Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 1195
Temps de recherche: 0.0505s

homme-animal

Le processus d’encéphalisation
Parmi l’ensemble des animaux non-humains, les dauphins sont dotés du quotient encéphalique le plus élevé au monde, soit à peu près celui de l’être humain.
A ce petit jeu, d’ailleurs, le cachalot nous dépasse tous largement !
Une telle augmentation du volume cérébral, bien au-delà des simples besoins de la motricité ou de la sensorialité, est qualifiée "d’encéphalisation structurelle".
Ce phénomène n’est pas rare. Il semble que dès le Jurassique, des dinosauriens bipèdes de taille moyenne aient commencé à augmenter de manière encore timide leurs capacités cérébrales.
Au Tertiaire, les ancêtres des éléphants et des cétacés se sont lancés à leur tour dans la course au gros cerveau mais ce n’est qu’au Quaternaire, il y a de cela de trois à six millions d’années, que certains primates hominoïdes développent une boîte crânienne de type néoténique à fontanelles non suturées durant les premiers temps de l’enfance, afin de permettre une croissance ultérieure de l’un des cerveaux les plus puissants du monde.
Ce processus d’encéphalisation apparaît également chez certains oiseaux – corvidés, psittacidés – à peu près vers la même époque. A chaque fois, bien sûr, des comportements très élaborés sont toujours associés à un accroissement spectaculaire du tissu cérébral.
Une si curieuse convergence de formes, la survenance simultanée ou successive de tous ces "grands fronts", pose bien évidemment question en termes darwiniens.
Le ptérodactyle, la mouche, le colibri, la chauve-souris ont des ailes pour voler, la truite, l’ichtyosaure, le marsouin ont un corps fait pour nager, le grillon fouisseur et la taupe ont des pattes en forme de pelles pour creuser, etc.
Mais à quoi rime dès lors un vaste crâne et à quelle fonction est-il dévolu ?
Essentiellement à comprendre le monde et ceux qui le composent, en ce compris les membres de sa propre espèce, avec lesquels il faut sans cesse gérer une relation équilibrée.
Même les gros cerveaux les plus solitaires vivent en fait en société : tigres, baleines bleues, panthères, orangs-outans gardent des liens étroits, bien que distants ou différés, avec leur fratrie et leurs partenaires.
L’intelligence est à coup sûr l’arme suprême contre les aléas du monde, ses mutations incessantes, puisqu’elle permet notamment de gérer un groupe comme un seul corps mais aussi de pénétrer les lois subtiles qui sont à la base du mouvement des choses.
En augmentant d’un degré supérieur ces facultés par le moyen du langage, lequel conserve le savoir des générations mortes, l’homme et le cétacé ont sans doute franchi un nouveau pas vers une plus grande adaptabilité.
Le problème de l’humain, mais nous n’y reviendrons pas davantage, c’est qu’il ne s’est servi jusqu’à ce jour que d’une partie de son intelligence et qu’il se laisse ensevelir vivants dans ses propres déchets, et avec lui les reste du monde, pour n’avoir pas su contrôler sa propre reproduction ni la saine gestion de son environnement.
Intelligents ou non ? (Le point de vue de Ken Levasseur)
Dans un courrier CFN posté en avril 2003 relatif à l’utilisation de dauphins militaires en Irak, Ken Levasseur, l’un des meilleurs spécialistes actuels de cette question, a tenu à faire le point à propos de l’intelligence réelle ou supposée de ces mammifères marins. Aux questions que lui avait adressées un étudiant sur ce thème, Ken répond ici de manière définitive, sur la base de de son expérience et de ses intimes convictions.
Eu égard aux remarquables recherches menées par Ken depuis des années et au fait qu’il a travaillé longtemps aux côtés du professeur Louis Hermann, son point de vue n’est évidemment pas négligeable ni ses opinions sans fondements. On lira d’ailleurs sur ce site même son article en anglais relatif au cerveau du dauphin
Inutile de dire que le gestionnaire de ce site partage totalement le point de vue de Ken Levasseur, dont les travaux l’inspirent depuis de nombreuses années, au même titre que ceux de Wade Doak ou de Jim Nollman : tous ont en commun d’affirmer que les dauphins ne sont pas des animaux au sens strict mais bien l’équivalent marin de l’humanité terrestre.
Q- A quel niveau d’intelligence réelle les dauphins se situent-ils ? A celui du chien ? Du grand singe ? D’un être humain ?
R- Mon meilleur pronostic est qu’un jour prochain, nous pourrons prouver que la plupart des espèces de cétacés disposent d’une intelligence équivalente ou supérieure à celle d’un humain adulte.
Q- Quelles sont les preuves nous permettant d’affirmer que les dauphins sont intelligents ?
R- Il a été démontré depuis longtemps que les dauphins peuvent développer des capacités cognitives qui équivalent ou excèdent les possibilités mentales de l’être humain. Aujourd’hui, nous sommes à même de définir exactement en quoi consiste l’intelligence humaine. Une fois que nous parviendrons à définir l’intelligence d’une manière strictement objective et valable pour toutes les autres espèces, on permettra enfin aux cétacés de faire la preuve de la leur.
Q- Quelles preuves avons-nous que les dauphins ne sont PAS intelligents ?
R- Il n’y a aucune preuve scientifique qui tendrait à prouver que l’intelligence du dauphin serait située entre celle du chien et celle du chimpanzé (comme l’affirment les delphinariums et la marine américaine) .
Q- Est-ce que les dauphins possèdent un langage propre ?
R- La définition d’une "langue", comme celle de l’intelligence, repose sur des bases subjectives définies pour et par les humains. Une fois que nous pourrons disposer d’une définition plus objective de ce qu’est un langage, et que les recherches sur la communication des dauphins ne seront plus "classifiée" par les américains, il est fort probable que les chercheurs puissent enfin conduire les recherches appropriées et qu’ils reconnaissent que les dauphins disposent de langages naturels.
Q- Est-ce leur capacité à apprendre et à exécuter des tours complexes qui les rend plus intelligents ou non ?
R- La capacité du dauphin à apprendre à exécuter des tours complexes est surtout une indication de l’existence d’un niveau élevé des capacités mentales, interprétées comme synonymes d’une intelligence élevée.
Q- Jusqu’à quel point ont été menées les recherches sur les dauphins et leur intelligence ? Que savent vraiment les scientifiques à leur propos ?
R- La US Navy a "classifié" ses recherches sur les dauphins en 1967, au moment où l’acousticien Wayne Batteau est parvenu à développer des moyens efficaces pour communiquer avec des dauphins dressés. La communication et l’intelligence des dauphins constituent donc désormais des données militaires secrètes, qui ne peuvent plus être divulguées au public.
Q- Est-ce que les dauphins disposent d’un langage propre ? Y a t-il des recherches qui le prouvent ?
R- Vladimir Markov et V. M. Ostrovskaya en ont fourni la preuve en 1990 en utilisant la "théorie des jeux" pour analyser la communication des dauphins dans un environnement contrôlé et à l’aide de moyens efficaces. Il est donc très probable que les dauphins aient une langue naturelle.
Q- Les capacités tout à fait spéciales des dauphins en matière d’écholocation ont-elles quelque chose à voir avec leurs modes de communication?
R- A mon sens, les recherches futures fourniront la preuve que le langage naturel des cétacés est fondé sur les propriétés physiques de l’écholocation, de la même manière que les langues humaines se basent sur des bruits et des représentations.
Q- Quelle est VOTRE opinion à propos de l’intelligence des dauphins ?
R- Pendant deux ans, j’ai vécu à quinze pieds (1 Pied : 30 cm 48) d’un dauphin et à trente-cinq pieds d’un autre. À mon avis, les dauphins possèdent une intelligence équivalente à celle d’un être humain. Ils devraient bénéficier dès lors de droits similaires aux Droits de l’Homme et se trouver protégé des incursions humaines dans son cadre de vie.
Q- La ressemblance entre les humains et les dauphins a-t-elle quelque chose à voir avec leur intelligence commune ?
R- Les dauphins sont très éloignés des humains à de nombreux niveaux mais les ressemblances que nous pouvons noter sont en effet fondées sur le fait que les dauphins possèdent des capacités mentales plus élevées (que la plupart des autres animaux) et sont à ce titre interprétés en tant qu’intelligence de type humain.
Q- La grande taille de leur cerveau, relativement à celle de leur corps, est-elle un indicateur de leur haute intelligence ?
R- Le volume absolu d’un cerveau ne constitue pas une preuve d’intelligence élevée. Le coefficient encéphalique (taille du cerveau par rapport à la taille de corps) n’en est pas une non plus. Néanmoins, on pourrait dire que la taille absolue du cerveau d’une espèce donnée par rapport au volume global du corps constitue un bon indicateur pour comparer les capacités mentales de différentes espèces. Souvenons-nous par ailleurs que les cétacés ne pèsent rien dans l’eau, puisqu’ils flottent et qu’une grande part de leur masse se compose simplement de la graisse. Cette masse de graisse ne devrait pas être incluse dans l’équation entre le poids du cerveau et le poids du corps car cette graisse n’est traversée par aucun nerf ni muscle et n’a donc aucune relation de cause à effet avec le volume du cerveau.
Q- Est-ce que la capacité des dauphins à traiter des clics écholocatoires à une vitesse inouïe nous laisse-t-elle à penser qu’ils sont extrêmement intelligents ?
R- On a pu montrer que les dauphins disposaient, et de loin, des cerveaux les plus rapides du monde. Lorsqu’ils les observent, les humains leur semblent se mouvoir avec une extrême lenteur en émettant des sons extrêmement bas. Un cerveau rapide ne peut forcément disposer que de capacités mentales très avancées.
Q- Pensez-vous des scientifiques comprendront un jour complètement les dauphins?
R- Est-ce que nos scientifiques comprennent bien les humains? Si tout va bien, à l’avenir, les dauphins devraient être compris comme les humains se comprennent entre eux.
Q- Le fait que les dauphins possèdent une signature sifflée est-elle une preuve de l’existence de leur langage ?
R- Non. Cette notion de signature sifflée est actuellement mal comprise et son existence même est sujette à caution.
Q- Les dauphins font plein de choses très intelligentes et nous ressemblent fort. Est-ce parce qu’ils sont vraiment intelligents ou simplement très attractifs ?
R- La réponse à votre question est une question d’expérience et d’opinion. Ce n’est une question qui appelle une réponse scientifique, chacun a son opinion personnelle sur ce point.
Q- Pouvons-nous vraiment émettre des conclusions au sujet de l’intelligence des dauphins, alors que nous savons si peu à leur propos et qu’ils vivent dans un environnement si différent du nôtre ?
R- Jusqu’à présent, ce genre de difficultés n’a jamais arrêté personne. Chacun tire ses propres conclusions. Les scientifiques ne se prononcent que sur la base de ce qu’ils savent vrai en fonction des données expérimentales qu’ils recueillent.
Q- Est-ce que nous pourrons-nous jamais communiquer avec les dauphins ou même converser avec eux ?
R- Oui, si tout va bien, et ce seront des conversations d’adulte à adulte, rien de moins.
II. DAUPHIN : CERVEAU ET MONDE MENTAL
"Parmi l’ensemble des animaux non-humains, les dauphins disposent d’un cerveau de grande taille très bien développé, dont le coefficient encéphalique, le volume du néocortex, les zones dites silencieuses (non motrices et non sensorielles) et d’autres indices d’intelligence sont extrêmement proches de ceux du cerveau humain" déclare d’emblée le chercheur russe Vladimir Markov.
Lorsque l’on compare le cerveau des cétacés avec celui des grands primates et de l’homme en particulier, on constate en effet de nombreux points communs mais également des différences importantes :
– Le poids moyen d’un cerveau de Tursiops est de 1587 grammes.
Son coefficient encéphalique est de l’ordre de 5.0, soit à peu près le double de celui de n’importe quel singe. Chez les cachalots et les orques, ce même coefficient est de cinq fois supérieur à celui de l’homme.
– Les circonvolutions du cortex cervical sont plus nombreuses que celles d’un être humain. L’indice de "pliure" (index of folding) est ainsi de 2.86 pour l’homme et de 4.47 pour un cerveau de dauphin de taille globalement similaire.
Selon Sam Ridgway, chercheur "réductionniste de la vieille école", l’épaisseur de ce même cortex est de 2.9 mm en moyenne chez l’homme et de 1.60 à 1.76 mm chez le dauphin. En conséquence, continue-t-il, on peut conclure que le volume moyen du cortex delphinien (560cc) se situe à peu près à 80 % du volume cortical humain. Ce calcul est évidemment contestable puisqu’il ne tient pas compte de l’organisation très particulière du cerveau delphinien, mieux intégré, plus homogène et moins segmenté en zones historiquement distinctes que le nôtre.
Le fait que les cétacés possèdent la plus large surface corticale et le plus haut indice de circonvolution cérébral au monde joue également, comme on s’en doute, un rôle majeur dans le développement de leurs capacités cérébrales.
D’autres scientifiques, décidément troublés par le coefficient cérébral du dauphin, tentent aujourd’hui de prouver qu’un tel développement n’aurait pas d’autre usage que d’assurer l’écholocation. Voici ce que leur répond le neurologue H. Jerison : "La chauve-souris dispose à peu de choses près des mêmes capacités que le dauphin en matière d’écholocation, mais son cerveau est gros comme une noisette. L’outillage écholocatoire en tant que tel ne pèse en effet pas lourd. En revanche, le TRAITEMENT de cette même information "sonar" par les zones associatives prolongeant les zones auditives, voilà qui pourrait expliquer le formidable développement de cette masse cérébrale. Les poissons et tous les autres êtres vivants qui vivent dans l’océan, cétacés mis à part, se passent très bien d’un gros cerveau pour survivre et même le plus gros d’entre eux, le requin-baleine, ne dépasse pas l’intelligence d’une souris…"
La croissance du cerveau d’un cétacé est plus rapide et la maturité est atteinte plus rapidement que chez l’homme.
Un delphineau de trois ans se comporte, toutes proportions gardées, comme un enfant humain de huit ans. Cette caractéristique apparemment "primitive" est paradoxalement contredite par une enfance extrêmement longue, toute dévolue à l’apprentissage. Trente années chez le cachalot, vingt chez l’homme, douze à quinze chez le dauphin et environ cinq ans chez le chimpanzé.
Les temps de vie sont du même ordre : 200 ans en moyenne chez la baleine franche, 100 ans chez le cachalot, 80 chez l’orque, 78 ans chez l’homme, 60 chez le dauphin, sous réserve bien sûr des variations favorables ou défavorables de l’environnement.
Pourquoi un gros cerveau ?
"Nous devons nous souvenir que le monde mental du dauphin est élaboré par l’un des systèmes de traitement de l’information parmi les plus vastes qui ait jamais existé parmi les mammifères" déclare H.Jerison, insistant sur le fait que "développer un gros cerveau est extrêmement coûteux en énergie et en oxygène. Cet investissement a donc une raison d’être en terme d’évolution darwinienne. Nous devons dès lors considérer la manière dont ces masses importantes de tissu cérébral ont été investies dans le contrôle du comportement et de l’expérimentation du monde, ceci en comparaison avec l’usage qu’en font les petites masses cérébrales".
Un cerveau est par essence un organe chargé de traiter l’information en provenance du monde extérieur.
Les grands cerveaux exécutent cette tâche en tant qu’ensemble élaborés de systèmes de traitement, alors que le cerveau de la grenouille ou de l’insecte, par exemple, se contente de modules moins nombreux, dont la finesse d’analyse est comparativement plus simple.
Cela ne nous empêche pas cependant de retrouver des structures neuronales étonnamment semblables d’un animal à l’autre : lorsqu’un promeneur tombe nez à nez avec un crotale, c’est le même plancher sub-thalamique dévolue à la peur qui s’allume chez l’une et l’autre des ces créatures. Quant un chien ou un humain se voient soulagés de leurs angoisses par le même produit tranquillisant, ce sont évidemment les mêmes neuromédiateurs qui agissent sur les mêmes récepteurs neuronaux qui sont la cause du phénomène.
A un très haut niveau de cette hiérarchie, le traitement en question prend la forme d’une représentation ou d’un modèle du monde (Craik, 1943, 1967, Jerison, 1973) et l’activité neuronale se concentre en "paquets d’informations" (chunks) à propos du temps et de l’espace et à propos d’objets, en ce compris les autres individus et soi-même.
" Puisque le modèle du monde qui est construit de la sorte" insiste H.Jerison, "se trouve fondé sur des variables physiquement définies issues directement du monde externe et puisque ces informations sont traitées par des cellules nerveuses et des réseaux neuronaux structurellement semblables chez tous les mammifères supérieurs, les modèles du monde construits par différents individus d’une même espèce ou même chez des individus d’espèces différentes, ont de bonnes chances d’être également similaires".
Et à tout le moins compréhensibles l’un pour l’autre.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

solipsismes confrontés

Bonsoir tout le monde,

Question, délicate ou ridiculement évidente, c'est selon, de ce qu'on peut qualifier d'interprétation subjective et personnelle versus ce qu'on pourrait identifier comme "objectif" dans les différents plans dans lesquels on voyage astralement.. 

Pour prendre un exemple enfonçons une porte ouverte liée à nos sens basiques, la synesthésie est un phénomène neurologique qui fait qu'un sens est associé - ou fusionné - systématiquement à un autre, pour faire court. J'en suis atteinte, et dans mon cas c'est les sons qui sont associés à des formes en couleur et en texture, avec une charge émotionnelle. Par exemple, le son du piano a pour moi une forme blanche laiteuse, opaque, concave, avec des bords plus ou moins colorés, alors que le violoncelle est rouge foncé mais lumineux, convexe, trace des lignes en s'approchant dans l'espace, etc.

Les études qui ont été faites là-dessus montrent que oh surprise, si c'est systématique et stable pour chacun (le piano se présente toujours blanc opaque pour moi)  c'est aussi complètement différent en fonction des personnes - pour quelqu'un d'autre qui présente ces caractéristiques neurologiques, le piano sera toujours vert+ autres attributs constants pour elle. Et bien sûr ce phénomène est présent à des degrés plus ou moins élevés, allant de l'inaperçu a l'handicap, finalement chez pas mal de gens.

Ca a déjà été dit et répété dans le groupe, mais j'ai aussi lu pas mal de posts/commentaires qui semblent difficilement prendre ce facteur en compte, en traitant des autres plans de conscience et des diverses expériences dont on parle ici.

J'ai aussi pu expérimenter et vérifié une ou deux fois que dans les autres plans de conscience, et au niveau énergétique, la même chose s'appliquait : sans en faire une généralité, on était 2 à percevoir un même phénomène, mais de façon très différente.

Et pourtant, il y a aussi des constantes qui semblent ressortir, le plan éthérique étant décrit comme bleu à la quasi unanimité par exemple... ou les "cavernes brunes du bas-astral ou tout est lent et pèse un tonne" (bon ça c'est peut-être moins consensuel, mais vu et vécu avec, à peu de choses près, la même description).

Du coup les amis... Comment mettez-vous des repères là-dedans ? En général, et dans les fils de discussion du groupe ? Est-ce important pour vous ? Ou à valeur nulle ? Je me suis bien fait ma petite idée, mais je suis assez curieuse d'autres perspectives... 

J'en profite aussi pour remercier chaleureusement Marc Auburn et les contributeurs de ce groupe, qui défrichent avec brio ces terra incognita...

Loïc Dubuckingham@ Auteur1. Moi je dirais que c'est simplement humain de vouloir que tout soit "repérable" et contrôler. Vous avez de la chance de pouvoir effectuer ces voyages là alors prenez la chance aussi de lâcher prise en m'étant un peu de côté l'obsession humaine de vouloir tout expliquer pour mieux comprendre. Ce n'est pas un reproche que je vous fait la mais une suggestion.

Auteur 1 @ Loïc Dubuckingham. Bonjour, je ne crois pas chercher à tout repérer et contrôler, et surtout pas dans ce genre de sujet... lâcher prise, bien sûr, mais de mon côté ça ne m’empêche pas de temps à autres d’essayer de comprendre ce que je vis. Jusqu’ici, ça ne m’a pas tellement joué de mauvais tours ??

Callirhoé Déicoon @ Loïc Dubuckingham. Je pense que la curiosité et l'envie de comprendre sont plutôt des moteurs sains. De + les divers témoignages et communications avec des entités laissent entendre que ce moteur est universel en tant que base de l'évolution des consciences, et non juste humain (désolée de déterrer ce fil 1 an après)

Marc Auburn@. Oui, la synesthésie est l'état naturel du corps de lumière. Toute perception suscite une correspondance avec toutes les autres perceptions, et pourtant en même temps on fait parfaitement le distinguo.

Auteur 1@ Marc Auburn. Oui, la distinction est claire. Ce que j’en retenais surtout, c’était le côté subjectif et propre à chacun, et j’avais tendance à partir du principe que si même un son est perçu différemment selon la personne, c’était logiquement pareil puissance X dans d’autres dimensions... mais, bon... je me prends peut être un peu la tête pas dans le bon sens ??

Callirhoé Déicoon @ Auteur 1. Au contraire, vous ne vous prenez pas la tête pour rien, c'est justement une question centrale… et éminemment complexe. Je ne sais pas mais on dirait que c'est comme s'il y avait une réalité archétypale dans l'astral, c'est-à-dire que les gens y voient la "même chose" (le même concept) mais avec des apparences qui varient…

Denis Cottard. Mon approche des réalités énergétiques est avant tout une approche par le sens, par l’intensité de signification, car curieusement, bien souvent, la sensation pure n’est pas centrale. Il y a des cas où elle l’est, quand il s’agit de situations fortement reliées au plan physique et où il faut des éléments qui puissent nous faire des repères, mais sinon je sais que c’est moi qui met le truc en image parce que c’est plus simple pour se souvenir et garder, et je reste d’ailleurs conscient de le faire. Donc, je conçois que chacun puisse "imager" à sa façon car chacun a sa sensibilité, certains sont plus visuels, d’autres tactiles, etc... et qu’il y a un symbolisme de représentation qui peut être très personnel. L’important étant que çà fasse sens pour celle ou celui qui fait l’expérience.

Donc je ne me fixe pas trop sur la forme des expériences (même si pour certains, c’est encore celle-ci qui est l’aspect le plus fascinant) car dès lors qu’on quitte la réalité matérielle, on évolue dans une réalité qui n’a aucune raison d’être particulièrement objective, et qu’à partir de certains plans d’existence, il n’y a tout simplement plus de forme ou alors, il y a quelque chose mais qui ne témoigne en rien de ce que nos sens pourrait témoigner. C’est en cela que j’affectionne particulièrement les sorties en tandem car au retour, la reconstruction s’effectue à deux et c’est très amusant : c’est un peu comme peindre un tableau à deux mains. C’est également ce que j’apprécie dans les témoignages des uns et des autres dans ce groupe, c’est que çà fait autant de point de vue différents sur des expériences qui sont souvent semblables. Là encore, je trouve que le sens s’enrichit.

Auteur 1 @ Denis Cottard. J’ai un peu la même façon d’aborder ça en principe. Mais j’ai été un peu secouée en lisant Dolores Cannon, de trouver des descriptions quand même très ressemblantes entre elles, et en particulier une description vraiment très similaire à une de mes expériences de sortie... et justement, jusque dans la forme... ça fout un peu une baffe à mon approche ?? - mais sinon, qu’est ce que c’est chouette de pouvoir lire tous ces points de vue, merci !  D'ailleurs Denis Cottard comment on fait des sorties en tandem ??

Denis Cottard @ Auteur 1. Alors, pour faire une sortie en tandem, il faut utiliser un protocole de sortie qui démarre comme une projection de conscience dans laquelle on s’investit progressivement. Il est bien de faire çà avec quelqu’un qu’on connaît bien, dont on a une signature énergétique, claire car tant qu’on ne sait pas se faire un véhicule à 2 places (qui peut se résumer à une bulle de taille adéquate), on peut se perdre et partir chacun dans son coin. D’autre part, au début, on est chacun bien calé dans un fauteuil mais on peut se parler si nécessaire et c’est très aidant pour savoir où est l’autre. Au fil de l’exploration, on se fait happé par la situation, et on ne se parle plus physiquement, mais on continue de se parler mentalement, car çà maintient le lien : c’est du genre : t’es là ? Oui et toi ? ?? on se fait nos commentaires, on se donne des indications de déplacement.

J’ai appris çà en cours de parapsychologie car c’était un exercice assez ludique qu’on faisait à chaque fin de cours. Il y avait une personne qui notait sur un papier, des lieux qu’elle allait visiter en esprit, et les autres n’avaient qu’à suivre son empreinte énergétique et dire à la fin, les sites dans lesquels ils avaient été, et on pouvait vérifier avec ce qui avait été inscrit. Surprenant ! Une de mes filles était excellente à ce jeu -là. Essayez, vous allez voir, déjà, c’est sympa comme tout, et puis, c’est la base pour effectuer une sortie à deux.

Dans ces sorties à deux, on peut décider de ce qu’on veut visiter, ou se laisser aller au hasard. Je sais que nombre d’entre vous vont penser : Bof, c’est que du remote viewing ! Mais faites-le et on en reparle : vous allez voir que c’est bien plus que çà, et que, un des intérêts de la chose, en dehors du fait qu’on peut confronter les deux expériences a posteriori, c’est que la conscience y est particulièrement vive et les perceptions très claires. ( à part peut-être qu’on peut y voir à l’envers - pas systématiquement mais çà peut arriver - c’est à dire comme l’image dans un miroir ce qui rend toute lecture particulièrement fastidieuse!!).

Avec l’habitude, on peut même le faire à distance de la personne. Il faut juste fixer un jour et une heure et on s’y met. On se donne RV là où on a "parqué" la bulle qui nous sert à voyager ensemble, et on se met dedans et quand l’autre y est aussi, on bouge.

Il y a une quinzaine d’année, avec une amie on était très désireux de savoir à quoi s’en tenir à propos de la 9 eme planète, ce corps qui fou le bordel dans les orbites des planètes extérieures. On s’y est rendu de cette façon là, et à l’époque on a été très surpris de rencontrer un corps noir comme l’encre et qui semblait même absorber toute lumière. Il faut dire que dans le soit-disant  "vide spatial" c’est très éclairé parce qu’on voit mille fois plus d’étoiles et ce corps se repère parce qu’il masque les étoiles sur son passage. Nous nous sommes rapproché et très honnêtement, ce truc tout noir , un peu grouillant (il y avait du mouvement, un peu comme de l’eau ou un quelque chose de fluide) n’était pas très engageant, et courageux mais pas téméraires, dans le doute on s’est tiré de là vite fait. J’ai lu cette semaine que des astronomes très sérieux envisagent que ce corps puisse être un mini trou noir. Tiens, tiens ...

Auteur 1 @ Denis Cottard ça à l’air très chouette et ça me rend curieuse, tout en me demandant avec qui j’aurais envie de faire ça ?? ... je sais pas... merci pour le partage.

Denis Cottard@auteur 1. Il faut faire çà avec quelqu'un que vous connaissez bien, parce qu'on est vraiment à poil !!! on entend tout ce que l'autre pense ou ressent. Heureusement, quand on est en esprit, on a pas trop de pulsion sexuelles, pour ne pas dire niveau zéro. Mais enfin, çà fait partie de ces voyages où l'on garde une certaine apparence, pour ne pas se perdre, on se voit aussi. çà pourrait être gênant !! ??

Auteur1 @ Denis Cottard. Certes ??

Reinald Durand. Pour revenir à ce qui est dit plus haut, évoquer l'objectivité et des constantes, des repères qui seraient fixes nous fait entrer sur un terrain glissant. La perception, de même que la connaissance, n'est jamais neutre. La perception est orientée, colorée par nos croyances, nos intentions, nos attentes, nos états intérieurs. Comme on dit, on voit ce qu'on veut voir, même si on n'en est pas toujours conscient ou qu'on a oublié la chose. Et si on fait intervenir des petits hommes gris ou des figures sombres encapuchonnées autour de son lit, il y a peut être une raison, qui n'a pas nécessairement à être jugée d'ailleurs en termes de bien ou de mal. Maintenant, on peut surtout en prendre conscience pour changer la nature de ses aventures... C'est la même chose dans la vie de tous les jours, je pense. Il peut être utile de prendre le temps d'examiner certaines choses: est-ce que ce sont des projections, est-ce qu'on n'en rajoute pas une couche, est-ce qu'on peut relier ce qu'on voit à des croyances, des intentions, des états intérieurs? Il y a un monde intérieur d'où jaillit cette réalité qu'il faut reconnaitre, à défaut on croira que tout cela nous arrive, indépendamment de notre volonté ( innocente victime, va!) que ce soit dans le rêve, dans les sorties hors corps, dans son quotidien, et si on change l'intérieur l'extérieur se met changer...??

Denis Cottard. Je suis bien d’accord, il ne faut pas oublier le caractère hautement subjectif d’expériences de ce genre.

C’est d’ailleurs tout l’intérêt de chercher à vérifier dans "la vie réelle", ce qui est vérifiable, et même de s’efforcer d’orienter nos sorties dans ce sens afin d’avoir une idée du pourcentage d’entre elles qui est validable et trouver le juste recul qu’il convient d’avoir à cet égard, car on va tous expérimenter un jour ou l’autre, ce truc de ouf qui va nous obliger à convenir qu’il y a bien là, un outil incroyable qui nous ouvre réellement des voies de connaissance objective, mais çà n’implique pas pour autant que toutes nos sorties soient des expériences de ce type.

J’ai longtemps pratiqué la radiesthésie, et j’y retrouve le même problème, et je pense que c’est encore la même chose avec la médiumnité. Toutes ces voies provoquent réellement une amplification de notre champ de perception mais dont il faut se garder de considérer la pertinence comme acquise une fois pour toute.

Denis Cottard. C'est comme pour "vu à la télé", çà ne veux pas dire que c'est juste à tous les coups.

Reinald Durand. Oui, qu'est qui est réel, qu'est-ce qui ne l'est pas ? l'imagination pourrait être réelle... Qu'est-ce qui va faire la différence? Pour moi, ça tourne autour de consensus, de conventions, d'accords souvent tacites reposant sur des objectifs communs... et une manière de camoufler les choses, filtrage propres à chaque monde ou dimension sur quelque chose d'infini. Alors il y a peut-être simplement moins de réalité lorsqu'on se trompe, lorsqu'on s'écarte de ce qu'on est profondément et qu'on souffre... Je ne nie pas le besoin d'objectivité, mais, comme tu dis, c'est essayer de voir deux fois. ??

Sofiane Thoulon. Bonjour, comme vous j'ai des synesthesies. Chez moi elles s'expriment beaucoup par les voyelles qui sont directement reliées à des couleurs (i rouge, a blanc, etc...) j'ai aussi des mots dont la sonorité se rapportent à des formes géométriques etc...

J'ai vécu lors d'une sortie l'été dernier, un phénomène que je dirais de cet ordre : alors que j'étais en train de sortir de mon corps, des entités sont venues autour de moi, je ne les voyais pas mais je sentais qu'elles étaient plusieurs. J'ai senti qu'elles me touchaient, elles faisaient une sorte d'expérience. Bref, rien de très rassurant sur le coup, d'autant plus que j'avais parlé quelques jours auparavant, avec une personne médium qui avait subie des attaques et qui voulait m'avertir du danger. Elle m'avait donc conseillé de les insulter sans relâche jusqu'à ce qu'elles partent. J'ai donc fait ça et, non seulement elles ne partaient pas, mais j'ai alors vu dans mon ''écran visuel'' une sorte d'onde verticale faite de lumière rose-rouge en mouvement et assez anguleuse. C'était clairement pour moi, la conversion visuelle de l'onde des insultes. Je n'ai même pas vraiment voulu interpréter, mais cette info est venue immédiatement après l'expérience. Pour en conclure, derrière n'importe quel Objet physique, de quelque nature qu'il soit, il y a un champ d'information d'ordre quantique et je pense que les synesthesies sont une sorte de perception de cette information quantique, que le cerveau humain essaie de convertir pour en comprendre l'essence. Mais finalement, ce qui fait la subjectivité des synesthesies, c'est peut-être bien cette conversion faite par le cerveau de chacun, pour comprendre l'essence des choses. Haha je ne sais même pas si je suis claire ??? je crois que je m'embrouille moi même !

Claude-Samuel Levine @ Sofiane Thoulon. Si c'est clair, je comprend bien. Du fait que moi même j'ai toujours eu des synesthésies très précises.

Lettres, chiffres, nombres, heures, jours de la semaine, mois, notes de musiques et orchestrations. D'ailleurs ce n'est pas qu'une association "couleur" ,la couleur envoit à une véritable ambiance. Exemple : une musique en LA majeur : La vert, Do# jaune doré => forêt au soleil, ou lumière de l'au-delà sur paysage, et avec la joie liée à la lumière. Le "Metal" : violence, rouge sombre noir avec lignes cassantes et les barres des rythmes.

Auteur: Anonymes pseudos

Info: Fil de discussion sur Explorateurs du réel avec Marc Auburn, octobre 2019

[ réalités individuelles ] [ cerveau filtre ] [ ésotérisme ] [ occultisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Opinion: Pourquoi la science a besoin de la philosophe

Malgré les liens historiques étroits entre la science et la philosophie, les scientifiques d'aujourd'hui perçoivent souvent la philosophie comme complètement différente, voire antagoniste, de la science. Nous soutenons ici que, au contraire, la philosophie peut avoir un impact important et productif sur la science.

Nous illustrons notre propos par trois exemples tirés de divers domaines des sciences de la vie contemporaines. Chacun d'entre eux concerne la recherche scientifique de pointe, et chacun ayant été explicitement reconnu par les chercheurs en exercice comme une contribution utile à la science. Ces exemples, et d'autres, montrent que la contribution de la philosophie peut prendre au moins quatre formes : la clarification des concepts scientifiques, l'évaluation critique des hypothèses ou des méthodes scientifiques, la formulation de nouveaux concepts et de nouvelles théories, et la promotion du dialogue entre les différentes sciences, ainsi qu'entre la science et la société.

Clarification conceptuelle et cellules souches.

Tout d'abord, la philosophie offre une clarification conceptuelle. Les clarifications conceptuelles améliorent non seulement la précision et l'utilité des termes scientifiques, mais conduisent également à de nouvelles recherches expérimentales, car le choix d'un cadre conceptuel donné contraint fortement la façon dont les expériences sont conçues.

La définition des cellules souches (stem cells) en est un excellent exemple. La philosophie a une longue tradition d'étude des propriétés, et les outils utilisés dans cette tradition ont récemment été appliqués pour décrire la "souche", propriété qui définit les cellules souches. L'un d'entre nous a montré que quatre types de propriétés différentes existent sous cette dénomination de souche (stemness) au vu des connaissances scientifiques actuelles. Selon le type de tissu, la stemness peut être une propriété catégorielle (propriété intrinsèque de la cellule souche, indépendante de son environnement), une propriété dispositionnelle (propriété intrinsèque de la cellule souche qui est contrôlée par le micro-environnement), une propriété relationnelle (propriété extrinsèque qui peut être conférée aux cellules non souches par le microenvironnement), ou une propriété systémique (propriété qui est maintenue et contrôlée au niveau de la population cellulaire entière).

Hans Clevers, chercheur en biologie des cellules souches et du cancer, note que cette analyse philosophique met en lumière d'importants problèmes sémantiques et conceptuels en oncologie et en biologie des cellules souches ; il suggère également que cette analyse soit facilement applicable à l'expérimentation. En effet, au-delà de la clarification conceptuelle, ce travail philosophique a des applications dans le monde réel, comme l'illustre le cas des cellules souches cancéreuses en oncologie.

Les recherches visant à développer des médicaments ciblant soit les cellules souches cancéreuses, soit leur microenvironnement, reposent en fait sur différents types de souches et sont donc susceptibles d'avoir des taux de réussite différents selon le type de cancer. En outre, elles pourraient ne pas couvrir tous les types de cancer, car les stratégies thérapeutiques actuelles ne tiennent pas compte de la définition systémique de la souche. Déterminer le type de souche présent dans chaque tissu et chaque cancer est donc utile pour orienter le développement et le choix des thérapies anticancéreuses. Dans la pratique, ce cadre a conduit à la recherche de thérapies anticancéreuses qui combinent le ciblage des propriétés intrinsèques des cellules souches cancéreuses, de leur microenvironnement et des points de contrôle immunitaires afin de couvrir tous les types possibles de souches.

En outre, ce cadre philosophique a récemment été appliqué à un autre domaine, l'étude des organoïdes (tissus en 3D dérivés de cellules souches, sont capables de s'auto-organiser et de reproduire certaines fonctions d'un organe.). Dans une revue systémique des données expérimentales sur les organoïdes provenant de diverses sources, Picollet-D'hahan et al. ont caractérisé la capacité à former des organoïdes comme une propriété dispositionnelle. Ils ont pu alors affirmer que pour accroître l'efficacité et la reproductibilité de la production d'organoïdes, actuellement un défi majeur dans le domaine, les chercheurs doivent mieux comprendre la partie intrinsèque de la propriété dispositionnelle qui est influencée par le microenvironnement. Pour distinguer les caractéristiques intrinsèques des cellules qui ont une telle disposition, ce groupe développe actuellement des méthodes de génomique fonctionnelle à haut débit, permettant d'étudier le rôle de pratiquement tous les gènes humains dans la formation des organoïdes.

Immunogénicité et microbiome.

En complément de son rôle dans la clarification conceptuelle, la philosophie peut contribuer à la critique des hypothèses scientifiques et peut même être proactive dans la formulation de théories nouvelles, testables et prédictives qui aident à définir de nouvelles voies pour la recherche empirique.

Par exemple, une critique philosophique du cadre du cadre immunitaire du soi et du non-soi a conduit à deux contributions scientifiques importantes. Tout d'abord, elle a servi de base à la formulation d'un nouveau cadre théorique, la théorie de la discontinuité de l'immunité, qui complète les modèles antérieurs du non-soi et du danger en proposant que le système immunitaire réagisse aux modifications soudaines des motifs antigéniques. Cette théorie éclaire de nombreux phénomènes immunologiques importants, notamment les maladies auto-immunes, les réponses immunitaires aux tumeurs et la tolérance immunologique à des ligands exprimés de façon chronique. La théorie de la discontinuité a été appliquée à une multitude de questions, aidant à explorer les effets des agents chimiothérapeutiques sur l'immunomodulation dans le cancer et expliquant comment les cellules tueuses naturelles modifient constamment leur phénotype et leurs fonctions grâce à leurs interactions avec leurs ligands** d'une manière qui assure la tolérance aux constituants corporels. La théorie permet également d'expliquer les conséquences des vaccinations répétées chez les personnes immunodéprimées et propose des modèles mathématiques dynamiques de l'activation immunitaire. Collectivement, ces diverses évaluations empiriques illustrent comment des propositions d'inspiration philosophique peuvent conduire à des expériences inédites, ouvrant ainsi de nouvelles voies de recherche.

Deuxièmement, la critique philosophique a contribué, avec d'autres approches philosophiques, à la notion selon laquelle tout organisme, loin d'être un soi génétiquement homogène, est une communauté symbiotique abritant et tolérant de multiples éléments étrangers (notamment des bactéries et des virus), qui sont reconnus mais non éliminés par son système immunitaire. La recherche sur l'intégration symbiotique et la tolérance immunitaire a des conséquences considérables sur notre conception de ce qui constitue un organisme individuel, qui est de plus en plus conceptualisé comme un écosystème complexe dont les fonctions clés, du développement à la défense, la réparation et la cognition, sont affectées par les interactions avec les microbes.

Influence sur les sciences cognitives.

L'étude de la cognition et des neurosciences cognitives offre une illustration frappante de l'influence profonde et durable de la philosophie sur la science. Comme pour l'immunologie, les philosophes ont formulé des théories et des expériences influentes, aidé à lancer des programmes de recherche spécifiques et contribué à des changements de paradigme. Mais l'ampleur de cette influence est bien plus importante que dans le cas de l'immunologie. La philosophie a joué un rôle dans le passage du behaviorisme au cognitivisme et au computationnalisme dans les années 1960. La théorie de la modularité de l'esprit, proposée par le philosophe Jerry Fodor, a peut-être été la plus visible. Son influence sur les théories de l'architecture cognitive peut difficilement être dépassée. Dans un hommage rendu après le décès de Fodor en 2017, l'éminent psychologue cognitif James Russell a parlé dans le magazine de la British Psychological Society de "psychologie cognitive du développement BF (avant Fodor) et AF (après Fodor) ".

La modularité renvoie à l'idée que les phénomènes mentaux résultent du fonctionnement de multiples processus distincts, et non d'un seul processus indifférencié. Inspiré par les résultats de la psychologie expérimentale, par la linguistique chomskienne et par les nouvelles théories computationnelles de la philosophie de l'esprit, Fodor a théorisé que la cognition humaine est structurée en un ensemble de modules spécialisés de bas niveau, spécifiques à un domaine et encapsulés sur le plan informationnel, et en un système central de plus haut niveau, général à un domaine, pour le raisonnement abductif, l'information ne circulant que verticalement vers le haut, et non vers le bas ou horizontalement (c'est-à-dire entre les modules). Il a également formulé des critères stricts de modularité. Aujourd'hui encore, la proposition de Fodor définit les termes d'une grande partie de la recherche empirique et de la théorie dans de nombreux domaines des sciences cognitives et des neurosciences, y compris le développement cognitif, la psychologie de l'évolution, l'intelligence artificielle et l'anthropologie cognitive. Bien que sa théorie ait été révisée et remise en question, les chercheurs continuent d'utiliser, de peaufiner et de débattre de son approche et de sa boîte à outils conceptuelle de base.

La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de rigueur, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes.

La tâche des fausses croyances constitue un autre exemple clé de l'impact de la philosophie sur les sciences cognitives. Le philosophe Daniel Dennett a été le premier à concevoir la logique de base de cette expérience comme une révision d'un test utilisé pour évaluer la théorie de l'esprit, la capacité d'attribuer des états mentaux à soi-même et aux autres. Cette tâche teste la capacité d'attribuer à autrui des croyances que l'on considère comme fausses, l'idée clé étant que le raisonnement sur les croyances fausses d'autrui, par opposition aux croyances vraies, exige de concevoir les autres personnes comme ayant des représentations mentales qui divergent des siennes et de la façon dont le monde est réellement. Sa première application empirique remonte à 1983 , dans un article dont le titre, "Beliefs About Beliefs : Representation and Constraining Function of Wrong Beliefs in Young Children's Understanding of Deception", est en soi un hommage direct à la contribution de Dennett.

La tâche des fausses croyances représente une expérience marquante dans divers domaines des sciences cognitives et des neurosciences, avec de vastes applications et implications. Il s'agit notamment de tester les stades du développement cognitif chez les enfants, de débattre de l'architecture de la cognition humaine et de ses capacités distinctes, d'évaluer les capacités de la théorie de l'esprit chez les grands singes, de développer des théories de l'autisme en tant que cécité de l'esprit (selon lesquelles les difficultés à réussir la tâche des fausses croyances sont associées à cette maladie), et de déterminer quelles régions particulières du cerveau sont associées à la capacité de raisonner sur le contenu de l'esprit d'une autre personne .

La philosophie a également aidé le domaine des sciences cognitives à éliminer les hypothèses problématiques ou dépassées, contribuant ainsi à l'évolution de la science. Les concepts de l'esprit, de l'intelligence, de la conscience et de l'émotion sont utilisés de manière omniprésente dans différents domaines, avec souvent peu d'accord sur leur signification. L'ingénierie de l'intelligence artificielle, la construction de théories psychologiques des variables de l'état mental et l'utilisation d'outils neuroscientifiques pour étudier la conscience et l'émotion nécessitent des outils conceptuels pour l'autocritique et le dialogue interdisciplinaire - précisément les outils que la philosophie peut fournir.

La philosophie - parfois représentée par la lettre grecque phi - peut contribuer à faire progresser tous les niveaux de l'entreprise scientifique, de la théorie à l'expérience. Parmi les exemples récents, citons les contributions à la biologie des cellules souches, à l'immunologie, à la symbiose et aux sciences cognitives.  

La philosophie et la connaissance scientifique.

Les exemples ci-dessus sont loin d'être les seuls : dans les sciences de la vie, la réflexion philosophique a joué un rôle important dans des questions aussi diverses que l'altruisme évolutif , le débat sur les unités de sélection, la construction d'un "arbre de vie", la prédominance des microbes dans la biosphère, la définition du gène et l'examen critique du concept d'innéité. De même, en physique, des questions fondamentales comme la définition du temps ont été enrichies par les travaux des philosophes. Par exemple, l'analyse de l'irréversibilité temporelle par Huw Price et les courbes temporelles fermées par David Lewis ont contribué à dissiper la confusion conceptuelle en physique.

Inspirés par ces exemples et bien d'autres, nous considérons que la philosophie et la science se situent sur un continuum. La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de minutie, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes. Les philosophes possédant les connaissances scientifiques pertinentes peuvent alors contribuer de manière significative à l'avancement de la science à tous les niveaux de l'entreprise scientifique, de la théorie à l'expérimentation, comme le montrent les exemples ci-dessus.

Mais comment, en pratique, faciliter la coopération entre chercheurs et philosophes ? À première vue, la solution pourrait sembler évidente : chaque communauté devrait faire un pas vers l'autre. Pourtant, ce serait une erreur de considérer cette tâche comme facile. Les obstacles sont nombreux. Actuellement, un nombre important de philosophes dédaignent la science ou ne voient pas la pertinence de la science pour leur travail. Même parmi les philosophes qui privilégient le dialogue avec les chercheurs, rares sont ceux qui ont une bonne connaissance de la science la plus récente. À l'inverse, peu de chercheurs perçoivent les avantages que peuvent leur apporter les idées philosophiques. Dans le contexte scientifique actuel, dominé par une spécialisation croissante et des demandes de financement et de résultats de plus en plus importantes, seul un nombre très limité de chercheurs a le temps et l'opportunité d'être au courant des travaux produits par les philosophes sur la science, et encore moins de les lire.

 Pour surmonter ces difficultés, nous pensons qu'une série de recommandations simples, assez facile à mettre en œuvre, peuvent aider à combler le fossé entre la science et la philosophie. La reconnexion entre la philosophie et la science est à la fois hautement souhaitable et plus réalisable en pratique que ne le suggèrent les décennies d'éloignement qui les séparent.

1) Laisser plus de place à la philosophie dans les conférences scientifiques. Il s'agit d'un mécanisme très simple permettant aux chercheurs d'évaluer l'utilité potentielle des idées des philosophes pour leurs propres recherches. Réciproquement, davantage de chercheurs pourraient participer à des conférences de philosophie, en développant les efforts d'organisations telles que l'International Society for the History, Philosophy, and Social Studies of Biology, la Philosophy of Science Association et la Society for Philosophy of Science in Practice.

2) Accueillir des philosophes dans des laboratoires et des départements scientifiques. Il s'agit d'un moyen efficace (déjà exploré par certains des auteurs et d'autres) pour les philosophes d'apprendre la science et de fournir des analyses plus appropriées et bien fondées, et pour les chercheurs de bénéficier d'apports philosophiques et de s'acclimater à la philosophie en général. C'est peut-être le moyen le plus efficace d'aider la philosophie à avoir un impact rapide et concret sur la science.

3) Co-superviser des doctorants. La co-supervision de doctorants par un chercheur et un philosophe est une excellente occasion de rendre possible l'enrichissement mutuel des deux domaines. Elle facilite la production de thèses qui sont à la fois riches sur le plan expérimental et rigoureuses sur le plan conceptuel et, ce faisant, elle forme la prochaine génération de philosophes-scientifiques.

4) Créer des programmes d'études équilibrés en science et en philosophie qui favorisent un véritable dialogue entre elles. De tels programmes existent déjà dans certains pays, mais leur développement devrait être une priorité absolue. Ils peuvent offrir aux étudiants en sciences une perspective qui les rend plus aptes à relever les défis conceptuels de la science moderne et fournir aux philosophes une base solide de connaissances scientifiques qui maximisera leur impact sur la science. Les programmes d'enseignement des sciences peuvent inclure un cours d'histoire des sciences et de philosophie des sciences. Les programmes de philosophie pourraient inclure un module de sciences.

5) Lire science et philosophie. La lecture des sciences est indispensable à la pratique de la philosophie des sciences, mais la lecture de la philosophie peut également constituer une grande source d'inspiration pour les chercheurs, comme l'illustrent certains des exemples ci-dessus. Par exemple, les clubs de lecture où les contributions scientifiques et philosophiques sont discutées constituent un moyen efficace d'intégrer la philosophie et la science.

6) Ouvrir de nouvelles sections consacrées aux questions philosophiques et conceptuelles dans les revues scientifiques. Cette stratégie serait un moyen approprié et convaincant de suggérer que le travail philosophique et conceptuel est continu avec le travail expérimental, dans la mesure où il est inspiré par celui-ci, et peut l'inspirer en retour. Cela rendrait également les réflexions philosophiques sur un domaine scientifique particulier beaucoup plus visibles pour la communauté scientifique concernée que lorsqu'elles sont publiées dans des revues de philosophie, qui sont rarement lues par les scientifiques.

Nous espérons que les mesures pratiques exposées ci-dessus encourageront une renaissance de l'intégration de la science et de la philosophie. En outre, nous soutenons que le maintien d'une allégeance étroite à la philosophie renforcera la vitalité de la science. La science moderne sans la philosophie se heurtera à un mur : le déluge de données dans chaque domaine rendra l'interprétation de plus en plus difficile, négligence et ampleur ampleur de l'histoire risquent de séparer davantage les sous-disciplines scientifiques, et l'accent mis sur les méthodes et les résultats empiriques entraînera une formation de moins en moins approfondie des étudiants. Comme l'a écrit Carl Woese : "une société qui permet à la biologie de devenir une discipline d'ingénierie, qui permet à la science de se glisser dans le rôle de modifier le monde vivant sans essayer de le comprendre, est un danger pour elle-même." Nous avons besoin d'une revigoration de la science à tous les niveaux, une revigoration qui nous rende les bénéfices de liens étroits avec la philosophie.

Auteur: Internet

Info: https://hal.archives-ouvertes.fr/hal-02269657/document. " janvier 2020. Publication collective de Lucie Laplane, Paolo Mantovani, Ralph Adolphs, Hasok Chang, Alberto Mantovani, Margaret McFall-Ngai, Carlo Rovelli, Elliott Sober, et Thomas Pradeua. Trad Mg

[ mécanisme ] [ état des lieux ] [ corps-esprit ] [ tétravalences ] [ tour d'horizon ]

 

Commentaires: 0

Ajouté à la BD par miguel

consumérisme

Comment réguler l’exploitation de notre attention ? Dans Les marchands d’attention (The Attention Merchants, 2017, Atlantic Books, non traduit), le professeur de droit, spécialiste des réseaux et de la régulation des médias, Tim Wu (@superwuster), 10 ans après avoir raconté l’histoire des télécommunications et du développement d’internet dans The Master Switch (où il expliquait la tendance de l’industrie à créer des empires et le risque des industries de la technologie à aller dans le même sens), raconte, sur 400 pages, l’histoire de l’industrialisation des médias américains et de la publicité de la fin du XIXe siècle à aujourd’hui. En passant d’une innovation médiatique l’autre, des journaux à la radio, de la télé à l’internet, Wu tisse une très informée histoire du rapport de l’exploitation commerciale de l’information et du divertissement. Une histoire de l’industrialisation des médias américains qui se concentre beaucoup sur leurs innovations et leurs modèles d’affaires, c’est-à-dire qui s’attarde à montrer comment notre attention a été convertie en revenus, comment nous avons été progressivement cédés à la logique du commerce – sans qu’on n’y trouve beaucoup à redire d’ailleurs.

"La compétition pour notre attention n’a jamais cherché à nous élever, au contraire."

Tout le long de cette histoire, Tim Wu insiste particulièrement sur le fait que la capture attentionnelle produite par les médias s’est faite par-devers nous. La question attentionnelle est souvent présentée comme le résultat d’une négociation entre l’utilisateur, le spectateur, et le service ou média qu’il utilise… mais aucun d’entre nous n’a jamais consenti à la capture attentionnelle, à l’extraction de son attention. Il souligne notamment que celle-ci est plus revendue par les médias aux annonceurs, qu’utilisée par les médias eux-mêmes. Il insiste également à montrer que cette exploitation vise rarement à nous aider à être en contrôle, au contraire. Elle ne nous a jamais apporté rien d’autre que toujours plus de contenus insignifiants. Des premiers journaux à 1 cent au spam publicitaire, l’exploitation attentionnelle a toujours visé nos plus vils instincts. Elle n’a pas cherché à nous élever, à nous aider à grandir, à développer nos connaissances, à créer du bien commun, qu’à activer nos réactions les plus instinctives. Notre exploitation commerciale est allée de pair avec l’évolution des contenus. Les journaux qui ont adopté le modèle publicitaire, ont également inventé des rubriques qui n’existaient pas pour mieux les servir : comme les faits divers, les comptes-rendus de procès, les récits de crimes… La compétition pour notre attention dégrade toujours les contenus, rappelle Tim Wu. Elle nous tourne vers "le plus tapageur, le plus sinistre, le plus choquant, nous propose toujours l’alternative la plus scandaleuse ou extravagante". Si la publicité a incontestablement contribué à développer l’économie américaine, Wu rappelle qu’elle n’a jamais cherché à présenter une information objective, mais plutôt à déformer nos mécanismes de choix, par tous les moyens possibles, même par le mensonge. L’exploitation attentionnelle est par nature une course contre l’éthique. Elle est et demeure avant tout une forme d’exploitation. Une traite, comme disait le spécialiste du sujet Yves Citton, en usant volontairement de ce vocabulaire marqué au fer.

Wu souligne que l’industrie des contenus a plus été complice de cette exploitation qu’autre chose. La presse par exemple, n’a pas tant cherché à contenir ou réguler la publicité et les revenus qu’elle générait, qu’à y répondre, qu’à évoluer avec elle, notamment en faisant évoluer ses contenus pour mieux fournir la publicité. Les fournisseurs de contenus, les publicitaires, aidés des premiers spécialistes des études comportementales, ont été les courtiers et les ingénieurs de l’économie de l’attention. Ils ont transformé l’approche intuitive et improvisée des premières publicités en machines industrielles pour capturer massivement l’attention. Wu rappelle par exemple que les dentifrices, qui n’existaient pas vraiment avant les années 20, vont prendre leur essor non pas du fait de la demande, mais bien du fait de l’offensive publicitaire, qui s’est attaquée aux angoisses inconscientes des contemporains. Plus encore que des ingénieurs de la demande, ces acteurs ont été des fabricants de comportements, de moeurs…

L’histoire de l’exploitation de notre attention souligne qu’elle est sans fin, que "les industries qui l’exploitent, contrairement aux organismes, n’ont pas de limite à leur propre croissance". Nous disposons de très peu de modalités pour limiter l’extension et la croissance de la manipulation attentionnelle. Ce n’est pas pour autant que les usagers ne se sont pas régulièrement révoltés, contre leur exploitation. "La seule dynamique récurrente qui a façonné la course des industries de l’attention a été la révolte". De l’opposition aux premiers panneaux publicitaires déposés en pleine ville au rejet de services web qui capturent trop nos données ou exploitent trop notre attention, la révolte des utilisateurs semble avoir toujours réussi à imposer des formes de régulations. Mais l’industrie de l’exploitation attentionnelle a toujours répondu à ces révoltes, s’adaptant, évoluant au gré des rejets pour proposer toujours de nouvelles formes de contenus et d’exploitation. Parmi les outils dont nous nous sommes dotés pour réguler le développement de l’économie de l’attention, Wu évoque trop rapidement le travail des associations de consommateurs (via par exemple le test de produits ou les plaintes collectives…) ou celui des régulateurs définissant des limites au discours publicitaire (à l’image de la création de la Commission fédérale du commerce américaine et notamment du bureau de la protection des consommateurs, créée pour réguler les excès des annonceurs, que ce soit en améliorant l’étiquetage des produits ou en interdisant les publicités mensongères comme celles, nombreuses, ventant des produits capables de guérir des maladies). Quant à la concentration et aux monopoles, ils ont également toujours été surveillés et régulés, que ce soit par la création de services publics ou en forçant les empires des médias à la fragmentation.

L’attention, un phénomène d’assimilation commercial et culturel L’invention du prime time à la radio puis à la télé a été à la fois une invention commerciale et culturelle, fusionnant le contenu au contenant, l’information/divertissement et la publicité en inventant un rituel d’attention collective massive. Il n’a pas servi qu’à générer une exposition publicitaire inédite, il a créé un phénomène social, une conscience et une identité partagée, tout en rendant la question de l’exposition publicitaire normale et sociale.

Dans la succession des techniques qu’ont inventés les médias de masse pour mobiliser et orienter les foules que décrit Tim Wu, on constate qu’une sorte de cycle semble se reproduire. Les nouvelles technologies et les nouveaux formats rencontrent des succès très rapides. Puis, le succès rencontre des résistances et les audiences se délitent vers de nouvelles techniques ou de nouveaux formats proposés par des concurrents. On a l’impression d’être dans une course poursuite où chaque décennie pourrait être représentée par le succès d’un support phare à l’image des 28 courts chapitres qui scandent le livre. L’essor de la télévision par exemple est fulgurant : entre 1950 et 1956 on passe de 9% à 72% des maisons équipées et à la fin des années 50, on l’a regarde déjà 5 heures par jour en moyenne. Les effets de concentration semblent très rapides… et dès que la fatigue culturelle pointe, que la nouveauté s’émousse, une nouvelle vague de propositions se développe à la fois par de nouveaux formats, de nouvelles modalités de contrôle et de nouveaux objets attentionnels qui poussent plus loin l’exploitation commerciale des publics. Patiemment, Wu rappelle la très longue histoire des nouveaux formats de contenus : la naissance des jeux, des journaux télé, des soirées spéciales, du sport, des feuilletons et séries, de la télé-réalité aux réseaux sociaux… Chacun ayant généré une nouvelle intrication avec la publicité, comme l’invention des coupures publicitaires à la radio et à la télé, qui nécessitaient de réinventer les contenus, notamment en faisant monter l’intrigue pour que les gens restent accrochés. Face aux outils de révolte, comme l’invention de la télécommande ou du magnétoscope, outils de reprise du contrôle par le consommateur, les industries vont répondre par la télévision par abonnement, sans publicité. Elles vont aussi inventer un montage plus rapide qui ne va cesser de s’accélérer avec le temps.

Pour Wu, toute rébellion attentionnelle est sans cesse assimilée. Même la révolte contre la communication de masse, d’intellectuels comme Timothy Leary ou Herbert Marcuse, sera finalement récupérée.

De l’audience au ciblage

La mesure de l’audience a toujours été un enjeu industriel des marchands d’attention. Notamment avec l’invention des premiers outils de mesure de l’audimat permettant d’agréger l’audience en volumes. Wu prend le temps d’évoquer le développement de la personnalisation publicitaire, avec la socio-géo-démographie mise au point par la firme Claritas à la fin des années 70. Claritas Prizm, premier outil de segmentation de la clientèle, va permettre d’identifier différents profils de population pour leur adresser des messages ciblés. Utilisée avec succès pour l’introduction du Diet Coke en 1982, la segmentation publicitaire a montré que la nation américaine était une mosaïque de goûts et de sensibilités qu’il fallait adresser différemment. Elle apporte à l’industrie de la publicité un nouvel horizon de consommateurs, préfigurant un ciblage de plus en plus fin, que la personnalisation de la publicité en ligne va prolonger toujours plus avant. La découverte des segments va aller de pair avec la différenciation des audiences et la naissance, dans les années 80, des chaînes câblées qui cherchent à exploiter des populations différentes (MTV pour la musique, ESPN pour le sport, les chaînes d’info en continu…). L’industrie du divertissement et de la publicité va s’engouffrer dans l’exploitation de la fragmentation de l’audience que le web tentera de pousser encore plus loin.

Wu rappelle que la technologie s’adapte à ses époques : "La technologie incarne toujours l’idéologie, et l’idéologie en question était celle de la différence, de la reconnaissance et de l’individualité". D’un coup le spectateur devait avoir plus de choix, plus de souveraineté… Le visionnage lui-même changeait, plus inattentif et dispersé. La profusion de chaînes et le développement de la télécommande se sont accompagnés d’autres modalités de choix comme les outils d’enregistrements. La publicité devenait réellement évitable. D’où le fait qu’elle ait donc changé, devenant plus engageante, cherchant à devenir quelque chose que les gens voudraient regarder. Mais dans le même temps, la télécommande était aussi un moyen d’être plus branché sur la manière dont nous n’agissons pas rationnellement, d’être plus distraitement attentif encore, à des choses toujours plus simples. "Les technologies conçues pour accroître notre contrôle sur notre attention ont parfois un effet opposé", prévient Wu. "Elles nous ouvrent à un flux de sélections instinctives et de petites récompenses"… En fait, malgré les plaintes du monde de la publicité contre la possibilité de zapper, l’état d’errance distrait des spectateurs n’était pas vraiment mauvais pour les marchands d’attention. Dans l’abondance de choix, dans un système de choix sans friction, nous avons peut-être plus perdu d’attention qu’autre chose.

L’internet a démultiplié encore, par de nouvelles pratiques et de nouveaux médiums, ces questions attentionnelles. L’e-mail et sa consultation sont rapidement devenus une nouvelle habitude, un rituel attentionnel aussi important que le prime time. Le jeu vidéo dès ses débuts a capturé toujours plus avant les esprits.

"En fin de compte, cela suggère aussi à quel point la conquête de l’attention humaine a été incomplète entre les années 1910 et les années 60, même après l’entrée de la télévision à la maison. En effet, même s’il avait enfreint la sphère privée, le domaine de l’interpersonnel demeurait inviolable. Rétrospectivement, c’était un territoire vierge pour les marchands d’attention, même si avant l’introduction de l’ordinateur domestique, on ne pouvait pas concevoir comment cette attention pourrait être commercialisée. Certes, personne n’avait jamais envisagé la possibilité de faire de la publicité par téléphone avant même de passer un appel – non pas que le téléphone ait besoin d’un modèle commercial. Ainsi, comme AOL qui a finalement opté pour la revente de l’attention de ses abonnés, le modèle commercial du marchand d’attention a été remplacé par l’un des derniers espaces considérés comme sacrés : nos relations personnelles." Le grand fournisseur d’accès des débuts de l’internet, AOL, a développé l’accès aux données de ses utilisateurs et a permis de développer des techniques de publicité dans les emails par exemple, vendant également les mails de ses utilisateurs à des entreprises et leurs téléphones à des entreprises de télémarketing. Tout en présentant cela comme des "avantages" réservés à ses abonnés ! FB n’a rien inventé ! "

La particularité de la modernité repose sur l’idée de construire une industrie basée sur la demande à ressentir une certaine communion". Les célébrités sont à leur tour devenues des marchands d’attention, revendant les audiences qu’elles attiraient, à l’image d’Oprah Winfrey… tout en transformant la consommation des produits qu’elle proposait en méthode d’auto-récompense pour les consommateurs.

L’infomercial a toujours été là, souligne Wu. La frontière entre divertissement, information et publicité a toujours été floue. La télé-réalité, la dernière grande invention de format (qui va bientôt avoir 30 ans !) promettant justement l’attention ultime : celle de devenir soi-même star.

Le constat de Wu est amer. "Le web, en 2015, a été complètement envahi par la malbouffe commerciale, dont une grande partie visait les pulsions humaines les plus fondamentales du voyeurisme et de l’excitation." L’automatisation de la publicité est le Graal : celui d’emplacements parfaitement adaptés aux besoins, comme un valet de chambre prévenant. "Tout en promettant d’être utile ou réfléchi, ce qui a été livré relevait plutôt de l’intrusif et pire encore." La télévision – la boîte stupide -, qui nous semblait si attentionnellement accablante, paraît presque aujourd’hui vertueuse par rapport aux boucles attentionnelles sans fin que produisent le web et le mobile.

Dans cette histoire, Wu montre que nous n’avons cessé de nous adapter à cette capture attentionnelle, même si elle n’a cessé de se faire à notre détriment. Les révoltes sont régulières et nécessaires. Elles permettent de limiter et réguler l’activité commerciale autour de nos capacités cognitives. Mais saurons-nous délimiter des frontières claires pour préserver ce que nous estimons comme sacré, notre autonomie cognitive ? La montée de l’internet des objets et des wearables, ces objets qui se portent, laisse supposer que cette immixtion ira toujours plus loin, que la régulation est une lutte sans fin face à des techniques toujours plus invasives. La difficulté étant que désormais nous sommes confrontés à des techniques cognitives qui reposent sur des fonctionnalités qui ne dépendent pas du temps passé, de l’espace ou de l’emplacement… À l’image des rythmes de montage ou des modalités de conception des interfaces du web. Wu conclut en souhaitant que nous récupérions "la propriété de l’expérience même de la vie". Reste à savoir comment…

Comment répondre aux monopoles attentionnels ?

Tim Wu – qui vient de publier un nouveau livre The Curse of Bigness : antitrust in the new Gilded age (La malédiction de la grandeur, non traduit) – prône, comme d’autres, un renforcement des lois antitrusts américaines. Il y invite à briser les grands monopoles que construisent les Gafam, renouvelant par là la politique américaine qui a souvent cherché à limiter l’emprise des monopoles comme dans le cas des télécommunications (AT&T), de la radio ou de la télévision par exemple ou de la production de pétrole (Standard Oil), pour favoriser une concurrence plus saine au bénéfice de l’innovation. À croire finalement que pour lutter contre les processus de capture attentionnels, il faut peut-être passer par d’autres leviers que de chercher à réguler les processus attentionnels eux-mêmes ! Limiter le temps d’écran finalement est peut-être moins important que limiter la surpuissance de quelques empires sur notre attention !

La règle actuelle pour limiter le développement de monopoles, rappelle Wu dans une longue interview pour The Verge, est qu’il faut démontrer qu’un rachat ou une fusion entraînera une augmentation des prix pour le consommateur. Outre, le fait que c’est une démonstration difficile, car spéculative, "il est pratiquement impossible d’augmenter les prix à la consommation lorsque les principaux services Internet tels que Google et Facebook sont gratuits". Pour plaider pour la fragmentation de ces entreprises, il faudrait faire preuve que leur concentration produit de nouveaux préjudices, comme des pratiques anticoncurrentielles quand des entreprises absorbent finalement leurs concurrents. Aux États-Unis, le mouvement New Brandeis (qui fait référence au juge Louis Brandeis acteur majeur de la lutte contre les trusts) propose que la régulation favorise la compétition.

Pour Wu par exemple, la concurrence dans les réseaux sociaux s’est effondrée avec le rachat par Facebook d’Instagram et de WhatsApp. Et au final, la concurrence dans le marché de l’attention a diminué. Pour Wu, il est temps de défaire les courtiers de l’attention, comme il l’explique dans un article de recherche qui tente d’esquisser des solutions concrètes. Il propose par exemple de créer une version attentionnelle du test du monopoleur hypothétique, utilisé pour mesurer les abus de position dominante, en testant l’influence de la publicité sur les pratiques. Pour Tim Wu, il est nécessaire de trouver des modalités à l’analyse réglementaire des marchés attentionnels.

Dans cet article, Wu s’intéresse également à la protection des audiences captives, à l’image des écrans publicitaires des pompes à essence qui vous délivrent des messages sans pouvoir les éviter où ceux des écrans de passagers dans les avions… Pour Wu, ces nouvelles formes de coercition attentionnelle sont plus qu’un ennui, puisqu’elles nous privent de la liberté de penser et qu’on ne peut les éviter. Pour lui, il faudrait les caractériser comme un "vol attentionnel". Certes, toutes les publicités ne peuvent pas être caractérisées comme telles, mais les régulateurs devraient réaffirmer la question du consentement souligne-t-il, notamment quand l’utilisateur est captif ou que la capture cognitive exploite nos biais attentionnels sans qu’on puisse lutter contre. Et de rappeler que les consommateurs doivent pouvoir dépenser ou allouer leur attention comme ils le souhaitent. Que les régulateurs doivent chercher à les protéger de situations non consensuelles et sans compensation, notamment dans les situations d’attention captive ainsi que contre les intrusions inévitables (celles qui sont augmentées par un volume sonore élevé, des lumières clignotantes, etc.). Ainsi, les publicités de pompe à essence ne devraient être autorisées qu’en cas de compensation pour le public (par exemple en proposant une remise sur le prix de l’essence)…

Wu indique encore que les réglementations sur le bruit qu’ont initié bien des villes peuvent être prises pour base pour construire des réglementations de protection attentionnelle, tout comme l’affichage sur les autoroutes, également très réglementé. Pour Tim Wu, tout cela peut sembler peut-être peu sérieux à certain, mais nous avons pourtant imposé par exemple l’interdiction de fumer dans les avions sans que plus personne aujourd’hui n’y trouve à redire. Il est peut-être temps de prendre le bombardement attentionnel au sérieux. En tout cas, ces défis sont devant nous, et nous devrons trouver des modalités pour y répondre, conclut-il.

Auteur: Guillaud Hubert

Info: 27 décembre 2018, http://internetactu.blog.lemonde.fr

[ culture de l'epic fail ] [ propagande ] [ captage de l'attention ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel

auto-programmation

Pieuvres et calmars modifient et corrigent (édit en anglais) leur ARN, tout en laissant l'ADN intact. Des changements qui pourraient expliquer l'intelligence et la flexibilité des céphalopodes dépourvus de coquille

De nombreux écrivains se plaignent lorsqu'un rédacteur  vient éditer et donc modifier leur article, mais les conséquences de la modification d'un seul mot ne sont généralement pas si graves.

Ce n'est pas le cas des instructions génétiques pour la fabrication des protéines. Même une petite modification peut empêcher une protéine de faire son travail correctement, ce qui peut avoir des conséquences mortelles. Ce n'est qu'occasionnellement qu'un changement est bénéfique. Il semble plus sage de conserver les instructions génétiques telles qu'elles sont écrites. À moins d'être une pieuvre.

Les pieuvres sont comme des extraterrestres qui vivent parmi nous : elles font beaucoup de choses différemment des animaux terrestres ou même des autres créatures marines. Leurs tentacules flexibles goûtent ce qu'ils touchent et ont leur esprit propre. Les yeux des pieuvres sont daltoniens, mais leur peau peut détecter la lumière par elle-même. Les pieuvres sont des maîtres du déguisement, changeant de couleur et de texture de peau pour se fondre dans leur environnement ou effrayer leurs rivaux. Et plus que la plupart des créatures, les pieuvres font gicler l'équivalent moléculaire de l'encre rouge sur leurs instructions génétiques avec un abandon stupéfiant, comme un rédacteur en chef déchaîné.

Ces modifications-éditions concernent l'ARN, molécule utilisée pour traduire les informations du plan génétique stocké dans l'ADN, tout en laissant l'ADN intact.

Les scientifiques ne savent pas encore avec certitude pourquoi les pieuvres et d'autres céphalopodes sans carapace, comme les calmars et les seiches, sont des modificateurs aussi prolifiques. Les chercheurs se demandent si cette forme d'édition génétique a donné aux céphalopodes une longueur d'avance sur le plan de l'évolution (ou un tentacule) ou si cette capacité n'est qu'un accident parfois utile. Les scientifiques étudient également les conséquences que les modifications de l'ARN peuvent avoir dans diverses conditions. Certaines données suggèrent que l'édition pourrait donner aux céphalopodes une partie de leur intelligence, mais au prix d'un ralentissement de l'évolution de leur ADN.

"Ces animaux sont tout simplement magiques", déclare Caroline Albertin, biologiste spécialiste du développement comparatif au Marine Biological Laboratory de Woods Hole (Massachusetts). "Ils ont toutes sortes de solutions différentes pour vivre dans le monde d'où ils viennent. L'édition de l'ARN pourrait contribuer à donner à ces créatures un grand nombre de solutions aux problèmes qu'elles peuvent rencontrer.

(vidéo - Contrairement à d'autres animaux à symétrie bilatérale, les pieuvres ne rampent pas dans une direction prédéterminée. Des vidéos de pieuvres en train de ramper montrent qu'elles peuvent se déplacer dans n'importe quelle direction par rapport à leur corps, et qu'elles changent de direction de rampe sans avoir à tourner leur corps. Dans le clip, la flèche verte indique l'orientation du corps de la pieuvre et la flèche bleue indique la direction dans laquelle elle rampe.)

Le dogme central de la biologie moléculaire veut que les instructions pour construire un organisme soient contenues dans l'ADN. Les cellules copient ces instructions dans des ARN messagers, ou ARNm. Ensuite, des machines cellulaires appelées ribosomes lisent les ARNm pour construire des protéines en enchaînant des acides aminés. La plupart du temps, la composition de la protéine est conforme au modèle d'ADN pour la séquence d'acides aminés de la protéine.

Mais l'édition de l'ARN peut entraîner des divergences par rapport aux instructions de l'ADN, créant ainsi des protéines dont les acides aminés sont différents de ceux spécifiés par l'ADN.

L'édition modifie chimiquement l'un des quatre éléments constitutifs de l'ARN, ou bases. Ces bases sont souvent désignées par les premières lettres de leur nom : A, C, G et U, pour adénine, cytosine, guanine et uracile (la version ARN de la base ADN thymine). Dans une molécule d'ARN, les bases sont liées à des sucres ; l'unité adénine-sucre, par exemple, est appelée adénosine.

Il existe de nombreuses façons d'éditer des lettres d'ARN. Les céphalopodes excellent dans un type d'édition connu sous le nom d'édition de l'adénosine à l'inosine, ou A-to-I. Cela se produit lorsqu'une enzyme appelée ADAR2 enlève un atome d'azote et deux atomes d'hydrogène de l'adénosine (le A). Ce pelage chimique transforme l'adénosine en inosine (I).

 Les ribosomes lisent l'inosine comme une guanine au lieu d'une adénine. Parfois, ce changement n'a aucun effet sur la chaîne d'acides aminés de la protéine résultante. Mais dans certains cas, la présence d'un G à la place d'un A entraîne l'insertion d'un acide aminé différent dans la protéine. Ce type d'édition de l'ARN modifiant la protéine est appelé recodage de l'ARN.

Les céphalopodes à corps mou ont adopté le recodage de l'ARN à bras-le-corps, alors que même les espèces étroitement apparentées sont plus hésitantes à accepter les réécritures, explique Albertin. "Les autres mollusques ne semblent pas le faire dans la même mesure.

L'édition de l'ARN ne se limite pas aux créatures des profondeurs. Presque tous les organismes multicellulaires possèdent une ou plusieurs enzymes d'édition de l'ARN appelées enzymes ADAR, abréviation de "adénosine désaminase agissant sur l'ARN", explique Joshua Rosenthal, neurobiologiste moléculaire au Marine Biological Laboratory.

Les céphalopodes possèdent deux enzymes ADAR. L'homme possède également des versions de ces enzymes. "Dans notre cerveau, nous modifions une tonne d'ARN. Nous le faisons beaucoup", explique Rosenthal. Au cours de la dernière décennie, les scientifiques ont découvert des millions d'endroits dans les ARN humains où se produit l'édition.

Mais ces modifications changent rarement les acides aminés d'une protéine. Par exemple, Eli Eisenberg, de l'université de Tel Aviv, et ses collègues ont identifié plus de 4,6 millions de sites d'édition dans les ARN humains. Parmi ceux-ci, seuls 1 517 recodent les protéines, ont rapporté les chercheurs l'année dernière dans Nature Communications. Parmi ces sites de recodage, jusqu'à 835 sont partagés avec d'autres mammifères, ce qui suggère que les forces de l'évolution ont préservé l'édition à ces endroits.

(Encadré :  Comment fonctionne l'édition de l'ARN ?

Dans une forme courante d'édition de l'ARN, une adénosine devient une inosine par une réaction qui supprime un groupe aminé et le remplace par un oxygène (flèches). L'illustration montre une enzyme ADAR se fixant à un ARN double brin au niveau du "domaine de liaison de l'ARNdb". La région de l'enzyme qui interagit pour provoquer la réaction, le "domaine de la désaminase", est positionnée près de l'adénosine qui deviendra une inosine.)

Les céphalopodes portent le recodage de l'ARN à un tout autre niveau, dit Albertin. L'encornet rouge (Doryteuthis pealeii) possède 57 108 sites de recodage, ont rapporté Rosenthal, Eisenberg et leurs collègues en 2015 dans eLife. Depuis, les chercheurs ont examiné plusieurs espèces de pieuvres, de calmars et de seiches, et ont à chaque fois trouvé des dizaines de milliers de sites de recodage.

Les céphalopodes à corps mou, ou coléoïdes, pourraient avoir plus de possibilités d'édition que les autres animaux en raison de l'emplacement d'au moins une des enzymes ADAR, ADAR2, dans la cellule. La plupart des animaux éditent les ARN dans le noyau - le compartiment où l'ADN est stocké et copié en ARN - avant d'envoyer les messages à la rencontre des ribosomes. Mais chez les céphalopodes, les enzymes se trouvent également dans le cytoplasme, l'organe gélatineux des cellules, ont découvert Rosenthal et ses collègues (SN : 4/25/20, p. 10).

Le fait d'avoir des enzymes d'édition dans deux endroits différents n'explique pas complètement pourquoi le recodage de l'ARN chez les céphalopodes dépasse de loin celui des humains et d'autres animaux. Cela n'explique pas non plus les schémas d'édition que les scientifiques ont découverts.

L'édition de l'ARN amènerait de la flexibilité aux céphalopodes

L'édition n'est pas une proposition "tout ou rien". Il est rare que toutes les copies d'un ARN dans une cellule soient modifiées. Il est beaucoup plus fréquent qu'un certain pourcentage d'ARN soit édité tandis que le reste conserve son information originale. Le pourcentage, ou fréquence, de l'édition peut varier considérablement d'un ARN à l'autre ou d'une cellule ou d'un tissu à l'autre, et peut dépendre de la température de l'eau ou d'autres conditions. Chez le calmar à nageoires longues, la plupart des sites d'édition de l'ARN étaient édités 2 % ou moins du temps, ont rapporté Albertin et ses collègues l'année dernière dans Nature Communications. Mais les chercheurs ont également trouvé plus de 205 000 sites qui étaient modifiés 25 % du temps ou plus.

Dans la majeure partie du corps d'un céphalopode, l'édition de l'ARN n'affecte pas souvent la composition des protéines. Mais dans le système nerveux, c'est une autre histoire. Dans le système nerveux du calmar à nageoires longues, 70 % des modifications apportées aux ARN producteurs de protéines recodent ces dernières. Dans le système nerveux de la pieuvre californienne à deux points (Octopus bimaculoides), les ARN sont recodés trois à six fois plus souvent que dans d'autres organes ou tissus.

(Photo -  L'encornet rouge recode l'ARN à plus de 50 000 endroits. Le recodage de l'ARN pourrait aider le calmar à réagir avec plus de souplesse à son environnement, mais on ne sait pas encore si le recodage a une valeur évolutive. Certains ARNm possèdent plusieurs sites d'édition qui modifient les acides aminés des protéines codées par les ARNm. Dans le système nerveux de l'encornet rouge, par exemple, 27 % des ARNm ont trois sites de recodage ou plus. Certains contiennent 10 sites ou plus. La combinaison de ces sites d'édition pourrait entraîner la fabrication de plusieurs versions d'une protéine dans une cellule.)

Le fait de disposer d'un large choix de protéines pourrait donner aux céphalopodes "plus de souplesse pour réagir à l'environnement", explique M. Albertin, "ou leur permettre de trouver diverses solutions au problème qui se pose à eux". Dans le système nerveux, l'édition de l'ARN pourrait contribuer à la flexibilité de la pensée, ce qui pourrait expliquer pourquoi les pieuvres peuvent déverrouiller des cages ou utiliser des outils, pensent certains chercheurs. L'édition pourrait être un moyen facile de créer une ou plusieurs versions d'une protéine dans le système nerveux et des versions différentes dans le reste du corps, explique Albertin.

Lorsque l'homme et d'autres vertébrés ont des versions différentes d'une protéine, c'est souvent parce qu'ils possèdent plusieurs copies d'un gène. Doubler, tripler ou quadrupler les copies d'un gène "permet de créer tout un terrain de jeu génétique pour permettre aux gènes de s'activer et d'accomplir différentes fonctions", explique M. Albertin. Mais les céphalopodes ont tendance à ne pas dupliquer les gènes. Leurs innovations proviennent plutôt de l'édition.

Et il y a beaucoup de place pour l'innovation. Chez le calmar, les ARNm servant à construire la protéine alpha-spectrine comportent 242 sites de recodage. Toutes les combinaisons de sites modifiés et non modifiés pourraient théoriquement créer jusqu'à 7 x 1072 formes de la protéine, rapportent Rosenthal et Eisenberg dans le numéro de cette année de l'Annual Review of Animal Biosciences (Revue annuelle des biosciences animales). "Pour mettre ce chiffre en perspective, écrivent les chercheurs, il suffit de dire qu'il éclipse le nombre de toutes les molécules d'alpha-spectrine (ou, d'ailleurs, de toutes les molécules de protéines) synthétisées dans toutes les cellules de tous les calmars qui ont vécu sur notre planète depuis l'aube des temps.

Selon Kavita Rangan, biologiste moléculaire à l'université de Californie à San Diego, ce niveau de complexité incroyable ne serait possible que si chaque site était indépendant. Rangan a étudié le recodage de l'ARN chez le calmar californien (Doryteuthis opalescens) et le calmar à nageoires longues. La température de l'eau incite les calmars à recoder les protéines motrices appelées kinésines qui déplacent les cargaisons à l'intérieur des cellules.

Chez l'encornet rouge, l'ARNm qui produit la kinésine-1 comporte 14 sites de recodage, a découvert Mme Rangan. Elle a examiné les ARNm du lobe optique - la partie du cerveau qui traite les informations visuelles - et du ganglion stellaire, un ensemble de nerfs impliqués dans la génération des contractions musculaires qui produisent des jets d'eau pour propulser le calmar.

Chaque tissu produit plusieurs versions de la protéine. Rangan et Samara Reck-Peterson, également de l'UC San Diego, ont rapporté en septembre dernier dans un article publié en ligne sur bioRxiv.org que certains sites avaient tendance à être édités ensemble. Leurs données suggèrent que l'édition de certains sites est coordonnée et "rejette très fortement l'idée que l'édition est indépendante", explique Rangan. "La fréquence des combinaisons que nous observons ne correspond pas à l'idée que chaque site a été édité indépendamment.

L'association de sites d'édition pourrait empêcher les calmars et autres céphalopodes d'atteindre les sommets de complexité dont ils sont théoriquement capables. Néanmoins, l'édition de l'ARN offre aux céphalopodes un moyen d'essayer de nombreuses versions d'une protéine sans s'enfermer dans une modification permanente de l'ADN, explique M. Rangan.

Ce manque d'engagement laisse perplexe Jianzhi Zhang, généticien évolutionniste à l'université du Michigan à Ann Arbor. "Pour moi, cela n'a pas de sens", déclare-t-il. "Si vous voulez un acide aminé particulier dans une protéine, vous devez modifier l'ADN. Pourquoi changer l'ARN ?

L'édition de l'ARN a-t-elle une valeur évolutive ?

L'édition de l'ARN offre peut-être un avantage évolutif. Pour tester cette idée, Zhang et Daohan Jiang, alors étudiant de troisième cycle, ont comparé les sites "synonymes", où les modifications ne changent pas les acides aminés, aux sites "non synonymes", où le recodage se produit. Étant donné que les modifications synonymes ne modifient pas les acides aminés, les chercheurs ont considéré que ces modifications étaient neutres du point de vue de l'évolution. Chez l'homme, le recodage, ou édition non synonyme, se produit sur moins de sites que l'édition synonyme, et le pourcentage de molécules d'ARN qui sont éditées est plus faible que sur les sites synonymes.

"Si nous supposons que l'édition synonyme est comme un bruit qui se produit dans la cellule, et que l'édition non-synonyme est moins fréquente et [à un] niveau plus bas, cela suggère que l'édition non-synonyme est en fait nuisible", explique Zhang. Même si le recodage chez les céphalopodes est beaucoup plus fréquent que chez les humains, dans la plupart des cas, le recodage n'est pas avantageux, ou adaptatif, pour les céphalopodes, ont affirmé les chercheurs en 2019 dans Nature Communications.

Il existe quelques sites communs où les pieuvres, les calmars et les seiches recodent tous leurs ARN, ont constaté les chercheurs, ce qui suggère que le recodage est utile dans ces cas. Mais il s'agit d'une petite fraction des sites d'édition. Zhang et Jiang ont constaté que quelques autres sites édités chez une espèce de céphalopode, mais pas chez les autres, étaient également adaptatifs.

Si ce n'est pas si utile que cela, pourquoi les céphalopodes ont-ils continué à recoder l'ARN pendant des centaines de millions d'années ? L'édition de l'ARN pourrait persister non pas parce qu'elle est adaptative, mais parce qu'elle crée une dépendance, selon Zhang.

Zhang et Jiang ont proposé un modèle permettant de nuire (c'est-à-dire une situation qui permet des modifications nocives de l'ADN). Imaginez, dit-il, une situation dans laquelle un G (guanine) dans l'ADN d'un organisme est muté en A (adénine). Si cette mutation entraîne un changement d'acide aminé nocif dans une protéine, la sélection naturelle devrait éliminer les individus porteurs de cette mutation. Mais si, par chance, l'organisme dispose d'un système d'édition de l'ARN, l'erreur dans l'ADN peut être corrigée par l'édition de l'ARN, ce qui revient à transformer le A en G. Si la protéine est essentielle à la vie, l'ARN doit être édité à des niveaux élevés de sorte que presque chaque copie soit corrigée.

 Lorsque cela se produit, "on est bloqué dans le système", explique M. Zhang. L'organisme est désormais dépendant de la machinerie d'édition de l'ARN. "On ne peut pas la perdre, car il faut que le A soit réédité en G pour survivre, et l'édition est donc maintenue à des niveaux élevés.... Au début, on n'en avait pas vraiment besoin, mais une fois qu'on l'a eue, on en est devenu dépendant".

Zhang soutient que ce type d'édition est neutre et non adaptatif. Mais d'autres recherches suggèrent que l'édition de l'ARN peut être adaptative.

L'édition de l'ARN peut fonctionner comme une phase de transition, permettant aux organismes de tester le passage de l'adénine à la guanine sans apporter de changement permanent à leur ADN. Au cours de l'évolution, les sites où les adénines sont recodées dans l'ARN d'une espèce de céphalopode sont plus susceptibles que les adénines non éditées d'être remplacées par des guanines dans l'ADN d'une ou de plusieurs espèces apparentées, ont rapporté les chercheurs en 2020 dans PeerJ. Et pour les sites fortement modifiés, l'évolution chez les céphalopodes semble favoriser une transition de A à G dans l'ADN (plutôt qu'à la cytosine ou à la thymine, les deux autres éléments constitutifs de l'ADN). Cela favorise l'idée que l'édition peut être adaptative.

D'autres travaux récents de Rosenthal et de ses collègues, qui ont examiné les remplacements de A en G chez différentes espèces, suggèrent que le fait d'avoir un A modifiable est un avantage évolutif par rapport à un A non modifiable ou à un G câblé.

(Tableau :  Quelle est la fréquence de l'enregistrement de l'ARN ?

Les céphalopodes à corps mou, notamment les pieuvres, les calmars et les seiches, recodent l'ARN dans leur système nerveux sur des dizaines de milliers de sites, contre un millier ou moins chez l'homme, la souris, la mouche des fruits et d'autres espèces animales. Bien que les scientifiques aient documenté le nombre de sites d'édition, ils auront besoin de nouveaux outils pour tester directement l'influence du recodage sur la biologie des céphalopodes.

Schéma avec comparaison des nombre de sites de recodage de l'ARN chez les animaux

J.J.C. ROSENTHAL ET E. EISENBERG/ANNUAL REVIEW OF ANIMAL BIOSCIENCES 2023 )

Beaucoup de questions en suspens

Les preuves pour ou contre la valeur évolutive du recodage de l'ARN proviennent principalement de l'examen de la composition génétique totale, ou génomes, de diverses espèces de céphalopodes. Mais les scientifiques aimeraient vérifier directement si les ARN recodés ont un effet sur la biologie des céphalopodes. Pour ce faire, il faudra utiliser de nouveaux outils et faire preuve de créativité.

Rangan a testé des versions synthétiques de protéines motrices de calmars et a constaté que deux versions modifiées que les calmars fabriquent dans le froid se déplaçaient plus lentement mais plus loin le long de pistes protéiques appelées microtubules que les protéines non modifiées. Mais il s'agit là de conditions artificielles de laboratoire, sur des lames de microscope. Pour comprendre ce qui se passe dans les cellules, Mme Rangan aimerait pouvoir cultiver des cellules de calmar dans des boîtes de laboratoire. Pour l'instant, elle doit prélever des tissus directement sur le calmar et ne peut obtenir que des instantanés de ce qui se passe. Les cellules cultivées en laboratoire pourraient lui permettre de suivre ce qui se passe au fil du temps.

M. Zhang explique qu'il teste son hypothèse de l'innocuité en amenant la levure à s'intéresser à l'édition de l'ARN. La levure de boulanger (Saccharomyces cerevisiae) ne possède pas d'enzymes ADAR. Mais Zhang a modifié une souche de cette levure pour qu'elle soit porteuse d'une version humaine de l'enzyme. Les enzymes ADAR rendent la levure malade et la font croître lentement, explique-t-il. Pour accélérer l'expérience, la souche qu'il utilise a un taux de mutation supérieur à la normale et peut accumuler des mutations G-A. Mais si l'édition de l'ARN peut corriger ces mutations, il est possible d'obtenir des résultats positifs. Mais si l'édition de l'ARN peut corriger ces mutations, la levure porteuse d'ADAR pourrait se développer mieux que celles qui n'ont pas l'enzyme. Et après de nombreuses générations, la levure pourrait devenir dépendante de l'édition, prédit Zhang.

Albertin, Rosenthal et leurs collègues ont mis au point des moyens de modifier les gènes des calmars à l'aide de l'éditeur de gènes CRISPR/Cas9. L'équipe a créé un calmar albinos en utilisant CRISPR/Cas9 pour supprimer, ou désactiver, un gène qui produit des pigments. Les chercheurs pourraient être en mesure de modifier les sites d'édition dans l'ADN ou dans l'ARN et de tester leur fonction, explique Albertin.

Cette science n'en est qu'à ses débuts et l'histoire peut mener à des résultats inattendus. Néanmoins, grâce à l'habileté des céphalopodes en matière d'édition, la lecture de cet article ne manquera pas d'être intéressante.

 

Auteur: Internet

Info: https://www.sciencenews.org/article/octopus-squid-rna-editing-dna-cephalopods, Tina Hesman Saey, 19 may 2023

[ poulpes ] [ calamars ] [ homme-animal ]

 

Commentaires: 0

Ajouté à la BD par miguel

parapsychologie

Le pays des aveugles de Koestler (I) 

Ainsi, après plusieurs détours, nous voilà de retour à notre point de départ. Ce "sentiment océanique" mystique se situe certainement à un étage supérieur de cette spirale que celui de l'enfant nouveau-né. L'enfant n'a pas encore d'identité personnelle, le mystique et le medium l'ont eux transcendée. Cette spirale a beaucoup de cercles, mais à chaque tour nous sommes confrontés à la même polarité et au même genre de monade, dont une face dit que je suis le centre du monde, et l'autre que je suis une petite partie en quête de la totalité. Nous pouvons considérer les phénomènes de parapsychologie comme les fruits de cette recherche - qu'ils se soient produits spontanément ou en laboratoire. La perception extra sensorielle apparait alors comme la plus haute manifestation du potentiel d'intégration de la matière vivante - qui, chez les humains, s'accompagne généralement d'un type d'auto-transcendance de l'émotion.

Alors que tout au long de notre excursion dans la biologie et la physique nous étions sur un terrain scientifique solide, nous voilà en pleine étape spéculative. Je ne prétends pas que ce soit un plus. Mais c'est la science moderne elle-même, avec ses vues paradoxales, qui nous y incite. Nous ne nous arrêterons pas à la "classique" télépathie-ESP ni à la prévision à court terme - pour lesquelles des explications physiques peuvent encore être trouvée. Car exclure clairvoyance, psychokinésie et coïncidences de séries ou de synchronicités, serait arbitraire, tout en laissant les choses telles qu'elles étaient avant. D'autre part, si on prend la "Tendance Intégrative" comme un principe universel comprenant des phénomènes causals, l'image devient grandement simplifiée, même si elle est encore hors de portée de notre compréhension. Au lieu de plusieurs mystères, nous voilà aujourd'hui confrontés à une seule tendance évolutive irréductible, issue de la constitution d'ensembles plus complexes venant de pièces diversifiées. La doctrine hippocratique de la "sympathie de toutes choses" en est un paradigme précoce. L'évolution des connaissances, avec ses maillages en branches spécialisées et leur confluence vers un delta unifié, en est un autre.

On pourrait en effet le substituer à la maladresse de termes comme "sérialité" et "Synchronicité" - qui mettent l'accent sur le temps seul, avec pour résultat une non-incarcération grâce à des expressions comme "évènements confluentiels". Les évènements confluentiels seraient-ils causals de manifestations d'une tendance à l'intégration. L'apparition du scarabée de Jung serait alors un évènement confluentiel. Ainsi les effets de la psychokinésie comme le lancer de dés et autres phénomènes paranormaux seraient aussi causals de ces phénomènes. Si on leur prête une signification, c'est qu'ils donnent l'impression d'avoir un lien de causalité, même si ils ne sont manifestement pas de cette sorte de pseudo-causalité. Le scarabée semble être attiré à la fenêtre de Jung par le patient qui raconte son rêve, les dés semblent être manipulés par la volonté de l'expérimentateur, le clairvoyant semble voir les cartes cachées. Les potentiels intégratifs de la vie semblent inclure la capacité de produire des effets pseudo-causals - qui provoquent un évènement confluentiel sans se soucier, pour ainsi dire, de l'emploi d'agents physiques. Il est donc très difficile de tracer une ligne de démarcation nette séparant causalité et non-causalité des évènements. Les animaux aveugles peuvent sentir leur chemin par des usages physiques plus grossiers comme le toucher ou l'odorat. Les chauves-souris utilisent une sorte de radar - ce qui il n'y a pas si longtemps aurait été vu par les naturalistes comme une hypothèse bien saugrenue. Des animaux équipés pour réagir aux photons - particules avec une masse nulle au repos qui peuvent également se comporter comme des ondes dans un milieu et, partant, semblent défier la causalité. Des hommes sans yeux comme les citoyens des pays des aveugles, rejetteraient surement l'affirmation qu'on peut percevoir des objets éloignés sans contact par toucher comme un non-sens occulte - ou bien déclareraient qu'une telle faculté, si elle existe vraiment, est certainement au-delà du domaine de la causalité physique, et devrait être appelé perception extra-sensorielle.

Un des neurophysiologistes les plus respectés de Grande-Bretagne, le Dr W. Walter Grey, a réalisé ces dernières années une série d'expériences remarquables. Il s'est fabriqué une machine électrique, qui par un effort de volonté, peut influer sur les évènements externes sans mouvement ni action manifeste via les impalpables pics électriques du cerveau. Cet effort nécessite un état particulier de concentration, composé paradoxal de détachement et d'excitation. La procédure expérimentale de Grey Walter peut être décrite de manière simplifiée comme suit. Des électrodes fixées sur le cuir chevelu et le cortex frontal du sujet transmettent les vagues électriques des activités cervicales vers un amplificateur d'ondes via une machine. En face de l'objet il y a un bouton : si on le presse une "scène intéressante" apparait sur un écran de télévision. Mais, environ une seconde avant qu'on appuie sur le bouton, une surtension électrique d'une vingtaine de microvolts se produit dans une grande partie du cortex du sujet, on la nomme "vague de préparation". Mais les circuits de l'appareil peuvent être réglés de telle sorte que la "vague de préparation" amplifiée soit suffisante pour déclencher l'interrupteur et faire ainsi apparaitre la scène de télévision une fraction de seconde avant que le sujet ait effectivement appuyé sur le bouton. C'est ce qu'on appelle un "démarrage automatique". Un sujet intelligent se rend vite compte que son action a le résultat escompté avant qu'il n'ait effectivement déplacé son doigt, et donc il cesse généralement d'appuyer sur le bouton: les images apparaissent comme et quand il les veut... Mais, pour que cet effet soit durable, il est essentiel que le sujet "veuille" vraiment que l'évènement se produise, et donc il doit se concentrer sur l'évocation de cet évènement précis. Lorsque l'attention du sujet se détache à cause d'une présentation monotone, ou qu'il "se concentre sur la concentration", le potentiel du cerveau ne parvient pas à déclencher la vague. Ce démarrage automatique peut être combiné avec un auto-stop afin que le sujet puisse acquérir une image en voulant son apparition sur l'écran du téléviseur, puis l'effacer dès qu'il a terminé son inspection de celle-ci.

Du point de vue du sujet, c'est une expérience très particulière, parfois accompagnée de signes d'excitation contenue; une diurèse [évacuation d'urine] a été très marquée pour deux des expérimentateurs. Examinant ces expériences Renee Haynes rédacteur en chef du Journal de la SPR a déclaré: En principe, bien sûr, ce n'est pas plus remarquable que ce qui arrive quand un enfant regarde avec étonnement, quand, avec sa main, il prouve la puissance de sa volonté en décidant de lever le petit doigt ou en le déplaçant. En pratique, c'est étonnant parce que ce mode pour exercer une influence sur le monde extérieur est fort peu familier à l'homme, même s'il est probablement banal pour une anguille électrique. Il est aussi très intéressant en ce qu'il a amené le Dr Grey Walter a utiliser avec un certain embarras, un mot tel que "pouvoir de la volonté". Cela, on s'en souvient, fut aussi l'attitude de Sir John Eccles quand il considérait que l'action de "volonté mentale" du "cerveau physique", comme le mystère de base, et la psychokinésie simplement comme une extension de celui-ci. On pourrait décrire l'expérience Grey Walter comme de la "pseudo-télékinésie" car il y a des fils qui relient les électrodes et crâne du sujet avec l'appareil TV. Mais on pourrait tout aussi bien décrire l'action de l'esprit du sujet sur son propre cerveau comme une pseudo-causalité. Ou nous pourrions dire que le sujet a découvert une façon plus élégante de produire un "évènement confluentiel" sans prendre la peine d'employer des agents physiques. Dans ce contexte il nous faut maintenant parler du rapport hypnotique.

Jusqu'au milieu du siècle dernier, l'hypnose a été traitée comme une fantaisie occulte par la science occidentale (bien que dans d'autres cultures, elle ait été prise comme une acquis). Aujourd'hui elle est devenue si respectable et banale que nous avons tendance à oublier que nous n'avons pas d'explication la concernant. On a démontré qu'un sujet approprié peut être temporairement sourd, muet, aveugle, anesthésié, amené à avoir des hallucinations ou revivre des scènes de son passé. Il peut être amené à oublier ou à se rappeler ce qui s'est passé pendant la transe avec un claquement de doigts. On peut lui enjoindre une suggestion post-hypnotique qui lui fera exécuter le lendemain, à 5 heures précises, une action stupide comme le déliement de ses lacets - et aussi trouver une certaine rationalité à cet acte. Les utilisations de l'hypnose médicale sur des patients appropriés en dentisterie, obstétrique et en dermatologie sont bien connues. Moins connues, cependant, sont les expériences de A. Mason et S. Black sur la suppression des réactions cutanées allergiques par l'hypnose. On injecta à des patients des extraits de pollen, auxquels ils étaient très allergiques, et après le traitement hypnotique, ils cessèrent de montrer la moindre réaction. Avec l'hypnose, d'autres patients n'ont pas eu de réaction allergique contre le bacille de la tuberculose. Comment les suggestions hypnotiques peuvent-elles modifier la réactivité chimique des tissus au niveau microscopique reste donc une conjecture. Après la guérison remarquable de Mason par hypnose d'un garçon de seize ans souffrant d'ichtyose (la maladie de peau de poisson, une affection congénitale que l'on croyait incurable) un évaluateur du British Medical Journal a fait remarquer que ce cas unique suffirait pour exiger "une révision des concepts courants sur la relation entre l'esprit et le corps ". Cette révision des concepts actuels est attendue depuis longtemps. Nous ne savons pas si Eddington avait raison quand il a dit que le monde est fait de matière-esprit, et qu'il n'est certainement pas fait de l'étoffe des petites boules de billards du physicien du dix-neuvième siècle qui volaient dans tous les sens jusqu'à ce que le hasard les fasse s'agréger en une amibe.

Dans son adresse de 1969 à l'American Society for Psychical Research, que j'ai cité précédemment, le professeur Henry Margenau a dit ceci : Un artefact parfois invoqué pour expliquer la précognition est de prendre en compte un temps multidimensionnel. Ce qui permet un véritable passage vers l'arrière du temps, ce qui pourrait permettre à certains intervalles, positifs dans un sens du temps, de devenir négatifs ("effet avant la cause") dans un autre. En principe, ça représente un schéma valable, et je ne connais pas la critique qui pourra l'exclure en tant que démarche scientifique. Si elle est acceptable, cependant, une mesure entièrement nouvelle de l'espace-temps doit être développée. J'ai sondé quelques suggestions que la physique pourrait offrir comme solution à ce genre de problème que vous rencontrez. Les résultats positifs, je le crains, sont maigres et décevants, mais peut-être que cela vaut-il quand même une vraie étude. Mais pourquoi, voudrai-je maintenant demander, est-il nécessaire d'importer vers une nouvelle discipline tous les concepts approuvés d'une ancienne science à son stade actuel de développement? La physique n'adhère pas servilement aux formulations grecques rationalistes qui l'ont précédé, il a bien fallu créer nos propres constructions spécifiques.

Le parapsychologue, je pense ... doit voler de ses propres ailes et probablement de manière plus audacieuse que ce que les conditions que la physique d'aujourd'hui suggèrent - et aussi tolérer sans trop de souci les voix stridentes et critiques des scientifiques "hard-boiled", pragmatiques et satisfaits, et ainsi continuer sa propre recherche minutieuse vers une meilleure compréhension via de nouvelle sortes d'expériences, peut-être aussi avec des concepts qui apparaissent étranges. Nous sommes entourés de phénomènes que l'existence nous fait soigneusement ignorer, ou, s'ils ne peuvent pas être ignorés, nous les rejetons comme des superstitions. L'homme du XIIIe siècle ne se rendait pas compte qu'il était entouré de forces magnétiques. Nous n'avons donc pas la conscience sensorielle directe de beaucoup de manifestations, ni des douches de neutrinos qui nous traversent, ni d'autres "influences" inconnues. Donc, nous pourrions tout aussi bien écouter les conseils de Margenau et créer nos propres constructions "spécifiques", supposant que nous vivons plongés dans une sorte de "psycho-champ magnétique" qui produit des évènements confluentiels... tout ceci par des moyens qui dépassent les concepts classiques de la physique. Des buts et leur conception qui nous sont inconnus certes, mais nous estimons qu'il doivent être en quelque sorte liés à un effort vers une forme supérieure de l'ordre et de l'unité dans toute cette diversité que nous observons au travers de notre appréciation de l'évolution de l'univers dans son ensemble, de la vie sur terre, de la conscience humaine et, enfin, de la science et de l'art.

Un mystère "plus haut d'un cran" est plus facile à accepter qu'une litière de puzzles indépendants. Cela n'explique pas pourquoi le scarabée est apparu à la fenêtre, mais au moins on pourra l'adapter aux évènements confluentiels et autres phénomènes paranormaux d'une conception unifiée. Il ya, cependant, un aspect profondément troublant à ces phénomènes. Les évènements paranormaux sont rares, imprévisible et capricieux. C'est comme nous l'avons vu, la principale raison pour laquelle les sceptiques se sentent en droit de rejeter les résultats des cartes devinées et autres expériences de psychokinésie, en dépit de preuves statistiques qui, dans tout autre domaine de la recherche, suffiraient à prouver cette hypothèse. Une des raisons du caractère erratique de l'ESP a déjà été mentionnée : notre incapacité à contrôler les processus inconscients sous-jacents. Les expériences de Grey Walter n'étaient pas concernées par l'ESP, mais il a bien dû se rendre compte que la "vague de préparation" ne pouvait atteindre le seuil suffisant que si le sujet était dans un état décrit comme "un composé paradoxal de détachement et d'excitation".

Les expériences paranormales spontanées sont toujours liées à un certain type d'auto-transcendance de l'émotion, comme dans les rêves télépathiques ou lors de transe médiumnique. Même dans le laboratoire, où là aussi le rapport affectif entre l'expérimentateur et le sujet est d'une importance décisive. L'intérêt du sujet dans le mystère de l'ESP en lui-même évoque une émotion auto-transcendante. Lorsque que son intérêt baisse à la fin d'une longue séance ESP, il mpntre un déclin caractéristique du nombre de "hits" sur la feuille de score. Cet "effet de déclin" peut être considéré comme une preuve supplémentaire de la réalité de l'ESP. Il y a aussi une diminution globale de la performance de la plupart des sujets après une longue série de séances. Ils s'ennuient. Les compétences les plus normales s'améliorent avec la pratique. Avec l'ESP c'est le contraire.

Un autre argument relatif à la rareté apparente des phénomènes paranormaux a été présentée par le regretté professeur Broad dans un article de philosophie: "Si la cognition paranormale et la causalité sont des faits paranormaux, il est alors fort probable que cela ne se limite pas à ces très rares occasions pendant lesquelles elles se manifestent sporadiquement, ou de façon spectaculaire, ou dans des conditions très particulières pendant lesquelles leur présence peut être expérimentalement établie. Ces phénomènes pourraient très bien être en fonction continue en arrière-plan de nos vies normales. Notre compréhension et nos malentendus avec nos semblables, notre humeur, l'émotionnel général en certaines occasions, les idées qui surgissent soudainement dans nos esprits sans aucune cause évidente introspectable; nos réactions émotionnelles inexplicables immédiates vis à vis de certaines personnes... et ainsi de suite, tout cela pourrait être en partie déterminé par une meilleure connaissance du paranormal et autres influences causales paranormales."

Collègue du professeur Broad à Oxford, le professeur Price a ajouté cette suggestion intéressante en ce qui concerne le caprice apparent des ESP: "Il semble que les impressions reçues par télépathie ont quelques difficultés à franchir un seuil pour se manifester à la conscience. Il semble qu'il y ait une barrière ou un mécanisme répressif qui tende à les exclure de la conscience, une barrière qui est assez difficile à passer, même si on fait usage de toutes sortes d'appareils pour la surmonter. Parfois, en ayant recours aux mécanismes musculaires du corps, ou en les faisant émerger sous forme de parole ou d'écriture automatique. Parfois, ces phénomènes apparaissent sous forme de rêves, parfois d'hallucinations visuelles ou auditives. Et souvent, ils peuvent émerger sous un aspect déformé et symbolique (comme d'autres contenus mentaux inconscients le font). Il est plausible que beaucoup de nos pensées quotidiennes et d'émotions soient télépathes, ou en partie d'origine télépathique, mais elles ne sont pas reconnues comme telles car elles sont trop déformées et mélangées avec d'autres contenus mentaux en franchissant le seuil de la conscience.

Adrian Dobbs, commentant ce passage, a soulevé un point important dans un texte très intéressant et suggestif. Il évoque l'image de l'âme ou du cerveau comme contenants un assemblage de filtres sélectifs, conçus pour couper les signaux indésirables à des fréquences voisines, dont certaines parviendraient sous une forme déformée, exactement comme dans une réception radio ordinaire. La "théorie du filtre", comme on pourrait l'appeler, remonte en fait à Henri Bergson. Elle a été reprise par divers auteurs sur la perception extra-sensorielle. Il s'agit en fait simplement d'une extrapolation de ce que nous savons au sujet de la perception sensorielle ordinaire. Nos principaux organes des sens sont comme des fentes qui admettent seulement une gamme de fréquence très étroite d'ondes électromagnétiques et sonores. Mais même la quantité d'infos qui entrent par ces fentes étroites, c'est déjà trop. La vie serait impossible si nous devions prêter attention aux millions de stimuli qui bombardent nos sens - ce que William James a appelé "l'épanouissement de la multitude du bourdonnement des sensations". Ainsi, le système nerveux, et surtout le cerveau, fonctionnent comme une hiérarchie de filtrages et de classifications de dispositifs qui éliminent une grande partie de nos entrées sensorielles sous forme de " bruits" non pertinents", pour traiter les bonnes informations sous forme gérable avant qu'elles ne soient présentées à la conscience.

Un exemple souvent cité de ce processus de filtrage est le "phénomène cocktail" qui nous permet d'isoler une seule voix dans le bourdonnement général. Par analogie, un mécanisme de filtrage similaire peut être supposé nous protéger de la floraison et de la multitude de bourdonnement des images, des messages, des impressions et des événements confluentiels du "psycho-champ magnétique" qui nous entoure. Comme il s'agit d'un point de grande importance pour essayer de comprendre pourquoi les phénomènes paranormaux se présentent dans ces formes inexplicables et arbitraire, je vais livrer quelques citations plus pertinentes sur ce sujet. Ainsi le psychiatre James S. Hayes, écrivant dans The Scientist, spécule: Je pense depuis longtemps que les questions classiques posées sur la télépathie ("Cela se passe-t'il" et si oui, "comment?") sont moins susceptibles d'être fructueuses que cette question: "Si la télépathie existe, qu'est-ce qui l'empêche de se produire plus ? Comment l'esprit (ou le cerveau) se protègent-ils contre l'afflux potentiel de l'expérience des autres? "

Et Sir Cyril Burt, à nouveau: La conception naturelle qu'a l'homme de l'univers, ou plutôt de la partie étroite à laquelle il a accès, est celle d'un monde d'objets tangibles de taille moyenne, se déplaçant à des vitesses modérées de manière visible en trois dimensions, réagissant à l'impact de forces de contact (le push et pull de simples interactions mécaniques), le tout en conformité avec des lois relativement simples. Jusqu'à tout récemment la conception de l'univers adoptée par le chercheur, son critère de la réalité, était celui de l'Incrédulité de saint Thomas : "ce qui peut être vu ou touché". Pourtant, supputer que sur une telle base que nous pourrions construire une image complète et comprise de l'univers c'est comme supposer que le plan d'une rue de Rome nous dirait ce à quoi la Ville Eternelle ressemblerait.

La nature semble avoir travaillé sur un principe identique. Nos organes des sens et notre cerveau fonctionnent comme une sorte de filtre complexe qui limite et dirige les pouvoirs de clairvoyance de l'esprit, de sorte que dans des conditions normales notre attention soit concentrée seulement sur des objets ou des situations qui sont d'une importance biologique pour la survie de l'organisme et de l'espèce.

En règle générale, il semblerait que l'esprit rejette les idées venant d'un autre esprit comme le corps rejette les greffes provenant d'un autre corps. Burt résume son point de vue, en nous rappelant que la physique contemporaine reconnaît quatre types d'interactions (forte, faible, électromagnétique et gravitationnelle), dont chacune obéit à ses propres lois, et, jusqu'à présent en tout cas, ce modèle a vaincu toutes les tentatives de le réduire à autre chose. Cela étant, il ne peut y avoir aucun antécédent improbable qui nous interdise de postuler un autre système et/ou un autre type d'interaction, en attendant une enquête plus intensive. Un univers psychique composé d'événements ou d'entités liées par des interactions psychiques, obéissant à des lois qui leur sont propres et qui interpénètrent l' univers physique et le chevauchent partiellement, tout comme les diverses interactions déjà découvertes et reconnues se chevauchent les unes les autres. (2e partie)

Auteur: Koestler Arthur

Info: Internet et Roots of coïncidence

[ Holon ] [ corps-esprit ] [ intégratif ] [ spectre continu ] [ dépaysement moteur ]

 

Commentaires: 0

non-voyant

Le monde tel que l'imaginent ceux qui n'ont jamais vu. (II)

Imaginer les couleurs

L'épineuse question des couleurs offre un autre exemple du "fossé perceptif" qui sépare voyants et aveugles de naissance. Les voyants s'imaginent souvent qu'il leur suffit de fermer les yeux pour se représenter la perception d'un aveugle. En réalité, ce n'est pas parce que nous fermons les yeux que nos yeux cessent de voir : le noir qui nous apparaît n'est rien d'autre que la couleur de nos paupières closes. Il en va tout autrement pour la plupart des aveugles, et à plus forte raison pour les aveugles de naissance. Comme il leur serait difficile de nous expliquer leur perception du monde, tant elle relève pour eux de l'évidence, le mieux est encore de nous tourner vers quelqu'un qui a vu avant de ne plus voir et qui, de ce fait, dispose d'un point de comparaison.

Jean-Marc Meyrat, devenu aveugle à l'âge de 8 ans, raconte son passage du monde des voyants dans celui des aveugles en ces termes : "Cela s'est fait très progressivement. Ce glissement presque impalpable s'est matérialisé par le déplacement de ma chaise de plus en plus près de l'écran de la télévision. Vers la fin du processus, je suis entré dans une sorte de zone grise qui s'est peu à peu assombrie pour virer au noir avant de disparaître. Puis, plus rien. La persistance de la couleur noire, parfois entrecoupée d'éblouissements, peut durer plus ou moins longtemps. Ceci est d'autant plus vrai si la cécité est intervenue brutalement. Après, plus rien, je ne peux pas dire mieux : plus rien.

Voilà qui pose un sérieux problème à ceux que le noir fascine et que la notion de rien effraie.". C'est l'image traditionnelle de l'aveugle errant dans les ténèbres qui se trouve ici battue en brèche... Certains aveugles tardifs regrettent de n'avoir pas même la perception du noir : ainsi, l'écrivain Jorge Luis Borges, devenu aveugle au cours de sa vie, affirmait que le noir lui manquait surtout au moment d'aller se coucher, lui qui avait pris l'habitude de s'endormir dans l'obscurité la plus complète...

Qu'est-ce que c'est que de ne rien voir ? En réalité, il est aussi difficile pour un aveugle de naissance de se représenter les couleurs que pour un voyant d'imaginer une perception absolument dénuée de couleurs, où l'on ne trouve pas même de noir et blanc, ni aucune nuance intermédiaire : autant chercher à imaginer un désert sans sol ni ciel, ou ce fameux couteau dont parle Lichtenberg, dépourvu de lame et auquel manque le manche. "Les gens s'imaginent les choses par rapport à ce qu'ils connaissent, remarque Christine Cloux. Nous qui entendons, nous imaginons à tort que les sourds de naissance sont plongés dans le silence. Or, pour connaître le silence il faut connaître le bruit, ce qui est notre cas mais pas celui des sourds, qui ne connaissent pas plus le bruit que son absence. Ce qu'ils connaissent, c'est un monde privé de ces notions."

Ces considérations posent tout de même plusieurs problèmes logiques : comment un aveugle peut-il se représenter l'image spatiale d'un objet, en considérant qu'il n'a pas même deux couleurs différentes à sa disposition pour distinguer l'objet du fond ? Il suffirait pourtant de nous remémorer certaines images qui nous viennent en rêve, ou en pensée : par exemple, nous voyons l'image d'une femme, mais nous sommes bien incapables de dire quelle est la couleur ou la forme exacte de sa robe. L'image mentale du voyant a rarement la précision d'une image photographique... Ces couleurs flottantes, ces formes incertaines, peuvent sans doute nous donner un aperçu des images non visuelles de l'aveugle. Si les couleurs sont inaccessibles aux sens de l'aveugle, cela ne l'empêche pas de tenter de se les représenter.

"Ca n'empêche même pas d'avoir des préférences, fait remarquer Sophie Massieu. Je m'habille en fonction de ce que j'imagine de la couleur en question. Par exemple, je ne porte jamais de jaune. Allez savoir ce qu'il m'a fait ce pauvre jaune...". "Je me suis créée des représentations mentales des couleurs, exactement comme je me représente les idées ou les concepts qui ne se voient pas, comme un atome par exemple..." explique Christine Cloux.

Mais d'où viennent ces représentations mentales exactement ? Pour la plupart, des commentaires des voyants : "Un jour une copine est arrivée vers moi en s'écriant : "Ouah ! Du rouge ! Ca te va super bien !" D'autres ont confirmé et depuis ce moment-là j'achète plus souvent du rouge.", raconte Christine. Parfois, la couleur peut évoquer à l'aveugle de naissance un souvenir précis : Sophie Massieu associe le bleu Majorelle à un après-midi passé dans le jardin Majorelle à Marrakech. Certains aveugles associeront le noir à la tristesse s'ils ont porté du noir pendant un enterrement, le blanc à la gaieté, puisqu'ils savent que c'est la couleur dont se parent les mariées et les communiants... La couleur dépose son image dans la mémoire affective et non dans la mémoire sensorielle ; le mot s'imprègne de l'émotion, comme un buvard. "Cela rend la sensation plus épaisse." explique Sophie.

Dans ce domaine éminemment subjectif, les "glissements sensoriels" sont légion. Il arrive fréquemment que l'aveugle de naissance prête aux couleurs les propriétés tactiles des objets qui leur sont couramment associés : par exemple, si en se vautrant dans le gazon, l'aveugle en a apprécié la douceur et la mollesse, il attribuera désormais au vert ses propriétés ; de même, le rouge brûle puisque c'est le feu, le blanc est froid comme la neige... L'aveugle de naissance n'hésite jamais à puiser dans des termes empruntés aux autres sens pour décrire l'image qu'il se fait des couleurs. Christine Cloux vous dira que le blanc lui semble "très aérien, léger, comme de la glace, très pur, peut-être parfois trop", alors que le noir lui paraît au contraire "presque encombrant, étouffant".

A ce petit jeu, la langue est pour l'aveugle un vivier de métaphores et d'associations verbales précieuses : ne dit-on pas un éclat tapageur, une teinte agressive ou insolente, un rose fade ? Ecrivains et poètes ne parlent-ils pas de "l'épaisseur des ténèbres", de "ruissellements de lumières" ? La mémoire tactile de l'aveugle est alors à même de lui fournir des repères, aussi abstraits soient-ils. Quand elle lit ou entend les termes "une forêt obscure", Christine Cloux s'imagine "que la forêt est très dense, qu'il y fait frisquet, voire franchement froid parce que le soleil ne passe pas... "Le rayonnement de la chaleur donne une idée très nette à l'aveugle de ce que peut-être le rayonnement de la lumière (on parle d'ailleurs d'une lumière douce et pénétrante...).

Parfois, l'image que l'aveugle se fait d'une couleur se fonde simplement sur le mot qui la désigne. "Enfant, le jaune m'évoquait un clown en train de jouer de la trompette, parce que je trouvais le mot amusant et que je savais que c'est une couleur gaie, voire criarde, explique Christine Cloux. C'est jaune, yellow, gelb... ou même giallo. Ces sonorités participent à ma représentation de cette couleur.". Ce faisant, l'aveugle se comporte en quelque sorte en "cratylien"- du nom de Cratyle, cet interlocuteur de Socrate qui professait que la sonorité des mots pouvait nous renseigner sur la nature même de ce qu'ils désignent.

Un voyant, pourtant, sait bien qu'il est hasardeux de tenter d'établir un lien entre le nom d'une couleur et la couleur elle-même... Et cependant, n'agissons-nous pas de manière analogue quand nous imaginons une ville ou un pays où nous ne sommes jamais allés et dont nous ne savons rien, en nous fondant sur la sonorité de son nom ? Des noms tels que Constantinople, Byzance ou Marrakech ne charrient-ils pas déjà un flot d'images abstraites considérables rien que par leurs propriétés auditives, indépendamment même des images visuelles précises qu'on leur accole ? La plupart des aveugles de naissance n'hésitent pas à puiser dans les impressions auditives pour se représenter les couleurs : "Je me représente le spectre des diverses couleurs un peu comme l'échelle des sons - l'échelle des couleurs est simplement plus grande et plus complexe à se représenter." explique Christine Cloux.

La comparaison n'est pas insensée : couleurs et sons ont en commun de se définir par une certaine fréquence (hauteur pour le son, teinte pour la couleur), une certaine pureté (timbre pour le son, saturation pour la couleur), une certaine intensité (force pour le son, valeur ou luminosité pour la couleur)... Cela explique peut-être les fréquentes associations verbales entre l'ouïe et la vue dans le langage courant : ne parle-t-on pas d'un rouge criard, d'une gamme de couleur, du ton d'un tissu, d'une voix blanche ?

Pour Christine Cloux, si les couleurs émettaient du son, "le jaune, l'orange et le rouge nous casseraient les oreilles alors que le bleu par exemple ferait un bruit aussi soutenu mais moins fort, avec le vert." Cette croyance selon laquelle il pourrait exister une correspondance directe entre la sensation auditive et la sensation visuelle n'est pas propre aux aveugles, elle a longtemps hanté l'oeuvre des symbolistes et des romantiques, et des artistes en général : qu'on songe aux Synesthésies de Baudelaire ("les parfums, les couleurs et les sons se répondent" dans le poème Correspondances), à Rimbaud cherchant à assigner une couleur à chaque voyelle ("A noir, E blanc, I rouge"...), ou à cette très sérieuse table de concordance entre voyelles, couleurs et instruments que tenta d'établir René Ghil, un disciple de Mallarmé, ou encore au plasticien Nicolas Schöffer qui mit des sons en couleur... Bien qu'on sente ce qu'il entre de rêverie poétique dans cette croyance, on ne peut s'empêcher d'imaginer que, si les divers stimuli sensoriels n'étaient que les différents dialectes d'une même langue, toutes sortes de traductions deviendraient possibles...

Que vienne le temps du traducteur couleurs/sons qui permettrait de traduire un tableau de Van Gogh en symphonie ! Imaginer l'art La seule chose que les aveugles de naissance savent des peintres, c'est ce qu'on a bien voulu leur en dire - or le langage est évidemment inapte à rendre compte de ce qui fait la spécificité de cet art. Là encore, l'aveugle doit trouver des analogies où il peut : Christine Cloux imagine la peinture impressionniste en se fondant sur l'impressionnisme musical et littéral, la peinture cubiste en pensant au style de Gertrude Stein - elle imagine les personnages peints par Picasso comme "des corps dont on aurait" découpé" les diverses parties pour les reconstituer n'importe comment.", mais ajoute aussitôt "Je n'aime pas le désordre, ça ne me parle pas.". Quand on lui demande ce que lui évoque une oeuvre comme le Carré blanc sur fond blanc de Malevitch, il lui semble que "ce doit être beau, presque intangible et cependant... Comme une porte d'entrée." 

Natacha de Montmollin est plus sceptique : "Je ne vois pas l'intérêt.". La peinture l'indiffère - Escher est le seul dessinateur dont elle se soit forgée une image précise : "sa technique m'intrigue". Etrange, si l'on considère que les dessins d'Escher reposent la plupart du temps sur des illusions optiques, des perspectives truquées qui, par essence, ne peuvent tromper qu'un voyant... Quel rapport les aveugles de naissance entretiennent-ils avec un art comme la poésie ? Sophie Massieu avoue qu'elle n'y est pas très sensible. "Je ne sais pas si ça relève de mon caractère ou de ma cécité... Peut-être qu'il y a une part de l'image qui m'échappe... "Christine Cloux, pour sa part, ne considère pas que la cécité soit une entrave pour apprécier un poème : selon elle, les images poétiques font autant - si ce n'est davantage - appel à la mémoire affective qu'à la mémoire sensorielle. "Peut-être que parfois je perçois une métaphore un peu autrement que quelqu'un d'autre, mais c'est le cas pour chacun de nous, je pense. Nous comprenons les figures de styles avec notre monde de référence.". Le rapport à l'art de certains aveugles de naissance semble parfois tenir du besoin vital : "C'est une expérience très riche dont je ne saurais me passer, explique Christine Cloux. J'ai peut-être d'autant plus besoin de l'art que je n'ai pas les images "extérieures à moi"".

Si l'aveugle de naissance exige davantage de l'art que le commun des voyants, c'est peut-être parce qu'il attend de lui qu'il lui restitue les beautés de la nature dont la cécité l'a privé. Oscar Wilde, pour expliquer à quel point l'oeuvre d'un artiste pouvait déteindre sur notre vision du monde, disait que ce n'est pas l'art qui imite la nature mais la nature qui imite l'art. Cette phrase a une pertinence toute particulière dans le cas de l'aveugle de naissance, car tout ce qu'il lit à propos de la nature, dans les poèmes ou dans les romans, se mêle intimement dans son imaginaire à la représentation qu'il s'en fait dans la vie de tous les jours - et cette représentation a sans doute plus à voir avec une transfiguration artistique, infiniment subjective, qu'avec, par exemple, une reproduction photographique un peu floue... Imaginer la nature D'une façon générale, la nature - tout du moins sa face visible - constitue pour l'aveugle de naissance une source inépuisable de curiosités. Certains phénomènes auxquels les voyants sont accoutumés demeurent pour lui un mystère - notamment les plus insubstantiels, ceux qu'il ne peut connaître par le toucher. "Un gaz... on risque de ne pas le voir. En revanche on voit la vapeur, ce qui est un peu étrange puisque l'eau est transparente, et pourtant, vous la voyez tout de même... Je le comprends en théorie mais c'est quand même bizarre." avoue Christine Cloux.

La transparence fait partie des notions difficiles à concevoir quand on ignore ce qu'est l'opacité visuelle - en témoigne la fascination qu'exercent les poissons sur de ce jeune aveugle de naissance, interrogé par Sophie Calle (dans le catalogue de l'exposition M'as-tu vue) : "C'est leur évolution dans l'eau qui me plaît, l'idée qu'ils ne sont rattachés à rien. Des fois, je me prends à rester debout des minutes entières devant un aquarium, debout comme un imbécile.". Un autre (toujours cité par Sophie Calle) tente de se représenter les miroitements de la mer : "On m'a expliqué que c'est bleu, vert, que les reflets avec le soleil font mal aux yeux. Cela doit être douloureux à regarder." Certaines reproductions peuvent donner à l'aveugle de naissance une idée approximative de certains phénomènes insubstantiels. Une femme (interrogée par Jane Hervé) se souvient d'un bas-relief du Moyen-Âge : "Il représentait le feu, avec des flammes en pointe comme des épées. Des flammes en pierre. J'étais éblouie. Des stries dans tous les sens, des nervures sur un flanc de rocher. Je n'avais aucune idée de la façon dont on pouvait représenter une flamme. Je ne savais pas que l'on pouvait toucher du feu".

Les aveugles de naissance n'en demeurent pas moins les premiers à reconnaître l'insuffisance de ces palliatifs, qui les induisent parfois d'avantage en erreur qu'ils ne les renseignent vraiment. "Les étoiles, on en a tous dessiné, alors ça empiète sur l'imagination, remarque Christine Cloux. Sauf que les vraies étoiles doivent avoir bien d'autres formes encore..." La difficulté à se représenter un phénomène proprement visuel, quand elle n'arrête pas un aveugle, peut au contraire aiguillonner sa curiosité. Il semble en effet que, pour certains d'entre eux, comme d'ailleurs pour quantité de voyants, moins une chose leur est accessible et plus elle les fascine. Une notion comme l'horizon, par exemple, laisse Christine Cloux rêveuse : "L'horizon, c'est là où la vue ne peut pas aller plus loin. C'est le sens de l'expression "à perte de vue", littéralement. C'est une limite, poétique pour moi... Instinctivement cela m'évoque la mer, le soleil, les océans. L'espace, l'infini presque, la liberté, l'évasion.". Le spectacle des plaines s'étendant à perte de vue, des montagnes dont les sommets se perdent dans les nuages ou des vallées s'abîmant dans des gouffres vertigineux, demeure l'apanage de la vue, mais certaines impressions auditives peuvent en donner de puissants équivalents à l'aveugle. Face à la mer, le bruit de la vague qui vient de loin lui permet de composer, à partir d'images spatiales finies, "une vision indéfinie qui peut lui donner la sensation de l'infini" (Pierre Villey). "Sur un rivage, je me concentre sur le bruit des vagues à en avoir le vertige, et je me livre toute entière à l'instant présent."confie Sophie Massieu.

A la montagne, des bruits légers transportés à de grandes distances, dont l'écho se répercute pendant de longues secondes, élargissent "l'horizon" de l'aveugle dans toutes les directions à la fois. L'aveugle est en outre affranchi de certains aléas liés à l'altitude : "Je ne pense pas que je puisse avoir le vertige, dans la mesure où il me semble qu'il s'agit d'un phénomène en relation avec la vue. "explique Daniel Baud (66 ans, retraité). Christine Cloux assure même aimer "la sensation de vide au bord d'une falaise.". Certains aveuglent de naissance aiment particulièrement se confronter à l'immensité des grands espaces : "Les espaces infinis, je suis allée dans le désert juste pour me plonger dedans..." affirme Sophie Massieu. Sans vouloir généraliser outre mesure, il semble que l'infini soit, pour les aveugles de naissance, moins une source de crainte que de curiosité. Quand, après leur avoir lu la phrase de Pascal : "Le silence éternel des espaces infinis m'effraie.", je leur demande lequel de ces termes leur inspire la plus grande crainte, aucun ne mentionne l'infini.

Pour Sophie Massieu, c'est l'éternité : "Se dire que rien ne va changer pendant toute une vie, ça ne correspond pas du tout à mon caractère". Pour Daniel Baud, c'est le silence éternel - et pour cause, un silence absolu serait, pour l'aveugle, comme une obscurité totale pour un voyant. "Perdre tout point de repère - plus d'espace-temps, plus de son, plus d'espace... - effectivement c'est effrayant, admet Christine Cloux. Nous avons besoin d'un lieu où être ancrés, d'un point de référence pour pouvoir dire :"je suis ici, je suis vivant." Mais sa foi tempère ses craintes : "C'est effrayant pour nous maintenant, Mais lorsque nous serons éternels, nous n'aurons plus besoin de ces notions physiques."

a couleur du "jamais" 

Nous disions plus haut que l'aveugle de naissance ne pouvait pas regretter la vue puisqu'il s'agissait d'un état qu'il n'avait jamais connu... Mais ne leur arrivent-ils jamais de soupirer après ces merveilles de la nature dont ils entendent parler autour d'eux, en songeant à ces beautés qu'ils n'ont jamais vu et, pour la majorité d'entre eux, ne verront jamais ? Ces pensées ne colorent-elles pas ce "jamais" d'une pointe d'amertume ?

"Je regrette la vue comme on peut envier le don de la divination ou les ailes de l'aigle" affirme un aveugle de naissance cité par Pierre Villey. Quand Christine Cloux s'imagine voyante, elle reste songeuse : "Peut-être qu'au lieu d'écrire je ferais des aquarelles... et encore, je pense que non.". La vue semble n'inspirer aux aveugles de naissance que des songes vains ou des désirs abstraits - voire même, parfois, une certaine méfiance : "Tant de gens qui voient sont en fait malheureux, remarque Christine Cloux. Pour sûr, la vue n'apporte ni le bonheur ni rien. Ou peut-être qu'elle apporte trop et qu'on est envahis par tout ce qu'il faut regarder." A l'en croire, la cécité peut même parfois s'avérer un filtre bénéfique : "Je peux éviter de me représenter ce que je ne veux pas, comme nombre d'images que vous subissez aux informations : les catastrophes, les morts... Je les comprends, je les intègre, ça me touche, mais je ne les "vois" pas précisément dans ma tête. L'impact émotionnel est largement suffisant et je ne suis pas masochiste."

En définitive, le rapport que l'aveugle de naissance entretient avec la vue est sans doute semblable à celui que nous entretenons tous vis-à-vis de l'inconnu : un mélange de peur et de désir, d'attirance et de défiance, comme en atteste ce témoignage de Christine Cloux, à qui nous laisserons le mot de la fin : "Oui, il m'arrive de regretter de ne pas voir. Je ne verrai jamais le visage des gens que j'aime, les fleurs, les étoiles, la nature, les petits enfants, les gens qui me sourient, les couleurs, les planètes... Et si je pouvais voir, juste un jour, juste une heure, cela ferait tellement plaisir à ma famille ! Ce serait pour eux un vrai bonheur, je pense, nettement plus que pour moi, puisque que je suis heureuse de ma vie de toute manière. Mais comme je suis curieuse, je voudrais tout voir, quitte à ne rien comprendre : les nuages, les étoiles, les gens. Je voudrais voir les visages changer lorsqu'ils ressentent des émotions. Je voudrais regarder dans un miroir pour voir quel effet ça fait d'être "face à soi-même" littéralement. Mais si vraiment je pouvais, je crois bien que ça me donnerait le vertige. C'est parce que je sais que ça ne risque pas d'arriver que je me dis que ce serait peut-être bien. Mais voir tout le temps... pas sûr. Il faudrait apprendre à voir, puis à regarder, puis à gérer. Et qui saurait m'apprendre comment faire ?"

Auteur: Molard Arthur

Info: http://www.jeanmarcmeyrat.ch/blog/2011/05/12/le-monde-tel-que-limaginent-ceux-qui-nont-jamais-vu

[ réflexion ] [ vacuité ] [ onirisme ] [ mimétisme ] [ imagination ] [ synesthésie ] [ monde mental ]

 

Commentaires: 0

dichotomie

De quoi l'espace-temps est-il réellement fait ?

L'espace-temps pourrait émerger d'une réalité plus fondamentale. La découverte de cette réalité pourrait débloquer l'objectif le plus urgent de la physique

Natalie Paquette passe son temps à réfléchir à la manière de faire croître une dimension supplémentaire. Elle commence par de petits cercles, dispersés en tout point de l'espace et du temps - une dimension en forme de boucle, qui se referme sur elle-même. Puis on rétrécit ces cercles, de plus en plus petits, en resserrant la boucle, jusqu'à ce qu'une curieuse transformation se produise : la dimension cesse de sembler minuscule et devient énorme, comme lorsqu'on réalise que quelque chose qui semble petit et proche est en fait énorme et distant. "Nous réduisons une direction spatiale", explique Paquette. "Mais lorsque nous essayons de la rétrécir au-delà d'un certain point, une nouvelle et grande direction spatiale émerge à la place."

Paquette, physicien théoricien à l'université de Washington, n'est pas le seul à penser à cette étrange sorte de transmutation dimensionnelle. Un nombre croissant de physiciens, travaillant dans différents domaines de la discipline avec des approches différentes, convergent de plus en plus vers une idée profonde : l'espace - et peut-être même le temps - n'est pas fondamental. Au contraire, l'espace et le temps pourraient être émergents : ils pourraient découler de la structure et du comportement de composants plus fondamentaux de la nature. Au niveau le plus profond de la réalité, des questions comme "Où ?" et "Quand ?" n'ont peut-être aucune réponse. "La physique nous donne de nombreux indices selon lesquels l'espace-temps tel que nous le concevons n'est pas la chose fondamentale", déclare M. Paquette.

Ces notions radicales proviennent des derniers rebondissements de la chasse à la théorie de la gravité quantique, qui dure depuis un siècle. La meilleure théorie des physiciens sur la gravité est la relativité générale, la célèbre conception d'Albert Einstein sur la façon dont la matière déforme l'espace et le temps. Leur meilleure théorie sur tout le reste est la physique quantique, qui est d'une précision étonnante en ce qui concerne les propriétés de la matière, de l'énergie et des particules subatomiques. Les deux théories ont facilement passé tous les tests que les physiciens ont pu concevoir au cours du siècle dernier. On pourrait penser qu'en les réunissant, on obtiendrait une "théorie du tout".

Mais les deux théories ne s'entendent pas bien. Demandez à la relativité générale ce qui se passe dans le contexte de la physique quantique, et vous obtiendrez des réponses contradictoires, avec des infinis indomptés se déchaînant sur vos calculs. La nature sait comment appliquer la gravité dans des contextes quantiques - cela s'est produit dans les premiers instants du big bang, et cela se produit encore au cœur des trous noirs - mais nous, les humains, avons encore du mal à comprendre comment le tour se joue. Une partie du problème réside dans la manière dont les deux théories traitent l'espace et le temps. Alors que la physique quantique considère l'espace et le temps comme immuables, la relativité générale les déforme au petit déjeuner.

D'une manière ou d'une autre, une théorie de la gravité quantique devrait concilier ces idées sur l'espace et le temps. Une façon d'y parvenir serait d'éliminer le problème à sa source, l'espace-temps lui-même, en faisant émerger l'espace et le temps de quelque chose de plus fondamental. Ces dernières années, plusieurs pistes de recherche différentes ont toutes suggéré qu'au niveau le plus profond de la réalité, l'espace et le temps n'existent pas de la même manière que dans notre monde quotidien. Au cours de la dernière décennie, ces idées ont radicalement changé la façon dont les physiciens envisagent les trous noirs. Aujourd'hui, les chercheurs utilisent ces concepts pour élucider le fonctionnement d'un phénomène encore plus exotique : les trous de ver, connexions hypothétiques en forme de tunnel entre des points distants de l'espace-temps. Ces succès ont entretenu l'espoir d'une percée encore plus profonde. Si l'espace-temps est émergent, alors comprendre d'où il vient - et comment il pourrait naître de n'importe quoi d'autre - pourrait être la clé manquante qui ouvrirait enfin la porte à une théorie du tout.

LE MONDE DANS UN DUO DE CORDES

Aujourd'hui, la théorie candidate à la gravité quantique la plus populaire parmi les physiciens est la théorie des cordes. Selon cette idée, les cordes éponymes sont les constituants fondamentaux de la matière et de l'énergie, donnant naissance à la myriade de particules subatomiques fondamentales observées dans les accélérateurs de particules du monde entier. Elles sont même responsables de la gravité - une particule hypothétique porteuse de la force gravitationnelle, un "graviton", est une conséquence inévitable de la théorie.

Mais la théorie des cordes est difficile à comprendre : elle se situe dans un territoire mathématique que les physiciens et les mathématiciens ont mis des décennies à explorer. Une grande partie de la structure de la théorie est encore inexplorée, des expéditions sont encore prévues et des cartes restent à établir. Dans ce nouveau domaine, la principale technique de navigation consiste à utiliser des dualités mathématiques, c'est-à-dire des correspondances entre un type de système et un autre.

La dualité évoquée au début de cet article, entre les petites dimensions et les grandes, en est un exemple. Si vous essayez de faire entrer une dimension dans un petit espace, la théorie des cordes vous dit que vous obtiendrez quelque chose de mathématiquement identique à un monde où cette dimension est énorme. Selon la théorie des cordes, les deux situations sont identiques : vous pouvez aller et venir librement de l'une à l'autre et utiliser les techniques d'une situation pour comprendre le fonctionnement de l'autre. "Si vous gardez soigneusement la trace des éléments fondamentaux de la théorie, dit Paquette, vous pouvez naturellement trouver parfois que... vous pourriez faire croître une nouvelle dimension spatiale."

Une dualité similaire suggère à de nombreux théoriciens des cordes que l'espace lui-même est émergeant. L'idée a germé en 1997, lorsque Juan Maldacena, physicien à l'Institute for Advanced Study, a découvert une dualité entre une théorie quantique bien comprise, connue sous le nom de théorie des champs conforme (CFT), et un type particulier d'espace-temps issu de la relativité générale, appelé espace anti-de Sitter (AdS). Ces deux théories semblent très différentes : la CFT ne comporte aucune gravité, tandis que l'espace AdS intègre toute la théorie de la gravité d'Einstein. Pourtant, les mêmes mathématiques peuvent décrire les deux mondes. Lorsqu'elle a été découverte, cette correspondance AdS/CFT a fourni un lien mathématique tangible entre une théorie quantique et un univers complet comportant une gravité.

Curieusement, l'espace AdS dans la correspondance AdS/CFT comportait une dimension de plus que la CFT quantique. Mais les physiciens se sont délectés de ce décalage, car il s'agissait d'un exemple parfaitement élaboré d'un autre type de correspondance conçu quelques années plus tôt par les physiciens Gerard 't Hooft de l'université d'Utrecht aux Pays-Bas et Leonard Susskind de l'université de Stanford, connu sous le nom de principe holographique. Se fondant sur certaines des caractéristiques particulières des trous noirs, Gerard 't Hooft et Leonard Susskind soupçonnaient que les propriétés d'une région de l'espace pouvaient être entièrement "codées" par sa frontière. En d'autres termes, la surface bidimensionnelle d'un trou noir contiendrait toutes les informations nécessaires pour savoir ce qui se trouve dans son intérieur tridimensionnel, comme un hologramme. "Je pense que beaucoup de gens ont pensé que nous étions fous", dit Susskind. "Deux bons physiciens devenusdingues".

De même, dans la correspondance AdS/CFT, la CFT quadridimensionnelle encode tout ce qui concerne l'espace AdS à cinq dimensions auquel elle est associée. Dans ce système, la région entière de l'espace-temps est construite à partir des interactions entre les composants du système quantique dans la théorie des champs conforme. Maldacena compare ce processus à la lecture d'un roman. "Si vous racontez une histoire dans un livre, il y a les personnages du livre qui font quelque chose", dit-il. "Mais tout ce qu'il y a, c'est une ligne de texte, non ? Ce que font les personnages est déduit de cette ligne de texte. Les personnages du livre seraient comme la théorie [AdS] globale. Et la ligne de texte est la [CFT]."

Mais d'où vient l'espace de l'espace AdS ? Si cet espace est émergent, de quoi émerge-t-il ? La réponse est un type d'interaction spécial et étrangement quantique dans la CFT : l'intrication, une connexion à longue distance entre des objets, corrélant instantanément leur comportement de manière statistiquement improbable. L'intrication a beaucoup troublé Einstein, qui l'a qualifiée d'"action étrange à distance".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ?

 Pourtant, malgré son caractère effrayant, l'intrication est une caractéristique essentielle de la physique quantique. Lorsque deux objets interagissent en mécanique quantique, ils s'intriquent généralement et le resteront tant qu'ils resteront isolés du reste du monde, quelle que soit la distance qui les sépare. Dans des expériences, les physiciens ont maintenu l'intrication entre des particules distantes de plus de 1 000 kilomètres et même entre des particules au sol et d'autres envoyées vers des satellites en orbite. En principe, deux particules intriquées pourraient maintenir leur connexion sur des côtés opposés de la galaxie ou de l'univers. La distance ne semble tout simplement pas avoir d'importance pour l'intrication, une énigme qui a troublé de nombreux physiciens pendant des décennies.

Mais si l'espace est émergent, la capacité de l'intrication à persister sur de grandes distances n'est peut-être pas si mystérieuse - après tout, la distance est une construction. Selon les études de la correspondance AdS/CFT menées par les physiciens Shinsei Ryu de l'université de Princeton et Tadashi Takayanagi de l'université de Kyoto, l'intrication est ce qui produit les distances dans l'espace AdS en premier lieu. Deux régions d'espace proches du côté AdS de la dualité correspondent à deux composantes quantiques hautement intriquées de la CFT. Plus elles sont intriquées, plus les régions de l'espace sont proches les unes des autres.

Ces dernières années, les physiciens en sont venus à soupçonner que cette relation pourrait également s'appliquer à notre univers. "Qu'est-ce qui maintient l'espace ensemble et l'empêche de se désagréger en sous-régions distinctes ? La réponse est l'intrication entre deux parties de l'espace", déclare Susskind. "La continuité et la connectivité de l'espace doivent leur existence à l'intrication quantique-mécanique". L'intrication pourrait donc sous-tendre la structure de l'espace lui-même, formant la chaîne et la trame qui donnent naissance à la géométrie du monde. "Si l'on pouvait, d'une manière ou d'une autre, détruire l'intrication entre deux parties [de l'espace], l'espace se désagrégerait", déclare Susskind. "Il ferait le contraire de l'émergence. Il désémergerait."

Si l'espace est fait d'intrication, l'énigme de la gravité quantique semble beaucoup plus facile à résoudre : au lieu d'essayer de rendre compte de la déformation de l'espace de manière quantique, l'espace lui-même émerge d'un phénomène fondamentalement quantique. Susskind pense que c'est la raison pour laquelle une théorie de la gravité quantique a été si difficile à trouver en premier lieu. "Je pense que la raison pour laquelle elle n'a jamais très bien fonctionné est qu'elle a commencé par une image de deux choses différentes, [la relativité générale] et la mécanique quantique, et qu'elle les a mises ensemble", dit-il. "Et je pense que l'idée est qu'elles sont beaucoup trop étroitement liées pour être séparées puis réunies à nouveau. La gravité n'existe pas sans la mécanique quantique".

Pourtant, la prise en compte de l'espace émergent ne représente que la moitié du travail. L'espace et le temps étant si intimement liés dans la relativité, tout compte rendu de l'émergence de l'espace doit également expliquer le temps. "Le temps doit également émerger d'une manière ou d'une autre", déclare Mark van Raamsdonk, physicien à l'université de Colombie-Britannique et pionnier du lien entre intrication et espace-temps. "Mais cela n'est pas bien compris et constitue un domaine de recherche actif".

Un autre domaine actif, dit-il, consiste à utiliser des modèles d'espace-temps émergent pour comprendre les trous de ver. Auparavant, de nombreux physiciens pensaient que l'envoi d'objets à travers un trou de ver était impossible, même en théorie. Mais ces dernières années, les physiciens travaillant sur la correspondance AdS/CFT et sur des modèles similaires ont trouvé de nouvelles façons de construire des trous de ver. "Nous ne savons pas si nous pourrions le faire dans notre univers", dit van Raamsdonk. "Mais ce que nous savons maintenant, c'est que certains types de trous de ver traversables sont théoriquement possibles". Deux articles - l'un en 2016 et l'autre en 2018 - ont conduit à une rafale de travaux en cours dans ce domaine. Mais même si des trous de ver traversables pouvaient être construits, ils ne seraient pas d'une grande utilité pour les voyages spatiaux. Comme le souligne Susskind, "on ne peut pas traverser ce trou de ver plus vite qu'il ne faudrait à [la lumière] pour faire le chemin inverse."

Si les théoriciens des cordes ont raison, alors l'espace est construit à partir de l'intrication quantique, et le temps pourrait l'être aussi. Mais qu'est-ce que cela signifie vraiment ? Comment l'espace peut-il être "fait" d'intrication entre des objets, à moins que ces objets ne soient eux-mêmes quelque part ? Comment ces objets peuvent-ils s'enchevêtrer s'ils ne connaissent pas le temps et le changement ? Et quel type d'existence les choses pourraient-elles avoir sans habiter un espace et un temps véritables ?

Ces questions frisent la philosophie, et les philosophes de la physique les prennent au sérieux. "Comment diable l'espace-temps pourrait-il être le genre de chose qui pourrait être émergent ?" demande Eleanor Knox, philosophe de la physique au King's College de Londres. Intuitivement, dit-elle, cela semble impossible. Mais Knox ne pense pas que ce soit un problème. "Nos intuitions sont parfois catastrophiques", dit-elle. Elles "ont évolué dans la savane africaine en interagissant avec des macro-objets, des macro-fluides et des animaux biologiques" et ont tendance à ne pas être transférées au monde de la mécanique quantique. En ce qui concerne la gravité quantique, "Où sont les objets ?" et "Où vivent-ils ?" ne sont pas les bonnes questions à poser", conclut Mme Knox.

Il est certainement vrai que les objets vivent dans des lieux dans la vie de tous les jours. Mais comme Knox et bien d'autres le soulignent, cela ne signifie pas que l'espace et le temps doivent être fondamentaux, mais simplement qu'ils doivent émerger de manière fiable de ce qui est fondamental. Prenons un liquide, explique Christian Wüthrich, philosophe de la physique à l'université de Genève. "En fin de compte, il s'agit de particules élémentaires, comme les électrons, les protons et les neutrons ou, plus fondamental encore, les quarks et les leptons. Les quarks et les leptons ont-ils des propriétés liquides ? Cela n'a aucun sens... Néanmoins, lorsque ces particules fondamentales se rassemblent en nombre suffisant et montrent un certain comportement ensemble, un comportement collectif, alors elles agiront d'une manière qui ressemble à un liquide."

Selon Wüthrich, l'espace et le temps pourraient fonctionner de la même manière dans la théorie des cordes et d'autres théories de la gravité quantique. Plus précisément, l'espace-temps pourrait émerger des matériaux que nous considérons habituellement comme vivant dans l'univers - la matière et l'énergie elles-mêmes. "Ce n'est pas que nous ayons d'abord l'espace et le temps, puis nous ajoutons de la matière", explique Wüthrich. "Au contraire, quelque chose de matériel peut être une condition nécessaire pour qu'il y ait de l'espace et du temps. Cela reste un lien très étroit, mais c'est juste l'inverse de ce que l'on aurait pu penser à l'origine."

Mais il existe d'autres façons d'interpréter les dernières découvertes. La correspondance AdS/CFT est souvent considérée comme un exemple de la façon dont l'espace-temps pourrait émerger d'un système quantique, mais ce n'est peut-être pas vraiment ce qu'elle montre, selon Alyssa Ney, philosophe de la physique à l'université de Californie, à Davis. "AdS/CFT vous donne cette capacité de fournir un manuel de traduction entre les faits concernant l'espace-temps et les faits de la théorie quantique", dit Ney. "C'est compatible avec l'affirmation selon laquelle l'espace-temps est émergent, et une certaine théorie quantique est fondamentale." Mais l'inverse est également vrai, dit-elle. La correspondance pourrait signifier que la théorie quantique est émergente et que l'espace-temps est fondamental, ou qu'aucun des deux n'est fondamental et qu'il existe une théorie fondamentale encore plus profonde. L'émergence est une affirmation forte, dit Ney, et elle est ouverte à la possibilité qu'elle soit vraie. "Mais, du moins si l'on s'en tient à AdS/CFT, je ne vois toujours pas d'argument clair en faveur de l'émergence."

Un défi sans doute plus important pour l'image de la théorie des cordes de l'espace-temps émergent est caché à la vue de tous, juste au nom de la correspondance AdS/CFT elle-même. "Nous ne vivons pas dans un espace anti-de Sitter", dit Susskind. "Nous vivons dans quelque chose de beaucoup plus proche de l'espace de Sitter". L'espace de Sitter décrit un univers en accélération et en expansion, comme le nôtre. "Nous n'avons pas la moindre idée de la façon dont [l'holographie] s'y applique", conclut M. Susskind. Trouver comment établir ce type de correspondance pour un espace qui ressemble davantage à l'univers réel est l'un des problèmes les plus urgents pour les théoriciens des cordes. "Je pense que nous allons être en mesure de mieux comprendre comment entrer dans une version cosmologique de ceci", dit van Raamsdonk.

Enfin, il y a les nouvelles - ou l'absence de nouvelles - provenant des derniers accélérateurs de particules, qui n'ont trouvé aucune preuve de l'existence des particules supplémentaires prévues par la supersymétrie, une idée sur laquelle repose la théorie des cordes. Selon la supersymétrie, toutes les particules connues auraient leurs propres "superpartenaires", ce qui doublerait le nombre de particules fondamentales. Mais le Grand collisionneur de hadrons du CERN, près de Genève, conçu en partie pour rechercher des superpartenaires, n'en a vu aucun signe. "Toutes les versions vraiment précises de [l'espace-temps émergent] dont nous disposons se trouvent dans des théories supersymétriques", déclare Susskind. "Une fois que vous n'avez plus de supersymétrie, la capacité à suivre mathématiquement les équations s'évapore tout simplement de vos mains".

LES ATOMES DE L'ESPACE-TEMPS

La théorie des cordes n'est pas la seule idée qui suggère que l'espace-temps est émergent. La théorie des cordes "n'a pas réussi à tenir [ses] promesses en tant que moyen d'unir la gravité et la mécanique quantique", déclare Abhay Ashtekar, physicien à l'université d'État de Pennsylvanie. "La puissance de la théorie des cordes réside désormais dans le fait qu'elle fournit un ensemble d'outils extrêmement riche, qui ont été largement utilisés dans tout le spectre de la physique." Ashtekar est l'un des pionniers originaux de l'alternative la plus populaire à la théorie des cordes, connue sous le nom de gravité quantique à boucles. Dans la gravité quantique à boucles, l'espace et le temps ne sont pas lisses et continus, comme c'est le cas dans la relativité générale, mais ils sont constitués de composants discrets, ce qu'Ashtekar appelle des "morceaux ou atomes d'espace-temps".

Ces atomes d'espace-temps sont connectés en réseau, avec des surfaces unidimensionnelles et bidimensionnelles qui les réunissent en ce que les praticiens de la gravité quantique à boucle appellent une mousse de spin. Et bien que cette mousse soit limitée à deux dimensions, elle donne naissance à notre monde quadridimensionnel, avec trois dimensions d'espace et une de temps. Ashtekar compare ce monde à un vêtement. "Si vous regardez votre chemise, elle ressemble à une surface bidimensionnelle", dit-il. "Si vous prenez une loupe, vous verrez immédiatement qu'il s'agit de fils unidimensionnels. C'est juste que ces fils sont si denses que, pour des raisons pratiques, vous pouvez considérer la chemise comme une surface bidimensionnelle. De même, l'espace qui nous entoure ressemble à un continuum tridimensionnel. Mais il y a vraiment un entrecroisement par ces [atomes d'espace-temps]".

Bien que la théorie des cordes et la gravité quantique à boucles suggèrent toutes deux que l'espace-temps est émergent, le type d'émergence est différent dans les deux théories. La théorie des cordes suggère que l'espace-temps (ou du moins l'espace) émerge du comportement d'un système apparemment sans rapport, sous forme d'intrication. Pensez à la façon dont les embouteillages émergent des décisions collectives des conducteurs individuels. Les voitures ne sont pas faites de la circulation - ce sont les voitures qui font la circulation. Dans la gravité quantique à boucles, par contre, l'émergence de l'espace-temps ressemble davantage à une dune de sable en pente émergeant du mouvement collectif des grains de sable dans le vent. L'espace-temps lisse et familier provient du comportement collectif de minuscules "grains" d'espace-temps ; comme les dunes, les grains sont toujours du sable, même si les gros grains cristallins n'ont pas l'apparence ou le comportement des dunes ondulantes.

Malgré ces différences, gravité quantique à boucles et  théorie des cordes suggèrent toutes deux que l'espace-temps émerge d'une réalité sous-jacente. Elles ne sont pas non plus les seules théories proposées de la gravité quantique qui vont dans ce sens. La théorie de l'ensemble causal, un autre prétendant à une théorie de la gravité quantique, postule que l'espace et le temps sont également constitués de composants plus fondamentaux. "Il est vraiment frappant de constater que, pour la plupart des théories plausibles de la gravité quantique dont nous disposons, leur message est, en quelque sorte, que l'espace-temps relativiste général n'existe pas au niveau fondamental", déclare Knox. "Les gens sont très enthousiastes lorsque différentes théories de la gravité quantique s'accordent au moins sur quelque chose."

L'AVENIR DE L'ESPACE AUX CONFINS DU TEMPS

La physique moderne est victime de son propre succès. La physique quantique et la relativité générale étant toutes deux d'une précision phénoménale, la gravité quantique n'est nécessaire que pour décrire des situations extrêmes, lorsque des masses énormes sont entassées dans des espaces insondables. Ces conditions n'existent que dans quelques endroits de la nature, comme le centre d'un trou noir, et surtout pas dans les laboratoires de physique, même les plus grands et les plus puissants. Il faudrait un accélérateur de particules de la taille d'une galaxie pour tester directement le comportement de la nature dans des conditions où règne la gravité quantique. Ce manque de données expérimentales directes explique en grande partie pourquoi la recherche d'une théorie de la gravité quantique par les scientifiques a été si longue.

Face à l'absence de preuves, la plupart des physiciens ont placé leurs espoirs dans le ciel. Dans les premiers instants du big bang, l'univers entier était phénoménalement petit et dense - une situation qui exige une gravité quantique pour le décrire. Et des échos de cette époque peuvent subsister dans le ciel aujourd'hui. "Je pense que notre meilleure chance [de tester la gravité quantique] passe par la cosmologie", déclare Maldacena. "Peut-être quelque chose en cosmologie que nous pensons maintenant être imprévisible, qui pourra peut-être être prédit une fois que nous aurons compris la théorie complète, ou une nouvelle chose à laquelle nous n'avions même pas pensé."

Les expériences de laboratoire pourraient toutefois s'avérer utiles pour tester la théorie des cordes, du moins indirectement. Les scientifiques espèrent étudier la correspondance AdS/CFT non pas en sondant l'espace-temps, mais en construisant des systèmes d'atomes fortement intriqués et en observant si un analogue à l'espace-temps et à la gravité apparaît dans leur comportement. De telles expériences pourraient "présenter certaines caractéristiques de la gravité, mais peut-être pas toutes", déclare Maldacena. "Cela dépend aussi de ce que l'on appelle exactement la gravité".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ? Les données d'observation du ciel ne seront peut-être pas disponibles de sitôt. Les expériences en laboratoire pourraient être un échec. Et comme les philosophes le savent bien, les questions sur la véritable nature de l'espace et du temps sont très anciennes. Ce qui existe "est maintenant tout ensemble, un, continu", disait le philosophe Parménide il y a 2 500 ans. "Tout est plein de ce qui est". Parménide insistait sur le fait que le temps et le changement étaient des illusions, que tout partout était un et le même. Son élève Zénon a créé de célèbres paradoxes pour prouver le point de vue de son professeur, prétendant démontrer que le mouvement sur n'importe quelle distance était impossible. Leurs travaux ont soulevé la question de savoir si le temps et l'espace étaient en quelque sorte illusoires, une perspective troublante qui a hanté la philosophie occidentale pendant plus de deux millénaires.

Le fait que les Grecs de l'Antiquité aient posé des questions telles que "Qu'est-ce que l'espace ?", "Qu'est-ce que le temps ?", "Qu'est-ce que le changement ?" et que nous posions encore des versions de ces questions aujourd'hui signifie qu'il s'agissait des bonnes questions à poser", explique M. Wüthrich. "C'est en réfléchissant à ce genre de questions que nous avons appris beaucoup de choses sur la physique".

Auteur: Becker Adam

Info: Scientific American, février 2022

[ monde de l'observateur humain ] [ univers nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel