Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 56
Temps de recherche: 0.0624s

cybernétique

Comment utiliser la puissance collective des mini-robots pour créer des motifs inspirés de la nature.
Les scientifiques ont démontré comment des essaims de robots minuscules pouvaient être programmés comme des cellules pour former des formes ensemble en s'appuyant sur les interactions avec leurs voisins.

Imaginez un avenir où des centaines ou des milliers de petits robots balayeront le terrain après une catastrophe naturelle. Imaginez-vous opéré(e) par des nano-robots qui pratiquent une chirurgie interne. Un jour une telle technologie pourrait être disponible grâce à la recherche mettant en œuvre les principes biologiques de l'auto-organisation en robotique à essaims.

Soutenus par le projet SWARM-ORGAN financé par l'UE les scientifiques ont montré comment des centaines de mini-robots pouvaient utiliser les mécanismes génétiques et cellulaires régissant la morphogénèse biologique précoce. Leurs conclusions ont été publiées récemment dans la revue "Science Robotics".

L'article explique le concept: "La morphogenèse permet à des millions de cellules de s'auto-organiser en structures complexes et prendre des formes fonctionnelles très variées pendant le développement embryonnaire. Ce processus émane des interactions locales de cellules sous le contrôle de circuits génétiques identiques dans chaque cellule, résistants au bruit intrinsèque, et capables de s'adapter à des environnements changeants." Comme indiqué dans le même article, ces attributs offrent "de véritables opportunités dans les applications robotiques en essaim allant de la construction à l'exploration".

Il conclut: "Les résultats montrent des essaims de 300 robots qui s'auto-construisent en des formes organiques et modulables, résistant aux dommages. C'est un pas vers l'émergence de la formation de formes fonctionnelles dans les essaims de robots suivant les principes de l'ingénierie morphogénétique auto-organisée."

La technologie humaine inspirée par la nature
Le Dr James Sharpe chef de l'unité Barcelonnaise du Laboratoire européen de biologie moléculaire a déclaré: "Nous montrons qu'il est possible d'appliquer les concepts naturels d'auto-organisation à la technologie humaine comme les robots."

Le communiqué de presse explique le processus: "S'inspirant de la biologie, les robots stockent des morphogènes: des molécules virtuelles qui transportent l'information structurante. Les couleurs indiquent la concentration en morphogène de chaque robot: le vert indique des valeurs morphogènes très élevées, le bleu et le violet indiquent des valeurs inférieures, et aucune couleur n'indique une absence quasi-totale du morphogène dans le robot."

Les robots transmettent ces informations à leurs voisins par messagerie infrarouge. "En cela les robots sont semblables à des cellules biologiques car eux aussi ne peuvent communiquer directement qu'avec d'autres cellules physiquement proches d'eux. ... L'essaim prend différentes formes en déplaçant les robots des zones à faible concentration en morphogène vers les zones à forte concentration en morphogène – appelées “taches de turing” ce qui conduit à la croissance de protubérances qui sortent de l'essaim." Une vidéo présente la création de différentes formes dans ces essaims. L'équipe de recherche a également montré les propriétés d'auto-guérison de ces robots qui leur permettent de s'adapter aux dommages.

Le projet SWARM-ORGAN (A theoretical framework for swarms of GRN-controlled agents which display adaptive tissue-like organisation) s'est terminé en 2016. Son objectif était "d'explorer de manière exhaustive une approche spécifique – à savoir l'utilisation des RRN (réseaux de régulation génétique) – comme méthode de contrôle potentiellement puissante pour ces systèmes" selon le site web du projet. Une équipe multidisciplinaire composée d'experts aux profils variés notamment en biologie des systèmes développementaux en informatique en robotique morphogénétique et en physique a participé au projet.

Auteur: Internet

Info: https://www.techno-science.net, 27/02/2019

[ différenciation cellulaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Enfin, même si on découvrait des phénomènes quantiques dans le cerveau, leur caractère strictement imprévisible ne permettrait pas d'expliquer notre conception du libre arbitre. Comme l'a bien montré le philosophe Daniel Dennett, l'aléatoire pur ne confère à nos cerveaux "aucune forme valable de liberté" ("any kind of freedom worth having"). Souhaitons-nous vraiment que nos corps soient secoués de mouvements aléatoires et incontrôlables engendrés au niveau subatomique, qui rapprocheraient nos décisions des convulsions et des tics des patients souffrants du syndrome de Gilles de La Tourette, la fameuse "Danse de Saint-Guy" ? Rien n'est plus éloigné de notre conception de la liberté. La maladie de Tourette ne rend pas libre, bien au contraire. Jamais un coup de dés n'engendrera d'esprit libre.
Lorsque nous parlons du "libre arbitre", nous pensons à une forme beaucoup plus intéressante de liberté. Notre croyance en un libre arbitre résulte d'une observation élémentaire : dans des circonstances normales, nous prenons nos décisions en toute indépendance, en nous laissant seulement guider par nos idées, nos croyances et notre expérience passée, et en contrôlant nos pulsions indésirables. Nous exerçons notre libre arbitre chaque fois que nous avons la possibilité d'examiner les choix qui s'offrent à nous, d'y réfléchir posément et d'opter pour celui qui nous parait le meilleur. Une part de hasard entre dans nos choix volontaires, mais elle n'en constitue pas un élément indispensable. La plupart du temps, nos actions volontaires n'ont rien d'aléatoire : elles résultent d'un examen attentif des options disponibles, suivi du choix délibéré de celle qui emporte notre préférence.
Cette conception du libre arbitre n'a nul besoin de la physique quantique - elle pourrait être simulée par un ordinateur standard. Elle exige simplement un espace de travail qui recueille les informations en provenance des sens et de la mémoire, en fasse la synthèse, évalue les conséquences de chaque option, y consacre autant de temps que nécessaire et utilise cette réflexion pour guider notre choix. Voilà ce que nous appelons une décision volontaire, délibérée, prise "en toute conscience". En bref, l'intuition du libre arbitre doit être décomposée.
Elle recouvre, d'une part, l'idée que nos décisions sont fondamentalement indéterminées, non contraintes par la physique (une idée fausse) ; et d'autre part, celle que nous les prenons en toute autonomie (une idée respectable). Nos états cérébraux sont nécessairement déterminés par des causes physiques, car rien de ce qui est matériel n'échappe aux lois de la nature. Mais cela n'exclut pas que nos décisions soient réellement libres, si l'on entend par là qu'elles s'appuient sur une délibération consciente, autonome, qui ne rencontre aucun obstacle et qui dispose du temps suffisant pour évaluer le pour et le contre avant de s'engager. Quand toutes ces conditions sont remplies, nous avons raison de dire que nous avons exercé notre libre arbitre et pris une décision volontaire - même si celle-ci est toujours, en dernière analyse, déterminée par nos gènes, notre histoire et les fonctions de valeurs qui sont inscrites dans nos circuits neuronaux. Les fluctuations de l'activité spontanée de ces réseaux rendent nos décisions imprévisibles, y compris à nos propres yeux. Cependant, ce caractère imprévisible ne devrait pas être retenu comme l'un des critères essentiels du libre arbitre, ni ne devrait être confondu avec l'indétermination fondamentale de la physique quantique. Ce qui compte pour qu'une décision soit libre, c'est l'autonomie de la délibération.
Une machine pourvue d'un libre arbitre n'est absolument pas une contradiction dans les termes, juste une définition de ce que nous sommes.

Auteur: Dehaene Stanislas

Info: Le code de la conscience

[ miroir ]

 

Commentaires: 0

sciences

Les effets de la musique sur le cerveau et la santé
On dit que la musique élève l'âme, mais elle élève aussi... le cerveau ! En effet, une étude récente réalisée par des chercheurs membres du Centre de recherche sur le cerveau, le langage et la musique (CRBLM) rapporte que l'apprentissage de la musique avant l'âge de sept ans influence positivement le développement du cerveau. Plus précisément, la formation musicale pendant l'enfance favorise des connexions plus fortes entre les régions sensorielles et motrices de notre matière grise, l'aidant ainsi à mieux orchestrer la planification et l'exécution de nos mouvements.
Plus encore, des données indiquent que les enfants qui suivent des leçons de musique réussissent mieux certains types de tests, particulièrement ceux de lecture et de concentration. D'autres recherches démontrent qu'une formation musicale développe les capacités auditives, notamment dans un contexte bruyant. Pareillement, l'apprentissage de plusieurs langues pendant l'enfance procure des avantages cognitifs qui peuvent ralentir la sénescence.
Le CRBLM a été créé en 2011, il réunit les forces vives de la recherche sur l'organisation, le fonctionnement et le dysfonctionnement des systèmes nerveux musical et linguistique. Etabli à l'Université McGill et financé par le FRQNT, ce regroupement stratégique rassemble des ingénieurs, des neuroscientifiques, des linguistes, des experts en vieillissement et des psychologues provenant aussi de diverses universités - Université de Montréal, Université Concordia, Université Laval, Université du Québec à Montréal - et de l'INRS.
Par exemple, l'axe de recherche sur les neurosciences se penche sur la capacité d'apprentissage de plusieurs langues. Il tente aussi de mieux comprendre comment nos méninges interagissent avec la musique pour, à long terme, mieux cerner et peut-être traiter des problèmes de langage. Car langage et musique partagent certaines zones du cerveau. C'est ce qui explique que, souvent, un accident cérébral perturbe nos facultés musicales et verbales. Par contre, musique et paroles utilisent également des circuits neuronaux séparés et peuvent donc être perturbés isolément. Les chercheurs ont constaté que beaucoup de patients atteints d'Alzheimer semblent conserver la capacité de reconnaître la musique alors qu'ils n'identifient plus les membres de leur famille et que leur discours est embrouillé.
Une grande partie des travaux sur la musique se fait dans le Laboratoire international de recherche sur le cerveau, la musique et le son (BRAMS), situé à l'Université de Montréal. Cette importante infrastructure est intégrée au CRBLM et dispose notamment de dix salles de test insonorisées à la fine pointe de la technologie et d'un système vidéo 3D d'enregistrement de mouvements.
La compréhension des effets du langage et de la musique sur le cerveau représente tout un défi. En effet, il n'y aurait pas de centre musical et langagier unique dans le cerveau. Comme pour la compréhension du langage, la musique est traitée par différents chefs d'orchestre. Ainsi, chez un musicien, une partie de la matière grise se concentre sur le mouvement des mains, tandis qu'une autre partie s'efforce de déchiffrer les notes de la partition. Par des techniques de neuro-imagerie fonctionnelle, les scientifiques enregistrent les réponses du cerveau et les mouvements de l'interprète à l'aide d'un système de senseurs. Ils combinent ensuite ces données dans des modèles théoriques neurophysiologiques et mathématiques pour comprendre comment le système nerveux permet à une personne de produire de la musique rapidement et facilement. Des chercheurs comme les codirecteurs du BRAMS - Isabelle Peretz, professeure au Département de psychologie de l'Université de Montréal, et Robert Zatorre, professeur à l'Institut neurologique de Montréal (MNI) - ont ainsi établi que certains réseaux neuronaux sont tout de même exclusivement dédiés au traitement de la musique.
Selon certaines études, compte tenu du fait que la musique et la zone de commande du mouvement partagent des circuits neuronaux, l'art musical peut aider les patients atteints de Parkinson ou ceux qui ont subi un accident vasculaire cérébral à améliorer - ou à retrouver - la mobilité. Les personnes qui ont des problèmes de cognition ou de langage profiteraient également des bienfaits d'une mélodie. Les prescriptions pour une thérapie musicale, c'est pour bientôt...

Auteur: Internet

Info: http://www.bulletins-electroniques.com/actualites/73014.htm

[ thérapie ]

 

Commentaires: 0

neurologie

Construire de meilleures cartes mentales

Des techniques innovantes d'analyse de la fonction et de la structure cérébrales révèlent des détails remarquables de l'architecture neuronale, offrant ainsi de nouvelles pistes pour le diagnostic et le traitement des maladies cérébrales.

Bien que le cerveau humain soit un objet de fascination scientifique depuis des siècles, nous ne faisons qu'effleurer la surface en termes de compréhension de sa fonctionnalité et de sa complexité. Nous connaissons bien les zones fonctionnelles générales du cerveau, mais la manière dont ce réseau interconnecté de neurones traite et transmet les informations pour donner naissance à la pensée et à la mémoire reste un domaine de recherche très actif.

L'étude du fonctionnement du cerveau au niveau physiologique fondamental est l'un des domaines de recherche les plus difficiles, nécessitant de nouvelles méthodes d'expérimentation et de détection de l'activité cérébrale à l'échelle neuronale. Les progrès récents des techniques d'imagerie cérébrale et la compréhension de la structure fine du cerveau ont permis d'explorer les fonctions cérébrales d'une nouvelle manière. Ces découvertes ont des répercussions sur la santé du cerveau et l'intelligence artificielle.

Cerveau/ESPRITS et au-delà

Les projets japonais Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) et Strategic International Brain Science Research Promotion Program (Brain/MINDS Beyond), qui font partie de plusieurs projets nationaux de recherche à grande échelle sur le cerveau lancés ces dernières années dans le monde entier, visent à étudier les circuits neuronaux qui sous-tendent les fonctions cérébrales supérieures. Il s'agit d'initiatives nationales auxquelles participent des dizaines d'institutions, chacune spécialisée dans un domaine particulier de l'étude du cerveau.

L'étude des primates non humains à l'Université de Tokyo et à l'Institut national des sciences et technologies quantiques (QST) est un domaine qui apporte de nouvelles connaissances sur l'architecture du cerveau.

"Lorsqu'il s'agit de comprendre le cerveau humain et les troubles qui peuvent l'affecter, seuls les autres primates partagent nos fonctions supérieures, telles qu'un cortex visuel hiérarchisé et un cortex préfrontal hautement développé responsable de la fonction exécutive et de la prise de décision", explique Takafumi Minamimoto, qui dirige le groupe des systèmes et circuits neuronaux du département d'imagerie cérébrale fonctionnelle de l'Institut national des sciences et technologies quantiques.

"La recherche sur le cerveau des primates est difficile et coûteuse, mais indispensable. Elle nous permet de mieux comprendre le fonctionnement du cerveau, ce qui peut nous aider à comprendre et à traiter les troubles cérébraux chez l'homme".

L'équipe de Minamimoto se concentre sur le développement de méthodes plus précises d'analyse des fonctions cérébrales. Leur plus grande réussite a été la mise au point d'une méthode chimiogénétique pour désactiver l'activité cérébrale au niveau d'un neurone unique, combinée à la tomographie par émission de positrons (TEP) - une technique d'imagerie pour des molécules spécifiques. Cela a permis de visualiser non seulement l'activité des neurones des primates, mais aussi leur connexion avec d'autres zones du cerveau.

"Avec la chimiogénétique, nous injectons une solution virale inoffensive dans une zone spécifique du cerveau pour modifier génétiquement les neurones afin de les rendre sensibles à un produit chimique suppresseur", explique Minamimoto. "Nous pouvons ensuite injecter le suppresseur afin d'éteindre les neurones modifiés pendant plusieurs heures".

L'équipe a récemment mis au point un produit chimique suppresseur 100 fois plus efficace, ce qui lui permet d'injecter de minuscules doses de ce suppresseur pour affecter sélectivement des groupes individuels de neurones et leurs connexions axonales. Ils ont utilisé cette technique pour réduire au silence des connexions spécifiques afin de découvrir les circuits responsables de la mémoire de travail et de la prise de décision.

Cette approche est également prometteuse pour le traitement des troubles cérébraux chez l'homme. Par exemple, comme modèle potentiel de traitement chez l'homme, le groupe a récemment rapporté que la chimiogénétique peut supprimer les crises d'épilepsie chez les macaques.

Le système visuel

Une autre équipe, située à l'université de Tokyo et dirigée par Kenichi Ohki, étudie la manière dont les informations visuelles sont traitées chez les primates, dont le cortex visuel est très développé et hiérarchisé. Les recherches du groupe sur les ouistitis utilisent une technique d'imagerie calcique à haute sensibilité qui permet de visualiser la façon dont des parties spécifiques du cerveau réagissent à différents stimuli.

"L'imagerie au calcium est une technique utilisée depuis longtemps pour observer le fonctionnement du cerveau chez les souris, mais elle n'était pas assez sensible pour visualiser des groupes discrets de neurones chez les primates avec la même qualité que chez les souris", explique M. Ohki. "En collaboration avec Tetsuo Yamamori du RIKEN, nous avons mis au point une méthode améliorée qui a augmenté de manière significative l'expression de la protéine fluorescente GCaMP6 dans le cerveau des primates, ce qui, combiné à l'imagerie à deux photons basée sur le laser, nous permet de visualiser l'activité des neurones avec une étonnante précision dans des détails.

Le système visuel représente plus de la moitié du cortex cérébral chez les primates et se constitue vie une hiérarchie élaborée d'étapes de traitement de l'information. Il existe des zones distinctes qui traitent les motifs et les angles, par exemple, et les recherches d'Ohki ont montré que les neurones se déclenchent selon des schémas coordonnés sensibles à ces différents stimuli, avec des fonctionnalités différentes au niveau cellulaire.

"L'une des conclusions fascinantes de nos travaux est que la hiérarchie du système visuel semble traiter le bruit dans une direction opposée à celle dont les réseaux neuronaux artificiels traitent généralement les stimuli sonores", explique Ohki. "Il serait intéressant de construire un réseau neuronal artificiel qui permette une telle méthode de traitement du bruit dans le système visuel des primates.

Le groupe de recherche d'Ohki étudie en détail la façon dont le bruit est traité dans ces connexions cortico-corticales, qui semblent fondamentales pour le fonctionnement du cerveau chez les primates. Ces connexions peuvent également expliquer la plasticité du cerveau et la façon dont différentes zones peuvent être enrôlées pour le traitement de l'information si la connexion primaire est entravée.

"Par exemple, nous avons découvert que le développement du système visuel se produit chez le nouveau-né à la suite d'une activité ondulatoire à travers la rétine, qui stimule les connexions thalamo-corticales qui construisent cette structure hiérarchique", explique Ohki4.

Sans ces stimuli, les connexions ne peuvent pas se développer du cortex visuel primaire vers le cortex visuel supérieur. Par ailleurs, si ces connexions ne se développent pas, on peut s'attendre à ce que des connexions alternatives soient établies à partir d'autres zones, telles que le cortex somatosensoriel, vers le cortex visuel supérieur. Ohki suggère que cela pourrait également expliquer comment les patients aveugles utilisent le cortex visuel pour "lire" le braille, bien qu'il s'agisse d'une fonction tactile.

"Les résultats de nos études sur les primates fournissent des indications précieuses sur les troubles neuropsychiatriques humains, en particulier ceux qui sont liés à une mauvaise communication dans le cerveau. Nos techniques seront utiles pour orienter la recherche spécifique et transposer les connaissances des primates à l'homme", déclare M. Minamimoto.

"Nous espérons partager ces connaissances et cette technologie avec le monde entier et collaborer avec d'autres groupes pour faire avancer ce domaine important de la recherche sur le cerveau.

Auteur: Internet

Info: https://www.nature.com, article publicitaire, Réf : Nagai, Y. et al. Nat. Comm. 7, 13605 (2016), Neuro. 23, 1157-1167 (2020), Miyakawa, N. et al. Nat 608, 578-585 (2022). Comm. 14, 971 (2023)

[ visualisation ] [ primatocentrisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

coévolution bio-linguistique

Cerveau humain, langage et culture matérielle : Quand archéologues et neurobiologistes coopèrent.

Ce sont Chris Renfrew, Chris Frith et Lambros Malafouris, qui ont souligné cette intrication. (in The Sapient Mind, sous-titré Archaeology meets neuroscience - eds, 2009)

- Les patterns observés concernant l’activation [cérébrale] et la superposition avec les circuits du langage suggèrent que la fabrication d’outils et le langage ont une base commune dans une aptitude humaine plus générale à une action complexe et finalisée. Ces résultats sont compatibles avec des hypothèses coévolutionnaires associant l’émergence du langage, la fabrication d’outils, la latéralisation fonctionnelle à l’échelle d’une population et l’expansion du cortex associatif dans l’évolution humaine. (D. Stout & al., “Neural correlates of Early Stone Age toolmaking : technology, language and cognition in human evolution”. 2009 : 1) 

- Les développements récents de l’imagerie cérébrale révèlent des bases communes aux dispositions sociales des hommes et des primates les plus évolués

- L’accroissement des liens sociaux se reflète dans l’accroissement du volume du cerveau, et au moment où l’espèce humaine se dissémine sur le globe et où les liens sociaux risquent ainsi de se déliter, c’est la diffusion d’une même culture matérielle qui va maintenir le lien que l’éloignement géographique fragilise. (Fiona COWARD & Clive GAMBLE “Big brains, small world : material culture and the evolution of mind” 2009) 

Les modifications de l’expression des gènes gouvernant le développement cortical au cours de l’évolution des mammifères ont fourni les conditions à la fois d’un accroissement de taille considérable et d’un retard dans la maturation du cerveau, qui a conféré une influence déterminante aux perceptions, aux actions, à l’apprentissage pour la formation des spécialisations corticales. En même temps, de nouvelles régions ont vu le jour dans le cortex, et de nouvelles connexions se sont mises en place avec les aires primaires, sensorielles et motrices. (Philippe Vernier, 2005 : “Évolution du cerveau et émergence du langage”. - Références : Talmy GIVÓN, Functionalism and Grammar (1995), dernier chapitre : “The co-evolution of language and brain” - Terrence DEACON, The symbolic Species, sous-titré : The co-evolution of Language and Brain 1997 - Ray JACKENDOFF Foundations of Language, sous-titré Brain, Meaning, Grammar, Evolution 2002

- Alors que Vernier ne mentionne que l’évolution des aires corticales, K. Gibson suit de son côté la voie ‘subcorticale’ ouverte par Lieberman (2000) et insiste sur les zones centrales du cerveau également impliquées dans l’administration de la parole et du langage. Kathleen GIBSON (“Not the neocortex alone : other brain structures also contribute to speech and language”, 2013)

Trois manières pour les organismes de s’adapter à des fins évolutives.

(a) Le cas le plus simple est l’évolution génétique, quand la sélection naturelle agit sur les variétés dans une population, sélectionnant au détriment des allèles qui délivrent la moindre convenance (fit) avec l’environnement.

(b) La seconde voie est celle de l’utilisation de la plasticité phénotypique d’un génotype.

(c) La troisième voie exploite des systèmes et des organes qui ont évolué pour s’adapter à des environnements en évolution rapide et qui ont également une assise génétique - p.158. (S. Számadó / E. Szathmáry, “Evolutionary biological foundations of the origin of language : the coevolution of language and brain” 2013

Leur conclusion :

1) Les variantes linguistiques aisées à apprendre et à retenir sont favorisées en termes d’évolution culturelle et donc se répandent plus vite dans une population donnée ;

2) Les cerveaux plus aptes à assimiler les variétés et le changement linguistique offrent des avantages biologiques adaptatifs à leurs porteurs ; donc les gènes responsables des différences adaptatives vont se répandre dans la population.

3) En conséquence, les langues entrent en connexion neuronale avec les besoins du cerveau humain, et les cerveaux s’adaptent à l’apprentissage et au traitement linguistiques. Si bien que les humains peuvent effectuer une foule d’activités qui tirent profit d’un usage plus efficace de la langue (coopération, utilisation d’outils, maintenance des traditions, etc.)

L’évolution de la parole et l'ingénierie neuromimétique

Entreprises de modélisation et de simulation informatique des processus dont on présume qu’ils ont piloté l’émergence et l’évolution du langage.

- L’un des arguments en faveur des approches computationnelles et robotiques de l’évolution du langage est leur nature interdisciplinaire : Cela permet un dialogue direct avec des discipines empriques concernées par le langage et la cognition, telles que les neurosciences cognitives, la psychologie, la linguistique cognitive, la primatologie et l’anthropologie (…). L’ajout de contraintes aux modèles robotiques sur la base de données empiriques améliore aussi l’aptitude de la robotique et des modèles calculatoires pour générer des prédictions basées sur des théories descriptives, lesquelles peuvent être à leur tour validées ou invalidées par de nouvelles études empiriques et modélisatrices (…).” (références : Simon KIRBY, Function, selection, and innateness – The emergence of linguistic universals, 1999. Pierre-Yves OUDAYER automate de simulation de l’origine de la parole : Self-organization in the evolution of speech 2006. Angelo CANGELOSI, “Robotics and embodied agent modelling of the evolution of language” 2013 

Cerveau des primates et mutations génétiques susceptibles d'avoir facilité l'émergence du langage chez les primates humains

Hypothèse mutationniste :

- “Il est extrêmement improbable que le langage humain ait résulté de la simple adaptation du système de communication d’une espèce antérieure. Rien de ce que nous savons de la neuro-anatomie humaine pertinente pour le langage en rapport avec le complexe Aire de Broca-POT [Jonction pariétale-occipitale temporale dans l’anatomie du cerveau humain] ne nous inciterait à imaginer des homologues dans les structures cérébrales directement pertinentes pour les systèmes de communication des singes [apes and monkeys]. (Wendy Wilkins, Towards an evolutionary biology of language through comparative neuroanatomy, 2013 : 206)

Hypothèse adaptationniste :

- En fin de compte, plus on cherche des continuités entre les primates humains et non humains, non seulement en matière de latéralisation mais dans des secteurs décisifs de l’évolution cognitive, plus on trouve de similarités. A notre avis, on peut présumer clairement au minimum que le langage et la parole ne sont pas des conditions nécessaires pour que s’exprime la spécialisation hémisphérique chez les primates non-humains et il est temps de considérer d’autres variables ou facteurs susceptibles d’avoir contribué à la différenciation hémisphérique entre individus et entre espèces. (J. Vauclair / H. Cochet, “Speech-gesture links in the ontogeny and phylogeny of gestural communication”, 2013 : 196)

Consensus et dissensus

Plus personne ne cherche une explication simpliste (ni le ‘tout génétique’, ni le ‘tout social’) et tous reconnaissent l’importance de la dimension épigénétique, prenant en compte l’environnement en expansion et donc diversifié des hominidés qui se sont engagés dans des productions symboliques vocales en marge de leurs productions gestuelles.

Questions centrales actuellement sans réponse consensuelle :

- La faculté de langage est-elle issue du ‘GESTE’ ou du ‘CRI’ ? La réponse d’Arbib vise actuellement à intégrer les deux hypothèses par une boucle rétroactive.

- Le langage est-il apparu au terme de PROCESSUS ADAPTATIFS, sans nécessaire intervention de mutations génétiques modifiant les bases organiques ou à la suite de mutations et par détournement (exaptation) de mécanismes mis en place pour satisfaire d’autres besoins ? 

Essai de compromis :

Schéma en trois phases pour les traits dominants de l’évolution de la parole humaine :

a) L’évolution de la bipédie devenue obligatoire chez Homo erectus a entraîné les effets EXAPTATIFS de la descente du larynx et la perte des air sacs ainsi que le hiatus intervocalis,

b) Durant le pleistocène moyen le contrôle de la respiration pour la parole humaine a évolué comme une ADAPTATION spécifique à la parole, et

c) Avec l’évolution des humains modernes , les proportions idéales du tractus vocal (1:1) ont été atteintes par ADAPTATION ”. (Ann MACLARNON, "The anatomical and physiological basis of human speech production : adaptations and exaptations" 2013 : 235)

Auteur: François Jacques

Info: Fin de sa conférence du 11 décembre 2014. Traductions de l'anglais par FJ

[ interdisciplinarité ] [ sémiose ] [ état des lieux ] [ phylogénétique ] [ mémétique ] [ proto-phonation ]

 

Commentaires: 0

Ajouté à la BD par miguel

physique fondamentale

On m’a dit que je gaspillais mon temps 

Malgré son emploi du temps surchargé du à son prix Nobel de physique 2022 partagé avec l’Américain John F. Clauser et ­l’Autrichien Anton Zeilinger, le physicien nous a reçus et livré un entretien inédit sur ses recherches, avec la passion qui l’anime.

AM - Vous venez de recevoir le prix Nobel de physique 2022 pour vos travaux sur l’intrication qui ont permis d’appréhender le cœur de la théorie quantique. Avant de nous expliquer vos recherches, pouvez-vous nous donner un aperçu de la "physique quantique" ?

AA - La physique quantique a été développée au début du XXe siècle pour rendre compte des propriétés du monde microscopique : les atomes, les électrons… Ce que la physique classique n’arrivait pas à faire. À la fin du XIXe siècle, on savait, par exemple, que la matière était formée de charges positives et négatives qui s’attirent. Mais pourquoi, alors, cette matière ne s’effondrait-elle pas sur elle-même ? La physique classique ne pouvait apporter aucune explication.

Pour le comprendre, il a fallu recourir à la physique quantique, notamment à l’un de ses premiers concepts : la dualité onde/particuleAinsi, un objet, par exemple la lumière, que nous décrivons comme une onde, doit aussi être considérée comme formée de grains, à savoir les photons. Réciproquement, des objets dont nous pensons que ce sont des particules – un électron, un atome, un neutron – doivent aussi, dans certaines circonstances, être considérés comme des ondes. C’est la base de ce qu’on appelle "la première révolution quantique". Cela a permis de comprendre la stabilité de la matière, la conduction du courant électrique ou la façon dont la matière émet ou absorbe la lumière.

Et puis dans les années 1940-1960, ce fut l’invention du transistor et du laser qui s’appuyaient sur cette théorie quantique. Ces deux technologies n’ont pas été élaborées par un bricoleur dans un garage en Californie, mais par les plus grands physiciens de l’époque qui ont eu des prix Nobel. Une fois qu’on a le transistor, on a les circuits intégrés à la base des ordinateurs.

AA - Et qu’appelle-t-on deuxième révolution quantique ?

AA - Elle a été lancée par un article d’Albert Einstein, de Boris Podolsky et de Nathan Rosen en 1935. Ils découvrent dans les équations mathématiques de la physique quantique des états où deux particules qui ont interagi, mais qui n’interagissent plus, semblent continuer à former un tout inséparable. C’est ce que l’on appellera l’"intrication". Dès le début, le physicien Niels Bohr s’était opposé aux conclusions d’Einstein. Son homologue John Bell a alors proposé, en 1964, de faire des expérimentations pour trancher la discussion.

Il a ensuite fallu plusieurs décennies pour que les autres physiciens réalisent la portée des travaux de Bell. Quand j’ai commencé ma thèse en 1974, nombre d’entre eux pensaient que l’intrication n’était pas différente de la dualité onde/particule. Puis, on a pris conscience de sa nouveauté. C’est pourquoi je parle d’une "deuxième révolution quantique", d’abord sur le plan de la recherche fondamentale, mais également sur les nouvelles applications que cela a suscitées, comme la cryptographie ou les ordinateurs quantiques.

AM - Comment a-t-on validé ce phénomène "d’intrication" ?

AA - Il fallait créer une paire de photons et une méthode pour montrer que, même éloignés, les deux photons demeuraient corrélés. Le photon, c’est de la lumière et la lumière a une polarisation. Un polariseur est un instrument d’optique qui a deux sorties associées à l’orientation de son axe : tout l’objet du test est de regarder comment les résultats dépendent de cette orientation. Si les polariseurs sont parallèles, vous avez une corrélation parfaite, vous trouvez les mêmes résultats des deux côtés. Imaginez que je lance deux pièces à 10 mètres de distance l’une de l’autre, ça a l’air aléatoire, mais si j’ai pile d’un côté, j’ai pile de l’autre, et si j’ai face d’un côté, j’ai face de l’autre. C’est la corrélation prévue pour les photons intriqués. Et cette corrélation est si forte qu’on ne peut en rendre compte que par la physique quantique.

AM - Quelles expériences ont été réalisées pour établir cette intrication ?

AA - La première expérience a été faite par John Clauser et Stuart Freedman en 1964. Celles que j’ai faites dix ans plus tard et celles qu’Anton Zeilinger a effectuées seize ans après moi ont des niveaux de raffinement différents, mais portent sur des objets identiques : il s’agit de deux photons émis par la même source et qui s’éloignent l’un de l’autre dans des directions opposées. J’ai mis cinq ans à fabriquer ma source. J’ai commencé en 1974 et les premières paires de photons intriqués ont été obtenues vers 1979-1980. Pour ce faire, je prends des atomes, je tape dessus avec des lasers, je les "excite" de façon contrôlée, et ils n’ont pas d’autre choix que d’émettre les deux photons dont j’ai besoin.

Après l’émission des photons et avant leur détection, il faut que les deux polariseurs soient éloignés l’un de l’autre et que leur orientation soit déterminée au dernier moment afin qu’ils ne s’influencent pas. Ainsi, mes deux polariseurs sont distants de 6 mètres de la source et je change leur orientation pendant le temps de vol des photons qui est de 20 nanosecondes… Comment tourner un appareil en 20 milliardièmes de seconde ? C’est impossible, mais j’ai eu l’idée de construire une espèce d’aiguillage capable de le faire et l’expérience a réussi.

AM - D’où vient votre passion pour la physique ?

Je suis originaire du village d’Astaffort (Lot-et-Garonne) à une époque où les champs étaient labourés avec le cheval ou les bœufs, mais j’étais fasciné par le moindre objet technique, par exemple les outils des artisans. Je me souviens de la visite, à Fumel, d’un haut-fourneau qui fournissait de la fonte transformée en tuyaux comme ceux que j’avais vu poser dans mon village pour installer l’eau courante. À l’école primaire, les instituteurs et institutrices faisaient ce que l’on appelait des "leçons de choses". J’étais aussi un grand lecteur de Jules Verne.

Arrivé au lycée d’Agen, je me réjouissais à l’idée de faire de la physique-chimie, mais on ne commençait qu’en seconde. J’ai eu alors un professeur formidable, Maurice Hirsch, qui nous faisait des expériences extraordinaires. Il a décuplé mon intérêt pour la physique et m’a enseigné des méthodes que j’ai conservées toute ma vie.

AM - Quels conseils donneriez-vous aux jeunes qui souhaiteraient se lancer dans votre discipline ?

AA - Il est clair qu’il y a un problème de moyens financiers. La loi de programmation de la recherche fait des propositions intéressantes, mais quand on regarde les budgets associés, ils sont inférieurs à ce que l’Académie des sciences avait estimé être le minimum pour que la recherche française puisse rester au niveau des concurrents étrangers. Les crédits de base, y compris ceux de l’Agence nationale de la recherche, sont décevants, même s’ils ne sont pas négligeables. Heureusement, on peut obtenir des crédits européens pour des projets innovants jugés au meilleur niveau, mais seul un petit nombre de chercheurs peut en bénéficier.

On me demande souvent si, aujourd’hui, on pourrait faire la même chose que ce que j’ai fait dans les années 1970-1980. Certainement pas de la même façon, mais un chercheur titulaire peut se lancer dans un projet de recherche original. Au pire, sa carrière sera freinée mais, moi aussi, je courais ce risque. Comme j’avais un poste permanent, je pouvais me lancer dans une recherche à long terme sans craindre de perdre mon emploi d’enseignant-chercheur.

On m’a dit que je gaspillais mon temps, que mon sujet n’avait aucun intérêt, mais je gardais mon emploi. Il en est toujours de même. Si un scientifique du CNRS ou de l’université se lance dans une recherche ­désapprouvée par les comités, il peut persévérer s’il accepte un certain retard de carrière. Bien sûr, si au bout de dix ans son travail n’a débouché sur rien, il doit se remettre en cause, les comités n’avaient peut-être pas tort.



 

Auteur: Aspect Alain

Info: Interviewé par Anna Musso pour https://www.humanite.fr, 8 Novembre 2022

[ nano-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

femmes-hommes

L'esprit pourrait affecter les machines selon les sexes
Pendant 26 ans, des conversations étranges ont eu lieu dans un laboratoire du sous-sol de l'université de Princeton. On utilise des ordinateurs au rendement aléatoire et les expériences font se concentrer des participants sur le contrôle d'une ou de plusieurs machines. Après plusieurs million d'épreuves on peut détecter de petits signes "statistiquement significatifs" comme quoi les esprits semblent pouvoir agir sur les machines. Cependant les chercheurs font attention à ne pas annoncer que les esprits ont cet effet ou qu'ils connaissent la nature de cette communication.
Les services secrets, la défense et les agences de l'espace ont également montré de l'intérêt pour cette recherche. Le premier support que les chercheurs ont employé était un bruit aléatoire à haute fréquence. Les chercheurs ont branché des circuits au dispositif pour traduire ce bruit en code binaire. Chaque participant, après un protocole pré-enregistré, devait développer une intention dans son esprit pour faire que le générateur ait plus ou moins de zéros. Les effets furent faibles mais mesurables. Depuis les mêmes résultats se sont reproduits avec d'autres expériences, telles qu'en impliquant un pendule relié à un mécanisme commandé par ordinateur. Quand la machine libère le pendule pour qu'il se balance, les participants se concentrent sur modifier le taux avec lequel le pendule ralentit. D'autres expériences impliquent une machine à tambour que les participants essayent de commander et une machine de cascade mécanique dans laquelle un dispositif laisse tomber des milliers de petites boules noires de polystyrène, le but est que ces boules tombent dans une rangée de fentes. Les participants essayent alors de les diriger pour les faire tomber d'un côté de ou de l'autre. Au final les participants ont pu "diriger " un bit sur 10.000 issus des données mesurées dans tous les essais. Ce qui pourrait sembler petit, mais le doyen Radin, scientifique à l'institut des sciences de Noetic et ancien chercheur aux laboratoires Bell et de AT&T, dit que c'était prévisible. Radin compare l'état actuel de cette recherche avec celui où les scientifiques commencèrent à étudier l'électricité statique et ne surent pas, au début, que les niveaux d'humidité pouvaient affecter la quantité de l'électricité statique produite.
Les chercheurs ne comprennent pas grand-chose sur ce phénomène, mais ils savent que les résultats ne sont pas affectés par la distance ou le temps. Les participants, par exemple, peuvent avoir le même impact sur une machine de l'extérieur de la salle ou d'ailleurs dans le pays. Ils peuvent également avoir le même effet s'ils ont une intention avant qu'elle soit allumée ou même s'ils lisent un livre ou écoutent la musique tandis alors que la machine fonctionne. Les conditions environnementales - telles que la température ambiante - n'importent pas, mais l'humeur et l'attitude des gens qui contrôlent l'appareil oui. Cela aide, si par exemple le participant croit qu'il peut affecter la machine. Jahn dit que la résonance avec la machine est un autre facteur important. Il la compare à ce qui se produit quand un grand musicien semble faire un avec son violon. Le sexe importe aussi. Les hommes tendent à obtenir des résultats assortis à leurs intentions, bien que le degré de l'effet soit souvent petit. Les femmes tendent à obtenir un plus grand effet, mais pas nécessairement celui qu'elles prévoient. Par exemple, elles voudraient diriger des boules dans la machine aléatoire de cascade pour une chute vers la gauche, mais elles tombent plutôt vers la droite. Les résultats qui sont également plus grands si un mâle et une femelle travaillent ensemble, les couple de même sexe ne produisent aucun résultat significatif. Les couple de sexe opposé qui sont impliqué de manière romantique donnent de bien meilleurs résultats - souvent sept fois plus grands que quand les mêmes individus sont examinés seuls.
Brenda Dunne, psychologue développementaliste et directrice du laboratoire dit que dans ces cas les résultats reflètent souvent le styles des deux modèles de sexes. Les effets sont plus grands, en accord avec ce que seule la femelle tendrait à produire, et plus ciblés, en accord avec ce que seul le mâle produirait.
"C'est presque comme si il y avait deux modèles ou deux variables et qu'elles étaient complémentaires" dit Dunne." le modèle masculin est associé à l'intention, le modèle féminin est plus associé à la résonance."
Que signifie tout ceci ? Personne ne le sait. Radin et Jahn indiquent que ce n'est pas parce qu'il y a une corrélation entre l'intention du participant et les actions de la machine que cela signifie qu'un cause l'autre. " Il y a une inférence (qui les deux sont connexes) mais aucune évidence directe" dit Radin qui indique que le phénomène pourrait être semblable à l'indétermination d'Heisenberg dans lequel deux particules séparées l'une de l'autre semblent être reliées sans qu'on sache comment... sous quelle forme de communication.
"la différence est nous ne parlons pas en envoyant des signaux du cerveau à la machine par un circuit" dit Jahn au sujet de ces essais. "quoi qu'il se passe, se passe par un itinéraire que nous ne connaissons pas. Nous savons seulement quelque chose au sujet des conditions qui la favorisent.." Bien que les effets produits dans ces expériences soient faibles, ils ont toujours été répétés, cependant pas toujours de façon prévisible. Un participant peut avoir un effet un jour et répéter l'expérience le jour suivant sans résultats.
Le laboratoire a beaucoup de détracteurs qui pointent sur des défauts de la méthode et écartent ce travail le traitant de divertissement, comparant ses résultats aux automobilistes qui souhaitent qu'une lumière rouge passe au vert et pensent que le changement de lumière est causé par eux.
Stanley Jeffers, professeur de physique à l'université d'York à Toronto, a tenté des expériences semblables, mais il ne put pas répliquer les résultats. Les chercheurs de deux laboratoires allemands, fonctionnant en coopération avec Pegg, ne purent également pas répliquer ces résultats à l'aide du même équipement utilisé par Pegg.
"Si leurs annonces veulent être prises au sérieux par la science elles doivent être répliquées" dit Jeffers. "Si elles ne peuvent pas être répliquées, cela ne signifie pas qu'elles sont fausses, mais la science y perdra rapidement son intérêt."
Dunne, psychologue développementaliste dit que Pegg a répété ses propres expériences et a obtenu des résultats significatifs. Et ces méta-analyses - une douzaine - faites depuis les années 80 ont donné une base pour les résultats de Pegg dans les expériences faites par d'autres chercheurs. La Méta-analyse utilise de grands stocks de données à travers de beaucoup d'expériences et les combine statistiquement pour voir si les effets répètent la même combinaison. "Nous analysons les déviations statistiques par rapport à la chance au travers de cette batterie d'expériences" dit Jahn... "quand on fait assez de ces expériences, les effets analysés ont un poids statistique. Il n'y a aucun doute sur la validité de ces effets."
Radin, qui n'est pas affilié au Pegg, écarte les critiques qui disent que ce groupe ne pratique pas de science solide. "Ce domaine a reçu bien plus d'examen minutieux et critique que beaucoup d'autres, ordinaires... les personnes qui font ce genre de recherche sont bien conscientes du fait que leur recherche doit être faite au mieux. Le laboratoire de Pegg a pris les meilleurs principes de science rigoureuse et s'est appliqué a des questions extrêmement difficiles et a proposé quelques jolies réponses intéressantes."
Jahn pense que les critiques s'attendent à ce que les phénomènes suivent les règles habituelles de la cause et de l'effet. Au lieu de cela, il pense qu'ils appartiennent à la catégorie de ce que Karl Jung a appelé "des phénomènes acausal," qui incluent des choses comme la synchronicité. "Cela se joue par des règles plus compliquées, plus lunatiques, évasives... ... mais cela joue." dit Jahn
Jeffers est sceptique " cela ne peut se passer de deux manières - dire qu'on est des scientifiques honorables et avoir des affirmations pour un effet particulier dans des conditions contrôlées, et ensuite quand les résultats ne marchent pas, dire que les méthodes scientifiques rigoureuses ne s'appliquent pas." Mais Jahn dit que justement que puisque que les scientifiques ne peuvent pas expliquer ces phénomènes cela ne signifie pas qu'ils ne sont pas vrais. "si ces choses existent... je pense que notre société a le droit de demander à la science d'y faire attention et de fournir un certain outillage pour avoir affaire avec de manière constructive.

Auteur: Zetter Kim

Info: Juillet 2005, Fortean Times

[ mâles-femelles ] [ vus-scientifiquement ] [ parapsychologie ] [ femmes-hommes ]

 

Commentaires: 0

Internet

Les effets psychiques du world wide web

Certains chercheurs comparent le "changement cérébral" induit par l'usage des outils informatiques avec le changement climatique. Si les enfants ont gagné des aptitudes en termes de vitesse et d'automatisme, c'est parfois au détriment du raisonnement et de la maîtrise de soi.

De plus en plus de personnes sont rivées à l'écran de leur smartphone ou occupées à photographier tout ce qu'elles croisent... Face à cet usage déferlant de nouveaux outils technologiques, de nombreux chercheurs s'attachent déjà à étudier les modifications éventuellement cérébrales et cognitives susceptibles d'émerger, spécialement chez les plus jeunes. Mieux, ils nous alertent sur ces phénomènes.

C'est le cas notamment, en France, du Pr Olivier Houdé, directeur du laboratoire de psychologie du développement et de l'éducation de l'enfant du CNRS-La Sorbonne, et auteur du livre "Apprendre à résister" (éd. Le Pommier).

S'intéressant à la génération qui a grandi avec les jeux vidéo et les téléphones portables, il affirme que, si ces enfants ont gagné des aptitudes cérébrales en termes de vitesse et d'automatismes, c'est au détriment parfois du raisonnement et de la maîtrise de soi.

Éduquer le cerveau

"Le cerveau reste le même", déclarait-il récemment, "mais ce sont les circuits utilisés qui changent. Face aux écrans, et du coup dans la vie, les natifs du numérique ont une sorte de TGV cérébral, qui va de l'oeil jusqu'au pouce sur l'écran. Ils utilisent surtout une zone du cerveau, le cortex préfrontal, pour améliorer cette rapidité de décision, en lien avec les émotions. Mais cela se fait au détriment d'une autre fonction de cette zone, plus lente, de prise de recul, de synthèse personnelle et de résistance cognitive.

" Aussi le chercheur en appelle-t-il à une éducation qui apprendrait à nos enfants à résister : "Éduquer le cerveau, c'est lui apprendre à résister à sa propre déraison", affirme-t-il. "Un vrai défi pour les sciences cognitives et pour la société d'aujourd'hui."

Le virtuel est donc clairement suspecté de nous atteindre dans le fonctionnement le plus intime de notre être.

Un nouvel "opium du peuple"

Il suffit d'ailleurs d'observer autour de soi les modifications comportementales qu'il entraîne : incapacité de maintenir une conversation ou de rester concentré sur un document ; facilité "brutale" à se déconnecter d'un échange relationnel comme on se débranche d'une machine, etc.

Le philosophe et artiste Hervé Fischer, qui signe l'un des essais les plus intéressants du moment sur "La Pensée magique du Net" (éd. François Bourin), considère lui aussi que si les jeunes sont "les plus vulnérables" à l'aliénation rendue possible par le Net, car ils mesurent leur existence à leur occurrence sur les réseaux sociaux, cela concerne aussi les adultes : "On peut avoir le sentiment qu'on a une vie sociale parce qu'on a des centaines d'amis sur le Net, ou qu'on est très actif et entreprenant parce qu'on échange sans cesse des commentaires et des informations numériques", explique-t-il. "Le retour au réel est alors encore plus difficile. On vit une pseudo-réalisation de soi, virtuelle elle aussi, et la "descente" de ce nouvel "opium du peuple" peut faire très mal à ceux qui ont une existence déjà frustrante sur bien des points." Cette existence qui se mesure et s'expérimente désormais à travers un profil numérique alerte aussi, en Grande-Bretagne, la grande spécialiste de la maladie d'Alzheimer, le Pr Susan Greenfield, qui parle de "changement cérébral" comme on parle de "changement climatique".

Elle s'inquiète des modifications identitaires provoquées par un usage intensif d'internet : "C'est presque comme si un événement n'existe pas tant qu'il n'a pas été posté sur Facebook, Bebo ou YouTube", écrivait-elle récemment dans le Daily Mail. "Ajoutez à cela l'énorme quantité d'informations personnelles désormais consignées sur internet - dates de naissances, de mariages, numéros de téléphone, de comptes bancaires, photos de vacances - et il devient difficile de repérer avec précision les limites de notre individualité. Une seule chose est certaine : ces limites sont en train de s'affaiblir."

Être là

Mais on peut aussi se demander : pourquoi un tel impact ? Pour Hervé Fischer, si internet est aussi "addictif", c'est parce que la société "écranique" réveille nos plus grandes mythologies, dont le rêve de retourner en un seul clic à la matrice collective, et de se perdre alors dans le sentiment océanique d'appartenir à la communauté humaine. "Ce qui compte, c'est d'être là", explique le philosophe. "On poste un tweet et ça y est, on se sent exister." Versants positifs de cette "nouvelle religion" ? "24 heures sur 24, les individus de plus en plus solitaires peuvent, quand ils le veulent, se relier aux autres", observe Hervé Fischer. Et, tout aussi réjouissant, chacun peut gagner en "conscience augmentée", notamment en se promenant de liens en liens pour approfondir ses connaissances.

Désormais, c'est certain, grâce à la Toile, on ne pourra plus dire "qu'on ne savait pas". Le Figaro Smartphone, tablette, etc.

Diminution de la matière grise

Selon les neuroscientifiques Kep Kee Loh et Dr. Ryota Kanai, de l'Université de Sussex, l'usage simultané de téléphones mobiles, ordinateurs et tablettes changerait la structure de nos cerveaux.

Les chercheurs ont constaté une diminution de la densité de la matière grise du cerveau parmi des personnes qui utilisent habituellement et simultanément plusieurs appareils par rapport à des personnes utilisant un seul appareil occasionnellement (publication : "Plos One", septembre 2014).

Interview de Michael Stora, psychologue et psychanalyste, fondateur de l'Observatoire des mondes numériques en sciences humaines (OMNSH) et qui a notamment écrit "Les écrans, ça rend accro..." (Hachette Littératures).

- Selon vous, quel impact majeur ont les nouvelles technologies sur notre psychisme ?

- Je dirais tout ce qui relève du temps. Compressé par l'usage immédiat des smartphones et autres ordinateurs mobiles, celui-ci ne permet plus ni élaboration de la pensée ni digestion des événements. Et l'impatience s'en trouve exacerbée. Ainsi, nous recevons de plus en plus de patients qui demandent à être pris en charge "en urgence". Or, de par notre métier, nous avons appris qu'en réalité - et hors risque suicidaire - il n'y en a pas. Chacun est donc confronté à sa capacité à supporter le manque (quand arrivera la réponse à ce mail, ce texto ?) et se retrouve pris dans la problématique très régressive du nourrisson qui attend le sein.

- En quoi notre capacité de penser s'en trouve-t-elle affectée ?

- Les formats des contenus deviennent si courts, le flux d'informations si incessant que réfléchir devient impossible, car cela demande du temps. Regardez Twitter : son usager ne devient plus qu'un médiateur, il partage rapidement un lien, s'exprime au minimum, on est dans la violence du "sans transition"... Il est évident que l'être humain ne peut traiter tant d'informations, et l'on observe déjà que la dimension analytique s'efface au profit d'une dimension synthétique. Cela semble assez logique : la Toile a été créée par des ingénieurs adeptes d'une pensée binaire, structurée sur le 0 ou le 1 et sans autres ouvertures. Il faudrait vraiment que les sciences humaines soient invitées à participer davantage à ces entreprises, cela permettrait de sortir d'un fonctionnement en boucle où l'on vous repropose sans cesse le même type de produits à consommer par exemple.

- Mais beaucoup parviennent aussi à s'exprimer grâce à Internet ?

- C'est vrai, si l'on regarde Facebook par exemple, le nombre de personnes occupées à remplir leur jauge narcissique est très élevé. Mais il y a de moins en moins de créativité sur la Toile. Auparavant, un certain second degré, qui a pu donner naissance à des sites comme viedemerde.com par exemple, dont la dimension auto-thérapeutique est certaine, dominait. Mais aujourd'hui, la réelle création de soi a disparu. Il s'agit d'être sans arrêt dans la norme, ou dans une version fortement idéalisée de soi. À force de gommer "ce qui fâche", les mauvais côtés de la vie, les efforts ou les frustrations inévitables, on est alors dans un exhibitionnisme de soi très stérile et régressif qui révèle seulement l'immense besoin de chacun d'être valorisé. L'usager souhaite être "liké" (quelqu'un a répondu au message laissé sur Facebook) pour ce qu'il est, pas pour ce qu'il construit, comme le petit enfant à qui l'on répète "qu'il est beau !" sans même qu'il ait produit de dessin.

- Internet rend-il exhibitionniste ?

- Je pense que la Toile ne fait que révéler ce que nous sommes profondément. Regardez comme les internautes qui "commentent" en France sont critiques et râleurs, exactement comme on imagine les Français... Et c'est vrai, j'ai été surpris de constater cet exhibitionnisme fou dans notre pays. Avec les "blacklists", la violence de la désinhibition et des critiques qui laissent peu de possibilité d'échanger, une certaine froideur narcissique l'emporte. Ce que l'on observe, c'est qu'il y a plus d'humains enrôlés dans l'expérience du Web, mais moins d'humanité.

Auteur: Journaldujura.ch

Info: Keystone, 1er mai 2015

[ lecture ] [ historique ] [ évolution ]

 
Mis dans la chaine

Commentaires: 0

mimétisme

La surexposition a déformé la science des neurones miroirs

Après une décennie passée à l’écart des projecteurs, les cellules cérébrales autrefois censées expliquer l’empathie, l’autisme et la théorie de l’esprit sont en train d’être affinées et redéfinies.

Au cours de l'été 1991, le neuroscientifique Vittorio Gallese étudiait la représentation du mouvement dans le cerveau lorsqu'il remarqua quelque chose d'étrange. Lui et son conseiller de recherche, Giacomo Rizzolatti, de l'Université de Parme, suivaient les neurones qui devenaient actifs lorsque les singes interagissaient avec certains objets. Comme les scientifiques l'avaient déjà observé, les mêmes neurones se déclenchaient lorsque les singes remarquaient les objets ou les ramassaient.

Mais ensuite, les neurones ont fait quelque chose auquel les chercheurs ne s'attendaient pas. Avant le début officiel de l'expérience, Gallese a saisi les objets pour les montrer à un singe. À ce moment-là, l’activité a augmenté dans les mêmes neurones qui s’étaient déclenchés lorsque le singe avait saisi les objets. C’était la première fois que quelqu’un observait des neurones coder des informations à la fois pour une action et pour un autre individu effectuant cette action.

Ces neurones firent penser à un miroir aux chercheurs : les actions observées par les singes se reflétaient dans leur cerveau à travers ces cellules motrices particulières. En 1992, Gallese et Rizzolatti ont décrit pour la première fois ces cellules dans la revue Experimental Brain Research , puis en 1996 les ont nommées " neurones miroirs " dans Brain.

Les chercheurs savaient qu’ils avaient trouvé quelque chose d’intéressant, mais rien n’aurait pu les préparer à la réaction du reste du monde. Dix ans après la découverte, l’idée d’un neurone miroir était devenue un des rare concept neuroscientifique capable de captiver l’imagination du public. De 2002 à 2009, des scientifiques de toutes disciplines se sont joints aux vulgarisateurs scientifiques pour faire sensation sur ces cellules, leur attribuant davantage de propriétés permettant d'expliquer des comportements humains aussi complexes que l'empathie, l'altruisme, l'apprentissage, l'imitation, l'autisme et la parole.

Puis, presque aussi rapidement que les neurones miroirs ont émergé les doutes scientifiques quant à leur pouvoir explicatif. En quelques années, ces cellules de célébrités ont été classées dans le tiroir des découvertes prometteuses pas à la hauteur des espérances.

Pourtant, les résultats expérimentaux originaux sont toujours valables. Les neurones du cortex prémoteur et des zones cérébrales associées reflètent des comportements. Même s'ils n'expliquent pas facilement de vastes catégories de l'expérience humaine, les neurones miroirs " sont vivants et actifs ", a déclaré Gallese.

Aujourd'hui, une nouvelle génération de neuroscientifiques sociaux relance les travaux pour étudier comment les neurones dotés de propriétés miroir dans tout le cerveau codent le comportement social.

L'ascension et la chute

Les neurones miroirs ont d'abord fasciné par le fait qu'ils n'étaient pas du tout à leur place. Dans une zone du cerveau dédiée à la planification motrice, on trouvait des cellules aux propriétés uniques qui réagissaient pendant la perception. En outre, les chercheurs de Parme ont interprété leurs résultats comme une preuve de ce que l'on appelle la "compréhension de l'action" dans le cerveau : Ils affirmaient que les singes pouvaient comprendre ce que faisait un autre individu et que cette intuition était résolue dans une seule cellule.

Le neurone miroir était donc un " moyen immédiatement accessible pour expliquer un mécanisme bien plus complexe ", a déclaré Luca Bonini, professeur de psychobiologie à l'Université de Parme qui n'a pas participé à l'étude originale. Galvanisés par cette interprétation, les chercheurs ont commencé à projeter leur " compréhension " sur un nombre illimité de cellules qui semblaient semblables à des miroirs.

Cette fanfare enthousiaste faussa l’étude des neurones miroirs et perturba la carrière des chercheurs.

Au début des années 2000, le spécialiste des sciences cognitives Gregory Hickok de l'Université de Californie à Irvine a découvert que les neurones des zones motrices du cerveau liées à la production de la parole devenaient actifs lorsque les participants écoutaient la parole. Bien que cette découverte ne soit pas choquante – " c’est exactement ainsi que fonctionne le système ", déclara Hickok – d’autres scientifiques ont commencé à visualiser ses résultats sous l'angle des neurones miroir. Il savait que cette théorie ne pouvait pas s'appliquer à son travail. D’autres encore ont suggéré que lorsque les auditeurs percevaient la parole, les neurones du cortex moteur " reflétaient " ce qu’ils entendaient.

(Photo : Gregory Hickok étudie les circuits neurologiques impliqués dans la parole. Ses doutes sur la théorie des neurones miroirs l'ont amené à devenir l'adversaire scientifique de Vittorio Gallese et lui ont valu un contrat pour le livre Le Mythe des neurones miroirs – " dont le titre n'était vraiment pas juste ", selon Gallese.)

Pour bien se positionner, Hickok commença par dire au début de ses exposés de recherche que son travail n'avait rien à voir avec les neurones miroirs – un choix qui le plaça par inadvertance au centre du débat. En 2009, le rédacteur en chef du Journal of Cognitive Neuroscience invita Hickok à rédiger une critique de cette théorie. Il utilisa la parole comme test pour réfuter l'affirmation grandiose selon laquelle les neurones miroirs du cortex moteur permettaient à un singe de comprendre les actions d'un autre. Si, selon Hickok, il existe un mécanisme neuronal unique qui code la production d’une action et la compréhension de cette action, alors les dommages causés à ce mécanisme devraient empêcher les deux de se produire. Hickok a rassemblé un dossier d'études montrant que les dommages causés aux zones de production de la parole ne perturbaient pas la compréhension de la parole. Les données, écrit-il, " démontrent sans équivoque que la théorie des neurones miroirs sur la perception de la parole est incorrecte, quelle que soit sa présentation ».

Critique qui conduisit à un livre puis en 2015, à une invitation à débattre publiquement avec Gallese au Centre pour l'esprit, le cerveau et la conscience de l'Université de New York. Partageant la scène pour la première fois, les deux scientifiques distingués échangèrent des points de vue concurrents avec quelques légères taquineries, suivies de sourires autour de quelques bières.

Si cette confrontation s'est déroulée à l'amiable, il n'en fut pas de même des réactions à l'engouement pour les neurones miroirs.  Aujourd’hui, Gallese reste surpris par " l’acrimonie " à laquelle il fut confronté au sein de la communauté scientifique. " Je ne pense pas que quiconque ait été scruté aussi profondément que nous ", dit-il.  Et l’effet sur l’étude de ces cellules cérébrales fut profond. Dans les années qui ont suivi le débat à New York, les neurones miroirs disparurent du discours scientifique. En 2013, au plus fort du battage médiatique, les scientifiques ont publié plus de 300 articles portant le titre " neurone miroir ". En 2020, ce nombre avait diminué de moitié, pour atteindre moins de 150.

Le neurone miroir, redéfini

Cet épisode est représentatif de la manière dont l'enthousiasme suscité par certaines idées peut transformer le cours de leurs recherches. Gallese a attribué le déclin des études sur les neurones miroirs à la peur collective et à l'autocensure. " Les chercheurs craignent que s'ils évoquent l'étiquette neurones miroirs, l'article pourrait être rejeté ", a-t-il déclaré.

En conséquence, les chercheurs ont adopté une terminologie différente – " réseau d’activation d’action ", par exemple – pour expliquer les mécanismes miroirs dans le cerveau. Le terme " neurone miroir " est également devenu obscur. Au début, sa définition était claire : c'était une cellule motrice qui tirait lors d'un mouvement et également lors de la perception d'un mouvement identique ou similaire. Cependant, à mesure que les chercheurs utilisaient ce terme pour expliquer les phénomènes sociaux, la définition devenait lourde au point de devenir une " théorie invérifiable ", a déclaré Hickok.

Aujourd’hui, après une période de réflexion, les neuroscientifiques sociaux extraient les cellules de la boue biologique. En regardant au-delà des zones motrices du cerveau, ils découvrent ce qui ressemble étrangement à des neurones miroirs. L'année dernière, une équipe de l'Université de Stanford a rapporté dans Cell la découverte de neurones qui reflètent l'agressivité chez la souris. Cette suite de cellules se déclenchait à la fois lorsqu’une souris se comportait de manière agressive et lorsqu’elle regardait les autres se battre. Parce que les cellules sont devenues actives dans les deux contextes, les chercheurs ont suggéré qu’elles seraient des neurones miroirs.

"C'était le premier exemple démontrant l'existence de neurones miroirs associés à un comportement social complexe", a déclaré Emily Wu, professeur adjoint de neurologie à l'Université de Californie à Los Angeles, qui n'a pas participé à la recherche.

Cette découverte s’ajoute à un nombre croissant de preuves selon lesquelles les neurones situés au-delà du cortex prémoteur ont des propriétés miroir lorsque deux animaux interagissent socialement. Ces mêmes cellules se déclenchent lors d’actions ou d’émotions  personnelles et en réponse au fait de voir d’autres vivre les mêmes expériences.

Techniquement, selon la définition originale, ces cellules ne sont pas des neurones miroirs, a déclaré Hickok : Les neurones miroirs sont des cellules motrices, pas des cellules sociales. Cependant, Wu ne se soucie pas des définitions. Plutôt que débattre de ce qui est ou non un neurone miroir, elle pense qu'il est plus important de cataloguer les propriétés fonctionnelles du miroir qui caractérisent les cellules, où qu'elles se trouvent dans le cerveau.

L’objectif serait de décrire l’étendue de ces neurones et comment, au niveau électrophysiologique, ils se comportent de manière unique. Ce faisant, ces scientifiques dissipent le nuage de battage médiatique autour de la vision de ces cellules telles qu’elles sont réellement.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Meghan Willcoxon, 2 avril 2024

[ pulsions partagées ] [ actions symboles ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

émergence du regard

Les yeux des mollusques révèlent à quel point l'évolution future dépend du passé

Les systèmes visuels d'un groupe obscur de mollusques fournissent un exemple naturel rare d'évolution dépendante du chemin, dans lequel une bifurcation critique dans le passé des créatures a déterminé leur avenir évolutif.

(photo : Les systèmes visuels des chitons, un type de mollusque marin, représentent un rare exemple réel d’évolution dépendante du chemin – où l’histoire d’une lignée façonne irrévocablement sa trajectoire future.)

Les biologistes se sont souvent demandé ce qui se passerait s'ils pouvaient rembobiner la bande de l'histoire de la vie et laisser l'évolution se dérouler à nouveau. Les lignées d’organismes évolueraient-elles de manière radicalement différente si on leur en donnait la possibilité ? Ou auraient-ils tendance à développer les mêmes types d’yeux, d’ailes et d’autres traits adaptatifs parce que leurs histoires évolutives précédentes les avaient déjà envoyés sur certaines voies de développement ?

Un nouvel article publié aujourd'hui dans Science décrit un cas test rare et important pour cette question, qui est fondamentale pour comprendre comment l'évolution et le développement interagissent. Une équipe de chercheurs de l'Université de Californie à Santa Barbara l'a découvert alors qu'elle étudiait l'évolution de la vision chez un groupe obscur de mollusques appelés chitons. Dans ce groupe d’animaux, les chercheurs ont découvert que deux types d’yeux – les ocelles et les yeux en coquille – ont chacun évolué deux fois indépendamment. Une lignée donnée peut évoluer vers un type d’œil ou vers l’autre, mais jamais les deux.

Curieusement, le type d’œil d’une lignée était déterminé par une caractéristique plus ancienne apparemment sans rapport : le nombre de fentes dans l’armure du chiton. Cela représente un exemple concret d' " évolution dépendante du chemin ", dans lequel l'histoire d'une lignée façonne irrévocablement sa trajectoire évolutive future. Les moments critiques dans une lignée agissent comme des portes à sens unique, ouvrant certaines possibilités tout en fermant définitivement d’autres options.

"C'est l'un des premiers cas où nous avons pu observer une évolution dépendante du cheminement", a déclaré Rebecca Varney , chercheuse postdoctorale au laboratoire de Todd Oakley à l'UCSB et auteur principal du nouvel article. Bien qu’une évolution dépendante du chemin ait été observée chez certaines bactéries cultivées en laboratoire, " montrer cela dans un système naturel était une chose vraiment excitante ".

"Il y a toujours un impact de l'histoire sur l'avenir d'un trait particulier", a déclaré Lauren Sumner-Rooney , qui étudie les systèmes visuels des invertébrés à l'Institut Leibniz pour les sciences de l'évolution et de la biodiversité et n'a pas participé à la nouvelle étude. "Ce qui est particulièrement intéressant et passionnant dans cet exemple, c'est que les auteurs semblent avoir identifié le moment où se produit cette division."

Pour cette raison, les chitons "sont susceptibles d'entrer dans les futurs manuels sur l'évolution" comme exemple d'évolution dépendante du chemin, a déclaré Dan-Eric Nilsson, un écologiste visuel à l'Université de Lund en Suède qui n'a pas participé à la recherche.

Les chitons, petits mollusques qui vivent sur les roches intertidales et dans les profondeurs marines, ressemblent à de petits réservoirs protégés par huit plaques de coquille – un plan corporel resté relativement stable pendant environ 300 millions d'années. Loin d'être des armures inertes, ces genres de plaques d'obus sont fortement décorées d'organes sensoriels qui permettent aux chitons de détecter d'éventuelles menaces.

(photo : Chiton tuberculatus , qui vit sur les côtes rocheuses des Caraïbes, utilise de nombreux ocelles pour obtenir une vision spatiale. Les chitons ont développé des ocelles à deux reprises au cours de leur histoire évolutive.)

Les organes sensoriels sont de trois types. Tous les chitons ont des esthètes (aesthetes : récepteur tout-en-un extrêmement synesthésique qui permet de détecter la lumière ainsi que les signaux chimiques et mécaniques de l'environnement.)

Certains chitons possèdent également un système visuel approprié : soit des milliers d'ocelles sensibles à la lumière, soit des centaines d'yeux en forme de coquille plus complexes, dotés d'un cristallin et d'une rétine permettant de capturer des images grossières. Les animaux dotés d'yeux en forme de coquille peuvent détecter les prédateurs imminents, en réponse à quoi ils se cramponnent fermement au rocher.

Pour comprendre comment cette variété d’yeux de chiton a évolué, une équipe de chercheurs dirigée par Varney a examiné les relations entre des centaines d’espèces de chiton. Ils ont utilisé une technique appelée capture d'exome pour séquencer des sections stratégiques d'ADN provenant d'anciens spécimens de la collection de Doug Eernisse , spécialiste du chiton à la California State University, Fullerton. Au total, ils ont séquencé l’ADN de plus de 100 espèces soigneusement sélectionnées pour représenter toute l’étendue de la diversité des chitons, assemblant ainsi la phylogénie (ou l’arbre des relations évolutives) la plus complète à ce jour pour les chitons.

Ensuite, les chercheurs ont cartographié les différents types d’yeux sur la phylogénie. Les chercheurs ont observé que la première étape avant l’évolution des yeux en coquille ou des ocelles était une augmentation de la densité des esthètes sur la coquille. Ce n’est qu’alors que des yeux plus complexes pourraient apparaître. Les taches oculaires et les yeux en coquille ont chacun évolué à deux reprises au cours de la phylogénie, ce qui représente deux instances distinctes d'évolution convergente.

Indépendamment, les chitons ont fait évoluer les yeux - et, à travers eux, ce que nous pensons être probablement quelque chose comme la vision spatiale - à quatre reprises, ce qui est vraiment impressionnant", a déclaré M. Varney. 

" Cette évolution s'est faite incroyablement rapidement ". Les chercheurs ont estimé que chez le genre néotropical Chiton, par exemple, les yeux ont évolué en l'espace de 7 millions d'années seulement, soit un clin d'œil à l'échelle de l'évolution.

Les résultats ont surpris les chercheurs. "Je pensais qu'il s'agissait d'une évolution progressive de la complexité, passant des esthètes à un système d'ocelles et à des yeux en forme de coquille - une progression très satisfaisante", a déclaré Dan Speiser , écologiste visuel à l'Université de Caroline du Sud et co-auteur d'un article. auteur. " Au lieu de cela, il existe plusieurs chemins vers la vision."

Mais pourquoi certaines lignées ont-elles développé des yeux en coquille plutôt que des ocelles ? Au cours d'un trajet de six heures en voiture depuis une conférence à Phoenix jusqu'à Santa Barbara, Varney et Oakley ont commencé à développer l'hypothèse selon laquelle le nombre de fentes dans la coquille d'un chiton pourrait être la clé de l'évolution de la vision du chiton.

Toutes les structures sensibles à la lumière sur la coquille du chiton, a expliqué Varney, sont attachées à des nerfs qui passent à travers les fentes de la coquille pour se connecter aux nerfs principaux du corps. Les fentes fonctionnent comme des organisateurs de câbles, regroupant les neurones sensoriels. Plus il y a de fentes plus il y les ouvertures par lesquelles les nerfs peuvent passer.

Il se trouve que le nombre de fentes est une information standard qui est enregistrée chaque fois que quelqu'un décrit une nouvelle espèce de chiton. " L'information était disponible, mais sans le contexte d'une phylogénie sur laquelle la cartographier, elle n'avait aucune signification ", a déclaré Varney. " Alors je suis allé voir ça et j'ai commencé à voir ce modèle."

Varney a constaté qu'à deux reprises, indépendamment, des lignées comportant 14 fentes ou plus dans la plaque céphalique ont développé des ocelles. Et deux fois, indépendamment, des lignées comportant 10 fentes ou moins ont développé des yeux en coquille. On se rend ainsi compte que le nombre de fentes verrouillées et le type d'yeux pouvaient évoluer : un chiton avec des milliers d'ocelles a besoin de plus de fentes, tandis qu'un chiton avec des centaines d'yeux en coquille en a besoin de moins. En bref, le nombre de fentes dans la  coquille déterminait l’évolution du système visuel des créatures.

Les résultats conduisent vers une nouvelle série de questions. Les chercheurs étudient activement pourquoi le nombre de fentes limite le type d'œil dans son évolution. Pour répondre à cette question, il faudra travailler à élucider les circuits des nerfs optiques et la manière dont ils traitent les signaux provenant de centaines ou de milliers d’yeux.

Alternativement, la relation entre le type d’œil et le nombre de fentes pourrait être déterminée non pas par les besoins de vision mais par la manière dont les plaques se développent et se développent dans différentes lignées, a suggéré Sumner-Rooney. Les plaques de coquille se développent du centre vers l'extérieur par accrétion, et des yeux sont ajoutés tout au long de la vie du chiton à mesure que le bord se développe. " Les yeux les plus anciens sont ceux au centre de l'animal, et les plus récents sont ajoutés sur les bords. ", a déclaré Sumner-Rooney. En tant que chiton, " vous pourriez commencer votre vie avec 10 yeux et finir votre vie avec 200 ".

Par conséquent, le bord de croissance d'une plaque de carapace doit laisser des trous pour les yeux nouceaux – de nombreux petits trous pour les ocelles, ou moins de trous plus grands pour les yeux de la coquille. Des trous trop nombreux ou trop grands pourraient affaiblir une coque jusqu'à son point de rupture, de sorte que des facteurs structurels pourraient limiter les possibilités pour cest yeux.

Il reste beaucoup à découvrir sur la façon dont les chitons voient le monde, mais en attendant, leurs yeux sont prêts à devenir le nouvel exemple préféré des biologistes d'évolution dépendante du chemin, a déclaré Nilsson. "Les exemples de dépendance au chemin qui peuvent être vraiment bien démontrés, comme dans ce cas, sont rares - même si le phénomène n'est pas seulement courant, c'est la manière standard dont les choses se produisent."



 



Auteur: Internet

Info: Résumé par Gemini

[ évolution qui dépend du chemin ] [ biologie ]

 

Commentaires: 0

Ajouté à la BD par miguel