Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 41
Temps de recherche: 0.0463s

physique quantique

Nous proposons donc l'idée suivante: sans apport d'informations externes, un univers se transforme en une infinité d'univers virtuels (Multivers) qui représentent autant de possibilités d'évolutions potentielles d'un seul univers. Par contre, avec un apport d'informations externes, le nombre de possibilités peut parfaitement se réduire à quelque chose de concevable qui peut se résumer à un ensemble réduit de possibilités d'évolution dégagées par notre libre arbitre, par l'intermédiaire de notre conscience.

Le phénomène de la conscience apparaîtrait ainsi clairement comme étant la fonction d'interface qui ferait entrer dans notre univers ou bloc d'espace-temps 4D des informations issues de l'extérieur, ce qui peut être décrit mathématiquement au moyen de dimensions supplémentaires. Une cinquième dimension pouvant suffire, il convient bien de qualifier le Multivers que nous proposons ainsi de Multivers de type V, à la suite des quatre premiers. Cela reste bien un Multivers dans la mesure où le nombre de possibilités d'évolution dégagées par le libre arbitre de notre collectif de conscience peut être énorme, à moins que nous autres terriens soyons tous complètement conditionnés. Il est alors intéressant de remarquer que la différence entre les Multivers de type III et V est que dans le V nous n'aurions pas de milliards de milliards .... de doubles conscients et que nous n'en aurions même aucun, puisqu'un seul univers accueillerait la conscience: celui que nous avons construit tous ensemble en passant sans cesse collectivement d'un univers à l'autre.

Il importe ainsi de bien différencier la notion de vécu et la notion de réalité physique (un seul vécu contre un grand nombre de réalités potentiellement à vivre), ce que nous apprend déjà la mécanique quantique avec ses superpositions d'états. La physique décrit ainsi déjà la co-existence de possibilités virtuelles qui n'attendent que notre observation - notre vécu - pour passer à l'état réel.

Auteur: Guillemant Philippe

Info: http://guillemant.net/index.php?cate=articles&part=physique_information&page=Des_realites_paralleles.htm

[ idéalisme quantique ] [ paradoxe de l'oeuf et de la poule ] [ spéculations ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

résilience

Fixées à l'extérieur de l'ISS des graines végétales survivent
Les graines sont capables de survivre à des conditions d'exposition dans l'espace, en particulier lorsqu'elles sont à l'abri de la lumière UV. C'est la conclusion à laquelle sont parvenus trois scientifiques français de l'INRA et de l'Observatoire de Paris, dans le cadre d'une expérience de dix-huit mois menée sur la Station spatiale internationale, sur la partie externe du laboratoire européen Columbus.
La plausibilité de la panspermie (l'hypothèse selon laquelle la vie ne serait pas d'origine terrestre, mais qu'elle aurait été importée d'ailleurs) a été testée en exposant deux espèces de semences de plantes pendant dix-huit mois aux conditions régnant dans l'espace à l'extérieur de la station spatiale internationale, incluant la lumière UV solaire, le rayonnement cosmique galactique, le vide spatial et des températures extrêmes (de -21 à +61 °C). Après le retour sur Terre, 23% des 2 100 graines d'Arabidopsis (famille de la moutarde) et du tabac du type sauvage ont germé et ont produit des plantes fertiles. La survie a été réduite chez les mutants manquant de substances comme des flavonoïdes qui servent d'écrans UV, mais la survie n'a pas été diminuée dans les graines protégées de la lumière solaire, indiquant qu'une exposition plus longue serait possible pour les graines inclues dans une matrice opaque.
Les graines sont donc capables de survivre à un voyage dans l'espace, en particulier lorsqu'elles sont à l'abri de la lumière UV. Même sans protection, elles pourraient résister au rayonnement UV solaire lors d'un vol hypothétique direct de Mars à la Terre. Il est concevable qu'un organisme desséché et protégé par des écrans UV, comme ceux que l'on trouve dans les téguments de graines, ou entouré par un matériau opaque, ait apporté la vie sur Terre il y a environ 4 milliards d'années. Des graines de plantes actuelles, peut-être incluant des bactéries, pourraient servir de vecteurs pour envoyer la vie dans les habitats lointains.
Cette expérience ouvre la voie à une meilleure compréhension de la résistance des plantes, mais aussi de l'origine de la vie; Elle confirme la possibilité que l'homme l'exporte au-delà de la Terre en envoyant ses sondes interplanétaires à la conquête de l'espace.

Auteur: Internet

Info:

[ survie ] [ vie ] [ panspermie ]

 

Commentaires: 0

tradition

L’unique préoccupation de René Guénon, entre 1905 et 1951, année de sa mort, a été l’initiation.

Il faut y insister parce que, ignorer cela, c’est se condamner à rester toujours à l’extérieur de son œuvre. Guénon se soucie fort peu de passer pour un historien, serait-ce celui de l’initiation elle-même, ce qui ne l’empêche pas d’exceller dans l’histoire, quand il s’agit pour lui de détruire le "théosophisme", qui est une fausse religion, et le spiritisme, qui est une mortelle erreur.

Son objet n’est pas davantage la philosophie ou quoi que ce soit d’autre ; c’est l’initiation, l’initiation qui confère, aux yeux de Guénon, la possibilité d’accéder à la "Délivrance" définitive si, du moins, l’initié a les qualités requises et s’il se plie à la discipline, surtout intellectuelle, que lui impose le maître spirituel de l’organisation au sein de laquelle il a été admis. Voilà pourquoi Guénon a écrit, et voilà seulement pourquoi.

L’unicité de cet objet assure à l’œuvre qui lui est consacrée une cohésion extraordinaire.

Elle avait été préparée de longue main puisque, la moisson ayant été engrangée entre 1905 et 1912 (année du rattachement de Guénon à l’islam), elle débute en 1921 par L’Introduction générale à l’étude des doctrines hindoues et finit en 1946 par La Grande Triade, si l’on ne compte pas les œuvres posthumes. D’un bout à l’autre, l’écriture est châtiée et la langue en impose par sa clarté, sa précision et une terminologie minutieuse, extrêmement élaborée. Cette œuvre se présente à nous comme le condensé d’un fond doctrinal qu’il faut avoir acquis avant de songer à entreprendre la moindre "réalisation spirituelle" au sein d’une organisation initiatique et sous le contrôle rigoureux d’un maître. Car là est l’essentiel : l’opération "trans-formatrice" ou, ce qui revient au même, "métamorphosante", au regard de laquelle l’œuvre guénonienne elle-même est secondaire. Elle informe seulement ; elle indique "la voie", ou plutôt les voies qui convergent toutes vers le même centre ; elle enseigne la nécessité d’une doctrine qu’il faut s’assimiler en vue de l’acquisition, par l’être qui est actuellement dans l’état humain, et s’il le peut, de l’état qui transcende tous les états concevables.

Toute la substance de l’œuvre de Guénon peut ainsi être résumée en ces termes : "Rattache-toi à une organisation initiatique véritable et, sans négliger l’exotérisme sur lequel elle repose, travaille sans relâche à acquérir la théorie métaphysique (nécessaire, mais non point suffisante) ; puis, sous le contrôle d’un maître spirituel autorisé, travaille encore sans relâche à “réaliser” celui que tu es de toute éternité et que te dérobe le voile de l’illusion, qui est ignorance".

Car devant "cela" qui est encore plus que l’Un absolu – c’est, dit Guénon, le Zéro métaphysique – toute la manifestation est "rigoureusement nulle".

Auteur: Allard l'Olivier André

Info:

[ porte-parole ] [ objectif ] [ résumé ] [ non-discrimination ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

confusion

Il est pensif, sans doute, mais cela n'a rien d'exceptionnel chez lui, car c'est un homme qui aime penser méthodiquement, lucidement, en distinguant finement les concepts qu'il manie avec une compétence de vrai professionnel. D'un certain point de vue, ce qui le laisse aujourd'hui pensif, c'est le fait d'être pensif, car sa réflexion vient d'aborder un thème qui lui semble globalement inadéquat, ou plutôt qui lui paraît invalidé par la réticence foncière dont il fait montre à l'égard des idées claires et précises ; un léger malaise commence en fait à l'atteindre, il serait préférable de l'apaiser. Le thème en question est l'amour. Il ne fait pas de doute qu'il éprouve un vif intérêt pour une jeune femme qui, au dire des experts, est amoureuse - leur avis se fonde sur des signes manifestes. Or lui est tout à fait certain que son intérêt aussi vif qu'indubitable relève d'une variante de l'amitié, de la participation, de la collaboration affective - c'est là un terme qu'il trouve très satisfaisant - mais qu'il est absolument étranger à l'amour. Il a cependant l'impression que la jeune femme, chez qui il ne nie pas un certain prestige tant physique que moral, a tendance à proposer une interprétation peu claire, inadéquate, insuffisamment et injustement réfléchie de leur relation. La chose l'embarrase, car il ne fait aucun doute par ailleurs qu'il considère sous un jour sincèrement favorable la présence de la jeune femme dans sa vie. Mais aussi, par respect pour sa propre probité mentale, il ne peut accepter que la jeune femme, d'un caractère sans doute un peu irréfléchi, ait le sentiment d'être plus ou moins au seuil d'une relation, ou encore qu'elle lui prête des pensées peu claires et puisse imaginer, par exemple, qu'il n'instaure pas une rigoureuse frontière lexicale entre "violente affection" et "amour". Il est on ne peut plus conscient de ne pas être amoureux, de n'avoir aucune disposition pour une relation privée, et de ne pouvoir envisager une telle chose dans un futur concevable. Sa position lui semble claire, honnête, explicite. Il ne comprend pas pourquoi la jeune femme a tant de peine à saisir des propos si lucides, pourquoi elle reste interloquée devant sa proposition de relation non relationnelle, sans amour mais affectueuse, chaude mais détachée, ce qui lui semble à lui une suggestion claire et utile. Il ne nie pas, d'un autre côté, que l'amour de la jeune femme le flatte énormément, et si la jeune femme abandonnait de tels sentiments, cela serait de sa part un signe d'inconstance ; et il lui serait difficile d'être l'ami de quelqu'un d'inconstant et de peu clair. A ce point de sa réflexion, le voilà de nouveau pensif. Il a l'impression d'être tombé dans un piège tendu par le "peu clair", l'anxiété qui commence à le ronger ne cessera que lorsqu'il en sera totalement, irrémédiablement sorti.

Auteur: Manganelli Giorgio

Info: "TRENTE HUIT" - In "Centurie", éd. Christian Bourgois, p. 71, trad. par J.B. Para - un des cent "mini romans-fleuves qui composent ce livre

[ logique ] [ catastrophe ] [ entêtement ] [ gamberge ] [ femmes-hommes ]

 
Mis dans la chaine
Commentaires: 3
Ajouté à la BD par Benslama

philosophes comparés

[...] le Marquis de SADE nous propose, avec une extrême cohérence, de prendre en effet pour maxime universelle de notre conduite le contre-pied - vue la ruine des autorités en quoi consiste dans les prémisses de cet ouvrage, l’avènement d’une véritable république - le contre-pied de ce qui a pu toujours jusque là être considéré comme, si l’on peut dire, le minimum vital d’une vie morale viable et cohérente. Et à la vérité, il ne le soutient pas mal. Ce n’est point par hasard si nous voyons dans La philosophie dans le boudoir - d’abord et avant tout - être fait l’éloge de la calomnie.

La calomnie, nous dit-il, ne saurait être en aucun cas nocive, car en tout cas, si elle impute à notre prochain quelque chose de beaucoup plus mauvais que ce qu’on peut lui attribuer, elle aura pour mérite de nous mettre en garde en toute occasion contre ses entreprises. Et c’est ainsi qu’il poursuit, point par point, justifiant, sans en excepter aucune, le renversement de tout ce qui est considéré comme les impératifs fondamentaux de la loi morale, continuant par l’inceste, l’adultère, le vol et tout ce que vous pouvez y ajouter. Prenez simplement le contre-pied de toutes les lois du Décalogue et vous aurez ainsi l’exposé cohérent de quelque chose dont le dernier ressort s’articule en somme ainsi : nous pouvons prendre comme loi, comme maxime universelle de notre action, quelque chose qui s’articule comme le droit à jouir d’autrui quel qu’il soit, comme instrument de notre plaisir.

SADE démontre avec beaucoup de cohérence que cette loi étant universelle, universalisée, c’est-à-dire : que par exemple, si elle permet aux libertins la libre disposition de toutes les femmes, indistinctement et quel que soit ou non leur consentement, inversement il libère les femmes de tous les devoirs qu’une société vivante et civilisée leur impose dans leurs relations conjugales, matrimoniales et autres, et que quelque chose est concevable, qui ouvre toutes grandes les vannes qu’il propose imaginairement à l’horizon du désir qui fait que tout un chacun est sollicité de porter à son plus extrême les exigences de sa convoitise et de les réaliser. Si même ouverture est donnée à tous, alors on verra ce que donne une société naturelle. Notre répugnance, après tout, pouvant très légitimement être assimilée à ce que KANT prétend lui-même éliminer, retirer des critères de ce qui pour nous fait la loi morale, à savoir un élément sentimental.

Si KANT entend éliminer tout élément sentimental de la morale, nous retirer comme non valable tout guide qui soit dans notre sentiment, à l’extrême le monde sadiste est concevable comme étant - même s’il en est l’envers et la caricature - un des accomplissements possibles du monde gouverné par une éthique radicale, par l’éthique kantienne telle qu’elle s’inscrit, telle qu’elle se date en 1788.

Auteur: Lacan Jacques

Info: 23 décembre 1959, L'Ethique

[ mise en pratique ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

déshumanisation

[...] le Marquis de SADE nous propose, avec une extrême cohérence, de prendre en effet pour maxime universelle de notre conduite le contre-pied - vue la ruine des autorités en quoi consiste dans les prémisses de cet ouvrage, l’avènement d’une véritable république - le contre-pied de ce qui a pu toujours jusque là être considéré comme, si l’on peut dire, le minimum vital d’une vie morale viable et cohérente. Et à la vérité, il ne le soutient pas mal. Ce n’est point par hasard si nous voyons dans La philosophie dans le boudoir - d’abord et avant tout - être fait l’éloge de la calomnie.

La calomnie, nous dit-il, ne saurait être en aucun cas nocive, car en tout cas, si elle impute à notre prochain quelque chose de beaucoup plus mauvais que ce qu’on peut lui attribuer, elle aura pour mérite de nous mettre en garde en toute occasion contre ses entreprises. Et c’est ainsi qu’il poursuit, point par point, justifiant, sans en excepter aucune, le renversement de tout ce qui est considéré comme les impératifs fondamentaux de la loi morale, continuant par l’inceste, l’adultère, le vol et tout ce que vous pouvez y ajouter. Prenez simplement le contre-pied de toutes les lois du Décalogue et vous aurez ainsi l’exposé cohérent de quelque chose dont le dernier ressort s’articule en somme ainsi : nous pouvons prendre comme loi, comme maxime universelle de notre action, quelque chose qui s’articule comme le droit à jouir d’autrui quel qu’il soit, comme instrument de notre plaisir.

SADE démontre avec beaucoup de cohérence que cette loi étant universelle, universalisée, c’est-à-dire : que par exemple, si elle permet aux libertins la libre disposition de toutes les femmes, indistinctement et quel que soit ou non leur consentement, inversement il libère les femmes de tous les devoirs qu’une société vivante et civilisée leur impose dans leurs relations conjugales, matrimoniales et autres, et que quelque chose est concevable, qui ouvre toutes grandes les vannes qu’il propose imaginairement à l’horizon du désir qui fait que tout un chacun est sollicité de porter à son plus extrême les exigences de sa convoitise et de les réaliser. Si même ouverture est donnée à tous, alors on verra ce que donne une société naturelle. Notre répugnance, après tout, pouvant très légitimement être assimilée à ce que KANT prétend lui-même éliminer, retirer des critères de ce qui pour nous fait la loi morale, à savoir un élément sentimental.

Si KANT entend éliminer tout élément sentimental de la morale, nous retirer comme non valable tout guide qui soit dans notre sentiment, à l’extrême le monde sadiste est concevable comme étant - même s’il en est l’envers et la caricature - un des accomplissements possibles du monde gouverné par une éthique radicale, par l’éthique kantienne telle qu’elle s’inscrit, telle qu’elle se date en 1788.

Auteur: Lacan Jacques

Info: 23 décembre 1959

[ conséquences ] [ historique ] [ relativisme ] [ modernité ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

anthropocentrisme

Les évolutionnistes, qui n’ont aucune idée de l’éternité, non plus que de tout ce qui est de l’ordre métaphysique, appellent volontiers de ce nom une durée indéfinie, c’est-à-dire la perpétuité, alors que l’éternité est essentiellement la "non-durée" ; cette erreur est du même genre que celle qui consiste à croire que l’espace est infini, et d’ailleurs l’une ne va guère sans l’autre ; la cause en est toujours dans la confusion du concevable et de l’imaginable. En réalité, l’espace est indéfini, mais, comme toute autre possibilité particulière, il est absolument nul par rapport à l’Infini ; de même, la durée, même perpétuelle, n’est rien au regard de l’éternité. Mais le plus singulier, c’est ceci : pour ceux qui, étant évolutionnistes d’une façon ou d’une autre, placent toute réalité dans le devenir, la soi-disant éternité temporelle, qui se compose de durées successives, et qui est donc divisible, semble se partager en deux moitiés, l’une passée et l’autre future. […]. Le mot d’"évolution" n’est pas dans le passage que nous venons de citer, mais c’est évidemment cette conception, exclusivement basée sur l’"idée de succession", qui doit remplacer "l’ancienne théorie d’une création faite une fois pour toutes", déclarée impossible en vertu d’une simple "croyance" (le mot y est). Du reste, pour l’auteur, Dieu lui-même est soumis à la succession ou au temps ; la création est un acte temporel : "aussitôt que Dieu existe, il crée" ; c’est donc qu’il a un commencement, et probablement doit-il aussi être situé dans l’espace, prétendu infini. Dire que "l’idée de Dieu est synonyme de l’idée de Créateur", c’est émettre une affirmation plus que contestable : osera-t-on soutenir que tous les peuples qui n’ont pas l’idée de création, c’est-à-dire en somme tous ceux dont les conceptions ne sont point de source judaïque, n’ont par là même aucune idée qui corresponde à celle de la Divinité ? C’est manifestement absurde ; et que l’on remarque bien que, quand il s’agit ici de création, ce qui est ainsi désigné n’est jamais que le monde corporel, c’est-à-dire le contenu de l’espace que l’astronome a la possibilité d’explorer avec son télescope ; l’Univers est vraiment bien petit pour ces gens qui mettent l’infini et l’éternité partout où il ne saurait en être question ! S’il a fallu toute l’"éternité passée" pour arriver à produire le monde corporel tel que nous le voyons aujourd’hui, avec des êtres comme les individus humains pour représenter la plus haute expression de la "vie universelle et éternelle", il faut convenir que c’est là un piteux résultat ; et, assurément, ce ne sera pas trop de toute l’"éternité future" pour parvenir à la "perfection", si relative pourtant, dont rêvent nos évolutionnistes. Cela nous rappelle la bizarre théorie de nous ne savons plus trop quel philosophe contemporain (si nos souvenirs sont exacts, ce doit être Guyau), qui se représentait la seconde "moitié de l’éternité" comme devant se passer à réparer les erreurs accumulées pendant la première moitié ; et voilà les "penseurs" qui se croient "éclairés", et qui se permettent de tourner en dérision les conceptions religieuses !

Auteur: Guénon René

Info: L'Erreur spirite, deuxième partie, ch. IX, pp. 294 à 298, éd. Éditions Traditionnelles, 1977

[ contradictions ] [ évolution spirituelle ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

écholocalisation

Le secret ignoré des peintures rupestres

La démonstration d'une association entre le son et l'image dans l'art rupestre apporte une dimension supplémentaire à l'archéologie. Dans les grottes, les dessins d'animaux sont placés là où il y a beaucoup d'échos et de fortes résonances.

Les hommes du paléolithique ne choisissaient pas au hasard les parois où ils peignaient des mammouths, des aurochs, des cerfs, des chevaux. La plupart des peintures rupestres ont été exécutées là où la cavité amplifie l'intensité et la durée des sons et où il y a de nombreux échos. Des études conduites à la fin des années 1980 par Iegor Reznikoff et Michel Dauvois ont montré que les grottes constituent un univers sonore tout à fait extraordinaire. "Il est illusoire de comprendre le sens de l'art pariétal en le limitant à l'aspect visuel", souligne Iegor Reznikoff, mathématicien, philosophe des sciences et spécialiste de l'art vocal ancien. Pour lui, il n'est pas concevable de regarder les peintures rupestres comme de simples scènes de chasse. Quand elles étaient éclairées à la torche, les voix leur donnaient "une signification rituelle, voire chamanique".

L'association entre le son et l'image dans l'art rupestre vient d'être confirmée en Espagne dans les abris sous roche de la région de Vallorta, au nord de Valence (Journal of Archaeological Science, décembre 2012). Des tests acoustiques utilisant la voix humaine, un sifflet et les battements de main ont montré que là-bas aussi les peintures sont concentrées dans les endroits caractérisés par une forte résonance acoustique et de nombreux échos. Moins célèbre que l'art magdalénien, l'art pariétal levantin est moins ancien (entre -10.000 et -6500 ans) que celui de la grotte Chauvet (-30.000 ans) ou de Lascaux (-18.000 ans). Réalisés par des éleveurs et des agriculteurs, les dessins représentent du bétail - beaucoup de chèvres - et des humains en train de chasser et de se battre, figurés de manière très schématique.

En France, les recherches acoustiques ont été conduites dans les grottes du Portel, Niaux, Oxocelhaya et Isturitz, dans les Pyrénées, ainsi qu'à Arcy-sur-Cure, en Bourgogne. Iegor Reznikoff a utilisé un sonomètre et sa propre voix (des "oh, oh, oh" et des "mmh, mmh", de faible intensité) afin de mieux faire résonner la cavité. Résultat, dans toutes ces grottes, entre 80% et 90% des œuvres se trouvent sur des parois où les sons résonnent beaucoup, ce qui est loin d'être la règle. Ainsi, dans le Salon noir de la grotte de Niaux où sont regroupées la plupart des images d'animaux, la durée de résonance est de cinq secondes alors qu'elle est quasiment nulle dans les autres parties. Dans cette même salle, on compte jusqu'à sept échos.

Un travail de pionnier

Au fil de ses recherches, Iegor Reznikoff s'est aperçu que le son et les images sont indissociables. Dans la grotte du Portel qui a été entièrement cartographiée, il n'y a aucune peinture dans une grande salle aux parois pourtant parfaitement lisses mais sans aucune résonance.

"J'ai mis du temps à me rendre compte que les hommes du paléolithique utilisaient aussi les sons pour se guider dans la grotte", ajoute Iegor Reznikoff. En effet, dans les étroits boyaux où on avance en rampant, il n'était pas question pour eux d'emporter une torche. Une lampe à huile n'éclairant pas assez pour se diriger sur des centaines de mètres plongés dans le noir total, ils émettaient des sons et se guidaient grâce aux échos. "Les hommes préhistoriques avaient une écoute très fine. C'était pour eux une question de survie, ils étaient sur le qui-vive jour et nuit, à l'affût du moindre bruit", analyse Iegor Reznikoff. Seule l'écholocation leur permettait de savoir où ils allaient dans le noir.

Dans le dédale des tunnels, le mathématicien-musicien a eu la surprise de découvrir des traits rouges presque à chaque point de forte résonance. Pour lui, il doit s'agir de marques acoustiques, peut-être des points de repère dans un parcours initiatique.

Il a retrouvé plusieurs de ces traits rouges dans certaines niches proches des peintures. Intrigué, il a voulu tester leur acoustique. "La résonance de ces petites excavations est telle qu'une simple vibration sonore se transforme en beuglement d'aurochs ou en hennissements qui se propagent à l'intérieur de la grotte", se souvient encore Iegor Reznikoff, émerveillé.

Il ne désespère pas un jour de pouvoir explorer Lascaux, même si une partie du sol a été enlevée, ce qui a modifié son acoustique. Il s'est inscrit depuis plusieurs années pour étudier la grotte Chauvet. "Mais on laisse passer d'abord les sommités", regrette-t-il, ajoutant qu'en France ses recherches ont été accueillies avec des grimaces. Les Anglo-Saxons ont salué au contraire son travail de pionnier et ses travaux sont une référence. Les spécialistes en archéoacoustique ont une certitude: les sons jouaient un rôle primordial dans les temps préhistoriques et c'est une piste de recherche que l'on ne peut plus ignorer. 



 

Auteur: Internet

Info: Le FIgaro.fr, Yves Miserey, 14/12/2012, Reznikoff Iégor, "L’existence de signes sonores et leurs significations dans les grottes paléolithiques", in J. Clottes, 2005

[ historique ] [ chambre d'écho ] [ cavernes ] [ image-son ] [ balises ] [ paléomusicologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

chronos

Prix Nobel de physique 2023 : on a tout compris et on vous explique simplement pourquoi c’est génial

Anne L’Huillier, Ferenc Krausz et Pierre Agostini ont inventé la physique attoseconde, et ça méritait bien d’être expliqué.

Les "impulsions laser très courtes permettant de suivre le mouvement ultrarapide des électrons à l’intérieur des molécules et des atomes", vous dites ? Les lauréats du prix Nobel de physique 2023, le Hongrois Ferenc Krausz et les Français Anne L’Huillier et Pierre Agostini n’ont pas choisi le thème le plus parlant aux néophytes (mais la physique fondamentale l’est rarement).

Commençons par un terme étrange : les lauréats sont les inventeurs de la physique attoseconde. Atto, quoi ? Une attoseconde est une fraction de seconde, précisément 1×10−18 seconde : c’est très, très peu. "Pour vous donner une idée", explique au HuffPost le physicien Franck Lépine, chercheur du CNRS à l’Institut lumière matière, et collaborateur des Nobel 2023, en terme d’ordre de grandeur "il y a autant de différence entre une attoseconde et une seconde qu’entre une seconde et l’âge de l’univers".

Lorsqu'il est contemplé à cette échelle de temps, le monde ralentit. Le battement d'ailes d'un colibri devient une éternité.

Aller "chercher" une attoseconde précise dans une seconde, c’est donc pointer une seconde précise dans l’univers depuis sa naissance. On vous l’avait bien dit, c’est court, un laps de temps à peine concevable.

La photo la plus rapide du monde

Mais comment ont-ils "inventé" cette physique ? Les Nobel 2023 ont réussi à mettre au point un appareil qui permet d’observer les électrons au sein de la matière : des éléments au déplacement si rapide que seul un "flash" de l’ordre de l’attoseconde permet de les capturer. Les trois chercheurs sont donc récompensés pour la mise au point d’une "caméra" ultrarapide… Et on va même vous raconter comment elle fonctionne.

Une impulsion très puissante est envoyée au laser vers des atomes. Sous l’effet de la lumière envoyée, Les électrons qui gravitent autour de ces atomes vont alors être accélérés et émettre à leur tour un flash lumineux qui dure environ une attoseconde : c’est ce que l’on appelle la High harmonic generation, ou production d’harmoniques élevées. Ce sont ces impulsions qui vont prendre les électrons en photo. Pourquoi une durée aussi courte est-elle nécessaire ? Parce que les électrons ne tiennent pas en place.

Au-delà de la physique

"Faisons un parallèle avec le cinéma, explique Franck Lépine. On découpe le mouvement en un certain nombre de photos par seconde. La photo fige l’objet qui bouge, mais si la capture prend trop de temps, on découpe le mouvement, les images se superposent", ce qui crée un effet de flou. "Si jamais nos flashes de lumières durent trop longtemps, on ne va pas voir seulement électrons bouger, mais également les atomes, voire les ensembles d’atomes", et donc l’objet de l’observation ne sera pas net.

Les découvertes des trosi chercheurs ne permettent pas seulement d’observer les électrons avec une précision nouvelle. Elles sont également un instrument pour les manipuler. La lumière envoyée sur les électrons les bouscule, et là encore la physique attoseconde peut tout changer, et pas seulement dans le domaine des sciences fondamentales. "On peut manipuler les réactions chimiques en manipulant les électrons", détaille Franck Lépine.

À Lyon, son laboratoire est l’un des trois en France à disposer des équipements nécessaires pour travailler avec la physique attoseconde. "Parmi les choses sur lesquelles on travaille, il y a l’utilisation des technologies attoseconde pour comprendre comment fonctionne l’ADN du vivant." La physique attoseconde, vous n’en entendrez peut-être pas parler à nouveau de sitôt, mais les découvertes qui en découlent certainement.

Historique

En 1925, Werner Heisenberg, pionniers de la mécanique quantique, a affirmé que le temps nécessaire à un électron pour faire le tour d'un atome d'hydrogène était inobservable. Dans un sens, il avait raison. Les électrons ne tournent pas autour d'un noyau atomique comme les planètes autour des étoiles. Les physiciens les considèrent plutôt comme des ondes de probabilité qui donnent leurs chances d'être observées à un certain endroit et à un certain moment, de sorte que nous ne pouvons pas mesurer un électron qui vole littéralement dans l'espace.

Heisenberg a sous-estimé l'ingéniosité de physiciens du XXe siècle comme L'Huillier, Agostini et Krausz. Les chances que l'électron soit ici ou là varient d'un moment à l'autre, d'une attoseconde à l'autre. Grâce à la possibilité de créer des impulsions laser attosecondes capables d'interagir avec les électrons au fur et à mesure de leur évolution, les chercheurs peuvent sonder directement les différents comportements des électrons.

Comment les physiciens produisent-ils des impulsions attosecondes ?

Dans les années 1980, Ahmed Zewail, de l'Institut de technologie de Californie, a développé la capacité de faire clignoter des lasers avec des impulsions d'une durée de quelques femtosecondes, soit des milliers d'attosecondes. Ces impulsions, qui ont valu à Zewail le prix Nobel de chimie en 1999, étaient suffisantes pour permettre aux chercheurs d'étudier le déroulement des réactions chimiques entre les atomes dans les molécules. Cette avancée a été qualifiée de "caméra la plus rapide du monde".

Pendant un certain temps, une caméra plus rapide semblait inaccessible. On ne savait pas comment faire osciller la lumière plus rapidement. Mais en 1987, Anne L'Huillier et ses collaborateurs ont fait une observation intrigante : Si vous éclairez certains gaz, leurs atomes sont excités et réémettent des couleurs de lumière supplémentaires qui oscillent plusieurs fois plus vite que le laser d'origine - un effet connu sous le nom d'"harmoniques". Le groupe de L'Huillier a découvert que dans des gaz comme l'argon, certaines de ces couleurs supplémentaires apparaissaient plus brillantes que d'autres, mais selon un schéma inattendu. Au début, les physiciens ne savaient pas trop quoi penser de ce phénomène.

Au début des années 1990, L'Huillier et d'autres chercheurs ont utilisé la mécanique quantique pour calculer les différentes intensités des diverses harmoniques. Ils ont alors pu prédire exactement comment, lorsqu'un laser infrarouge oscillant lentement frappait un nuage d'atomes, ces atomes émettaient à leur tour des faisceaux de lumière "ultraviolette extrême" oscillant rapidement. Une fois qu'ils ont compris à quelles harmoniques il fallait s'attendre, ils ont trouvé des moyens de les superposer de manière à obtenir une nouvelle vague : une vague dont les pics s'élèvent à l'échelle de l'attoseconde. Amener des collectifs géants d'atomes à produire ces ondes finement réglées de concert est un processus que Larsson compare à un orchestre produisant de la musique.

 Au cours des années suivantes, les physiciens ont exploité cette compréhension détaillée des harmoniques pour créer des impulsions attosecondes en laboratoire. Agostini et son groupe ont mis au point une technique appelée Rabbit, ou "reconstruction d'un battement attoseconde par interférence de transitions à deux photons". Grâce à Rabbit, le groupe d'Agostini a généré en 2001 une série d'impulsions laser d'une durée de 250 attosecondes chacune. La même année, le groupe de Krausz a utilisé une méthode légèrement différente, connue sous le nom de streaking, pour produire et étudier des salves individuelles d'une durée de 650 attosecondes chacune. En 2003, L'Huillier et ses collègues les ont tous deux surpassés avec une impulsion laser d'une durée de 170 attosecondes seulement.

Que peut-on faire avec des impulsions attosecondes ?

Les impulsions attosecondes permettent aux physiciens de détecter tout ce qui change sur une période de quelques dizaines à quelques centaines d'attosecondes. La première application a consisté à essayer ce que les physiciens avaient longtemps cru impossible (ou du moins extrêmement improbable) : voir exactement ce que font les électrons.

En 1905, Albert Einstein a donné le coup d'envoi de la mécanique quantique en expliquant l'effet photoélectrique, qui consiste à projeter des électrons dans l'air en éclairant une plaque métallique (sa théorie lui vaudra plus tard le prix Nobel de physique en 1921). Avant l'ère de la physique des attosecondes, les physiciens supposaient généralement que la chaîne de réactions qui conduisait à la libération des électrons lancés était instantanée.

En 2010, Krausz et ses collègues ont démontré le contraire. Ils ont utilisé des impulsions attosecondes pour chronométrer les électrons détachés des atomes de néon. Ils ont notamment constaté qu'un électron dans un état de basse énergie fuyait son hôte 21 attosecondes plus vite qu'un électron dans un état de haute énergie. En 2020, un autre groupe a montré que les électrons s'échappent de l'eau liquide des dizaines d'attosecondes plus rapidement que de la vapeur d'eau.

D'autres applications des impulsions attosecondes sont en cours de développement. La technique pourrait permettre de sonder toute une série de phénomènes liés aux électrons, notamment la façon dont les particules portent et bloquent la charge électrique, la façon dont les électrons rebondissent les uns sur les autres et la façon dont les électrons se comportent collectivement. Krausz fait également briller des flashs attosecondes sur du sang humain. L'année dernière, il a contribué à montrer que de minuscules changements dans un échantillon de sang peuvent indiquer si une personne est atteinte d'un cancer à un stade précoce, et de quel type.

Plus tôt dans la matinée, le comité Nobel a eu du mal à joindre Mme L'Huillier pour l'informer qu'elle était la cinquième femme de l'histoire à recevoir le prix Nobel de physique. Lorsqu'il a finalement réussi à la joindre, après trois ou quatre appels manqués, elle était en train de donner une conférence à ses étudiants. Elle est parvenue à la terminer, même si la dernière demi-heure a été très difficile. "J'étais un peu émue à ce moment", a-t-elle déclaré plus tard.

Auteur: Internet

Info: huffingtonpost et quantamagazine, 3 sept. 2023

[ nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel