 18 mai 2023. Ici l'I.A. qui donne les réponses peut être considérée comme un promptuaire, un résumé

[ question-réponse ] [ compendium ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

pesanteur

Nouvelles preuves : les ondes sonores transporteraient réellement de la masse

En général, lorsque nous pensons aux ondes sonores, nous imaginons des vibrations invisibles se déplaçant en apesanteur dans les airs, et sans masse. Mais cela pourrait bien être sur le point de changer. Des physiciens viennent de fournir une preuve supplémentaire que les"particules" sonores peuvent réellement transporter des petites quantités de masse. Ces preuves impliquent donc également que les ondes sonores peuvent produire leurs propres champs gravitationnels, ou un équivalent se comportant comme tel.

Mais avant d’approfondir le sujet, reprenons tout d’abord la base. Par exemple, si vous frappez un ballon avec votre pied, vous y transmettez de l’énergie. Einstein ajouterait que vous avez également contribué un peu à la masse du ballon, en l’accélérant. Mais si ce ballon est une particule minuscule et que le coup de pied est une onde sonore, vous pouvez imaginer la même chose. Pourtant, depuis des décennies, les physiciens se disputent pour savoir si l’élan d’une vague de particules représente une masse nette, ou pas.

L’année dernière, le physicien Alberto Nicolis de l’Université Columbia à New York a travaillé avec un collègue de l’Université de Pennsylvanie à Philadelphie pour étudier la manière dont différentes ondes se désintègrent et se dispersent dans un fluide à l’hélium extrêmement froid. Non seulement l’équipe de chercheurs a montré que les sons peuvent en réalité générer une valeur non nulle concernant la masse, mais cette dernière pourrait également"flotter" de manière étrange, le long des champs gravitationnels, dans un sens anti-gravitationnel.

Bien que les chercheurs aient affirmé cette possibilité, leur étude était tout de même limitée à un ensemble spécifique de conditions. De ce fait, Nicolis a utilisé un ensemble de techniques différentes pour montrer que les sons ont une masse dans les fluides et les solides ordinaires, et qu’ils peuvent même créer leur propre champ gravitationnel faible.

Leur nouvelle conclusion contredit les affirmations selon lesquelles les phonons sont sans masse. À présent, selon cette nouvelle recherche, nous savons que ces derniers ne répondent pas simplement à un champ de gravitation, mais qu’ils sont également une source de champ gravitationnel.

Dans un sens newtonien, telle est la définition même de la masse. Alors pourquoi y a-t-il tant de confusion sur cette question ? En fait, le problème réside dans la manière dont les ondes se déplacent dans un milieu donné. Tout comme une onde lumineuse est appelée un photon, une onde vibratoire (du son) peut être considérée comme une unité appelée"phonon".

Imaginez-vous immobile lors d’un concert, et que vous profitez du spectacle. La masse de votre corps est la même que lorsque vous vous êtes levés le matin. Puis vient une musique plus entraînante et votre voisin vous pousse, accélérant de ce fait votre corps. Selon la loi d’Einstein, qui dit que l’énergie est égale à la masse multipliée par la vitesse de la lumière au carré : le peu d’énergie que vous gagnez avec la poussée, est également de la masse.

Donc, en entrant en collision avec une autre personne, l’énergie y est transférée avec un peu de masse, de manière imperceptible. (Dans cet exemple imagé, les corps se heurtant à d’autres corps, représentent les phonons). Dans ces conditions simples, le mouvement de va-et-vient parfait des corps et le transfert direct de la quantité de mouvement peuvent être décrits comme une forme de dispersion linéaire. Tandis que les niveaux d’énergie peuvent fluctuer pendant ledit va-et-vient, votre corps se réinitialise pour ne pas donner de masse au cycle de phonons complet.

Mais la réalité n’est pas toujours aussi simple… Les ondes lumineuses se déplaçant dans le vide et les phonons dans un matériau théoriquement parfait pourraient bien être linéaires, mais les solides et les fluides se bousculant obéissent à diverses autres lois en fonction de certains champs et influences. Et ces conditions sont bien complexes : ainsi, à l’aide d’approximations connues sous le nom de théorie des champs effectifs, Angelo Esposito et Rafael Krichevsk, de l’Université Columbia et collègues de Nicoli, ont pu comprendre comment le phonon se déplace à travers de tels supports et comment calculer leur réponse à un champ gravitationnel.

Ces derniers ont pu démontrer que, même dans des conditions dites désordonnées du"monde réel", les ondes sonores pouvaient effectivement transporter une certaine masse. Bien entendu, cette masse n’est pas vraiment conséquente et reste minime, comme on peut s’y attendre. Nous parlons plutôt d’une quantité d’énergie contenue dans le phonon, mais divisée par le carré de la vitesse de la lumière. C’est donc une masse… minuscule.

Avec cette étude, il est également important de garder à l’esprit que les mathématiques sur lesquelles repose l’allégation n’ont pas encore été mises à l’épreuve. À présent, les scientifiques devront mesurer les changements gravitationnels d’atomes refroidis à une température proche du zéro absolu, ce qui pourrait être possible si nous explorons de tels condensats dans l’espace.

Mais grâce à ces découvertes, les chercheurs suggèrent qu’il serait également, et notamment, plus simple de "peser" un séisme. En effet, le son généré par un grand tremblement de terre pourrait représenter une masse conséquente.

Dans tous les cas, nous attendons les résultats des prochaines recherches dans ce domaine avec grande impatience !

Auteur: Internet

Info: Stéphanie Schmidt 7 mars 2019, https://trustmyscience.com

[ fréquences ]

 

Commentaires: 0

Ajouté à la BD par miguel

ascendant partagé

Comment des erreurs de " copier-coller " ont façonné les humains et le monde animal

 7.000 groupes de gènes nous relient à l'ancêtre commun de tous les vertébrés et les invertébrés. C'est grâce à de nombreuses erreurs au fil de l'Evolution que l'humain et les animaux sont devenus ce qu'ils sont.

(Photo : Les pieuvres ont acquis leur capacité à changer de couleur grâce à une erreur dans l'ADN - ici à l'aquarium du Croisic.)

C’est une petite créature marine qui se déplace au sol, tout au fond des fonds marins. Cet animal, tout simple, possède un système nerveux, des muscles, des organes reproductifs, un système digestif et excréteur simples. On sait qu’il a un avant et un arrière, un côté droit et un côté gauche. Rien de bien excitant, et pourtant. Cette petite créature, qui vivait il y a 600 millions d’années, est l’ancêtre commun de tous les vertébrés (les poissons, les reptiles, les oiseaux, les mammifères et donc l’Homme) et les invertébrés (les insectes, les mollusques, les vers et bien d’autres).

A quel point sommes-nous encore reliés à notre ancêtre commun ?

C’est la première fois, dans l’histoire de la vie, qu’un organisme vivant possédait ce type d’organisation basique (devant, derrière, deux côtés), qui allait mener au développement complexe de nombreux animaux, dont les humains.

(* photos : L'empreinte du plus ancien bilatérien retrouvé en Australie. Chaque barre représente 1 mm.)

Mais à quel point sommes-nous encore génétiquement reliés à cet ancêtre commun ? En analysant l’ADN de 20 animaux bilatériens (avec une gauche et une droite), une équipe du Centre for Genomic Regulation (CRG) de Barcelone (Espagne) a pu remonter la trace de plus de 7.000 groupes de gènes qui nous rattachent à cette petite créature du fond des mers.

"Quand on peut identifier le même gène dans de nombreuses espèces bilatériennes, on peut être à peu près sûrs que ce gène a été identifié chez leur dernier ancêtre commun. C’est pour cela que nous nous sommes intéressés à des espèces les plus différentes possibles. Des vertébrés - comme les humains, les souris ou les requins - aux insectes, comme les abeilles, les cafards ou les éphémères, et même des espèces distantes comme les oursins ou les pieuvres", expliquent les chercheurs.

Seule la moitié des gènes est restée telle quelle depuis 600 millions d’années

Mais seule la moitié des gènes est restée telle quelle depuis 600 millions d’années. L’autre moitié a été légèrement modifiée au cours de l’Evolution, avec l’apparition de quelques erreurs de réplication de l’ADN, révèle leur étude dans Nature Ecology & Evolution.

Spontanément, une copie supplémentaire d'un gène est apparue dans le génome. Les animaux ont alors pu garder une copie du gène pour leurs fonctions fondamentales tout en utilisant la deuxième copie pour se créer de nouvelles spécificités. C’est ainsi que ces 3.500 groupes de gènes ont complètement changé d’utilité et ont été utilisés dans certaines parties du corps et du cerveau des animaux. Une façon de faire survenir des " innovations " dans le développement des espèces.

" Certains gènes ont entraîné la perception de stimuli légers sur la peau des pieuvres, ce qui a pu contribuer à leur capacité à changer de couleur, à se camoufler et à communiquer avec d’autres pieuvres ", explique le Pr Manuel Irimia, spécialisé en biologie évolutive au Centre for Genomic Regulation. Chez les insectes, certains gènes se sont spécialisés dans les muscles et dans la formation de l’épiderme, leur permettant de voler.

Chez l'humain aussi, les apports de ces erreurs de " copier-coller " ont été cruciales. " Certaines ont eu un impact sur le cerveau. C’est grâce à elles que les oligodendrocytes, des cellules cérébrales, créent la gaine de myéline qui entoure et protège nos neurones. Chez nous mais aussi chez tous les vertébrés ", ajoute le professeur. D’autres gènes, comme FGF17, maintiennent nos fonctions cognitives du cerveau même lorsque l’âge avance.

Nos gènes sont un peu comme un grand livre de recettes. En les changeant légèrement, on peut créer de nombreux tissus ou organes différents. Imaginez que par accident, on y retrouve deux recettes de paella identiques. On peut alors réaliser la recette originale de paella tandis que l’Evolution se chargera de modifier légèrement la deuxième pour créer la recette du risotto. Imaginez maintenant que tout le livre ait été entièrement copié. Les possibilités d’évoluer sont infinies. Ces petits changements, survenus il y a des millions d’années, se trouvent encore sur les animaux d’aujourd’hui ", sourit Federica Mantica, autrice de l’article et chercheuse au Center for Genomic Regulation de Barcelone.

Jeter un œil à cet immense arbre phylogénique, c’est regarder l’histoire de l’Homme, voire même l’histoire de la vie. " Ces copies supplémentaires se sont spécialisées dans un tissu en particulier plusieurs fois au cours de l’Evolution humaine. En fait, les humains ont été façonnés par ces événements ayant eu lieu il y a des millions d’années, lorsque nos ancêtres ressemblaient vaguement à des poissons, ce qui a créé tout le matériel génétique exploité jusqu’à aujourd’hui encore. "

Si notre ancêtre du fond des mers peut sembler extrêmement basique, c'est bien grâce à son matériel génétique que le règne animal a pu devenir aussi complexe qu'il est aujourd'hui.

Auteur: Internet

Info: https://www.sciencesetavenir.fr/ - Coralie Lemke, 15 avril 2024

[ aïeul général ] [ Pikaia gracilens ? ] [ adaptation ] [ épigenèse ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

évolution biologique

Une nouvelle étude de Yale sur la levure montre comment des facteurs non génétiques sont impliqués dans l'évolution en temps réel.

Dans l'étude, publiée dans la revue Cell Reports du 27 octobre, des chercheurs de l'Institut de biologie systémique de Yale ont montré comment les mécanismes épigénétiques - des modifications du phénotype d'un organisme non causées par des altérations de sa séquence d'ADN - contribuent à l'évolution du réseau de gènes chez la levure qui est responsable de la régulation de l'utilisation du sucre galactose. L'étude a montré qu'un changement épigénétique dans l'activité des gènes se transmettait à travers des centaines de générations de levure, et elle a des implications plus larges concernant le rôle de l'épigénétique dans l'évolution.

"La nature est futée", a déclaré Murat Acar, auteur principal de l'article et professeur associé de biologie moléculaire, cellulaire et du développement, ainsi que de physique. "Elle trouve toujours une solution chaque fois qu'elle est mise au défi par quelque chose. Vous voulez avoir une sorte de gagnant parmi votre population pour surmonter cet environnement difficile".

Jusqu'à récemment, l'explication de l'évolution reposait uniquement sur des mutations génétiques spontanées stimulant des adaptations avantageuses dans les organismes, selon David Moreno Fortuno, associé postdoctoral à l'Institut de biologie des systèmes et l'un des co-auteurs de l'article. Il a expliqué que cette théorie est connue sous le nom de néodarwinisme parce que la nature des gènes n'avait pas encore été découverte à l'époque de Darwin.

La théorie darwinienne de l'évolution contraste avec l'idée de Jean-Baptiste Lamarck, autrefois largement discréditée, selon laquelle l'évolution consiste à transmettre de petits changements qui sont acquis au cours de la vie d'un organisme, selon le PBS. Lamarck a publié sa théorie au début du 19ème siècle en France, et l'exactitude de cette théorie est toujours débattue aujourd'hui, surtout au vu de la résurgence, au cours des deux dernières décennies, de l'étude des influences épigénétiques - ou pas - sur l'évolution.

Les chercheurs ont utilisé un marquage fluorescent dans les cellules de levure pour suivre l'expression des gènes codant du galactose, des cellules plus brillantes correspondant à une plus grande expression de ces gènes. Ils ont observé les niveaux de fluorescence sur une période de sept jours et ont sélectionné à plusieurs reprises les cellules les plus faibles de la population. Les chercheurs nomment cette séparation des cellules plus faibles de la population générale de "pression sélective". Par rapport à la population de levure d'origine, ils ont constaté une diminution dans le temps de la quantité d'expression de ces marqueurs au sein de la population expérimentale.

 "Cette diminution s'est maintenue, même lorsque  la pression sélective fut supprimée pendant plus de 200 générations", a déclaré M. Fortuno.

Du fait que le génome de la levure soit si petit - seulement 12 millions de paires de bases contre 3 milliards pour l'homme - l'analyse de l'ensemble du génome de l'organisme pour les mutations génétiques est beaucoup plus facile à réaliser dans les cellules de levure.

Certaines des cellules de levure qui avaient modifié l'expression du gène codant pour le galactose ne présentèrent aucune mutation dans le réseau de gènes spécifié. Les chercheurs ont donc pu exclure les contributions génétiques à leurs observations.

"En fin de compte, nous avons vu que les théories darwiniennes de l'évolution génétique ne sont pas en mesure d'expliquer ces résultats par elles-mêmes", a déclaré M. Acar. "Il est nécessaire d'y inclure la théorie évolutionniste lamarckienne pour expliquer tout le spectre de nos résultats".

M. Fortuno a abordé les implications potentielles de l'étude, en prédisant que les cellules cancéreuses malignes sont similaires aux cellules de levure dans la mesure où les deux types de cellules sont en "évolution constante". Il a ajouté que la compréhension du rôle des mécanismes épigénétiques dans les génomes des cellules de levure pourrait ouvrir des pistes de recherche pour développer des traitements contre le cancer ou déterminer le stade du cancer dont souffre un patient.

Il note également que certains scientifiques pensent que la culture est un mécanisme épigénétique. Bien que la culture soit non génétique, il est possible qu'elle ait un impact mesurable sur nos marques épigénétiques si ces experts ont raison.

Le document indique également que les mécanismes génétiques et épigénétiques "n'ont pas à s'exclure mutuellement". 

"En réponse à une condition environnementale particulière, les deux types de mécanismes peuvent jouer un rôle et se compléter l'un l'autre", peut-on lire dans le document.

Le document explique également que les mécanismes épigénétiques peuvent provoquer des adaptations plus rapides à un environnement changeant, ils agissent généralement sur une échelle de temps plus courte que les mécanismes génétiques. À l'inverse, les mécanismes génétiques sont en jeu sur des périodes plus longues et entraînent des changements plus permanents dans un organisme.

M. Acar souligne que cette étude n'est qu'une première étape vers une meilleure compréhension du rôle des facteurs épigénétiques et qu'il attend avec impatience de voir des expériences similaires être réalisées sur d'autres organismes.

"Ce n'est qu'alors que nous verrons si ces résultats peuvent être généralisés, qu'ils soient darwiniens, lamarckiens ou hybrides - une théorie unifiée de l'évolution régissant l'évolution des organismes", a-t-il déclaré.

Les cellules de levure se reproduisent de manière asexuée toutes les 90 à 100 minutes.

Auteur: Jalbert Jonathan

Info: https://yaledailynews.com/ NOV 12, 2020

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

manipulation génétique

Des scientifiques de Cambridge créent le premier organisme vivant au monde avec un ADN entièrement redessiné
Les chercheurs créent un génome synthétique, en mouvement avec des bénéfices médicaux potentiels. C'est le premier organisme vivant au monde dont le code ADN est entièrement synthétique et radicalement modifié.

Le microbe fabriqué en laboratoire, une souche de bactéries que l'on trouve normalement dans le sol et dans l'intestin humain, est semblable à ses cousins naturels, mais survit grâce à un ensemble plus restreint d'instructions génétiques.

Cette existence démontre que la vie peut exister avec un code génétique restreint et ouvre la voie à des organismes dont les mécanismes biologiques sont piratés pour fabriquer des médicaments et du matériel utile, ou pour ajouter de nouvelles caractéristiques telles que la résistance aux virus.

En deux ans, des chercheurs du laboratoire de biologie moléculaire de l'Université de Cambridge ont lu et redessiné l'ADN de la bactérie Escherichia coli (E. coli), avant de créer des cellules avec une version synthétique du génome modifié.

Le génome artificiel contient 4m de paires de bases, les unités du code génétique épelées par les lettres G, A, T et C. Imprimé en entier sur des feuilles A4, il compte 970 pages, faisant de ce génome le plus grand que les scientifiques aient jamais édifié, de loin.

"Il n'était pas du tout clair s'il était possible de créer un génome de cette taille et s'il était possible de le modifier autant", a déclaré Jason Chin, un expert en biologie de synthèse qui a dirigé le projet.

L'ADN enroulé à l'intérieur d'une cellule contient les instructions dont il a besoin pour fonctionner. Lorsque la cellule a besoin de plus de protéines pour croître, par exemple, elle lit l'ADN qui code la bonne protéine. Les lettres d'ADN sont lues dans des trios appelés codons, tels que TCG et TCA.

Presque toute vie, de la méduse à l'homme, utilise 64 codons. Mais beaucoup d'entre eux font le même travail. Au total, 61 codons produisent 20 acides aminés naturels, qui peuvent être enfilés ensemble comme des perles sur une ficelle pour construire n'importe quelle protéine de la nature. Trois autres codons sont en effet des panneaux stop : ils indiquent à la cellule lorsque la protéine est prête, comme le point marquant la fin de cette phrase.

L'équipe de Cambridge a entrepris de remodeler le génome d'E. coli en enlevant certains de ses codons superflus. Travaillant sur un ordinateur, les scientifiques ont examiné l'ADN de l'insecte. Chaque fois qu'ils rencontraient TCG, un codon qui fabrique un acide aminé appelé sérine, ils le réécrivaient en AGC, qui fait le même travail. Ils ont remplacé deux autres codons de la même manière.

Plus de 18 000 éditions plus tard, les scientifiques avaient retiré toutes les occurrences des trois codons du génome de l'insecte. Le nouveau code génétique a ensuite été synthétisé chimiquement et, morceau par morceau, ajouté à E. coli où il a remplacé le génome naturel de l'organisme. Le résultat, rapporté dans Nature, est un microbe avec un code ADN complètement synthétique et radicalement modifié. Connu sous le nom de Syn61, ce bug est un peu plus long que la normale, et grandit plus lentement, mais survit néanmoins.

"C'est assez incroyable", a déclaré Chin. Lorsque l'insecte a été créé, peu avant Noël, l'équipe de recherche a fait prendre une photo dans le laboratoire avec une plaque des microbes comme figure centrale dans une reconstitution de la nativité.

De telles formes de vie ainsi conçues pourraient s'avérer utiles, croit Chin. Parce que leur ADN est différent, les virus envahisseurs auront du mal à se propager en elles, ce qui les rendra de fait résistantes aux virus. Ce qui pourrait apporter des avantages. E. coli est déjà utilisé par l'industrie biopharmaceutique pour produire de l'insuline pour le diabète et d'autres composés médicaux contre le cancer, la sclérose en plaques, les crises cardiaques et les maladies oculaires, mais des cycles de production entiers peuvent être gâchés lorsque les cultures bactériennes sont contaminées par des virus ou autres microbes. Mais ce n'est pas tout : dans le cadre de travaux futurs, le code génétique libéré pourrait être réutilisé pour que les cellules produisent des enzymes, des protéines et des médicaments de synthèse.

En 2010, des scientifiques américains ont annoncé la création du premier organisme au monde doté d'un génome synthétique. L'insecte, Mycoplasma mycoides, a un génome plus petit que E. coli - environ 1m de paires de bases - et n'a pas été radicalement remanié. Commentant les derniers travaux, Clyde Hutchison, du groupe de recherche américain, a déclaré : "Cette échelle de remplacement du génome est plus grande que n'importe quel remplacement complet du génome rapporté jusqu'ici."

"Ils ont porté le domaine de la génomique synthétique à un nouveau niveau, non seulement en construisant avec succès le plus grand génome synthétique à ce jour, mais aussi en apportant les plus grands changements de codage à un génome à ce jour", a déclaré Tom Ellis, un chercheur en biologie synthétique à Imperial College de Londres.

Mais il se peut que les données ne durent pas longtemps. Ellis et d'autres construisent un génome synthétique pour la levure de boulangerie, tandis que les scientifiques de Harvard font des génomes bactériens avec plus de modifications au codage. Il n'est pas surprenant que l'E. coli redessiné ne pousse pas aussi bien que les souches naturelles, a ajouté Ellis. "Si quelque chose est surprenant, c'est qu'il grandisse après tant de changements," dit-il.

Auteur: Internet

Info: https://www.theguardian.com, Ian Sample rédacteur scientifique Wed 15 mai 2019 18.00 BST

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel