Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 497
Temps de recherche: 0.066s

non-voyant

Le monde tel que l'imaginent ceux qui n'ont jamais vu. (II)

Imaginer les couleurs

L'épineuse question des couleurs offre un autre exemple du "fossé perceptif" qui sépare voyants et aveugles de naissance. Les voyants s'imaginent souvent qu'il leur suffit de fermer les yeux pour se représenter la perception d'un aveugle. En réalité, ce n'est pas parce que nous fermons les yeux que nos yeux cessent de voir : le noir qui nous apparaît n'est rien d'autre que la couleur de nos paupières closes. Il en va tout autrement pour la plupart des aveugles, et à plus forte raison pour les aveugles de naissance. Comme il leur serait difficile de nous expliquer leur perception du monde, tant elle relève pour eux de l'évidence, le mieux est encore de nous tourner vers quelqu'un qui a vu avant de ne plus voir et qui, de ce fait, dispose d'un point de comparaison.

Jean-Marc Meyrat, devenu aveugle à l'âge de 8 ans, raconte son passage du monde des voyants dans celui des aveugles en ces termes : "Cela s'est fait très progressivement. Ce glissement presque impalpable s'est matérialisé par le déplacement de ma chaise de plus en plus près de l'écran de la télévision. Vers la fin du processus, je suis entré dans une sorte de zone grise qui s'est peu à peu assombrie pour virer au noir avant de disparaître. Puis, plus rien. La persistance de la couleur noire, parfois entrecoupée d'éblouissements, peut durer plus ou moins longtemps. Ceci est d'autant plus vrai si la cécité est intervenue brutalement. Après, plus rien, je ne peux pas dire mieux : plus rien.

Voilà qui pose un sérieux problème à ceux que le noir fascine et que la notion de rien effraie.". C'est l'image traditionnelle de l'aveugle errant dans les ténèbres qui se trouve ici battue en brèche... Certains aveugles tardifs regrettent de n'avoir pas même la perception du noir : ainsi, l'écrivain Jorge Luis Borges, devenu aveugle au cours de sa vie, affirmait que le noir lui manquait surtout au moment d'aller se coucher, lui qui avait pris l'habitude de s'endormir dans l'obscurité la plus complète...

Qu'est-ce que c'est que de ne rien voir ? En réalité, il est aussi difficile pour un aveugle de naissance de se représenter les couleurs que pour un voyant d'imaginer une perception absolument dénuée de couleurs, où l'on ne trouve pas même de noir et blanc, ni aucune nuance intermédiaire : autant chercher à imaginer un désert sans sol ni ciel, ou ce fameux couteau dont parle Lichtenberg, dépourvu de lame et auquel manque le manche. "Les gens s'imaginent les choses par rapport à ce qu'ils connaissent, remarque Christine Cloux. Nous qui entendons, nous imaginons à tort que les sourds de naissance sont plongés dans le silence. Or, pour connaître le silence il faut connaître le bruit, ce qui est notre cas mais pas celui des sourds, qui ne connaissent pas plus le bruit que son absence. Ce qu'ils connaissent, c'est un monde privé de ces notions."

Ces considérations posent tout de même plusieurs problèmes logiques : comment un aveugle peut-il se représenter l'image spatiale d'un objet, en considérant qu'il n'a pas même deux couleurs différentes à sa disposition pour distinguer l'objet du fond ? Il suffirait pourtant de nous remémorer certaines images qui nous viennent en rêve, ou en pensée : par exemple, nous voyons l'image d'une femme, mais nous sommes bien incapables de dire quelle est la couleur ou la forme exacte de sa robe. L'image mentale du voyant a rarement la précision d'une image photographique... Ces couleurs flottantes, ces formes incertaines, peuvent sans doute nous donner un aperçu des images non visuelles de l'aveugle. Si les couleurs sont inaccessibles aux sens de l'aveugle, cela ne l'empêche pas de tenter de se les représenter.

"Ca n'empêche même pas d'avoir des préférences, fait remarquer Sophie Massieu. Je m'habille en fonction de ce que j'imagine de la couleur en question. Par exemple, je ne porte jamais de jaune. Allez savoir ce qu'il m'a fait ce pauvre jaune...". "Je me suis créée des représentations mentales des couleurs, exactement comme je me représente les idées ou les concepts qui ne se voient pas, comme un atome par exemple..." explique Christine Cloux.

Mais d'où viennent ces représentations mentales exactement ? Pour la plupart, des commentaires des voyants : "Un jour une copine est arrivée vers moi en s'écriant : "Ouah ! Du rouge ! Ca te va super bien !" D'autres ont confirmé et depuis ce moment-là j'achète plus souvent du rouge.", raconte Christine. Parfois, la couleur peut évoquer à l'aveugle de naissance un souvenir précis : Sophie Massieu associe le bleu Majorelle à un après-midi passé dans le jardin Majorelle à Marrakech. Certains aveugles associeront le noir à la tristesse s'ils ont porté du noir pendant un enterrement, le blanc à la gaieté, puisqu'ils savent que c'est la couleur dont se parent les mariées et les communiants... La couleur dépose son image dans la mémoire affective et non dans la mémoire sensorielle ; le mot s'imprègne de l'émotion, comme un buvard. "Cela rend la sensation plus épaisse." explique Sophie.

Dans ce domaine éminemment subjectif, les "glissements sensoriels" sont légion. Il arrive fréquemment que l'aveugle de naissance prête aux couleurs les propriétés tactiles des objets qui leur sont couramment associés : par exemple, si en se vautrant dans le gazon, l'aveugle en a apprécié la douceur et la mollesse, il attribuera désormais au vert ses propriétés ; de même, le rouge brûle puisque c'est le feu, le blanc est froid comme la neige... L'aveugle de naissance n'hésite jamais à puiser dans des termes empruntés aux autres sens pour décrire l'image qu'il se fait des couleurs. Christine Cloux vous dira que le blanc lui semble "très aérien, léger, comme de la glace, très pur, peut-être parfois trop", alors que le noir lui paraît au contraire "presque encombrant, étouffant".

A ce petit jeu, la langue est pour l'aveugle un vivier de métaphores et d'associations verbales précieuses : ne dit-on pas un éclat tapageur, une teinte agressive ou insolente, un rose fade ? Ecrivains et poètes ne parlent-ils pas de "l'épaisseur des ténèbres", de "ruissellements de lumières" ? La mémoire tactile de l'aveugle est alors à même de lui fournir des repères, aussi abstraits soient-ils. Quand elle lit ou entend les termes "une forêt obscure", Christine Cloux s'imagine "que la forêt est très dense, qu'il y fait frisquet, voire franchement froid parce que le soleil ne passe pas... "Le rayonnement de la chaleur donne une idée très nette à l'aveugle de ce que peut-être le rayonnement de la lumière (on parle d'ailleurs d'une lumière douce et pénétrante...).

Parfois, l'image que l'aveugle se fait d'une couleur se fonde simplement sur le mot qui la désigne. "Enfant, le jaune m'évoquait un clown en train de jouer de la trompette, parce que je trouvais le mot amusant et que je savais que c'est une couleur gaie, voire criarde, explique Christine Cloux. C'est jaune, yellow, gelb... ou même giallo. Ces sonorités participent à ma représentation de cette couleur.". Ce faisant, l'aveugle se comporte en quelque sorte en "cratylien"- du nom de Cratyle, cet interlocuteur de Socrate qui professait que la sonorité des mots pouvait nous renseigner sur la nature même de ce qu'ils désignent.

Un voyant, pourtant, sait bien qu'il est hasardeux de tenter d'établir un lien entre le nom d'une couleur et la couleur elle-même... Et cependant, n'agissons-nous pas de manière analogue quand nous imaginons une ville ou un pays où nous ne sommes jamais allés et dont nous ne savons rien, en nous fondant sur la sonorité de son nom ? Des noms tels que Constantinople, Byzance ou Marrakech ne charrient-ils pas déjà un flot d'images abstraites considérables rien que par leurs propriétés auditives, indépendamment même des images visuelles précises qu'on leur accole ? La plupart des aveugles de naissance n'hésitent pas à puiser dans les impressions auditives pour se représenter les couleurs : "Je me représente le spectre des diverses couleurs un peu comme l'échelle des sons - l'échelle des couleurs est simplement plus grande et plus complexe à se représenter." explique Christine Cloux.

La comparaison n'est pas insensée : couleurs et sons ont en commun de se définir par une certaine fréquence (hauteur pour le son, teinte pour la couleur), une certaine pureté (timbre pour le son, saturation pour la couleur), une certaine intensité (force pour le son, valeur ou luminosité pour la couleur)... Cela explique peut-être les fréquentes associations verbales entre l'ouïe et la vue dans le langage courant : ne parle-t-on pas d'un rouge criard, d'une gamme de couleur, du ton d'un tissu, d'une voix blanche ?

Pour Christine Cloux, si les couleurs émettaient du son, "le jaune, l'orange et le rouge nous casseraient les oreilles alors que le bleu par exemple ferait un bruit aussi soutenu mais moins fort, avec le vert." Cette croyance selon laquelle il pourrait exister une correspondance directe entre la sensation auditive et la sensation visuelle n'est pas propre aux aveugles, elle a longtemps hanté l'oeuvre des symbolistes et des romantiques, et des artistes en général : qu'on songe aux Synesthésies de Baudelaire ("les parfums, les couleurs et les sons se répondent" dans le poème Correspondances), à Rimbaud cherchant à assigner une couleur à chaque voyelle ("A noir, E blanc, I rouge"...), ou à cette très sérieuse table de concordance entre voyelles, couleurs et instruments que tenta d'établir René Ghil, un disciple de Mallarmé, ou encore au plasticien Nicolas Schöffer qui mit des sons en couleur... Bien qu'on sente ce qu'il entre de rêverie poétique dans cette croyance, on ne peut s'empêcher d'imaginer que, si les divers stimuli sensoriels n'étaient que les différents dialectes d'une même langue, toutes sortes de traductions deviendraient possibles...

Que vienne le temps du traducteur couleurs/sons qui permettrait de traduire un tableau de Van Gogh en symphonie ! Imaginer l'art La seule chose que les aveugles de naissance savent des peintres, c'est ce qu'on a bien voulu leur en dire - or le langage est évidemment inapte à rendre compte de ce qui fait la spécificité de cet art. Là encore, l'aveugle doit trouver des analogies où il peut : Christine Cloux imagine la peinture impressionniste en se fondant sur l'impressionnisme musical et littéral, la peinture cubiste en pensant au style de Gertrude Stein - elle imagine les personnages peints par Picasso comme "des corps dont on aurait" découpé" les diverses parties pour les reconstituer n'importe comment.", mais ajoute aussitôt "Je n'aime pas le désordre, ça ne me parle pas.". Quand on lui demande ce que lui évoque une oeuvre comme le Carré blanc sur fond blanc de Malevitch, il lui semble que "ce doit être beau, presque intangible et cependant... Comme une porte d'entrée." 

Natacha de Montmollin est plus sceptique : "Je ne vois pas l'intérêt.". La peinture l'indiffère - Escher est le seul dessinateur dont elle se soit forgée une image précise : "sa technique m'intrigue". Etrange, si l'on considère que les dessins d'Escher reposent la plupart du temps sur des illusions optiques, des perspectives truquées qui, par essence, ne peuvent tromper qu'un voyant... Quel rapport les aveugles de naissance entretiennent-ils avec un art comme la poésie ? Sophie Massieu avoue qu'elle n'y est pas très sensible. "Je ne sais pas si ça relève de mon caractère ou de ma cécité... Peut-être qu'il y a une part de l'image qui m'échappe... "Christine Cloux, pour sa part, ne considère pas que la cécité soit une entrave pour apprécier un poème : selon elle, les images poétiques font autant - si ce n'est davantage - appel à la mémoire affective qu'à la mémoire sensorielle. "Peut-être que parfois je perçois une métaphore un peu autrement que quelqu'un d'autre, mais c'est le cas pour chacun de nous, je pense. Nous comprenons les figures de styles avec notre monde de référence.". Le rapport à l'art de certains aveugles de naissance semble parfois tenir du besoin vital : "C'est une expérience très riche dont je ne saurais me passer, explique Christine Cloux. J'ai peut-être d'autant plus besoin de l'art que je n'ai pas les images "extérieures à moi"".

Si l'aveugle de naissance exige davantage de l'art que le commun des voyants, c'est peut-être parce qu'il attend de lui qu'il lui restitue les beautés de la nature dont la cécité l'a privé. Oscar Wilde, pour expliquer à quel point l'oeuvre d'un artiste pouvait déteindre sur notre vision du monde, disait que ce n'est pas l'art qui imite la nature mais la nature qui imite l'art. Cette phrase a une pertinence toute particulière dans le cas de l'aveugle de naissance, car tout ce qu'il lit à propos de la nature, dans les poèmes ou dans les romans, se mêle intimement dans son imaginaire à la représentation qu'il s'en fait dans la vie de tous les jours - et cette représentation a sans doute plus à voir avec une transfiguration artistique, infiniment subjective, qu'avec, par exemple, une reproduction photographique un peu floue... Imaginer la nature D'une façon générale, la nature - tout du moins sa face visible - constitue pour l'aveugle de naissance une source inépuisable de curiosités. Certains phénomènes auxquels les voyants sont accoutumés demeurent pour lui un mystère - notamment les plus insubstantiels, ceux qu'il ne peut connaître par le toucher. "Un gaz... on risque de ne pas le voir. En revanche on voit la vapeur, ce qui est un peu étrange puisque l'eau est transparente, et pourtant, vous la voyez tout de même... Je le comprends en théorie mais c'est quand même bizarre." avoue Christine Cloux.

La transparence fait partie des notions difficiles à concevoir quand on ignore ce qu'est l'opacité visuelle - en témoigne la fascination qu'exercent les poissons sur de ce jeune aveugle de naissance, interrogé par Sophie Calle (dans le catalogue de l'exposition M'as-tu vue) : "C'est leur évolution dans l'eau qui me plaît, l'idée qu'ils ne sont rattachés à rien. Des fois, je me prends à rester debout des minutes entières devant un aquarium, debout comme un imbécile.". Un autre (toujours cité par Sophie Calle) tente de se représenter les miroitements de la mer : "On m'a expliqué que c'est bleu, vert, que les reflets avec le soleil font mal aux yeux. Cela doit être douloureux à regarder." Certaines reproductions peuvent donner à l'aveugle de naissance une idée approximative de certains phénomènes insubstantiels. Une femme (interrogée par Jane Hervé) se souvient d'un bas-relief du Moyen-Âge : "Il représentait le feu, avec des flammes en pointe comme des épées. Des flammes en pierre. J'étais éblouie. Des stries dans tous les sens, des nervures sur un flanc de rocher. Je n'avais aucune idée de la façon dont on pouvait représenter une flamme. Je ne savais pas que l'on pouvait toucher du feu".

Les aveugles de naissance n'en demeurent pas moins les premiers à reconnaître l'insuffisance de ces palliatifs, qui les induisent parfois d'avantage en erreur qu'ils ne les renseignent vraiment. "Les étoiles, on en a tous dessiné, alors ça empiète sur l'imagination, remarque Christine Cloux. Sauf que les vraies étoiles doivent avoir bien d'autres formes encore..." La difficulté à se représenter un phénomène proprement visuel, quand elle n'arrête pas un aveugle, peut au contraire aiguillonner sa curiosité. Il semble en effet que, pour certains d'entre eux, comme d'ailleurs pour quantité de voyants, moins une chose leur est accessible et plus elle les fascine. Une notion comme l'horizon, par exemple, laisse Christine Cloux rêveuse : "L'horizon, c'est là où la vue ne peut pas aller plus loin. C'est le sens de l'expression "à perte de vue", littéralement. C'est une limite, poétique pour moi... Instinctivement cela m'évoque la mer, le soleil, les océans. L'espace, l'infini presque, la liberté, l'évasion.". Le spectacle des plaines s'étendant à perte de vue, des montagnes dont les sommets se perdent dans les nuages ou des vallées s'abîmant dans des gouffres vertigineux, demeure l'apanage de la vue, mais certaines impressions auditives peuvent en donner de puissants équivalents à l'aveugle. Face à la mer, le bruit de la vague qui vient de loin lui permet de composer, à partir d'images spatiales finies, "une vision indéfinie qui peut lui donner la sensation de l'infini" (Pierre Villey). "Sur un rivage, je me concentre sur le bruit des vagues à en avoir le vertige, et je me livre toute entière à l'instant présent."confie Sophie Massieu.

A la montagne, des bruits légers transportés à de grandes distances, dont l'écho se répercute pendant de longues secondes, élargissent "l'horizon" de l'aveugle dans toutes les directions à la fois. L'aveugle est en outre affranchi de certains aléas liés à l'altitude : "Je ne pense pas que je puisse avoir le vertige, dans la mesure où il me semble qu'il s'agit d'un phénomène en relation avec la vue. "explique Daniel Baud (66 ans, retraité). Christine Cloux assure même aimer "la sensation de vide au bord d'une falaise.". Certains aveuglent de naissance aiment particulièrement se confronter à l'immensité des grands espaces : "Les espaces infinis, je suis allée dans le désert juste pour me plonger dedans..." affirme Sophie Massieu. Sans vouloir généraliser outre mesure, il semble que l'infini soit, pour les aveugles de naissance, moins une source de crainte que de curiosité. Quand, après leur avoir lu la phrase de Pascal : "Le silence éternel des espaces infinis m'effraie.", je leur demande lequel de ces termes leur inspire la plus grande crainte, aucun ne mentionne l'infini.

Pour Sophie Massieu, c'est l'éternité : "Se dire que rien ne va changer pendant toute une vie, ça ne correspond pas du tout à mon caractère". Pour Daniel Baud, c'est le silence éternel - et pour cause, un silence absolu serait, pour l'aveugle, comme une obscurité totale pour un voyant. "Perdre tout point de repère - plus d'espace-temps, plus de son, plus d'espace... - effectivement c'est effrayant, admet Christine Cloux. Nous avons besoin d'un lieu où être ancrés, d'un point de référence pour pouvoir dire :"je suis ici, je suis vivant." Mais sa foi tempère ses craintes : "C'est effrayant pour nous maintenant, Mais lorsque nous serons éternels, nous n'aurons plus besoin de ces notions physiques."

a couleur du "jamais" 

Nous disions plus haut que l'aveugle de naissance ne pouvait pas regretter la vue puisqu'il s'agissait d'un état qu'il n'avait jamais connu... Mais ne leur arrivent-ils jamais de soupirer après ces merveilles de la nature dont ils entendent parler autour d'eux, en songeant à ces beautés qu'ils n'ont jamais vu et, pour la majorité d'entre eux, ne verront jamais ? Ces pensées ne colorent-elles pas ce "jamais" d'une pointe d'amertume ?

"Je regrette la vue comme on peut envier le don de la divination ou les ailes de l'aigle" affirme un aveugle de naissance cité par Pierre Villey. Quand Christine Cloux s'imagine voyante, elle reste songeuse : "Peut-être qu'au lieu d'écrire je ferais des aquarelles... et encore, je pense que non.". La vue semble n'inspirer aux aveugles de naissance que des songes vains ou des désirs abstraits - voire même, parfois, une certaine méfiance : "Tant de gens qui voient sont en fait malheureux, remarque Christine Cloux. Pour sûr, la vue n'apporte ni le bonheur ni rien. Ou peut-être qu'elle apporte trop et qu'on est envahis par tout ce qu'il faut regarder." A l'en croire, la cécité peut même parfois s'avérer un filtre bénéfique : "Je peux éviter de me représenter ce que je ne veux pas, comme nombre d'images que vous subissez aux informations : les catastrophes, les morts... Je les comprends, je les intègre, ça me touche, mais je ne les "vois" pas précisément dans ma tête. L'impact émotionnel est largement suffisant et je ne suis pas masochiste."

En définitive, le rapport que l'aveugle de naissance entretient avec la vue est sans doute semblable à celui que nous entretenons tous vis-à-vis de l'inconnu : un mélange de peur et de désir, d'attirance et de défiance, comme en atteste ce témoignage de Christine Cloux, à qui nous laisserons le mot de la fin : "Oui, il m'arrive de regretter de ne pas voir. Je ne verrai jamais le visage des gens que j'aime, les fleurs, les étoiles, la nature, les petits enfants, les gens qui me sourient, les couleurs, les planètes... Et si je pouvais voir, juste un jour, juste une heure, cela ferait tellement plaisir à ma famille ! Ce serait pour eux un vrai bonheur, je pense, nettement plus que pour moi, puisque que je suis heureuse de ma vie de toute manière. Mais comme je suis curieuse, je voudrais tout voir, quitte à ne rien comprendre : les nuages, les étoiles, les gens. Je voudrais voir les visages changer lorsqu'ils ressentent des émotions. Je voudrais regarder dans un miroir pour voir quel effet ça fait d'être "face à soi-même" littéralement. Mais si vraiment je pouvais, je crois bien que ça me donnerait le vertige. C'est parce que je sais que ça ne risque pas d'arriver que je me dis que ce serait peut-être bien. Mais voir tout le temps... pas sûr. Il faudrait apprendre à voir, puis à regarder, puis à gérer. Et qui saurait m'apprendre comment faire ?"

Auteur: Molard Arthur

Info: http://www.jeanmarcmeyrat.ch/blog/2011/05/12/le-monde-tel-que-limaginent-ceux-qui-nont-jamais-vu

[ réflexion ] [ vacuité ] [ onirisme ] [ mimétisme ] [ imagination ] [ synesthésie ] [ monde mental ]

 

Commentaires: 0

évolution subatomique

Une nouvelle idée pour assembler la vie         (Avec l'aimable autorisation de Lee Cronin)

Si nous voulons comprendre des constructions complexes, telles que nous-mêmes, la théorie de l'assemblage affirme que nous devons tenir compte de toute l'histoire de la création de ces entités, du pourquoi et comment elles sont ce qu'elles sont.

La théorie de l'assemblage explique pourquoi, étant donné les possibilités combinatoires apparemment infinies, nous n'observons qu'un certain sous-ensemble d'objets dans notre univers.

La vie sur d'autres mondes - si elle existe - pourrait être si étrangère qu'elle en serait méconnaissable. Il n'est pas certain que la biologie extraterrestre utilise la même chimie que celle de la Terre, avec des éléments constitutifs familiers tels que l'ADN et les protéines. Avec cette approche les scientifiques pourraient même repérer les signatures de ces formes de vie sans savoir qu'elles sont le fruit de la biologie.

Ce problème est loin d'être hypothétique. En avril, la sonde Juice de l'Agence spatiale européenne a décollé de la Guyane française en direction de Jupiter et de ses lunes. L'une de ces lunes, Europe, abrite un océan profond et saumâtre sous sa croûte gelée et figure parmi les endroits les plus prometteurs du système solaire pour la recherche d'une vie extraterrestre. L'année prochaine, le vaisseau spatial Europa Clipper de la NASA sera lancé, lui aussi en direction d'Europe. Les deux engins spatiaux sont équipés d'instruments embarqués qui rechercheront les empreintes de molécules organiques complexes, signe possible de vie sous la glace. En 2027, la NASA prévoit de lancer un hélicoptère ressemblant à un drone, appelé Dragonfly, pour survoler la surface de Titan, une lune de Saturne, un monde brumeux, riche en carbone, avec des lacs d'hydrocarbures liquides qui pourraient être propices à la vie, mais pas telle que nous la connaissons.

Ces missions et d'autres encore se heurteront au même obstacle que celui auquel se heurtent les scientifiques depuis qu'ils ont tenté pour la première fois de rechercher des signes de biologie martienne avec les atterrisseurs Viking dans les années 1970 : Il n'y a pas de signature définitive de la vie.

C'est peut-être sur le point de changer. En 2021, une équipe dirigée par Lee Cronin, de l'université de Glasgow, en Écosse, et Sara Walker, de l'université d'État de l'Arizona, a proposé une méthode très générale pour identifier les molécules produites par les systèmes vivants, même ceux qui utilisent des chimies inconnues. Leur méthode suppose simplement que les formes de vie extraterrestres produisent des molécules dont la complexité chimique est similaire à celle de la vie sur Terre.

Appelée théorie de l'assemblage, l'idée qui sous-tend la stratégie des deux chercheurs a des objectifs encore plus ambitieux. Comme l'indique une récente série de publications, elle tente d'expliquer pourquoi des choses apparemment improbables, telles que vous et moi, existent. Et elle cherche cette explication non pas, à la manière habituelle de la physique, dans des lois physiques intemporelles, mais dans un processus qui imprègne les objets d'histoires et de souvenirs de ce qui les a précédés. Elle cherche même à répondre à une question qui laisse les scientifiques et les philosophes perplexes depuis des millénaires : qu'est-ce que la vie, de toute façon ?

Il n'est pas surprenant qu'un projet aussi ambitieux ait suscité le scepticisme. Ses partisans n'ont pas encore précisé comment il pourrait être testé en laboratoire. Et certains scientifiques se demandent si la théorie de l'assemblage peut même tenir ses promesses les plus modestes, à savoir distinguer la vie de la non-vie et envisager la complexité d'une nouvelle manière.

La théorie de l'assemblage a évolué, en partie, pour répondre au soupçon de Lee Cronin selon lequel "les molécules complexes ne peuvent pas simplement émerger, parce que l'espace combinatoire est trop vaste".

Mais d'autres estiment que la théorie de l'assemblage n'en est qu'à ses débuts et qu'il existe une réelle possibilité qu'elle apporte une nouvelle perspective à la question de la naissance et de l'évolution de la complexité. "Il est amusant de s'engager dans cette voie", a déclaré le théoricien de l'évolution David Krakauer, président de l'Institut Santa Fe. Selon lui, la théorie de l'assemblage permet de découvrir l'histoire contingente des objets, une question ignorée par la plupart des théories de la complexité, qui ont tendance à se concentrer sur la façon dont les choses sont, mais pas sur la façon dont elles sont devenues telles. Paul Davies, physicien à l'université de l'Arizona, est d'accord avec cette idée, qu'il qualifie de "nouvelle, susceptible de transformer notre façon de penser la complexité".

Sur l'ordre des choses

La théorie de l'assemblage est née lorsque M. Cronin s'est demandé pourquoi, compte tenu du nombre astronomique de façons de combiner différents atomes, la nature fabrique certaines molécules et pas d'autres. C'est une chose de dire qu'un objet est possible selon les lois de la physique, c'en est une autre de dire qu'il existe une voie réelle pour le fabriquer à partir de ses composants. "La théorie de l'assemblage a été élaborée pour traduire mon intuition selon laquelle les molécules complexes ne peuvent pas simplement émerger parce que l'espace combinatoire est trop vaste", a déclaré M. Cronin.

Walker, quant à lui, s'est penché sur la question de l'origine de la vie - une question étroitement liée à la fabrication de molécules complexes, car celles des organismes vivants sont bien trop complexes pour avoir été assemblées par hasard. Walker s'est dit que quelque chose avait dû guider ce processus avant même que la sélection darwinienne ne prenne le dessus.

Cronin et Walker ont uni leurs forces après avoir participé à un atelier d'astrobiologie de la NASA en 2012. "Sara et moi discutions de la théorie de l'information, de la vie et des voies minimales pour construire des machines autoreproductibles", se souvient M. Cronin. "Et il m'est apparu très clairement que nous convergions tous les deux sur le fait qu'il manquait une 'force motrice' avant la biologie."

Aujourd'hui, la théorie de l'assemblage fournit une explication cohérente et mathématiquement précise de l'apparente contingence historique de la fabrication des objets - pourquoi, par exemple, ne peut-on pas développer de fusées avant d'avoir d'abord la vie multicellulaire, puis l'homme, puis la civilisation et la science. Il existe un ordre particulier dans lequel les objets peuvent apparaître.

"Nous vivons dans un univers structuré de manière récursive*", a déclaré M. Walker. "La plupart des structures doivent être construites à partir de la mémoire du passé. L'information se construit au fil du temps.

Cela peut sembler intuitivement évident, mais il est plus difficile de répondre à certaines questions sur l'ordre des choses. Les dinosaures ont-ils dû précéder les oiseaux ? Mozart devait-il précéder John Coltrane ? Peut-on dire quelles molécules ont nécessairement précédé l'ADN et les protéines ?

Quantifier la complexité

La théorie de l'assemblage repose sur l'hypothèse apparemment incontestable que les objets complexes résultent de la combinaison de nombreux objets plus simples. Selon cette théorie, il est possible de mesurer objectivement la complexité d'un objet en examinant la manière dont il a été fabriqué. Pour ce faire, on calcule le nombre minimum d'étapes nécessaires pour fabriquer l'objet à partir de ses ingrédients, que l'on quantifie en tant qu'indice d'assemblage (IA).

En outre, pour qu'un objet complexe soit intéressant d'un point de vue scientifique, il faut qu'il y en ait beaucoup. Des objets très complexes peuvent résulter de processus d'assemblage aléatoires - par exemple, on peut fabriquer des molécules de type protéine en reliant n'importe quels acides aminés en chaînes. En général, cependant, ces molécules aléatoires ne feront rien d'intéressant, comme se comporter comme une enzyme. En outre, les chances d'obtenir deux molécules identiques de cette manière sont extrêmement faibles.

En revanche, les enzymes fonctionnelles sont fabriquées de manière fiable à maintes reprises en biologie, car elles sont assemblées non pas au hasard, mais à partir d'instructions génétiques transmises de génération en génération. Ainsi, si le fait de trouver une seule molécule très complexe ne vous dit rien sur la manière dont elle a été fabriquée, il est improbable de trouver plusieurs molécules complexes identiques, à moins qu'un processus orchestré - peut-être la vie - ne soit à l'œuvre.

Cronin et Walker ont calculé que si une molécule est suffisamment abondante pour être détectable, son indice d'assemblage peut indiquer si elle a été produite par un processus organisé et réaliste. L'intérêt de cette approche est qu'elle ne suppose rien sur la chimie détaillée de la molécule elle-même, ni sur celle de l'entité vivante qui l'a produite. Elle est chimiquement agnostique. C'est ce qui la rend particulièrement précieuse lorsque nous recherchons des formes de vie qui pourraient ne pas être conformes à la biochimie terrestre, a déclaré Jonathan Lunine, planétologue à l'université Cornell et chercheur principal d'une mission proposée pour rechercher la vie sur la lune glacée de Saturne, Encelade.

"Il est bien qu'au moins une technique relativement agnostique soit embarquée à bord des missions de détection de la vie", a déclaré Jonathan Lunine.

Il ajoute qu'il est possible d'effectuer les mesures requises par la théorie de l'assemblage avec des techniques déjà utilisées pour étudier la chimie des surfaces planétaires. "La mise en œuvre de mesures permettant l'utilisation de la théorie de l'assemblage pour l'interprétation des données est éminemment réalisable", a-t-il déclaré.

La mesure du travail d'une vie

Ce qu'il faut, c'est une méthode expérimentale rapide et facile pour déterminer l'IA (indice d'assemblage) de certaines molécules. À l'aide d'une base de données de structures chimiques, Cronin, Walker et leurs collègues ont conçu un moyen de calculer le nombre minimum d'étapes nécessaires à la fabrication de différentes structures moléculaires. Leurs résultats ont montré que, pour les molécules relativement petites, l'indice d'assemblage est à peu près proportionnel au poids moléculaire. Mais pour les molécules plus grandes (tout ce qui est plus grand que les petits peptides, par exemple), cette relation est rompue.

Dans ces cas, les chercheurs ont découvert qu'ils pouvaient estimer l'IA à l'aide de la spectrométrie de masse, une technique déjà utilisée par le rover Curiosity de la NASA pour identifier les composés chimiques à la surface de Mars, et par la sonde Cassini de la NASA pour étudier les molécules qui jaillissent d'Encelade.

La spectrométrie de masse décompose généralement les grosses molécules en fragments. Cronin, Walker et leurs collègues ont constaté qu'au cours de ce processus, les grosses molécules à IA élevé se fracturent en mélanges de fragments plus complexes que celles à IA faible (comme les polymères simples et répétitifs). Les chercheurs ont ainsi pu déterminer de manière fiable l'IA (indice d'assemblage) en fonction de la complexité du spectre de masse de la molécule.

Lorsque les chercheurs ont ensuite testé la technique, ils ont constaté que les mélanges complexes de molécules produites par des systèmes vivants - une culture de bactéries E. coli, des produits naturels comme le taxol (un métabolite de l'if du Pacifique aux propriétés anticancéreuses), de la bière et des cellules de levure - présentaient généralement des IA moyens nettement plus élevés que les minéraux ou les simples substances organiques.

L'analyse est susceptible de donner lieu à des faux négatifs : certains produits issus de systèmes vivants, tels que le scotch Ardbeg single malt, ont des IA qui suggèrent une origine non vivante. Mais ce qui est peut-être plus important encore, c'est que l'expérience n'a produit aucun faux positif : Les systèmes abiotiques ne peuvent pas obtenir des IA suffisamment élevés pour imiter la biologie. Les chercheurs ont donc conclu que si un échantillon doté d'un IA moléculaire élevé est mesuré sur un autre monde, il est probable qu'il ait été fabriqué par une entité que l'on pourrait qualifier de vivante.

(Photo-schéma : Une échelle de la vie)

Les chercheurs ont établi/estimé l'indice d'assemblage (IA) de substance variées par des mesures répétés de leurs structures moléculaires, Seules celles assemblées biologiquement ont un AI au-dessus d'un certain palier. 

Non biologique        (vert)

Indice               bas        moyen       haut

charbon             10...    12

quarz                    11... 12

granit                 10  ..   12..   15

Biologique               (jaune)

levure                10                         24

urine                9                          ...   27

eau de mer      9                                 ....28

e-Coli                                    15                        31

bière                 10                                 ..            34

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.1038/s41467-021-23258-x)

La spectrométrie de masse ne fonctionnerait que dans le cadre de recherches astrobiologiques ayant accès à des échantillons physiques, c'est-à-dire des missions d'atterrissage ou des orbiteurs comme Europa Clipper, qui peuvent ramasser et analyser des molécules éjectées de la surface d'un monde. Mais Cronin et ses collègues viennent de montrer qu'ils peuvent mesurer l'IA moléculaire en utilisant deux autres techniques qui donnent des résultats cohérents. L'une d'entre elles, la spectroscopie infrarouge, pourrait être utilisée par des instruments tels que ceux du télescope spatial James Webb, qui étudient à distance la composition chimique de mondes lointains.

Cela ne veut pas dire que ces méthodes de détection moléculaire offrent un instrument de mesure précis permettant de passer de la pierre au reptile. Hector Zenil, informaticien et biotechnologue à l'université de Cambridge, a souligné que la substance présentant l'IA le plus élevé de tous les échantillons testés par le groupe de Glasgow - une substance qui, selon cette mesure, pourrait être considérée comme la plus "biologique" - n'était pas une bactérie.

C'était de la bière.

Se débarrasser des chaînes du déterminisme

La théorie de l'assemblage prédit que des objets comme nous ne peuvent pas naître isolément - que certains objets complexes ne peuvent émerger qu'en conjonction avec d'autres. C'est intuitivement logique : l'univers n'a jamais pu produire un seul être humain. Pour qu'il y ait des êtres humains, il faut qu'il y en ait beaucoup.

La physique traditionnelle n'a qu'une utilité limitée lorsqu'il s'agit de prendre en compte des entités spécifiques et réelles telles que les êtres humains en général (et vous et moi en particulier). Elle fournit les lois de la nature et suppose que des résultats spécifiques sont le fruit de conditions initiales spécifiques. Selon ce point de vue, nous devrions avoir été codés d'une manière ou d'une autre dans les premiers instants de l'univers. Mais il faut certainement des conditions initiales extrêmement bien réglées pour que l'Homo sapiens (et a fortiori vous) soit inévitable.

La théorie de l'assemblage, selon ses défenseurs, échappe à ce type d'image surdéterminée. Ici, les conditions initiales n'ont pas beaucoup d'importance. Les informations nécessaires à la fabrication d'objets spécifiques tels que nous n'étaient pas présentes au départ, mais se sont accumulées au cours du processus d'évolution cosmique, ce qui nous dispense de faire porter toute la responsabilité à un Big Bang incroyablement bien réglé. L'information "est dans le chemin", a déclaré M. Walker, "pas dans les conditions initiales".

Cronin et Walker ne sont pas les seuls scientifiques à tenter d'expliquer que les clés de la réalité observée pourraient bien ne pas résider dans des lois universelles, mais dans la manière dont certains objets sont assemblés et se transforment en d'autres. La physicienne théorique Chiara Marletto, de l'université d'Oxford, développe une idée similaire avec le physicien David Deutsch. Leur approche, qu'ils appellent la théorie des constructeurs et que Marletto considère comme "proche dans l'esprit" de la théorie de l'assemblage, examine quels types de transformations sont possibles et lesquels ne le sont pas.

"La théorie des constructeurs parle de l'univers des tâches capables d'effectuer certaines transformations", explique M. Cronin. "On peut considérer qu'elle limite ce qui peut se produire dans le cadre des lois de la physique. La théorie de l'assemblage, ajoute-t-il, ajoute le temps et l'histoire à cette équation.

Pour expliquer pourquoi certains objets sont fabriqués et d'autres non, la théorie de l'assemblage identifie une hiérarchie imbriquée de quatre "univers" distincts.

1 Dans l'univers de l'assemblage, toutes les permutations des éléments de base sont autorisées. 2 Dans l'univers de l'assemblage possible, les lois de la physique limitent ces combinaisons, de sorte que seuls certains objets sont réalisables. 3 L'univers de l'assemblage contingenté élague alors le vaste éventail d'objets physiquement autorisés en sélectionnant ceux qui peuvent effectivement être assemblés selon des chemins possibles. 4 Le quatrième univers est l'assemblage observé, qui comprend uniquement les processus d'assemblage qui ont généré les objets spécifiques que nous voyons actuellement.

(Photo - schéma montrant l'univers de l'assemblage dès son origine via un entonnoir inversé présentant ces 4 étapes, qui élargissent en descendant)

1 Univers assembleur

Espace non contraint contenant toutes les permutations possibles des blocs de base de l'univers

2 Assemblage possibles

Seuls les objets physiquement possibles existent, limités par les lois de la physique.

3 Assemblages contingents

Objets qui peuvent effectivement être assemblés en utilisant des chemins possibles

4 Assemblage dans le réel

Ce que nous pouvons observer

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.48550/arXiv.2206.02279)

La théorie de l'assemblage explore la structure de tous ces univers, en utilisant des idées tirées de l'étude mathématique des graphes, ou réseaux de nœuds interconnectés. Il s'agit d'une "théorie de l'objet d'abord", a déclaré M. Walker, selon laquelle "les choses [dans la théorie] sont les objets qui sont effectivement fabriqués, et non leurs composants".

Pour comprendre comment les processus d'assemblage fonctionnent dans ces univers notionnels, prenons le problème de l'évolution darwinienne. Conventionnellement, l'évolution est quelque chose qui "s'est produit" une fois que des molécules répliquées sont apparues par hasard - un point de vue qui risque d'être une tautologie (affirmation/certitude), parce qu'il semble dire que l'évolution a commencé une fois que des molécules évolutives ont existé. Les partisans de la théorie de l'assemblage et de la théorie du constructeur recherchent au contraire "une compréhension quantitative de l'évolution ancrée dans la physique", a déclaré M. Marletto.

Selon la théorie de l'assemblage, pour que l'évolution darwinienne puisse avoir lieu, il faut que quelque chose sélectionne de multiples copies d'objets à forte intelligence artificielle dans l'assemblage possible. Selon M. Cronin, la chimie à elle seule pourrait en être capable, en réduisant des molécules relativement complexes à un petit sous-ensemble. Les réactions chimiques ordinaires "sélectionnent" déjà certains produits parmi toutes les permutations possibles parce que leur vitesse de réaction est plus rapide.

Les conditions spécifiques de l'environnement prébiotique, telles que la température ou les surfaces minérales catalytiques, pourraient donc avoir commencé à vidanger/filtrer le pool des précurseurs moléculaires de la vie parmi ceux de l'assemblage possible. Selon la théorie de l'assemblage, ces préférences prébiotiques seront "mémorisées" dans les molécules biologiques actuelles : Elles encodent leur propre histoire. Une fois que la sélection darwinienne a pris le dessus, elle a favorisé les objets les plus aptes à se répliquer. Ce faisant, ce codage de l'histoire s'est encore renforcé. C'est précisément la raison pour laquelle les scientifiques peuvent utiliser les structures moléculaires des protéines et de l'ADN pour faire des déductions sur les relations évolutives des organismes.

Ainsi, la théorie de l'assemblage "fournit un cadre permettant d'unifier les descriptions de la sélection en physique et en biologie", écrivent Cronin, Walker et leurs collègues. Plus un objet est "assemblé", plus il faut de sélections successives pour qu'il parvienne à l'existence.

"Nous essayons d'élaborer une théorie qui explique comment la vie naît de la chimie", a déclaré M. Cronin, "et de le faire d'une manière rigoureuse et vérifiable sur le plan empirique".

Une mesure pour tous les gouverner ?

Krakauer estime que la théorie de l'assemblage et la théorie du constructeur offrent toutes deux de nouvelles façons stimulantes de réfléchir à la manière dont les objets complexes prennent naissance. "Ces théories sont davantage des télescopes que des laboratoires de chimie", a-t-il déclaré. "Elles nous permettent de voir les choses, pas de les fabriquer. Ce n'est pas du tout une mauvaise chose et cela pourrait être très puissant".

Mais il prévient que "comme pour toute la science, la preuve sera dans le pudding".

Zenil, quant à lui, estime que, compte tenu de l'existence d'une liste déjà considérable de mesures de la complexité telles que la complexité de Kolmogorov, la théorie de l'assemblage ne fait que réinventer la roue. Marletto n'est pas d'accord. "Il existe plusieurs mesures de la complexité, chacune capturant une notion différente de cette dernière", a-t-elle déclaré. Mais la plupart de ces mesures ne sont pas liées à des processus réels. Par exemple, la complexité de Kolmogorov suppose une sorte d'appareil capable d'assembler tout ce que les lois de la physique permettent. Il s'agit d'une mesure appropriée à l'assemblage possible, a déclaré Mme Marletto, mais pas nécessairement à l'assemblage observé. En revanche, la théorie de l'assemblage est "une approche prometteuse parce qu'elle se concentre sur des propriétés physiques définies de manière opérationnelle", a-t-elle déclaré, "plutôt que sur des notions abstraites de complexité".

Selon M. Cronin, ce qui manque dans les mesures de complexité précédentes, c'est un sens de l'histoire de l'objet complexe - les mesures ne font pas la distinction entre une enzyme et un polypeptide aléatoire.

Cronin et Walker espèrent que la théorie de l'assemblage permettra à terme de répondre à des questions très vastes en physique, telles que la nature du temps et l'origine de la deuxième loi de la thermodynamique. Mais ces objectifs sont encore lointains. "Le programme de la théorie de l'assemblage n'en est qu'à ses débuts", a déclaré Mme Marletto. Elle espère voir la théorie mise à l'épreuve en laboratoire. Mais cela pourrait aussi se produire dans la nature, dans le cadre de la recherche de processus réalistes se déroulant sur des mondes extraterrestres.

 

Auteur: Internet

Info: https://www.quantamagazine.org/a-new-theory-for-the-assembly-of-life-in-the-universe-20230504?mc_cid=088ea6be73&mc_eid=78bedba296 - Philip Ball , contributing Writer,  4 mai 2023. *Qui peut être répété un nombre indéfini de fois par l'application de la même règle.

[ ergodicité mystère ] [ exobiologie ] [ astrobiologie ] [ exploration spatiale ] [ origine de la vie ] [ xénobiologie ] [ itération nécessaire ] [ ordre caché ] [ univers mécanique ] [ théorie-pratique ] [ macromolécules ] [ progression orthogonale ] [ décentrement anthropique ]

 

Commentaires: 0

Ajouté à la BD par miguel

philosophie occidentale

Le symbolique, l'imaginaire et le réel : Lacan, Lévi-Strauss et Freud

" Tout comportement est communication." Gregory Bateson

Contrairement à l'expérience de la psychanalyse aux Etats-Unis, Freud arriva très tard en France où il fut plus ou moins réfuté par Sartre dans Son "Etre et Néant" avant même son arrivée. Curieusement, c'est à l'apogée de l'existentialisme et de la psychanalyse existentielle, dans les années cinquante et au début des années soixante, qu'un analyste français inconnu de la génération Sartre entama une relecture radicale des textes freudiens.
Son travail devait avoir une telle influence dans les années soixante-dix qu'il sauva entièrement Freud de l'orientation médicale positiviste apportée par la société psychanalytique parisienne, et réintégra son travail dans ce que les Français appellent encore les sciences humaines.
Il s'agit de Jacques Lacan, pilier de l'Ecole freudienne de Paris - styliste hermétique et obscur, conférencier envoûtant, penseur intransigeant et inflexible, profondément préoccupé par ses propres écrits et prérogatives - qui fut interdit par la Fédération internationale lorsque lui et ses collègues, principalement du à des rivalités internes, quittèrent la société parisienne en 1953.
Il y a sans doute plus d'anecdotes dénigrantes, et probablement calomnieuses, qui circulent sur Lacan au sein de l'incestueux climat intellectuel parisien que sur tout autre penseur influent. Mais si le travail de Lacan signifie quelque chose, nous devons séparer les idiosyncrasies personnelles bien connues de Lacan de la contribution unique qu'il apporta à notre compréhension de Freud.

Bien que Lacan ait commencé son oeuvre originale à la fin des années trente, sous l'influence de la phénoménologie et de l'existentialisme husserliens, ce n'est que dans les années soixante qu'il commença à être réellement écouté en France, et ses écrits ne commencèrent à arriver en Angleterre et aux Etats-Unis que récemment. S'attaquant à l'"intellectualisme" français et au culte de l'"expert", à l'"empirisme", tout comme à la "biologisation" britanniques et à l'"adaptation" et au "behaviorisme" américains dans une série de polémiques cinglantes, son seul travail a rendu impossible, à tout penseur français qui se respecte, de continuer à ignorer les textes de Freud. L'intégration de ce texte dans la culture du cogito cartésien a déjà eu des résultats surprenants et féconds. Reste à savoir ce que Lacan va faire passer aux Etats-Unis - où l'enthousiasme même de l'acceptation initiale de Freud par les Américains eut tendance à réduire ses idées à des banalités et ses théories quasi au statut de jeu social.

Nous découvrons maintenant, par exemple, un nouveau retour à la théorie de Breuer-Freud sur la catharsis thérapeutique - autrefois popularisée en tant que "psychodrame" - sous une nouvelle forme de "désublimation répressive" : thérapie du "cri primal". Mais les héros des talk-shows de fin de soirée vont et viennent avec une régularité monotone et, en fin de compte, il nous reste toujours les grandes œuvres du génie pour y méditer : Hegel, Marx, Freud, Dostoïevski, Rousseau, Balzac, pour ne citer que quelques-uns de nos prédécesseurs les plus récents. Et ce que nous découvrons, c'est que nous devons apprendre à lire avant de parler, que nous devons apprendre à les lire d'un point de vue social critique, aussi libre de préjugés ethnocentriques, socioéconomiques et culturels que possible.
En un mot, nous devons apprendre à lire dans une perspective non académique, dans la perspective d'une expérience de vie où ces auteurs et leurs quêtes personnelles font partie de notre quête individuelle et collective. Je préférerais lire l'Interprétation des rêves comme un roman, par exemple, ou le célèbre cas du docteur " psychotique " Schreber comme de la philosophie, ou les Frères Karamazov comme une étude métapsychologique, que l'inverse. Lacan a contribué à rendre ce genre de lecture possible.
Une grande partie de ce que Lacan cherchait à accomplir avec ses étudiants dans les années cinquante n'a plus grand intérêt aujourd'hui, car il s'agissait d'attaques contre la technique thérapeutique d'un groupe de psychanalystes français très peu doués, objectivées et liés à la culture. Mais son attaque contre la "psychologie de l'ego" de praticiens comme Hartmann, Kris et Lbwenstein, ou le "behaviorisme " de Massermann, est toujours valable (Lacan, 1956a ; Wilden, 196Sa : 1-87). Et ceux qui s'y sont opposés avec tant de véhémence en France constatent aujourd'hui qu'ils ne peuvent rejeter ses analyses critiques des textes freudiens et s'appeler encore Freudiens. Mais si Lacann inspira une école française d'analyse qui se veut anti-institutionnelle, anti-psychiatrique et profondément critique à la fois à l'égard de "l'ajustement" de l'individu et de ceux que Marcuse nommait "révisionnistes néofreudiens", il n'a probablement pas fait plus pour les pratiques analytiques que ce qui a été réalisé par des thérapeutes comme Laing, Esterson et Cooper, au Royaume-Uni, et par des gens comme Ruesch, Bateson, Haley, Weakland ou Jackson, aux Etats-Unis.
De plus, la psychanalyse est un privilège socio-économique réservé aux personnes qui ont argent et loisirs pour se faire plaisir. La question de "la guérison" est en tout cas tout à fait débattable, et nous savons bien que la psychologie, la psychiatrie et la psychothérapie en général ont toujours été les véhicules des valeurs du statu quo (à l'exception extraordinaire de Wilhelm Reich, dont les théories ne correspondent malheureusement jamais au niveau élevé de son engagement social).
Et comme la plupart d'entre nous apprenons à vivre avec nos blocages, il est alors très peu probable que nous devions apprendre un jour apprendre à vivre avec les effets aliénants de notre société unidimensionnelle et technologique en ayant à nous préoccuper de psychanalyse ? En tout état de cause, personne, en quête d'une perspective véritablement critique, ne tentera de construire une théorie de l'homme et de la femme essentiellement basée sur la psychologie humaine, car le "discours scientifique" de la psychologie vise à nier ou à omettre le contenu socio-économique collectif à l'intérieur duquel les facteurs psychologiques jouent leur rôle.
J'essaierai de montrer plus loin que l'axiomatique fermeture de la plupart des psychanalystes dans la plénitude de ce contexte - et, je crois, dans sa primauté - génère des problèmes purement logiques dans la théorie, problèmes dont elle n'est pas, logiquement, équipée pour les surmonter. Ainsi, ce qui apparaît dans la théorie logico-mathématique de Bateson de la " double liaison " (chapitre V) comme une oscillation, apparaît nécessairement en psychanalyse, sous une forme ou une autre, comme une théorie de la répétition. Lacan, par exemple, fit appel à Kierkegaard (Repetition, 1843) pour étayer son interprétation de Freud, et pourtant si l'on regarde de près les écrits de Kierkegaard, en particulier les siens propres ou ceux également publiés en 1843, on découvre que la théorie entière dépend de l'incapacité de Kierkegaard à dépasser, de manière logique ou existentielle, les injonctions (doubles liens) paradoxales qu'il reçoit de son environnement familial et social. Par conséquent, le voilà condamné à osciller sans cesse entre un "soit" et un "ou". Ce qui apparaît dans la théorie de Bateson comme une réponse nécessaire aux injonctions émanant des rapports de pouvoir et de domination dans l'ordre social, et qui apparaît généralement dans la psychanalyse, et plus particulièrement chez Lacan, comme de la "compulsion itérative". Ainsi, soit la responsabilité est renvoyée à l'individu (par les "instincts" ou quelque autre métaphore de ces constructions biomécaniques), soit, comme chez Lacan, elle se transforme subtilement en une forme "d'ordre naturel des choses", via les paradoxes que le langage crée dans la condition humaine.
Contrairement à la théorie du double lien, les deux points de vue supposent une homogénéité dans la société qui n'existe tout simplement pas et servent à rationaliser les dominations en refusant de traiter la relation entre pouvoir, connaissance et oppression, ils ne voient pas la différence, dans la société, entre ce que Marcuse appela "répression" et "sur-répression". Malgré l'incompréhension de Marcuse à l'égard du Freud "clinique" - et malgré sa dépendance à la théorie bioénergétique des instincts - la distinction est importante. Peu de théoriciens américains, par exemple, envisageraient sérieusement le calvaire des minorités américaines dans leur lutte pour les droits socio-économiques élémentaires, simplement en termes de "compulsion itératives" telle une révolte contre le père (ou la mère).
Il m'est impossible de parler de Freud ou de Lacan sans utiliser les contributions que Bateson et Marcuse - de manières différentes et même mutuellement opposées - ont apportées à notre compréhension des relations humaines. Il faut d'une part traiter la perception de la psychanalyse et de la psychologie comme des rationalisations des valeurs de notre culture (l'oppression des femmes, en particulier), et d'autre part, montrer comment elles peuvent contribuer à une dévalorisation de ces valeurs. L'analyse de Bateson des relations de pouvoir par la double contrainte est, je crois, essentielle à la théorie sociale et psychologique, et je ne sais comment expliquer la théorie de l'imaginaire de Lacan sans elle. En tout cas, Freud décrit la relation entre l'ego et l'idéal de l'ego en des termes similaires à ceux d'une double liaison (double bind, dans The Ego and the I, Standard Edition, XIX, 34) : "Tu devrais être ainsi (comme ton père), mais tu ne dois pas être ainsi (comme ton père)."
Dans le monde contemporain de la contestation, il n'y a aucune réponse à la façon dont la psychanalyse est régulièrement - et nécessairement - remise en question, si le Freud dont nous parlons est le déterminant hydraulique, instinctif, électromagnétique et entropique que nous pensions tous connaître.
Il y a une réponse, cependant, si nous découvrons la perspective communicationnelle et linguistique derrière l'acceptation explicite ou implicite par Freud des principes mécanistes de la science physique et économique du XIXe siècle. Après tout, la psychanalyse est bien la "cure parlante", comme Lacan n'a jamais manqué d'insister dessus, et les pages des écrits de Freud s'intéressent avant tout au langage. Bien plus intéressante que la théorie de l'ego, de la personnalité et du surmoi, par exemple, est la conception que Freud a de l'inconscient et du rêve comme des scènes (Darstellungen) de distorsions (Entstellungen) et de (re)présentations (Vorstellungen). Mieux que coller à la préoccupation contemporaine pour les systèmes et les structures que la "psychologie de l'ego" de Freud, dans son premier modèle de processus primaires et secondaires. Plus significative que son déterminisme il y a sa théorie de la "surdétermination" du symptôme ou du rêve, qui est un concept proche de la redondance en théorie de l'information et de l'équifinalité en gestaltisme et biologie.
Si nous devons rejeter les principes mécanistes du principe du plaisir, nous pouvons encore découvrir le modèle sémiotique des niveaux de communication dans les premiers travaux de Freud. Plus utile que la "deuxième" théorie du symbolisme (dérivée de Stekel), qui assimile les icônes ou les images (analogues) aux symboles sexuels (Jones, Ferenczi, et al.), est la "première" ou théorie "dialectique", qui dépend de la condensation et du déplacement des signes (Zeichen). Le rêve doit être traduit de l'image en texte avant de pouvoir être interprété (par le rêveur), et la refoulement est, comme le disait Freud en 1896, "un échec de la traduction". De plus, aucune théorie actuelle de la mémoire n'est essentiellement différente de la métaphore originale de Freud sur le "traçage" de voies via les traces de mémoire dans le cerveau.Je reviendrai dans un instant sur une description plus précise de l'orientation sémiotique et linguistique de Freud. Le fait est que, sans le travail de Lacan, je doute que nous aurions découvert ce Freud - bien que l'analyse de Karl Pribram du Projet neuropsychologique pour une psychologie scientifique (1895) aille dans le sens d'une relecture de Freud au moins au niveau de la théorie de l'information et du feedback (Pribram, 1962).
Le problème avec Lacan, c'est qu'à première vue, ses écrits sont presque impossibles à comprendre. Ses Ecrits (1966) - et seul un Lacan pouvait avoir l'orgueil d'intituler son oeuvre simplement "Écrits" - titre peut-être plus à lire comme "discours de schizophrène" - ou comme de la poésie ou autres absurdités, selon vos préjugés et votre tendance au transfert positif ou négatif - que tout autre.
L'hermétisme de Lacan ne peut être excusé - pas plus que son attitude envers le lecteur, qui pourrait s'exprimer ainsi : "aime-le" ou "c'est à prendre ou à laisser". Mais bien que la destruction personnelle de la syntaxe française par Lacan le rende assez ardu même pour le lecteur français, il y a au moins une tradition intellectuelle suffisamment homogène à Paris qui fait que Lacan y est bien moins étranger qu'en Grande-Bretagne ou aux Etats Unis. La tradition phénoménologique, existentialiste et hégélienne-marxiste en France rend moins nécessaire d'expliquer ce que vous entendez par Hegel, ou Husserl, ou Heidegger, ou Kojéve, ou Sartre. Et la plupart des gens reconnaîtront de toute façon une idée, même si vous ne mentionnez pas la source, ou si vous citez ou paraphrasez sans référence, car ce genre de "plagiat" est généralement acceptable en France.
Fait assez significatif cependant, Lacan n'aurait pas pu réaliser son analyse de Freud sans l'influence de l'école de linguistique suisso-américano-russe représentée par Roman Jakobson, qui a longtemps témoigné de l'influence du formalisme russe et du linguistique structurel de Saussure aux Etats-Unis. Mais même cette influence est parvenue indirectement à Lacan. L'influence la plus importante sur Lacan fut celle de l'anthropologue structurel français Claude-Lévi-Strauss, qui rencontra et travailla avec Jakobson à la New School for Social Research de New York, en 1942-1945.

Lévi-Strauss tend à ne pas être très apprécié par les anthropologues américains et britanniques qui sont redevables à la tradition analytique et dite empiriste, ce qui en dit long sur lui. Il est à l'origine d'une nouvelle méthodologie et d'une épistémologie d'accompagnement en sciences humaines en France, généralement appelée "structuralisme". (Aujourd'hui, cependant, le terme désigne simplement une mode, un peu comme l'existentialisme.) Le structuralisme, dans le sens d'une méthodologie non empiriste, non atomiste, non positiviste des lois de la relation, est d'autre part complété par les avancées en théorie des systèmes généraux, en cybernétique non mécanique, en théorie de la communication et en études écologiques. Tant la nouvelle approche structurelle que la nouvelle approche systémique-cybernétique semblent parler en fait d'une véritable révolution épistémologique dans les sciences de la vie et les sciences sociales, dont nous entendrons beaucoup plus parler au cours de la prochaine décennie (si nous y survivons, bien sûr).
Lévi-Strauss chercha à utiliser les travaux des phonologues structuraux sur "l'opposition binaire" des phonèmes en tant que modèle pour l'analyse des mythes et des relations et échanges au sein des sociétés dites "primitives" - dont il a ensuite remis en question le supposé "primitivisme". Constatant qu'un nombre relativement faible d'"oppositions" entre "traits distinctifs" (graves/aigus, voix/silence, etc.) sont suffisants pour former l'infrastructure acoustique de toute langue connue, Lévi-Strauss tenta de découvrir des ensembles analogues d'oppositions dans les systèmes de parenté et dans les mythes. Ses travaux les plus récents se sont concentrés sur le mythe en tant que musique.
Avec tous ces machins douteux dans son approche, Lévi-Strauss a néanmoins introduit un type de signification dans l'étude du mythe - auparavant presque exclusivement axé sur le contenu plutôt que sur la forme - là où ça n'existait pas avant. Comme pour l'œuvre de Lacan - ou celle de Freud - le principal problème du structuralisme lévi-straussien ne réside pas dans la méthodologie, mais dans son application, c'est-à-dire dans les revendications universelles formulées en son nom.
Je reviendrai sur la critique plus détaillée du "structuralisme" dans les chapitres suivants. Pour l'instant, il suffira de donner un exemple bref et purement illustratif de l'utilisation par Lévi-Strauss du concept d'"opposition binaire" dans l'étude du mythe (Lévi-Strauss, 1958 : chap. 11).
Pour lui, le mythe est une représentation diachronique (succession dans le temps) d'un ensemble d'oppositions synchroniques (intemporelles). Il croit que la découverte de ces oppositions synchroniques est une déclaration sur la "structure fondamentale de l'esprit humain". Dans les chapitres suivants, j'analyserai et critiquerai le terme "opposition" - qui cache les catégories de "différence", "distinction", "opposition", "contradiction" et "paradoxe" . Je critiquerai également le concept de relations "binaires" " - qui dissimule toute une série de malentendus sur la communication analogique et numérique en général, et plus particulièrement sur "non", "négation", "exclusion", "zéro" et "moins un", ainsi que sur la relation entre "A" et "non-A". J'essaierai également de démontrer l'idée fausse que Lévi-Strauss se fait de la confusion entre "esprit", "cerveau" et "individu". Ceci est étroitement lié à la conception de Piaget de l'organisme comme "structure paradigmatique", et à l'incapacité, dans la plupart des travaux actuels en sciences de la vie et sciences sociales, de comprendre le problème logico-mathématique et existentiel des frontières et des niveaux dans les systèmes ouverts de communication et d'échange (systèmes impliquant ou simulant la vie ou "esprit", systèmes vivants et sociaux).

La méthode de lecture des mythes de Lévi-Strauss est entièrement nouvelle, simple à comprendre, globale et satisfaisante sur le plan esthétique. Il suggère de regarder le mythe comme on regarderait une partition d'orchestre dans laquelle les notes et les mesures à jouer en harmonie simultanée par différents instruments se sont mêlées à la cacophonie d'une succession linéaire. Ainsi, si nous représentons cette succession par les nombres 1, 2, 4, 7, 8, 2, 3, 4, 6, 8, 1, 4, 5, 7, nous pouvons rétablir la partition originale en mettant tous les nombres semblables ensemble en colonnes verticales :

112234444567788

Cette matrice est exactement ce que l'on peut construire dans l'analyse phonologique d'une phrase, où l'on peut montrer qu'une séquence linéaire de mots se construit sur une succession d'oppositions binaires entre des éléments acoustiques distinctifs.
Malheureusement pour ce que Lévi-Strauss considère comme la clé de voûte de sa méthode, l'analogie qu'il fait entre phonologie structurelle et mythe est fausse, alors que sa méthodologie est extrêmement fertile. Ce problème met en évidence la difficulté centrale de l'utilisation de l'œuvre de Lévi-Strauss et de Lacan. Il faut montrer que les sources supposées de leurs nouvelles contributions aux sciences sociales ne sont pas ce qu'elles pensent être ; il faut démontrer où et comment leurs points de vue servent une fonction idéologique répressive ; et il faut montrer l'inadéquation à la fois de nombreux axiomes de la méthode et de nombreuses applications supposées.

Sans développer une critique détaillée à ce stade, on peut dire d'emblée que c'est une erreur de traiter un système d'oppositions sans contexte entre caractéristiques acoustiques des "bits" des informations (traits caractéristiques) comme étant isomorphe avec un mythe, qui est un système avec un contexte. Le mythe est nécessairement contextuel parce qu'il manipule l'information afin d'organiser et de contrôler certains aspects d'un système social, et il ne peut donc être considéré comme isolé de cette totalité. Contrairement aux "mythemes" de Lévi-Strauss ("éléments constitutifs bruts" du mythe, par analogie avec le "phonème"), les phonèmes sont des bits d'information insignifiants et non significatifs. Les phonèmes et les oppositions phonémiques sont les outils d'analyse et d'articulation (dont la caractéristique fondamentale est la différence) dans un système dans lequel signification et sens sont en dehors de la structure phonémique. Mythemes' et oppositions' entre mythemes, au contraire, impliquent à la fois signification et sens : ils ont 'du contenu'. Lévi-Strauss traite le mythe comme s'il s'agissait d'une langue représentative sous la forme d'une grammaire sans contexte, ou traite les mythemes comme des "informations" au sens technique des systèmes quantitatifs fermés de la transmission des informations comme étudiés par Shannon et Weaver. La science de l'information concerne l'étude statistique des processus stochastiques et des chaînes de Markov (chapitre IX) - et Chomsky a démontré qu'aucun langage connu ne peut être correctement généré à partir d'une grammaire modelée sur ces processus. Il a également été démontré que le langage est un système d'un type logique supérieur à celui qui peut être généré par des algorithmes sans contexte (grammaires).

Bien que Lévi-Strauss parle du mytheme comme d'un caractère "supérieur" à tout élément similaire du langage, le modèle de l'opposition phonémique binaire reste ce qu'il considère comme le fondement scientifique de sa méthode. Ainsi le mytheme devient l'équivalent d'un outil d'articulation (un trait distinctif) employé par un système de signification d'un autre type logique (langage). Lorsque nous cherchons à découvrir ce qu'est cet autre système chez Lévi-Strauss, nous trouvons cette catégorie de "pensée mythique". Mais la pensée mythique est déjà définie sur la base des mythemes eux-mêmes. C'est un système d'articulation des oppositions par "une machine à supprimer le temps" (le mythe). Ce qui manque dans ce cercle, c'est le contexte réel et matériel dans lequel le mythe surgit et auquel il fait référence.
Cependant, Lévi-Strauss insistera sur le fait que sa méthodologie, contrairement au formalisme pur, est bien "contextuelle" (Lévi-Strauss, 1960a). Il se réfère constamment aux catégories de parenté, au contexte zoologique et botanique du mythe et aux caractéristiques des entités matérielles ("crues", "cuites", "pourries" et ainsi de suite). En réalité, cependant, toutes les "entités matérielles" et les "relations matérielles" qu'il emploie parviennent à cette analyse déjà définie, de façon tautologique, comme des catégories de pensée mythique. Par conséquent, le "contexte" qu'évoque Lévi-Strauss est invariablement le contexte des "idées" ou de "l'esprit", qu'il conçoit, comme Kant, comme étant un antécédent de l'organisation sociale, tant épistémologiquement qu'ontologiquement. Au sein de ce cadre idéaliste, il fait ensuite un saut rapide vers les catégories matérielles de la physique et de la chimie, qu'il évoque régulièrement comme le fondement ultime de ses catégories idéales.

Mais entre le contexte des idées et le contexte des atomes et des molécules (ou même celui du code génétique) il manque un niveau d'organisation unique mais énorme : le contexte socio-économique de la réalité humaine. Et ce niveau d'organisation contient un paramètre que l'on ne retrouve pas en physique, en biologie, en sciences de l'information, dans les langages, les idées, ou les mythes considérés comme systèmes d'opposition synchrones : la ponctuation du système par le pouvoir de certaines de ses parties à en exploiter les autres (en incluant la "nature" même). Toutes les idées, tous les électrons et "bits" d'information sont en effet égaux, aucun d'entre eux n'est différent des autres, et aucun groupe n'exploite les autres. Et alors que dans les systèmes qui n'impliquent pas l'exploitation sociale, les mythes peuvent à juste titre être considérés comme remplissant une fonction d'organisation "pure" ou "neutre", dans tous les autres systèmes, les mythes deviennent la propriété d'une classe, caste ou sexe. Un mythe qui est la propriété d'une classe est en fait une définition de l'idéologie. Le mythe cesse alors de servir la fonction neutre d'organisation pure et simple ; il sert de rationalisation d'une forme donnée d'organisation sociale.
L'étude structurelle du mythe est, comme Lévi-Strauss l'a souvent dit, une autre variante des mythes qu'il analyse. Comme eux, c'est un système d'oppositions binaires. Mais ce n'est pas une mécanique pour la suppression du temps, mais pour la suppression de l'histoire. Et puisque le "structuralisme" est effectivement la propriété d'une classe, nous pouvons donc l'identifier comme un système de rationalisation idéologique - ce qui n'est pas la même chose, de dire qu'il n'a aucune valeur.

L'analogie erronée de Lévi-Strauss entre un système sans contexte et un système contextuel - et donc tout l'édifice que les structuralistes ont érigé - provient d'une confusion entre langage et communication. D'une part, une telle confusion n'est possible que dans des théories ponctuées de façon à exclure la catégorie sociale objective de l'exploitation. D'autre part, elle dépend d'une unique isomorphie réelle, qui est ensuite utilisée pour réduire les différents niveaux d'organisation les uns par rapport aux autres : le fait que le langage, les systèmes de parenté, l'étude structurelle des mythes et la science de la phonologie soient des communications numériques (discontinues) au sujet de rapports analogues (continus). Une caractéristique unique de la communication numérique, à savoir qu'il s'agit d'un système de communication comportant limites et lacunes, est réifiée par l'argument structuraliste de sorte qu'il peut être appliqué sans distinction, comme catégorie ontologique implicite, à chaque niveau de complexité où apparaissent des "limites et des lacunes ". De telles formes numériques apparaissent nécessairement, comme instrument de communication, à tous les niveaux de complexité biologique et sociale. Par conséquent, l'argument réductionniste des structuralistes est grandement facilité. De plus, le fait que l'opposition binaire soit aussi une catégorie importante en physique classique (électromagnétisme par exemple) autorise les structuralistes à faire l'erreur épistémologique supplémentaire de confondre matière-énergie et information.

Auteur: Wilden Anthony

Info: Extrait de System and Structure (1972) sur http://www.haussite.net. Trad. Mg

[ anti structuralisme ] [ vingtième siècle ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

De quoi l'espace-temps est-il réellement fait ?

L'espace-temps pourrait émerger d'une réalité plus fondamentale. La découverte de cette réalité pourrait débloquer l'objectif le plus urgent de la physique

Natalie Paquette passe son temps à réfléchir à la manière de faire croître une dimension supplémentaire. Elle commence par de petits cercles, dispersés en tout point de l'espace et du temps - une dimension en forme de boucle, qui se referme sur elle-même. Puis on rétrécit ces cercles, de plus en plus petits, en resserrant la boucle, jusqu'à ce qu'une curieuse transformation se produise : la dimension cesse de sembler minuscule et devient énorme, comme lorsqu'on réalise que quelque chose qui semble petit et proche est en fait énorme et distant. "Nous réduisons une direction spatiale", explique Paquette. "Mais lorsque nous essayons de la rétrécir au-delà d'un certain point, une nouvelle et grande direction spatiale émerge à la place."

Paquette, physicien théoricien à l'université de Washington, n'est pas le seul à penser à cette étrange sorte de transmutation dimensionnelle. Un nombre croissant de physiciens, travaillant dans différents domaines de la discipline avec des approches différentes, convergent de plus en plus vers une idée profonde : l'espace - et peut-être même le temps - n'est pas fondamental. Au contraire, l'espace et le temps pourraient être émergents : ils pourraient découler de la structure et du comportement de composants plus fondamentaux de la nature. Au niveau le plus profond de la réalité, des questions comme "Où ?" et "Quand ?" n'ont peut-être aucune réponse. "La physique nous donne de nombreux indices selon lesquels l'espace-temps tel que nous le concevons n'est pas la chose fondamentale", déclare M. Paquette.

Ces notions radicales proviennent des derniers rebondissements de la chasse à la théorie de la gravité quantique, qui dure depuis un siècle. La meilleure théorie des physiciens sur la gravité est la relativité générale, la célèbre conception d'Albert Einstein sur la façon dont la matière déforme l'espace et le temps. Leur meilleure théorie sur tout le reste est la physique quantique, qui est d'une précision étonnante en ce qui concerne les propriétés de la matière, de l'énergie et des particules subatomiques. Les deux théories ont facilement passé tous les tests que les physiciens ont pu concevoir au cours du siècle dernier. On pourrait penser qu'en les réunissant, on obtiendrait une "théorie du tout".

Mais les deux théories ne s'entendent pas bien. Demandez à la relativité générale ce qui se passe dans le contexte de la physique quantique, et vous obtiendrez des réponses contradictoires, avec des infinis indomptés se déchaînant sur vos calculs. La nature sait comment appliquer la gravité dans des contextes quantiques - cela s'est produit dans les premiers instants du big bang, et cela se produit encore au cœur des trous noirs - mais nous, les humains, avons encore du mal à comprendre comment le tour se joue. Une partie du problème réside dans la manière dont les deux théories traitent l'espace et le temps. Alors que la physique quantique considère l'espace et le temps comme immuables, la relativité générale les déforme au petit déjeuner.

D'une manière ou d'une autre, une théorie de la gravité quantique devrait concilier ces idées sur l'espace et le temps. Une façon d'y parvenir serait d'éliminer le problème à sa source, l'espace-temps lui-même, en faisant émerger l'espace et le temps de quelque chose de plus fondamental. Ces dernières années, plusieurs pistes de recherche différentes ont toutes suggéré qu'au niveau le plus profond de la réalité, l'espace et le temps n'existent pas de la même manière que dans notre monde quotidien. Au cours de la dernière décennie, ces idées ont radicalement changé la façon dont les physiciens envisagent les trous noirs. Aujourd'hui, les chercheurs utilisent ces concepts pour élucider le fonctionnement d'un phénomène encore plus exotique : les trous de ver, connexions hypothétiques en forme de tunnel entre des points distants de l'espace-temps. Ces succès ont entretenu l'espoir d'une percée encore plus profonde. Si l'espace-temps est émergent, alors comprendre d'où il vient - et comment il pourrait naître de n'importe quoi d'autre - pourrait être la clé manquante qui ouvrirait enfin la porte à une théorie du tout.

LE MONDE DANS UN DUO DE CORDES

Aujourd'hui, la théorie candidate à la gravité quantique la plus populaire parmi les physiciens est la théorie des cordes. Selon cette idée, les cordes éponymes sont les constituants fondamentaux de la matière et de l'énergie, donnant naissance à la myriade de particules subatomiques fondamentales observées dans les accélérateurs de particules du monde entier. Elles sont même responsables de la gravité - une particule hypothétique porteuse de la force gravitationnelle, un "graviton", est une conséquence inévitable de la théorie.

Mais la théorie des cordes est difficile à comprendre : elle se situe dans un territoire mathématique que les physiciens et les mathématiciens ont mis des décennies à explorer. Une grande partie de la structure de la théorie est encore inexplorée, des expéditions sont encore prévues et des cartes restent à établir. Dans ce nouveau domaine, la principale technique de navigation consiste à utiliser des dualités mathématiques, c'est-à-dire des correspondances entre un type de système et un autre.

La dualité évoquée au début de cet article, entre les petites dimensions et les grandes, en est un exemple. Si vous essayez de faire entrer une dimension dans un petit espace, la théorie des cordes vous dit que vous obtiendrez quelque chose de mathématiquement identique à un monde où cette dimension est énorme. Selon la théorie des cordes, les deux situations sont identiques : vous pouvez aller et venir librement de l'une à l'autre et utiliser les techniques d'une situation pour comprendre le fonctionnement de l'autre. "Si vous gardez soigneusement la trace des éléments fondamentaux de la théorie, dit Paquette, vous pouvez naturellement trouver parfois que... vous pourriez faire croître une nouvelle dimension spatiale."

Une dualité similaire suggère à de nombreux théoriciens des cordes que l'espace lui-même est émergeant. L'idée a germé en 1997, lorsque Juan Maldacena, physicien à l'Institute for Advanced Study, a découvert une dualité entre une théorie quantique bien comprise, connue sous le nom de théorie des champs conforme (CFT), et un type particulier d'espace-temps issu de la relativité générale, appelé espace anti-de Sitter (AdS). Ces deux théories semblent très différentes : la CFT ne comporte aucune gravité, tandis que l'espace AdS intègre toute la théorie de la gravité d'Einstein. Pourtant, les mêmes mathématiques peuvent décrire les deux mondes. Lorsqu'elle a été découverte, cette correspondance AdS/CFT a fourni un lien mathématique tangible entre une théorie quantique et un univers complet comportant une gravité.

Curieusement, l'espace AdS dans la correspondance AdS/CFT comportait une dimension de plus que la CFT quantique. Mais les physiciens se sont délectés de ce décalage, car il s'agissait d'un exemple parfaitement élaboré d'un autre type de correspondance conçu quelques années plus tôt par les physiciens Gerard 't Hooft de l'université d'Utrecht aux Pays-Bas et Leonard Susskind de l'université de Stanford, connu sous le nom de principe holographique. Se fondant sur certaines des caractéristiques particulières des trous noirs, Gerard 't Hooft et Leonard Susskind soupçonnaient que les propriétés d'une région de l'espace pouvaient être entièrement "codées" par sa frontière. En d'autres termes, la surface bidimensionnelle d'un trou noir contiendrait toutes les informations nécessaires pour savoir ce qui se trouve dans son intérieur tridimensionnel, comme un hologramme. "Je pense que beaucoup de gens ont pensé que nous étions fous", dit Susskind. "Deux bons physiciens devenusdingues".

De même, dans la correspondance AdS/CFT, la CFT quadridimensionnelle encode tout ce qui concerne l'espace AdS à cinq dimensions auquel elle est associée. Dans ce système, la région entière de l'espace-temps est construite à partir des interactions entre les composants du système quantique dans la théorie des champs conforme. Maldacena compare ce processus à la lecture d'un roman. "Si vous racontez une histoire dans un livre, il y a les personnages du livre qui font quelque chose", dit-il. "Mais tout ce qu'il y a, c'est une ligne de texte, non ? Ce que font les personnages est déduit de cette ligne de texte. Les personnages du livre seraient comme la théorie [AdS] globale. Et la ligne de texte est la [CFT]."

Mais d'où vient l'espace de l'espace AdS ? Si cet espace est émergent, de quoi émerge-t-il ? La réponse est un type d'interaction spécial et étrangement quantique dans la CFT : l'intrication, une connexion à longue distance entre des objets, corrélant instantanément leur comportement de manière statistiquement improbable. L'intrication a beaucoup troublé Einstein, qui l'a qualifiée d'"action étrange à distance".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ?

 Pourtant, malgré son caractère effrayant, l'intrication est une caractéristique essentielle de la physique quantique. Lorsque deux objets interagissent en mécanique quantique, ils s'intriquent généralement et le resteront tant qu'ils resteront isolés du reste du monde, quelle que soit la distance qui les sépare. Dans des expériences, les physiciens ont maintenu l'intrication entre des particules distantes de plus de 1 000 kilomètres et même entre des particules au sol et d'autres envoyées vers des satellites en orbite. En principe, deux particules intriquées pourraient maintenir leur connexion sur des côtés opposés de la galaxie ou de l'univers. La distance ne semble tout simplement pas avoir d'importance pour l'intrication, une énigme qui a troublé de nombreux physiciens pendant des décennies.

Mais si l'espace est émergent, la capacité de l'intrication à persister sur de grandes distances n'est peut-être pas si mystérieuse - après tout, la distance est une construction. Selon les études de la correspondance AdS/CFT menées par les physiciens Shinsei Ryu de l'université de Princeton et Tadashi Takayanagi de l'université de Kyoto, l'intrication est ce qui produit les distances dans l'espace AdS en premier lieu. Deux régions d'espace proches du côté AdS de la dualité correspondent à deux composantes quantiques hautement intriquées de la CFT. Plus elles sont intriquées, plus les régions de l'espace sont proches les unes des autres.

Ces dernières années, les physiciens en sont venus à soupçonner que cette relation pourrait également s'appliquer à notre univers. "Qu'est-ce qui maintient l'espace ensemble et l'empêche de se désagréger en sous-régions distinctes ? La réponse est l'intrication entre deux parties de l'espace", déclare Susskind. "La continuité et la connectivité de l'espace doivent leur existence à l'intrication quantique-mécanique". L'intrication pourrait donc sous-tendre la structure de l'espace lui-même, formant la chaîne et la trame qui donnent naissance à la géométrie du monde. "Si l'on pouvait, d'une manière ou d'une autre, détruire l'intrication entre deux parties [de l'espace], l'espace se désagrégerait", déclare Susskind. "Il ferait le contraire de l'émergence. Il désémergerait."

Si l'espace est fait d'intrication, l'énigme de la gravité quantique semble beaucoup plus facile à résoudre : au lieu d'essayer de rendre compte de la déformation de l'espace de manière quantique, l'espace lui-même émerge d'un phénomène fondamentalement quantique. Susskind pense que c'est la raison pour laquelle une théorie de la gravité quantique a été si difficile à trouver en premier lieu. "Je pense que la raison pour laquelle elle n'a jamais très bien fonctionné est qu'elle a commencé par une image de deux choses différentes, [la relativité générale] et la mécanique quantique, et qu'elle les a mises ensemble", dit-il. "Et je pense que l'idée est qu'elles sont beaucoup trop étroitement liées pour être séparées puis réunies à nouveau. La gravité n'existe pas sans la mécanique quantique".

Pourtant, la prise en compte de l'espace émergent ne représente que la moitié du travail. L'espace et le temps étant si intimement liés dans la relativité, tout compte rendu de l'émergence de l'espace doit également expliquer le temps. "Le temps doit également émerger d'une manière ou d'une autre", déclare Mark van Raamsdonk, physicien à l'université de Colombie-Britannique et pionnier du lien entre intrication et espace-temps. "Mais cela n'est pas bien compris et constitue un domaine de recherche actif".

Un autre domaine actif, dit-il, consiste à utiliser des modèles d'espace-temps émergent pour comprendre les trous de ver. Auparavant, de nombreux physiciens pensaient que l'envoi d'objets à travers un trou de ver était impossible, même en théorie. Mais ces dernières années, les physiciens travaillant sur la correspondance AdS/CFT et sur des modèles similaires ont trouvé de nouvelles façons de construire des trous de ver. "Nous ne savons pas si nous pourrions le faire dans notre univers", dit van Raamsdonk. "Mais ce que nous savons maintenant, c'est que certains types de trous de ver traversables sont théoriquement possibles". Deux articles - l'un en 2016 et l'autre en 2018 - ont conduit à une rafale de travaux en cours dans ce domaine. Mais même si des trous de ver traversables pouvaient être construits, ils ne seraient pas d'une grande utilité pour les voyages spatiaux. Comme le souligne Susskind, "on ne peut pas traverser ce trou de ver plus vite qu'il ne faudrait à [la lumière] pour faire le chemin inverse."

Si les théoriciens des cordes ont raison, alors l'espace est construit à partir de l'intrication quantique, et le temps pourrait l'être aussi. Mais qu'est-ce que cela signifie vraiment ? Comment l'espace peut-il être "fait" d'intrication entre des objets, à moins que ces objets ne soient eux-mêmes quelque part ? Comment ces objets peuvent-ils s'enchevêtrer s'ils ne connaissent pas le temps et le changement ? Et quel type d'existence les choses pourraient-elles avoir sans habiter un espace et un temps véritables ?

Ces questions frisent la philosophie, et les philosophes de la physique les prennent au sérieux. "Comment diable l'espace-temps pourrait-il être le genre de chose qui pourrait être émergent ?" demande Eleanor Knox, philosophe de la physique au King's College de Londres. Intuitivement, dit-elle, cela semble impossible. Mais Knox ne pense pas que ce soit un problème. "Nos intuitions sont parfois catastrophiques", dit-elle. Elles "ont évolué dans la savane africaine en interagissant avec des macro-objets, des macro-fluides et des animaux biologiques" et ont tendance à ne pas être transférées au monde de la mécanique quantique. En ce qui concerne la gravité quantique, "Où sont les objets ?" et "Où vivent-ils ?" ne sont pas les bonnes questions à poser", conclut Mme Knox.

Il est certainement vrai que les objets vivent dans des lieux dans la vie de tous les jours. Mais comme Knox et bien d'autres le soulignent, cela ne signifie pas que l'espace et le temps doivent être fondamentaux, mais simplement qu'ils doivent émerger de manière fiable de ce qui est fondamental. Prenons un liquide, explique Christian Wüthrich, philosophe de la physique à l'université de Genève. "En fin de compte, il s'agit de particules élémentaires, comme les électrons, les protons et les neutrons ou, plus fondamental encore, les quarks et les leptons. Les quarks et les leptons ont-ils des propriétés liquides ? Cela n'a aucun sens... Néanmoins, lorsque ces particules fondamentales se rassemblent en nombre suffisant et montrent un certain comportement ensemble, un comportement collectif, alors elles agiront d'une manière qui ressemble à un liquide."

Selon Wüthrich, l'espace et le temps pourraient fonctionner de la même manière dans la théorie des cordes et d'autres théories de la gravité quantique. Plus précisément, l'espace-temps pourrait émerger des matériaux que nous considérons habituellement comme vivant dans l'univers - la matière et l'énergie elles-mêmes. "Ce n'est pas que nous ayons d'abord l'espace et le temps, puis nous ajoutons de la matière", explique Wüthrich. "Au contraire, quelque chose de matériel peut être une condition nécessaire pour qu'il y ait de l'espace et du temps. Cela reste un lien très étroit, mais c'est juste l'inverse de ce que l'on aurait pu penser à l'origine."

Mais il existe d'autres façons d'interpréter les dernières découvertes. La correspondance AdS/CFT est souvent considérée comme un exemple de la façon dont l'espace-temps pourrait émerger d'un système quantique, mais ce n'est peut-être pas vraiment ce qu'elle montre, selon Alyssa Ney, philosophe de la physique à l'université de Californie, à Davis. "AdS/CFT vous donne cette capacité de fournir un manuel de traduction entre les faits concernant l'espace-temps et les faits de la théorie quantique", dit Ney. "C'est compatible avec l'affirmation selon laquelle l'espace-temps est émergent, et une certaine théorie quantique est fondamentale." Mais l'inverse est également vrai, dit-elle. La correspondance pourrait signifier que la théorie quantique est émergente et que l'espace-temps est fondamental, ou qu'aucun des deux n'est fondamental et qu'il existe une théorie fondamentale encore plus profonde. L'émergence est une affirmation forte, dit Ney, et elle est ouverte à la possibilité qu'elle soit vraie. "Mais, du moins si l'on s'en tient à AdS/CFT, je ne vois toujours pas d'argument clair en faveur de l'émergence."

Un défi sans doute plus important pour l'image de la théorie des cordes de l'espace-temps émergent est caché à la vue de tous, juste au nom de la correspondance AdS/CFT elle-même. "Nous ne vivons pas dans un espace anti-de Sitter", dit Susskind. "Nous vivons dans quelque chose de beaucoup plus proche de l'espace de Sitter". L'espace de Sitter décrit un univers en accélération et en expansion, comme le nôtre. "Nous n'avons pas la moindre idée de la façon dont [l'holographie] s'y applique", conclut M. Susskind. Trouver comment établir ce type de correspondance pour un espace qui ressemble davantage à l'univers réel est l'un des problèmes les plus urgents pour les théoriciens des cordes. "Je pense que nous allons être en mesure de mieux comprendre comment entrer dans une version cosmologique de ceci", dit van Raamsdonk.

Enfin, il y a les nouvelles - ou l'absence de nouvelles - provenant des derniers accélérateurs de particules, qui n'ont trouvé aucune preuve de l'existence des particules supplémentaires prévues par la supersymétrie, une idée sur laquelle repose la théorie des cordes. Selon la supersymétrie, toutes les particules connues auraient leurs propres "superpartenaires", ce qui doublerait le nombre de particules fondamentales. Mais le Grand collisionneur de hadrons du CERN, près de Genève, conçu en partie pour rechercher des superpartenaires, n'en a vu aucun signe. "Toutes les versions vraiment précises de [l'espace-temps émergent] dont nous disposons se trouvent dans des théories supersymétriques", déclare Susskind. "Une fois que vous n'avez plus de supersymétrie, la capacité à suivre mathématiquement les équations s'évapore tout simplement de vos mains".

LES ATOMES DE L'ESPACE-TEMPS

La théorie des cordes n'est pas la seule idée qui suggère que l'espace-temps est émergent. La théorie des cordes "n'a pas réussi à tenir [ses] promesses en tant que moyen d'unir la gravité et la mécanique quantique", déclare Abhay Ashtekar, physicien à l'université d'État de Pennsylvanie. "La puissance de la théorie des cordes réside désormais dans le fait qu'elle fournit un ensemble d'outils extrêmement riche, qui ont été largement utilisés dans tout le spectre de la physique." Ashtekar est l'un des pionniers originaux de l'alternative la plus populaire à la théorie des cordes, connue sous le nom de gravité quantique à boucles. Dans la gravité quantique à boucles, l'espace et le temps ne sont pas lisses et continus, comme c'est le cas dans la relativité générale, mais ils sont constitués de composants discrets, ce qu'Ashtekar appelle des "morceaux ou atomes d'espace-temps".

Ces atomes d'espace-temps sont connectés en réseau, avec des surfaces unidimensionnelles et bidimensionnelles qui les réunissent en ce que les praticiens de la gravité quantique à boucle appellent une mousse de spin. Et bien que cette mousse soit limitée à deux dimensions, elle donne naissance à notre monde quadridimensionnel, avec trois dimensions d'espace et une de temps. Ashtekar compare ce monde à un vêtement. "Si vous regardez votre chemise, elle ressemble à une surface bidimensionnelle", dit-il. "Si vous prenez une loupe, vous verrez immédiatement qu'il s'agit de fils unidimensionnels. C'est juste que ces fils sont si denses que, pour des raisons pratiques, vous pouvez considérer la chemise comme une surface bidimensionnelle. De même, l'espace qui nous entoure ressemble à un continuum tridimensionnel. Mais il y a vraiment un entrecroisement par ces [atomes d'espace-temps]".

Bien que la théorie des cordes et la gravité quantique à boucles suggèrent toutes deux que l'espace-temps est émergent, le type d'émergence est différent dans les deux théories. La théorie des cordes suggère que l'espace-temps (ou du moins l'espace) émerge du comportement d'un système apparemment sans rapport, sous forme d'intrication. Pensez à la façon dont les embouteillages émergent des décisions collectives des conducteurs individuels. Les voitures ne sont pas faites de la circulation - ce sont les voitures qui font la circulation. Dans la gravité quantique à boucles, par contre, l'émergence de l'espace-temps ressemble davantage à une dune de sable en pente émergeant du mouvement collectif des grains de sable dans le vent. L'espace-temps lisse et familier provient du comportement collectif de minuscules "grains" d'espace-temps ; comme les dunes, les grains sont toujours du sable, même si les gros grains cristallins n'ont pas l'apparence ou le comportement des dunes ondulantes.

Malgré ces différences, gravité quantique à boucles et  théorie des cordes suggèrent toutes deux que l'espace-temps émerge d'une réalité sous-jacente. Elles ne sont pas non plus les seules théories proposées de la gravité quantique qui vont dans ce sens. La théorie de l'ensemble causal, un autre prétendant à une théorie de la gravité quantique, postule que l'espace et le temps sont également constitués de composants plus fondamentaux. "Il est vraiment frappant de constater que, pour la plupart des théories plausibles de la gravité quantique dont nous disposons, leur message est, en quelque sorte, que l'espace-temps relativiste général n'existe pas au niveau fondamental", déclare Knox. "Les gens sont très enthousiastes lorsque différentes théories de la gravité quantique s'accordent au moins sur quelque chose."

L'AVENIR DE L'ESPACE AUX CONFINS DU TEMPS

La physique moderne est victime de son propre succès. La physique quantique et la relativité générale étant toutes deux d'une précision phénoménale, la gravité quantique n'est nécessaire que pour décrire des situations extrêmes, lorsque des masses énormes sont entassées dans des espaces insondables. Ces conditions n'existent que dans quelques endroits de la nature, comme le centre d'un trou noir, et surtout pas dans les laboratoires de physique, même les plus grands et les plus puissants. Il faudrait un accélérateur de particules de la taille d'une galaxie pour tester directement le comportement de la nature dans des conditions où règne la gravité quantique. Ce manque de données expérimentales directes explique en grande partie pourquoi la recherche d'une théorie de la gravité quantique par les scientifiques a été si longue.

Face à l'absence de preuves, la plupart des physiciens ont placé leurs espoirs dans le ciel. Dans les premiers instants du big bang, l'univers entier était phénoménalement petit et dense - une situation qui exige une gravité quantique pour le décrire. Et des échos de cette époque peuvent subsister dans le ciel aujourd'hui. "Je pense que notre meilleure chance [de tester la gravité quantique] passe par la cosmologie", déclare Maldacena. "Peut-être quelque chose en cosmologie que nous pensons maintenant être imprévisible, qui pourra peut-être être prédit une fois que nous aurons compris la théorie complète, ou une nouvelle chose à laquelle nous n'avions même pas pensé."

Les expériences de laboratoire pourraient toutefois s'avérer utiles pour tester la théorie des cordes, du moins indirectement. Les scientifiques espèrent étudier la correspondance AdS/CFT non pas en sondant l'espace-temps, mais en construisant des systèmes d'atomes fortement intriqués et en observant si un analogue à l'espace-temps et à la gravité apparaît dans leur comportement. De telles expériences pourraient "présenter certaines caractéristiques de la gravité, mais peut-être pas toutes", déclare Maldacena. "Cela dépend aussi de ce que l'on appelle exactement la gravité".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ? Les données d'observation du ciel ne seront peut-être pas disponibles de sitôt. Les expériences en laboratoire pourraient être un échec. Et comme les philosophes le savent bien, les questions sur la véritable nature de l'espace et du temps sont très anciennes. Ce qui existe "est maintenant tout ensemble, un, continu", disait le philosophe Parménide il y a 2 500 ans. "Tout est plein de ce qui est". Parménide insistait sur le fait que le temps et le changement étaient des illusions, que tout partout était un et le même. Son élève Zénon a créé de célèbres paradoxes pour prouver le point de vue de son professeur, prétendant démontrer que le mouvement sur n'importe quelle distance était impossible. Leurs travaux ont soulevé la question de savoir si le temps et l'espace étaient en quelque sorte illusoires, une perspective troublante qui a hanté la philosophie occidentale pendant plus de deux millénaires.

Le fait que les Grecs de l'Antiquité aient posé des questions telles que "Qu'est-ce que l'espace ?", "Qu'est-ce que le temps ?", "Qu'est-ce que le changement ?" et que nous posions encore des versions de ces questions aujourd'hui signifie qu'il s'agissait des bonnes questions à poser", explique M. Wüthrich. "C'est en réfléchissant à ce genre de questions que nous avons appris beaucoup de choses sur la physique".

Auteur: Becker Adam

Info: Scientific American, février 2022

[ monde de l'observateur humain ] [ univers nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel

trickster

Les mondes multiples d'Hugh Everett

Il y a cinquante ans, Hugh Everett a conçu l'interprétation de la mécanique quantique en l'expliquant par des mondes multiples, théorie dans laquelle les effets quantiques engendrent d'innombrables branches de l'univers avec des événements différents dans chacune. La théorie semble être une hypothèse bizarre, mais Everett l'a déduite des mathématiques fondamentales de la mécanique quantique. Néanmoins, la plupart des physiciens de l'époque la rejetèrent, et il dût abréger sa thèse de doctorat sur le sujet pour éviter la controverse. Découragé, Everett quitta la physique et travailla sur les mathématiques et l'informatique militaires et industrielles. C'était un être émotionnellement renfermé et un grand buveur. Il est mort alors qu'il n'avait que 51 ans, et ne put donc pas voir le récent respect accordé à ses idées par les physiciens.

Hugh Everett III était un mathématicien brillant, théoricien quantique iconoclaste, puis ensuite entrepreneur prospère dans la défense militaire ayant accès aux secrets militaires les plus sensibles du pays. Il a introduit une nouvelle conception de la réalité dans la physique et a influencé le cours de l'histoire du monde à une époque où l'Armageddon nucléaire semblait imminent. Pour les amateurs de science-fiction, il reste un héros populaire : l'homme qui a inventé une théorie quantique des univers multiples. Pour ses enfants, il était quelqu'un d'autre : un père indisponible, "morceau de mobilier assis à la table de la salle à manger", cigarette à la main. Alcoolique aussi, et fumeur à la chaîne, qui mourut prématurément.

L'analyse révolutionnaire d'Everett a brisé une impasse théorique dans l'interprétation du "comment" de la mécanique quantique. Bien que l'idée des mondes multiples ne soit pas encore universellement acceptée aujourd'hui, ses méthodes de conception de la théorie présagèrent le concept de décohérence quantique - explication moderne du pourquoi et comment la bizarrerie probabiliste de la mécanique quantique peut se résoudre dans le monde concret de notre expérience. Le travail d'Everett est bien connu dans les milieux de la physique et de la philosophie, mais l'histoire de sa découverte et du reste de sa vie l'est relativement moins. Les recherches archivistiques de l'historien russe Eugène Shikhovtsev, de moi-même et d'autres, ainsi que les entretiens que j'ai menés avec les collègues et amis du scientifique décédé, ainsi qu'avec son fils musicien de rock, révèlent l'histoire d'une intelligence radieuse éteinte trop tôt par des démons personnels.

Le voyage scientifique d'Everett commença une nuit de 1954, raconte-t-il deux décennies plus tard, "après une gorgée ou deux de sherry". Lui et son camarade de classe de Princeton Charles Misner et un visiteur nommé Aage Petersen (alors assistant de Niels Bohr) pensaient "des choses ridicules sur les implications de la mécanique quantique". Au cours de cette session Everett eut l'idée de base fondant la théorie des mondes multiples, et dans les semaines qui suivirent, il commença à la développer dans un mémoire. L'idée centrale était d'interpréter ce que les équations de la mécanique quantique représentent dans le monde réel en faisant en sorte que les mathématiques de la théorie elle-même montrent le chemin plutôt qu'en ajoutant des hypothèses d'interprétation aux mathématiques existantes sur le sujet. De cette façon, le jeune homme a mis au défi l'establishment physique de l'époque en reconsidérant sa notion fondamentale de ce qui constitue la réalité physique. En poursuivant cette entreprise, Everett s'attaqua avec audace au problème notoire de la mesure en mécanique quantique, qui accablait les physiciens depuis les années 1920.

En résumé, le problème vient d'une contradiction entre la façon dont les particules élémentaires (comme les électrons et les photons) interagissent au niveau microscopique quantique de la réalité et ce qui se passe lorsque les particules sont mesurées à partir du niveau macroscopique classique. Dans le monde quantique, une particule élémentaire, ou une collection de telles particules, peut exister dans une superposition de deux ou plusieurs états possibles. Un électron, par exemple, peut se trouver dans une superposition d'emplacements, de vitesses et d'orientations différentes de sa rotation. Pourtant, chaque fois que les scientifiques mesurent l'une de ces propriétés avec précision, ils obtiennent un résultat précis - juste un des éléments de la superposition, et non une combinaison des deux. Nous ne voyons jamais non plus d'objets macroscopiques en superposition. Le problème de la mesure se résume à cette question : Comment et pourquoi le monde unique de notre expérience émerge-t-il des multiples alternatives disponibles dans le monde quantique superposé ? Les physiciens utilisent des entités mathématiques appelées fonctions d'onde pour représenter les états quantiques. Une fonction d'onde peut être considérée comme une liste de toutes les configurations possibles d'un système quantique superposé, avec des nombres qui donnent la probabilité que chaque configuration soit celle, apparemment choisie au hasard, que nous allons détecter si nous mesurons le système. La fonction d'onde traite chaque élément de la superposition comme étant également réel, sinon nécessairement également probable de notre point de vue. L'équation de Schrödinger décrit comment la fonction ondulatoire d'un système quantique changera au fil du temps, une évolution qu'elle prédit comme lisse et déterministe (c'est-à-dire sans caractère aléatoire).

Mais cette élégante mathématique semble contredire ce qui se passe lorsque les humains observent un système quantique, tel qu'un électron, avec un instrument scientifique (qui lui-même peut être considéré comme un système quantique). Car au moment de la mesure, la fonction d'onde décrivant la superposition d'alternatives semble s'effondrer en un unique membre de la superposition, interrompant ainsi l'évolution en douceur de la fonction d'onde et introduisant la discontinuité. Un seul résultat de mesure émerge, bannissant toutes les autres possibilités de la réalité décrite de manière classique. Le choix de l'alternative produite au moment de la mesure semble arbitraire ; sa sélection n'évolue pas logiquement à partir de la fonction d'onde chargée d'informations de l'électron avant la mesure. Les mathématiques de l'effondrement n'émergent pas non plus du flux continu de l'équation de Schrödinger. En fait, l'effondrement (discontinuité) doit être ajouté comme un postulat, comme un processus supplémentaire qui semble violer l'équation.

De nombreux fondateurs de la mécanique quantique, notamment Bohr, Werner Heisenberg et John von Neumann, se sont mis d'accord sur une interprétation de la mécanique quantique - connue sous le nom d'interprétation de Copenhague - pour traiter le problème des mesures. Ce modèle de réalité postule que la mécanique du monde quantique se réduit à des phénomènes observables de façon classique et ne trouve son sens qu'en termes de phénomènes observables, et non l'inverse. Cette approche privilégie l'observateur externe, le plaçant dans un domaine classique distinct du domaine quantique de l'objet observé. Bien qu'incapables d'expliquer la nature de la frontière entre le domaine quantique et le domaine classique, les Copenhagueistes ont néanmoins utilisé la mécanique quantique avec un grand succès technique. Des générations entières de physiciens ont appris que les équations de la mécanique quantique ne fonctionnent que dans une partie de la réalité, la microscopique, et cessent d'être pertinentes dans une autre, la macroscopique. C'est tout ce dont la plupart des physiciens ont besoin.

Fonction d'onde universelle. Par fort effet contraire, Everett s'attaqua au problème de la mesure en fusionnant les mondes microscopique et macroscopique. Il fit de l'observateur une partie intégrante du système observé, introduisant une fonction d'onde universelle qui relie les observateurs et les objets dans un système quantique unique. Il décrivit le monde macroscopique en mécanique quantique imaginant que les grands objets existent également en superpositions quantiques. Rompant avec Bohr et Heisenberg, il n'avait pas besoin de la discontinuité d'un effondrement de la fonction ondulatoire. L'idée radicalement nouvelle d'Everett était de se demander : Et si l'évolution continue d'une fonction d'onde n'était pas interrompue par des actes de mesure ? Et si l'équation de Schrödinger s'appliquait toujours et s'appliquait aussi bien à tous les objets qu'aux observateurs ? Et si aucun élément de superposition n'est jamais banni de la réalité ? A quoi ressemblerait un tel monde pour nous ? Everett constata, selon ces hypothèses, que la fonction d'onde d'un observateur devrait, en fait, bifurquer à chaque interaction de l'observateur avec un objet superposé. La fonction d'onde universelle contiendrait des branches pour chaque alternative constituant la superposition de l'objet. Chaque branche ayant sa propre copie de l'observateur, copie qui percevait une de ces alternatives comme le résultat. Selon une propriété mathématique fondamentale de l'équation de Schrödinger, une fois formées, les branches ne s'influencent pas mutuellement. Ainsi, chaque branche se lance dans un avenir différent, indépendamment des autres. Prenons l'exemple d'une personne qui mesure une particule qui se trouve dans une superposition de deux états, comme un électron dans une superposition de l'emplacement A et de l'emplacement B. Dans une branche, la personne perçoit que l'électron est à A. Dans une branche presque identique, une copie de la personne perçoit que le même électron est à B. Chaque copie de la personne se perçoit comme unique et considère que la chance lui a donné une réalité dans un menu des possibilités physiques, même si, en pleine réalité, chaque alternative sur le menu se réalise.

Expliquer comment nous percevons un tel univers exige de mettre un observateur dans l'image. Mais le processus de ramification se produit indépendamment de la présence ou non d'un être humain. En général, à chaque interaction entre systèmes physiques, la fonction d'onde totale des systèmes combinés aurait tendance à bifurquer de cette façon. Aujourd'hui, la compréhension de la façon dont les branches deviennent indépendantes et ressemblent à la réalité classique à laquelle nous sommes habitués est connue sous le nom de théorie de la décohérence. C'est une partie acceptée de la théorie quantique moderne standard, bien que tout le monde ne soit pas d'accord avec l'interprétation d'Everett comme quoi toutes les branches représentent des réalités qui existent. Everett n'a pas été le premier physicien à critiquer le postulat de l'effondrement de Copenhague comme inadéquat. Mais il a innové en élaborant une théorie mathématiquement cohérente d'une fonction d'onde universelle à partir des équations de la mécanique quantique elle-même. L'existence d'univers multiples a émergé comme une conséquence de sa théorie, pas par un prédicat. Dans une note de bas de page de sa thèse, Everett écrit : "Du point de vue de la théorie, tous les éléments d'une superposition (toutes les "branches") sont "réels", aucun n'est plus "réel" que les autres. Le projet contenant toutes ces idées provoqua de remarquables conflits dans les coulisses, mis au jour il y a environ cinq ans par Olival Freire Jr, historien des sciences à l'Université fédérale de Bahia au Brésil, dans le cadre de recherches archivistiques.

Au printemps de 1956 le conseiller académique à Princeton d'Everett, John Archibald Wheeler, prit avec lui le projet de thèse à Copenhague pour convaincre l'Académie royale danoise des sciences et lettres de le publier. Il écrivit à Everett qu'il avait eu "trois longues et fortes discussions à ce sujet" avec Bohr et Petersen. Wheeler partagea également le travail de son élève avec plusieurs autres physiciens de l'Institut de physique théorique de Bohr, dont Alexander W. Stern. Scindages La lettre de Wheeler à Everett disait en autre : "Votre beau formalisme de la fonction ondulatoire reste bien sûr inébranlable ; mais nous sentons tous que la vraie question est celle des mots qui doivent être attachés aux quantités de ce formalisme". D'une part, Wheeler était troublé par l'utilisation par Everett d'humains et de boulets de canon "scindés" comme métaphores scientifiques. Sa lettre révélait l'inconfort des Copenhagueistes quant à la signification de l'œuvre d'Everett. Stern rejeta la théorie d'Everett comme "théologique", et Wheeler lui-même était réticent à contester Bohr. Dans une longue lettre politique adressée à Stern, il explique et défend la théorie d'Everett comme une extension, non comme une réfutation, de l'interprétation dominante de la mécanique quantique : "Je pense que je peux dire que ce jeune homme très fin, capable et indépendant d'esprit en est venu progressivement à accepter l'approche actuelle du problème de la mesure comme correcte et cohérente avec elle-même, malgré quelques traces qui subsistent dans le présent projet de thèse d'une attitude douteuse envers le passé. Donc, pour éviter tout malentendu possible, permettez-moi de dire que la thèse d'Everett ne vise pas à remettre en question l'approche actuelle du problème de la mesure, mais à l'accepter et à la généraliser."

Everett aurait été en total désaccord avec la description que Wheeler a faite de son opinion sur l'interprétation de Copenhague. Par exemple, un an plus tard, en réponse aux critiques de Bryce S. DeWitt, rédacteur en chef de la revue Reviews of Modern Physics, il écrivit : "L'Interprétation de Copenhague est désespérément incomplète en raison de son recours a priori à la physique classique... ainsi que d'une monstruosité philosophique avec un concept de "réalité" pour le monde macroscopique qui ne marche pas avec le microcosme." Pendant que Wheeler était en Europe pour plaider sa cause, Everett risquait alors de perdre son permis de séjour étudiant qui avait été suspendu. Pour éviter d'aller vers des mesures disciplinaires, il décida d'accepter un poste de chercheur au Pentagone. Il déménagea dans la région de Washington, D.C., et ne revint jamais à la physique théorique. Au cours de l'année suivante, cependant, il communiqua à distance avec Wheeler alors qu'il avait réduit à contrecœur sa thèse au quart de sa longueur d'origine. En avril 1957, le comité de thèse d'Everett accepta la version abrégée - sans les "scindages". Trois mois plus tard, Reviews of Modern Physics publiait la version abrégée, intitulée "Relative State' Formulation of Quantum Mechanics".("Formulation d'état relatif de la mécanique quantique.") Dans le même numéro, un document d'accompagnement de Wheeler loue la découverte de son élève. Quand le papier parut sous forme imprimée, il passa instantanément dans l'obscurité.

Wheeler s'éloigna progressivement de son association avec la théorie d'Everett, mais il resta en contact avec le théoricien, l'encourageant, en vain, à faire plus de travail en mécanique quantique. Dans une entrevue accordée l'an dernier, Wheeler, alors âgé de 95 ans, a déclaré qu' "Everett était déçu, peut-être amer, devant les non réactions à sa théorie. Combien j'aurais aimé continuer les séances avec lui. Les questions qu'il a soulevées étaient importantes." Stratégies militaires nucléaires Princeton décerna son doctorat à Everett près d'un an après qu'il ait commencé son premier projet pour le Pentagone : le calcul des taux de mortalité potentiels des retombées radioactives d'une guerre nucléaire. Rapidement il dirigea la division des mathématiques du Groupe d'évaluation des systèmes d'armes (WSEG) du Pentagone, un groupe presque invisible mais extrêmement influent. Everett conseillait de hauts responsables des administrations Eisenhower et Kennedy sur les meilleures méthodes de sélection des cibles de bombes à hydrogène et de structuration de la triade nucléaire de bombardiers, de sous-marins et de missiles pour un impact optimal dans une frappe nucléaire. En 1960, participa à la rédaction du WSEG n° 50, un rapport qui reste classé à ce jour. Selon l'ami d'Everett et collègue du WSEG, George E. Pugh, ainsi que des historiens, le WSEG no 50 a rationalisé et promu des stratégies militaires qui ont fonctionné pendant des décennies, notamment le concept de destruction mutuelle assurée. Le WSEG a fourni aux responsables politiques de la guerre nucléaire suffisamment d'informations effrayantes sur les effets mondiaux des retombées radioactives pour que beaucoup soient convaincus du bien-fondé d'une impasse perpétuelle, au lieu de lancer, comme le préconisaient certains puissants, des premières attaques préventives contre l'Union soviétique, la Chine et d'autres pays communistes.

Un dernier chapitre de la lutte pour la théorie d'Everett se joua également dans cette période. Au printemps 1959, Bohr accorda à Everett une interview à Copenhague. Ils se réunirent plusieurs fois au cours d'une période de six semaines, mais avec peu d'effet : Bohr ne changea pas sa position, et Everett n'est pas revenu à la recherche en physique quantique. L'excursion n'avait pas été un échec complet, cependant. Un après-midi, alors qu'il buvait une bière à l'hôtel Østerport, Everett écrivit sur un papier à l'en-tête de l'hôtel un raffinement important de cet autre tour de force mathématique qui a fait sa renommée, la méthode généralisée du multiplicateur de Lagrange, aussi connue sous le nom d'algorithme Everett. Cette méthode simplifie la recherche de solutions optimales à des problèmes logistiques complexes, allant du déploiement d'armes nucléaires aux horaires de production industrielle juste à temps en passant par l'acheminement des autobus pour maximiser la déségrégation des districts scolaires. En 1964, Everett, Pugh et plusieurs autres collègues du WSEG ont fondé une société de défense privée, Lambda Corporation. Entre autres activités, il a conçu des modèles mathématiques de systèmes de missiles anti-missiles balistiques et de jeux de guerre nucléaire informatisés qui, selon Pugh, ont été utilisés par l'armée pendant des années. Everett s'est épris de l'invention d'applications pour le théorème de Bayes, une méthode mathématique de corrélation des probabilités des événements futurs avec l'expérience passée. En 1971, Everett a construit un prototype de machine bayésienne, un programme informatique qui apprend de l'expérience et simplifie la prise de décision en déduisant les résultats probables, un peu comme la faculté humaine du bon sens. Sous contrat avec le Pentagone, le Lambda a utilisé la méthode bayésienne pour inventer des techniques de suivi des trajectoires des missiles balistiques entrants. En 1973, Everett quitte Lambda et fonde une société de traitement de données, DBS, avec son collègue Lambda Donald Reisler. Le DBS a fait des recherches sur les applications des armes, mais s'est spécialisée dans l'analyse des effets socio-économiques des programmes d'action sociale du gouvernement. Lorsqu'ils se sont rencontrés pour la première fois, se souvient M. Reisler, Everett lui a demandé timidement s'il avait déjà lu son journal de 1957. J'ai réfléchi un instant et j'ai répondu : "Oh, mon Dieu, tu es cet Everett, le fou qui a écrit ce papier dingue", dit Reisler. "Je l'avais lu à l'université et avais gloussé, le rejetant d'emblée." Les deux sont devenus des amis proches mais convinrent de ne plus parler d'univers multiples.

Malgré tous ces succès, la vie d'Everett fut gâchée de bien des façons. Il avait une réputation de buveur, et ses amis disent que le problème semblait s'aggraver avec le temps. Selon Reisler, son partenaire aimait habituellement déjeuner avec trois martinis, dormant dans son bureau, même s'il réussissait quand même à être productif. Pourtant, son hédonisme ne reflétait pas une attitude détendue et enjouée envers la vie. "Ce n'était pas quelqu'un de sympathique", dit Reisler. "Il apportait une logique froide et brutale à l'étude des choses... Les droits civils n'avaient aucun sens pour lui." John Y. Barry, ancien collègue d'Everett au WSEG, a également remis en question son éthique. Au milieu des années 1970, Barry avait convaincu ses employeurs chez J. P. Morgan d'embaucher Everett pour mettre au point une méthode bayésienne de prévision de l'évolution du marché boursier. Selon plusieurs témoignages, Everett avait réussi, puis il refusa de remettre le produit à J. P. Morgan. "Il s'est servi de nous", se souvient Barry. "C'était un individu brillant, innovateur, insaisissable, indigne de confiance, probablement alcoolique." Everett était égocentrique. "Hugh aimait épouser une forme de solipsisme extrême", dit Elaine Tsiang, ancienne employée de DBS. "Bien qu'il eut peine à éloigner sa théorie [des monde multiples] de toute théorie de l'esprit ou de la conscience, il est évident que nous devions tous notre existence par rapport au monde qu'il avait fait naître." Et il connaissait à peine ses enfants, Elizabeth et Mark. Alors qu'Everett poursuivait sa carrière d'entrepreneur, le monde de la physique commençait à jeter un regard critique sur sa théorie autrefois ignorée. DeWitt pivota d'environ 180 degrés et devint son défenseur le plus dévoué. En 1967, il écrivit un article présentant l'équation de Wheeler-DeWitt : une fonction d'onde universelle qu'une théorie de la gravité quantique devrait satisfaire. Il attribue à Everett le mérite d'avoir démontré la nécessité d'une telle approche. DeWitt et son étudiant diplômé Neill Graham ont ensuite publié un livre de physique, The Many-Worlds Interpretation of Quantum Mechanics, qui contenait la version non informatisée de la thèse d'Everett. L'épigramme "mondes multiples" se répandit rapidement, popularisée dans le magazine de science-fiction Analog en 1976. Toutefois, tout le monde n'est pas d'accord sur le fait que l'interprétation de Copenhague doive céder le pas. N. David Mermin, physicien de l'Université Cornell, soutient que l'interprétation d'Everett traite la fonction des ondes comme faisant partie du monde objectivement réel, alors qu'il la considère simplement comme un outil mathématique. "Une fonction d'onde est une construction humaine", dit Mermin. "Son but est de nous permettre de donner un sens à nos observations macroscopiques. Mon point de vue est exactement le contraire de l'interprétation des mondes multiples. La mécanique quantique est un dispositif qui nous permet de rendre nos observations cohérentes et de dire que nous sommes à l'intérieur de la mécanique quantique et que la mécanique quantique doive s'appliquer à nos perceptions est incohérent." Mais de nombreux physiciens avancent que la théorie d'Everett devrait être prise au sérieux. "Quand j'ai entendu parler de l'interprétation d'Everett à la fin des années 1970, dit Stephen Shenker, physicien théoricien à l'Université Stanford, j'ai trouvé cela un peu fou. Maintenant, la plupart des gens que je connais qui pensent à la théorie des cordes et à la cosmologie quantique pensent à quelque chose qui ressemble à une interprétation à la Everett. Et à cause des récents développements en informatique quantique, ces questions ne sont plus académiques."

Un des pionniers de la décohérence, Wojciech H. Zurek, chercheur au Los Alamos National Laboratory, a commente que "l'accomplissement d'Everett fut d'insister pour que la théorie quantique soit universelle, qu'il n'y ait pas de division de l'univers entre ce qui est a priori classique et ce qui est a priori du quantum. Il nous a tous donné un ticket pour utiliser la théorie quantique comme nous l'utilisons maintenant pour décrire la mesure dans son ensemble." Le théoricien des cordes Juan Maldacena de l'Institute for Advanced Study de Princeton, N.J., reflète une attitude commune parmi ses collègues : "Quand je pense à la théorie d'Everett en mécanique quantique, c'est la chose la plus raisonnable à croire. Dans la vie de tous les jours, je n'y crois pas."

En 1977, DeWitt et Wheeler invitèrent Everett, qui détestait parler en public, à faire une présentation sur son interprétation à l'Université du Texas à Austin. Il portait un costume noir froissé et fuma à la chaîne pendant tout le séminaire. David Deutsch, maintenant à l'Université d'Oxford et l'un des fondateurs du domaine de l'informatique quantique (lui-même inspiré par la théorie d'Everett), était là. "Everett était en avance sur son temps", dit Deutsch en résumant la contribution d'Everett. "Il représente le refus de renoncer à une explication objective. L'abdication de la finalité originelle de ces domaines, à savoir expliquer le monde, a fait beaucoup de tort au progrès de la physique et de la philosophie. Nous nous sommes irrémédiablement enlisés dans les formalismes, et les choses ont été considérées comme des progrès qui ne sont pas explicatifs, et le vide a été comblé par le mysticisme, la religion et toutes sortes de détritus. Everett est important parce qu'il s'y est opposé." Après la visite au Texas, Wheeler essaya de mettre Everett en contact avec l'Institute for Theoretical Physics à Santa Barbara, Californie. Everett aurait été intéressé, mais le plan n'a rien donné. Totalité de l'expérience Everett est mort dans son lit le 19 juillet 1982. Il n'avait que 51 ans.

Son fils, Mark, alors adolescent, se souvient avoir trouvé le corps sans vie de son père ce matin-là. Sentant le corps froid, Mark s'est rendu compte qu'il n'avait aucun souvenir d'avoir jamais touché son père auparavant. "Je ne savais pas quoi penser du fait que mon père venait de mourir, m'a-t-il dit. "Je n'avais pas vraiment de relation avec lui." Peu de temps après, Mark a déménagé à Los Angeles. Il est devenu un auteur-compositeur à succès et chanteur principal d'un groupe de rock populaire, Eels. Beaucoup de ses chansons expriment la tristesse qu'il a vécue en tant que fils d'un homme déprimé, alcoolique et détaché émotionnellement. Ce n'est que des années après la mort de son père que Mark a appris l'existence de la carrière et des réalisations de son père. La sœur de Mark, Elizabeth, fit la première d'une série de tentatives de suicide en juin 1982, un mois seulement avant la mort d'Everett. Mark la trouva inconsciente sur le sol de la salle de bain et l'amena à l'hôpital juste à temps. Quand il rentra chez lui plus tard dans la soirée, se souvient-il, son père "leva les yeux de son journal et dit : Je ne savais pas qu'elle était si triste."" En 1996, Elizabeth se suicida avec une overdose de somnifères, laissant une note dans son sac à main disant qu'elle allait rejoindre son père dans un autre univers. Dans une chanson de 2005, "Things the Grandchildren Should Know", Mark a écrit : "Je n'ai jamais vraiment compris ce que cela devait être pour lui de vivre dans sa tête". Son père solipsistiquement incliné aurait compris ce dilemme. "Une fois que nous avons admis que toute théorie physique n'est essentiellement qu'un modèle pour le monde de l'expérience, conclut Everett dans la version inédite de sa thèse, nous devons renoncer à tout espoir de trouver quelque chose comme la théorie correcte... simplement parce que la totalité de l'expérience ne nous est jamais accessible."

Auteur: Byrne Peter

Info: 21 octobre 2008, https://www.scientificamerican.com/article/hugh-everett-biography/. Publié à l'origine dans le numéro de décembre 2007 de Scientific American

[ légende de la physique théorique ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

Afrique-Occident

Robert Farris Thompson: les canons du Cool
Une bouteille de Cinzano, une boîte de fixatif, un chandelier à sept branches, une machette et un juke-box cassé sont des objets de dévotion ornant l'autel d'un temple vodun ("vaudou") en périphérie de Port-au-Prince. Le temple est situé dans l'enceinte d'André Pierre, prêtre vodun et peintre, en bordure d'un fossé sur la route du Cap-Haïtien. Il y a des voitures accidentées dans la cour, des chiens, des chèvres et un petit taureau attaché. En arrivant de l'aéroport international François Duvalier, l'esprit prédisposé aux présages, je ne peux m'empêcher de remarquer un grand panneau de signalisation à proximité. On y lit "LA ROUTE TUE ET BLESSE."

Robert Farris Thompson et moi sommes descendus de New York vers Haïti pour passer le week-end avec André Pierre et Madame Nerva, une prêtresse vaudou. Thompson est historien de l'art, professeur titulaire à Yale et maître au Timothy Dwight College. Je suis un de ses anciens élèves, venu voir Bob faire ce qu'il nomme "un petit sondage". André Pierre est le Fra Angelico haïtien, un clerc vodun dont les toiles sont accrochées au musée national de Haïti; des copies de son travail remplissent les porte-cartes de l'aéroport. La femme, les enfants et les enfants des cousins ​​d'André Pierre légument dans l'ombre alors que Thompson fait pénétrer sa voiture de location verte dans l'enceinte, criant: "Bam nouvelle" et "Comment ouyé?"

Nous retrouvons André Pierre, petit, noir, visage marqué, dans la chaleur de son atelier. Les murs sont couverts de brillants motifs vodun - diptyques et triptyques d'Ogûn, dieu du fer; Agoué, seigneur de la mer; Erzuli, déesse de l'amour; et Damballah, dieu serpent de la créativité, de la fécondité et de la pluie. À côté du chevalet, il y a un uniforme militaire à glands pour le Baron Samedi, seigneur des cimetières, soigneusement protégé dans son sac de nettoyage à sec.

Avec la révérence et l'attitude d'un abbé pilotant ses visiteurs dans un vénérable monastère du sud de la France, André Pierre nous fait visiter ce temple d'étain ondulé. Il nous montre des salles-autels contenant des tambours, des bassins, des faux, des cartes à jouer, de l'alcool, des fouets et des lits (dans lesquels André Pierre dort quand il passe la nuit avec une divinité particulière). Il s'exprime via une sorte de flux créole théoloco-vodun tout en marchant et en pointant des choses. Soudain, André Pierre se met à chanter pour illustrer une idée particulière; elle correspond à un tableau et il l'explique, de la même façon qu'un requiem correspond à une crucifixion. Thompson attrape un tambour et commence à tambouriner et à chanter. Lorsqu'ils ont fini, en geste de célébration, ils versent chacun une cuillerée de liqueur de racine sur le sol. Thompson m'avertit à part en anglais de faire attention près des bassins en pierre dans la pièce sombre, car c'est un de ceux dédiés à Damballah, le dieu serpent, et ils contiennent parfois des serpents.

À la tombée de la nuit, Thompson, polo humide de transpiration, a empli un carnet et demi de croquis et de notes, commencé une monographie sur l'iconographie de 10 peintures vodun, tambouriné, bu des coups et pris rendez-vous pour revenir tôt le lendemain. Alors que nous partons à la recherche de notre hôtel, Thompson, excité, m'explique les subtilités morales de tout ce que nous avons vu. Il me parle de notre emploi du temps: nous devons aller demain soir à Jacmel, de l'autre côté des montagnes, voir Madame Nerva célébrer les rites de la déesse de l'amour, Erzuli. Je suis épuisé, ayant trouvé que le voyage de Manhattan au temple d'André Pierre en un après-midi c'est déjà beaucoup. Thompson ne semble ressentir aucune tension suite à cette journée; il entre en Haïti tout en fluidité. En fait il semble juste revenir chez lui.

Blanc de peau, blanc de cheveux et blanc d'origine, d'éducation et de par sa société, Robert Farris Thompson est tombé amoureux de la musique noire, de l'art noir et de la négritude il y a 30 ans et a basé toute sa carrière sur cette passion particulière. Suivant cet instinct, suscité par un mambo entendu en 1950, Thompson a appris couramment le ki-kongo, le yoruba, le français, l'espagnol et le portugais et s'est familiarisé avec une vingtaine de langues créoles et tribales; il a parcouru la forêt de l'Ituri au Zaïre avec des pygmées; est grand connaisseur du vaudou; a écrit quatre livres sur la religion, la philosophie et l'art ouest-africains; a organisé deux grandes expositions à la National Gallery de Washington. Il est également devenu, dansant dans un costume indigo brodé de coquillages pris sur les gésiers de crocodiles morts, "universitaire junioir membre de la Basinjon Society", agence tribale camerounaise qui contrôle la foudre et autres forces naturelles.

Incorporant l'anthropologie, la sociologie, l'ethnomusicologie et ce que Thompson nomme une "bourse scolaire pour guérilla" (il dit : "laissons les crétins se débrouiller avec ça"), la carrière de Thompson tend vers une seule fin: un savant plaidoyer de la civilisation atlantique noire. Il passe sa vie à poursuivre ce frisson cérébral qui est de rendre cohérent et significatif tout ce qui est mal compris, ou vu comme aléatoire, superficiel ou obscur à son sujet. Comme un historien de l'art extrairait des plans détaillés de la basilique une compréhension de l'esprit médiéval ou de la statuaire romaine tardive une compréhension du déclin de l'empire, Thompson travaille sur l'iconographie de la salsa, les pas de danse, les vêtements, la sculpture, le geste et l'argot pour une définition de la négritude. Il aime montrer à quel point le "primitif" est sophistiqué. Comme archéologue, il donne vie à des artefacts; comme critique, il les déchiffre; et comme vrai croyant, il promeut leur valeur artistique et spirituelle.

Le dernier livre de Thompson, Flash of the Spirit, explique les racines de l'influence africaine dans le Nouveau Monde. Il est une sorte de Baedeker du funk. Un critique a écrit: "Ce livre fait pour l'histoire de l'art ce que le dunk shot a fait pour le basket-ball."

Sous la manche droite de sa chemise Brooks Brothers, Bob Thompson porte le bracelet d'initiation en maille de fer de la divinité chasseuse de rivière Yoruba. Avec ses deux enfants, son récent divorce, ses études à Yale et Andover et ses 55 ans, il ressemble à un avocat d'entreprise en pleine forme ou à un brillant dirigeant pétrolier américain qui aurait mené une carrière polyglotte à l'étranger. Il vit à New Haven, dans le manoir géorgien du maître du collège, où l'on peut entendre le son des percussions résonner dans la cour.

En parallèle à Yale, ses élèves, des bonnes bouffes et de ses conférences, au travers de rencontres au coin de la rue et de conversations précieuses, Thompson fait du prosélytisme. Il enseigne à 100 ou 150 étudiants chaque trimestre et possède l'enthousiasme amusé d'un élève de premier cycle. Le reste de l'université connaît Thompson sous le nom de "Mambo". Pour clarifier ils diront même "noir comme Bob". Ce qui compte, c'est que le président de Yale, Bart Giamatti, brillant franc-tireur lui-même, admire suffisamment la singularité intrépide de Thompson pour l'avoir reconduit dans ses fonctions durant cinq ans.

Sur le campus, les affiches du Chubb Fellowship expriment un peu mieux le statut de Thompson et sa particularité majeure. La bourse Chubb est un programme destiné à amener des visiteurs politiques sur le campus, elle est aussi étoffée que les bourses bien dotées peuvent l'être. Pendant le mandat de Thompson, des personnages habituels - Walter Mondale, Alexander Haig, John Kenneth Galbraith - furent parmi les conférenciers invités. Des affiches commémorant leurs visites tapissent les murs de la maison du maître comme des trophées sportifs de conférences. Une affiche, plus grande et plus audacieuse que les autres, est suspendue dans le bureau de Thompson. Elle annonce que la Chubb Fellowship parraine, pour un colloque et une réception au Timothy Dwight College, une visite de Son Altesse le Granman de la Djuka, du Surinam, "roi afro-américain véritable".

Bob Thompson donne des cours à sa classe comme un prédicateur fondamentaliste réveille sa congrégation, genoux pliés, microphone branché, le fil traînant derrière lui. Il marche parmi les 200 étudiants qui débordent de l'auditorium de Street Hall dans le couloir. Le cours d'automne de Thompson, HoA 379a, est intitulé "La structure du New York Mambo: le microcosme de la créativité noire". Sur scène, un magnétophone émet un jog pygmée; du pupitre vacant pend une carte des dominions tribales ouest-africaines; et sur l'écran : des diapositives flash de Harlem, des pygmées, des tissus de motifs syncopés et des sculptures funéraires influencées par le Kongo des cimetières de Caroline du Nord. "Pourquoi" demande Thompson, "les Noirs sont-ils si impertinents ?"

La réponse commence par l'étymologie de l'expression "descendre - get down". Il passe aux concepts yoruba de cool (itutu) et de commandement (àshe); il parle durant une marche latérale et aussi sagittale (d'avant en arrière ou inversément); de l'esthétique de la batterie; de l'importance du phrasé décalé (off-beat/à contre-temps) ; des appels et réponses; et enfin de Muhammad Ali. Puis la voix de Thompson redevient celle du prof sérieux standard et il énumère une litanie d'influences africaines:

"Une grande partie de notre argot fut créée par des gens qui pensent en yoruba et en ki-kongo, tout en parlant en anglais. Les sons de base de l'accord et du désaccord, uh-huh et unh-unh, sont purement ouest-africains. Funky est du Ki-Kongo lu-fuki, "sueur positive". Boogie vient de Ki-Kongo mbugi, qui signifie "diablement bon". Le jazz et le jism dérivent probablement de la même racine Ki-Kongo dinza, qui signifie "éjaculer". Mojo vient du terme Ki-Kongo pour "âme"; juke, comme dans jukebox, de Mande-kan qui veut dire 'mauvais'; et Babalu-Aye - comme pourle disc-jockey Babalu - est du Yoruba pur et simple qui signifie "Père et maître de l'univers".

"La plupart de nos danses de salon sont africanisées" poursuit-il, "la rhumba, le tango, même les claquettes et le Lindy. Le poulet frit est africain. Et le short patchwork J. Press est lié à un tissu d'Afrique. Même le cheerleading incorpore certains gestes Kongo apparents: main gauche sur la hanche, main droite levée faisant tournoyer un bâton. Il s'est développé au travers des groupes Vodun Rara de la Nouvelle-Orléans jusqu'au spectacle de la mi-temps des Cowboys de Dallas."

"Laisse-moi te raconter comment tout ceci s'est mis en marche", explique Thompson, assis dans un restaurant du campus. "J'ai grandi au Texas; J'étais fou de boogie. Je n'étais pas footballeur ou quoi que ce soit, et je me rends compte maintenant que tous les éléments d'attractivité que j'avais pour les filles étaient à la fois musicaux et influencés par les noirs. Durant ma dernière année à l'école préparatoire, je suis allé en voyage à Mexico. Il y avait ce mambo - Mexico était inondé de mambo - j'ai entendu des serveurs le fredonner, je l'ai entendu sur les lèvres des préposés de station-service, je l'ai entendu en arrière-plan lorsque je parlait au téléphone de l'exploitant de l'hôtel. Ce fut mon premier bain complet de musique africaine: polyphonie noire totale, multimétrie mambo. Une femme magnifique s'est arrêtée devant moi dans un café; elle a écouté cette musique et je l'ai entendue dire à son compagnon: "Mais chéri, c'est un rythme si différent."

Un mambo, titré La Camisa de Papel - de Justi Barretto, est l'icône principale de la carrière de Thompson. Une partie brisée du disque mexicain 78 tours, chanté par Perez Prado, est encadré dans son étude. "Plus précisément, il s'agit d'un noir qui porte une chemise littéralement composée de mots effrayants - d'assemblage de titres de journaux. La chanson ne craignait pas d'aborder un sujet fort - celui du début de la guerre de Corée et de la peur de la guerre thermonucléaire. Une phrase dit: "Hé, homme noir, t'as les nouvelles?" J'ai été irradié par cette musique, désespérément accro au mambo."

En 1954, Thompson passa les vacances de Thanksgiving de sa dernière année à Yale enfermé à l'hôtel Carlton House à New York, essayant de commencer un livre. Il l'avait titré : Notes vers une définition de Mambo. "Mon père était chirurgien, et avec ma mère ils étaient un peu déboussolés par ce que je faisais: 'Mon fils le mambologue!!??' Alors que j'essayais de leur expliquer cette passion..."

"La musique questionnait", dit Thompson, "et l'histoire de l'art fut la réponse." Il décida de devenir étudiant à Yale. "Plus j'étudiais, plus je voyais comment le monde avait dissimulé la source de tout cela. Ce n'était pas de la musique latine - c'était de la musique Kongo-Cubano-Brésilienne. Vous pouvez entendre les rythmes Kongo dans "The Newspaper Shirt". Et mambu en Ki-Kongo signifie "questions, questions importantes, texte". Un mambo est un séminaire sur l'entrecroisement des courants africains.

"Ce sont quelques-uns des fils du tissu: la salsa et le reggae partagent l'impulsion du mambo, et la composante mambo est à son tour sortie de Cuba en fin des années 1930. Le yoruba y est encore parlé. Si vous étiez Yoruba et pris en esclavage au XIXe siècle, vous risquiez de vous retrouver à Cuba ou dans le nord-est du Brésil. La culture afro-cubaine a survécu à l'esclavage. Ces rythmes afro-cubains sont chauds, âcres et cahotants. J'ai passé ma vie de critique littéraire", dit-il, "à essayer de rassembler tous les textes pertinents pour décoder "The Newspaper Shirt Mambo".

La prochaine étape importante dans le développement de Thompson fut une bourse de la Fondation Ford pour aller au Yoruba-land (Nigéria) pour un travail sur le terrain; il a fait 14 allers-retours entre Yale et l'Afrique. Thompson habite les deux mondes. Il raconte par exemple comment un grand prêtre de la religion Yoruba à New York est venu le voir à New Haven. La voiture du prêtre yoruba est tombée en panne. Thompson raconte que le prêtre a ouvert le capot, puis a emprunté du rhum à Thompson pour faire une brume de rhum qu'il a soufflé de sa bouche sur le moteur surchauffé (c'est un geste yoruba pour refroidir les choses). Ensuite, le prêtre a sorti sa carte de l'American Automobile Association et a appelé Triple-A.

Dans ce processus pour accéder à Yale, Thompson a publié Black Gods and Kings, The Four Moments of the Sun et African Art in Motion, à propos de l'esthétique entrelacée de la sculpture, du tissu et de la danse ouest-africains. "Flash of the Spirit" atteint maintenant des lecteurs qui ne sont pas des spécialistes, des iconographes ou des universitaires. Son prochain livre, enfin, dans 30 ans, sera le "livre mambo".

"Chaque vague d'immigration successive - dominicaine, porto-ricaine, haïtienne, jamaïcaine - améliore la musique. On peut parler de "conjugaison" d'un battement. C'est explosif. La salsa fut le tournant majeur - en 1968, New York est devenue pratiquement la capitale musicale du monde latin. Et tout cela est en pollinisation croisée avec du jazz et de la pure musique yoruba comme King Sunny Ade, et puis, via des réverbérations secondaires, vers des groupes blancs, comme les Talking Heads.

"La musique est un domaine où l'influence noire est omniprésente. Leurs rythmes secouent ce siècle. Quoi qu'on ait pu refuser aux Noirs, les ondes sont à eux. À l'heure actuelle, d'importantes collisions culturelles ont lieu à New York. La ville est devenue un organe coloré des cultures. Si vous avez manqué le Ballet Russe et le Rite de Stravinsky à Paris au début du siècle, ne vous inquiétez pas. Il y a maintenant des événements de cet ordre stravinskien dans le quartier."

"New York en tant que ville africaine secrète" voilà ce que Thompson appelle son cours de premier cycle à Yale. "Quasi voyage scolaire" que nous entreprenons tous les deux un jour et qui commence à 89th Street et sur Amsterdam Avenue dans un botanica, ou boutique d'articles religieux, où les autels fumants des divinités ouest-africaines partagent l'espace avec Pac-Man et Donkey Kong. Juste au coin de la rue se trouve la Claremont Riding Academy, où les élèves de sixième année des écoles privées prennent des cours, et deux pâtés de maisons plus à l'est se trouvent les coopératives de logements dans lesquelles ils vivent sur Central Park. Cet après-midi, nous traversons le sombre bidonville dominicain sous Columbia University, Harlem, Queens et les bandes jamaïcaines et haïtiennes de Brooklyn. Près de la coupole néoclassique du Musée de Brooklyn se trouve La Boutanique St. Jacques Mejur, qui vend des figurines en cire, des bougies conditionnelles "Du Me", un aérosol "Love", "Success" et "Commanding Do My Will". L'une des bougies est une bougie de vengeance, qui promet de transmettre le mal, le déshonneur, les conflits, l'infidélité, la pauvreté, le danger et les puissants ennemis au nom de celui qui est inscrit sur son côté.

"Ce truc est une combine touristique", dit Thompson. "Le vodun est un système moral de croyance comme les autres, mélange de croyances dahoméennes, kongo et chrétiennes. Nous vivons dans le péché intellectuel avec la culture Kongo et Yoruba. Le Kongo est une culture légale-thérapeutique-visionnaire aussi riche et dense que le christianisme ou le judaïsme; elle me rappelle le judaïsme.

"Mais les Occidentaux restent toujours dans les même zones tempérées lorsqu'ils recherchent la philosophie. Les juifs deviennent bouddhistes, les méthodistes deviennent bahaïs; ils ne vont jamais au sud. Mais maintenant, les religions Kongo et Yoruba prospèrent à New York. Traversez simplement la rue et vous êtes en Afrique. "

Pour Thompson, les trois étapes progressives de la culture atlantique noire sont comme trois versions d'un texte inscrit sur une sorte de pierre de Rosette noire Atlantique. Elle se déplace à New York, intellectuellement péripatéticienne, dans les deux sens via les traces des trois étapes de son sujet. Primo, les tribus dont les esclaves furent pris au Nigeria, au Mali, au Cameroun et au Zaïre. Deuxièmement, les cultures afro-antillaises qui en résultent, y compris les célébrités vodun d'Haïti et les adeptes de Capoera du Brésil. Enfin, les salles de danse, les clubs, la culture ghetto pop de New York.

Au club brésilien SOB's, sur Varick Street, amis, collègues, diffuseurs de livres et éditeurs se rassemblent, un peu sous le charme, alors que cinq batteurs cubo-yoruba tiennent un rythme féroce sur scène. C'est la fête de Random House bool pour le lancement de "Flash of the Spirit" de Thompson. Une démonstration de Capoera suit - mélange brésilien de ballet et d'art martial - produite par deux athlètes torse nu, devant le bar. Thompson danse doucement dans sa combinaison J. Press, tête haute, dos et bras relâchés. C'est intrinsèque à son alternance constante entre participer et observer, de même qu'on peut le voir à la fois donner des conférences et danser durant ces dernières.

"Les religions africaines entremêlent une critique morale élevée doublée d'un délicieux backbeat boogie", dit Thompson. "Elles nous attirent vers une perspicacité morale qui active le corps tout en exigeant une conscience sociale. Les mambos d'Eddie Palmieri peuvent recouper les phrasés musicaux yoruba religieux avec le populaire New York noir."

Alors qu'il danse, Thompson note mentalement le sens et le contenu culturel de ce que tout le monde dans la salle pense n'être qu'une danse. "Derrière toute la viscosité et le groove se cache une philosophie qui dit que dans l'horreur de ces temps qu'il y a un antidote. C'est de ces petits villages ternes de stalles en béton et de générateurs portables que vient cette musique, elle porte un message qui dit que tu peux "rejouer" le désastre - que tu peux le transformer, prendre la mort et l'horreur et les transformer en roue et en carrousel."

Un autre soir, au Château Royal, une salle de danse haïtienne dans le Queens, Thompson est à peu près le seul visage blanc parmi un millier d'élégants Haïtiens. Criant en créole au-dessus du merengue, il est en conversation profonde avec le chef d'orchestre; le groupe a été invité à Yale. Sur la piste de danse, Thompson semble transporté - regard d'un homme dans un bain chaud.

"Il s'agit de libérer les impératifs moraux dans le divertissement", explique Thompson. "La musique est à la fois morale et sournoise; elle porte autant de dandysme et de ruse urbaine que tout ce qui fut écrit à Paris à l'époque de Ravel. L'Occident peut en extraire les parties les plus ambrosiales et se laisser emporter par le rythme vers des sublimités morales."

Bien que Thompson vive et se déplace au sein d'un milieu hip, lui-même n'a rien de particulièrement branché. Il agit de la manière inconsciente et directe du soldat professionnel - marche ordonnée, jamais de pagaille, léger balancement des bras lors de la foulée - qui donne l'impression qu'il est toujours sur le point de faire quelque chose. Sa position et ses perspectives n'ont rien de la morosité typique de l'universitaire. Mais son attention est hautement idiosyncrasique; ses actions semblent dictées par un programme connu de lui seul.

Lorsqu'il est plongé dans une ambiance tout à fait blanche, comme une conférence au Metropolitan Museum of Art de New York ou assis dans cet endroit incongru que sont les salons de la maison du maître de Yale, Thompson perd parfois le rythme. Il s'éloigne, comme privé de l'objet de ses affections. Ensuite, quelque chose de banal - une remarque, le phrasé d'une remarque ou peut-être une scène d'un film diffusé au Showcase Cinema à Orange - lui offre une petite étincelle de négritude, et il est à nouveau attentif. Il donne parfois l'impression d'être en tournée d'inspection, cherchant dans le monde blanc des signes salutaires de culture noire. On sent qu'il suit sans cesse, avec ce qu'il appelle ses "yeux noirs", les contours de l'objet d'un désir spirituel.

Thompson tient à faire la distinction entre pratique de la religion ouest-africaine et l'enseignement de la culture dont elle fait partie. Récemment, quelqu'un qu'il connaissait à peine lui a demandé des conseils spirituels et Thompson en fut consterné. Il se considère comme un médium, mais un médium du genre le plus ordinaire. Il pense que ce qu'il doit enseigner n'est que ce qu'il choisit et filtre de toutes ses "informations" du monde. Dans les livres de Thompson, les sections de notes biographiques contiennent des centaines et des centaines de minuscules petits noms sonores, qui, s'ils sont lus à haute voix, ressemblent aux listes des annuaires téléphoniques de Lagos, Rio, Ouagadougou et New Haven combinés. Telles sont les sources du "flash de l'esprit" sans lequel, Thompson, n'est "que Joe, l'universitaire aux cheveux gris".

S'il y a une partie des croyances africaines auxquelles Thompson adhère, c'est ce qu'il perçoit comme leur génie social. L'épiphanie de Thompson, s'il y en a une dans sa sphère très privée, se distingue par les accents pleine de sens qu' utilise lorsqu'il parle des incendies dans les forêts pygmées, des prêtresses de la rivière au Cameroun, de l'escalade des arbres zaïrois pour le miel et de la dernière veille de Nouvel An sur la plage de Copacabana à Rio, où Thompson a vu des milliers de femmes de chambre, gardiennes, journalières et leurs enfants, creuser des trous dans le sable à minuit pour y mettre des bougies, applaudissant lorsque les lumières furent emportée hors du rivage par la marée.

Ceux qui minimisent l'importance de ces rituels folkloriques noirs et du travail de la vie de Thompson le rendent furieux. "Comment les gens osent-ils fréquenter l'Afrique?" il demande. "Ces gens sont des géants qui nous apprennent à vivre. Il y a une voix morale ancrée dans l'esthétique afro-atlantique que l'Occident est infichu de saisir. Les occidentaux ne voient pas les monuments, juste la philosophie pieds nus venant des anciens du village. Alors que le monument est une grande forme d'art qui réconcilie, qui tente de reconstruire moralement une personne sans l'humilier. "Parfois, lorsque Thompson commence à s'échauffer, sa voix prend des cadences du discours noir."

"Ce sont les canons du cool: il n'y a pas de crise qui ne puisse être pesée et résolue; rien ne peut être réalisé par l'hystérie ou la lâcheté; vous devez porter et montrer votre capacité à réaliser la réconciliation sociale. Sortez du cauchemar. C'est un appel au dialogue, au con-gress et à l'auto con-fiance. "Ce tea-shirt avec ces phrases issue de titres de journaux" ne fait que poser le problème sur ta poitrine. Les formes d'art afro-atlantique sont à la fois juridiques, médicales et esthétiques. C'est une manière intransigeante d'utiliser l'art."

À Jacmel, à 8 h 30 du matin, Thompson et moi déjeunons avec des croissants à bord de la piscine de l'hôtel, discutant au son des tambours qui résonnent sur la plage. La veille au soir, dans son temple en carton ondulé, la charmante prêtresse Madame Nerva, qui aime beaucoup plaisanter, a donné son bâton constellé de bonbons à un homme, avec pour consigne d'appeler les batteurs et la congrégation pour le lendemain matin. Il y a 50 voduistes à l'intérieur du temple vibrant quand nous arrivons, y compris le flic local. Cinq batteurs, dirigés par un homme du nom de "Gasoline", suivent un rythme sauvage et déferlant. Dix-neuf femmes noires vêtues de robes blanches et de turbans blancs sortent en dansant d'une porte de l'autel pour se mettre en en cercle autour de Madame Nerva, qui, vêtue d'une robe dorée, secoue un hochet et une cloche sacrés pour donner le tempo. À tour de rôle, chacune des femmes prend la main de Madame Nerva et tombe dans un geste à la fois révérencieux et prostré, lui tenant la main tout en descendant pour embrasser le sol à ses pieds.

Tandis que deux femmes tenant des drapeaux dansent autour de lui, un jeune homme dessine lentement dans la poudre blanche sur le sol un cœur ou une vulve, avec en superposé des épées et un serpent. Au moment où il termine l'image, la cérémonie double d'intensité et les femmes tournent avec des bougies, puis s'agenouillent. Soudain, l'icône est effacée et Madame Nerva se précipite dans la pièce en tenant une poupée américaine en plastique blanche d'un mètre (elle est faite de rangées de maïs et d'une main droite d'enfant qui fait le salut Kongo). Un à la fois, nous sommes embrassés par la poupée sur nos joues gauches. Une femme, tourbillonnant avec un turban sur la tête, devient possédée et commence à se trémousser et à tanguer. Les autres danseurs la frappent doucement pour la calmer et faire partir l'esprit. Elle s'évanouit et ils la retiennent. La ligne des danseurs s'est rompue; les tambours s'arrêtent.

"Un peu sauvage pour un simple sondage", me dit Thompson alors que nous faisons nos adieux. "Cette femme n'était pas censée être possédée. As-tu entendu comment Mme Nerva a décrit la possession - tel "un dialogue avec l'Afrique"? "

Nous retournons par les montagnes vers Port-au-Prince, pour un retour dans l'après-midi à New York. À 15 heures, après le déjeuner et un saut dans la piscine de l'hôtel, nous sommes en train de prendre un verre dans l'avion, Thompson est en train de remplir ses carnets de croquis et de notes.

"Il y a tout un langage dans la possession", dit-il, "une expression et une position différentes pour chaque dieu. L'Occident a oublié les états de ravissement sacré, mais l'art chrétien s'est construit sur l'extase. Le gothique était extatique - les cathédrales ne peuvent pas être comprises sans référence à lui." Il montre une photo sur la couverture de son cahier qui présente une femme aux yeux retournés. "C'est l'histoire de l'art vivant. Et il faut comprendre les états extatiques pour comprendre l'art extatique."

Thompson se tord sur son siège pour montrer les gestes de possession. Il lève les bras, les plie au coude, puis les lève les paumes vers le haut, doigts écartés. Il projette sa tête en arrière, yeux fermés; puis avance rapidement; puis fait des grimaces, trois façons différentes. Il baisse les bras, prend un verre et dit: "Ce n'est pas si hérétique d'examiner l’extase. Après tout". Ici il dessine dans son cahier une figure d'homme, tête renversée en arrière avec une ligne de visée qui va vers le haut - "la rosace de Chartres ne peut être vue que sous un angle extatique."

Auteur: Iseman Fred

Info: https://www.rollingstone.com 22 novembre 1984. Trad Mg (à peaufiner)

[ transe ] [ portrait ] [ perméabilités ethniques ] [ osmose ] [ nord-sud ]

 

Commentaires: 0

Ajouté à la BD par miguel

chronos

Il est difficile d'imaginer un univers atemporel, non pas parce que le temps est un concept techniquement complexe ou philosophiquement insaisissable mais pour une raison plus structurelle.

Imaginer la non temporalité implique que le temps s'écoule. Même lorsqu'on essayez d'imaginer son absence, on le sent passer à mesure que nos pensées changent, que notre cœur pompe le sang vers votre cerveau et que les images, sons et odeurs bougent autour de nous. Le temps semble ne jamais s'arrêter. On peut même avoir l'impression d'être tissé dans son tissu en un perpétuel mouvement, alors que l'Univers se contracte et se rétracte. Mais est-ce vraiment ainsi que le temps fonctionne ?

Selon Albert Einstein, notre expérience du passé, du présent et du futur n'est rien d'autre qu'une "illusion obstinément persistante". Selon Isaac Newton, le temps n'est rien d'autre qu'une toile de fond, en dehors de la vie. Et selon les lois de la thermodynamique, le temps n'est rien d'autre que de l'entropie et de la chaleur. Dans l'histoire de la physique moderne, il n'y a jamais eu de théorie largement acceptée dans laquelle un sens du temps mobile et directionnel soit fondamental. Nombre de nos descriptions les plus fondamentales de la nature - des lois du mouvement aux propriétés des molécules et de la matière - semblent exister dans un univers où le temps ne s'écoule pas vraiment. Cependant, des recherches récentes menées dans divers domaines suggèrent que le mouvement du temps pourrait être plus important que la plupart des physiciens ne l'avaient supposé.

Une nouvelle forme de physique appelée théorie de l'assemblage suggère que le sens d'un temps en mouvement et directionnel est réel et fondamental. Elle suggère que les objets complexes de notre univers qui ont été fabriqués par la vie, y compris les microbes, les ordinateurs et les villes, n'existent pas hors du temps : impossibles sans un mouvement temporel. De ce point de vue, le passage du temps n'est pas seulement intrinsèque à l'évolution de la vie ou à notre expérience de l'univers. Il est aussi le tissu matériel en perpétuel mouvement de l'Univers lui-même. Le temps est un objet. Il a une taille physique, comme l'espace. Il peut être mesuré au niveau moléculaire dans les laboratoires.

L'unification du temps et de l'espace a radicalement changé la trajectoire de la physique au 20e siècle. Elle a ouvert de nouvelles perspectives sur la façon dont nous concevons la réalité. Que pourrait faire l'unification du temps et de la matière à notre époque ? Que se passe-t-il lorsque le temps est un objet ?

Pour Newton, le temps était fixe. Dans ses lois du mouvement et de la gravité, qui décrivent comment les objets changent de position dans l'espace, le temps est une toile de fond absolue. Le temps newtonien passe, mais ne change jamais. Cette vision temporelle perdure dans la physique moderne - même dans les fonctions d'onde de la mécanique quantique, le temps reste une toile de fond et non une caractéristique fondamentale. Pour Einstein, cependant, le temps n'est pas absolu. Il était relatif à chaque observateur. Il a décrit notre expérience du temps qui passe comme "une illusion obstinément persistante". Le temps einsteinien est mesuré par le tic-tac des horloges ; l'espace est mesuré par le tic-tac des règles qui enregistrent les distances. En étudiant les mouvements relatifs des horloges et des règles, Einstein a pu combiner les concepts de mesure de l'espace et du temps en une structure unifiée que nous appelons aujourd'hui "espace-temps". Dans cette structure, l'espace est infini et tous les points existent en même temps. Mais le temps, tel que décrit par Einstein, possède également cette propriété, ce qui signifie que tous les temps - passé, présent et futur - sont pareillement vrais. Le résultat est parfois appelé "univers bloc", qui contient tout ce qui s'est passé et se passera dans l'espace et le temps. Aujourd'hui, la plupart des physiciens soutiennent  cette notion d'univers-bloc.

Mais l'univers-bloc avait été fissuré avant même d'exister. Au début du XIXe siècle, près d'un siècle avant qu'Einstein ne développe le concept d'espace-temps, Nicolas Léonard Sadi Carnot et d'autres physiciens s'interrogeaient déjà sur l'idée que le temps était soit une toile de fond, soit une illusion. Ces questions se poursuivront au XIXe siècle, lorsque des physiciens tels que Ludwig Boltzmann commenceront à s'intéresser aux problèmes posés par une technologie d'un genre nouveau : la machine (engine - ou moteur : nous par exemple)

Bien que les machines puissent être reproduites mécaniquement, les physiciens ne savent pas exactement comment elles fonctionnent. La mécanique newtonienne est réversible, ce qui n'est pas le cas des machines. Le système solaire de Newton fonctionnait aussi bien en avançant qu'en reculant dans le temps. En revanche, si vous conduisez une voiture et qu'elle tombe en panne d'essence, vous ne pouvez pas faire tourner le moteur en marche arrière, récupérer la chaleur générée et désenflammer le carburant. Les physiciens de l'époque pensaient que les moteurs devaient obéir à certaines lois, même si ces lois étaient inconnues. Ils ont découvert que les moteurs ne fonctionnaient pas si le temps ne s'écoulait pas et n'avait pas de direction. En exploitant les différences de température, les moteurs entraînent un mouvement de chaleur des parties chaudes vers les parties froides. Plus le temps passe, plus la différence de température diminue et moins le "travail" peut être effectué. Telle est l'essence de la deuxième loi de la thermodynamique (également connue sous le nom de loi de l'entropie) qui fut proposée par Carnot et expliquée plus tard de manière statistique par Boltzmann. Cette loi décrit la manière dont un moteur peut effectuer moins de "travail" utile au fil du temps. Vous devez de temps en temps faire le plein de votre voiture, et l'entropie doit toujours être en augmentation.

Vivons-nous vraiment dans un univers qui n'a pas besoin du temps comme caractéristique fondamentale ?

Tout ça a du sens dans le contexte des machines ou d'autres objets complexes, mais n'est pas utile lorsqu'il s'agit d'une simple particule. Parler de la température d'une seule particule n'a aucun sens, car la température est un moyen de quantifier l'énergie cinétique moyenne de nombreuses particules. Dans les lois de la thermodynamique, l'écoulement et la directionnalité du temps sont considérés comme une propriété émergente plutôt que comme une toile de fond ou une illusion - une propriété associée au comportement d'un grand nombre d'objets. Bien que la théorie thermodynamique ait introduit la notion de directionnalité du temps, cette propriété n'était pas fondamentale. En physique, les propriétés "fondamentales" sont réservées aux propriétés qui ne peuvent être décrites par d'autres termes. La flèche du temps en thermodynamique est donc considérée comme "émergente" parce qu'elle peut être expliquée en termes de concepts plus fondamentaux, tels que l'entropie et la chaleur.

Charles Darwin, qui vécut et travailla entre l'ère de la machine à vapeur de Carnot et l'émergence de l'univers en bloc d'Einstein, fut un des premiers à voir clairement comment la vie doit exister dans le temps. Dans la dernière phrase de L'origine des espèces (1859), il résume avec éloquence cette perspective : "Alors que cette planète a continué de tourner selon la loi fixe de la gravité, à partir d'un commencement aussi simple... des formes infinies, les plus belles et les plus merveilleuses, ont été et sont en train d'évoluer". L'arrivée des "formes infinies" de Darwin ne peut s'expliquer que dans un univers où le temps existe et possède une direction claire.

Au cours des derniers milliards d'années, la vie a évolué d'organismes unicellulaires vers des organismes multicellulaires complexes. Elle est passée de sociétés simples à des villes grouillantes et, aujourd'hui, à une planète potentiellement capable de reproduire sa vie sur d'autres mondes. Ces choses mettent du temps à apparaître parce qu'elles ne peuvent émerger qu'à travers les processus de sélection et d'évolution.

Nous pensons que l'intuition de Darwin n'est pas assez profonde. L'évolution décrit avec précision les changements observés dans les différentes formes de vie, mais elle fait bien plus que cela : c'est le seul processus physique de notre univers qui peut générer les objets que nous associons à la vie. Qu'il s'agisse de bactéries, de chats et d'arbres, mais aussi de choses telles que des fusées, des téléphones portables et des villes. Aucun de ces objets n'apparaît spontanément par fluctuation, contrairement à ce que prétendent les ouvrages de physique moderne. Ces objets ne sont pas le fruit du hasard. Au contraire, ils ont tous besoin d'une "mémoire" du passé pour être fabriqués dans le présent. Ils doivent être produits au fil du temps - un temps qui avance continuellement. Pourtant, selon Newton, Einstein, Carnot, Boltzmann et d'autres, le temps est soit inexistant, soit simplement émergent.

Les temps de la physique et de l'évolution sont incompatibles. Mais cela n'a pas toujours été évident parce que physique et évolution traitent de types d'objets différents.  La physique, en particulier la mécanique quantique, traite d'objets simples et élémentaires : quarks, leptons et  autres particules porteuses de force du modèle standard. Ces objets étant considérés comme simples, l'Univers n'a pas besoin de "mémoire" pour les fabriquer (à condition que l'énergie et les ressources disponibles soient suffisantes). La "mémoire" est un moyen de décrire l'enregistrement des actions ou des processus nécessaires à la fabrication d'un objet donné. Lorsque nous abordons les disciplines qui traitent de l'évolution, telles que la chimie et la biologie, nous trouvons des objets trop complexes pour être produits en abondance instantanément (même lorsque l'énergie et les matériaux sont disponibles). Ils nécessitent une mémoire, accumulée au fil du temps, pour être produits. Comme l'a compris Darwin, certains objets ne peuvent voir le jour que grâce à l'évolution et à la sélection de certains "enregistrements" de la mémoire pour les fabriquer.

Cette incompatibilité crée un ensemble de problèmes qui ne peuvent être résolus qu'en s'écartant radicalement de la manière dont la physique aborde actuellement le temps, en particulier si nous voulons expliquer la vie. Si les théories actuelles de la mécanique quantique peuvent expliquer certaines caractéristiques des molécules, comme leur stabilité, elles ne peuvent pas expliquer l'existence de l'ADN, des protéines, de l'ARN ou autres molécules grands et complexes. De même, la deuxième loi de la thermodynamique est censée donner lieu à la flèche du temps et à des explications sur la manière dont les organismes convertissent l'énergie, mais elle n'explique pas la directionnalité du temps, dans laquelle des formes infinies se construisent sur des échelles de temps évolutives sans que soit en vue l'équilibre final ou la mort thermique de la biosphère. La mécanique quantique et la thermodynamique sont nécessaires pour expliquer certaines caractéristiques de la vie, mais elles ne sont pas suffisantes.

Ces problèmes et d'autres encore nous ont amenés à développer une nouvelle façon de penser la physique du temps, que nous avons appelée la théorie de l'assemblage. Cette théorie décrit la quantité de mémoire nécessaire pour qu'une molécule ou une combinaison de molécules - les objets dont est faite la vie - vienne à l'existence. Dans la théorie de l'assemblage, cette mémoire est mesurée au cours du temps en tant que caractéristique d'une molécule, en mettant l'accent sur la mémoire minimale requise pour que cette (ou ces) molécule(s) puisse(nt) voir le jour. La théorie de l'assemblage quantifie la sélection en faisant du temps une propriété des objets qui n'ont pu émerger que par l'évolution.

Nous avons commencé à développer cette nouvelle physique en examinant comment la vie émerge par le biais de changements chimiques. La chimie de la vie fonctionne de manière combinatoire : les atomes se lient pour former des molécules, et les combinaisons possibles augmentent avec chaque liaison supplémentaire. Ces combinaisons sont réalisées à partir d'environ 92 éléments naturels, dont les chimistes estiment qu'ils peuvent être combinés pour construire jusqu'à 10 puissance 60 de molécules différentes  (1 suivi de 60 zéros). Pour devenir utile, chaque combinaison individuelle devrait être répliquée des milliards de fois - pensez au nombre de molécules nécessaires pour fabriquer ne serait-ce qu'une seule cellule, sans parler d'un insecte ou d'une personne. Faire des copies de tout objet complexe prend donc du temps car chaque étape nécessaire à son assemblage implique une recherche dans l'immensité de l'espace combinatoire pour sélectionner les molécules qui prendront une forme physique.

Les espaces à structure combinatoire semblent apparaître lorsque la vie existe.

Prenons les protéines macromoléculaires que les êtres vivants utilisent comme catalyseurs dans les cellules. Ces protéines sont fabriquées à partir d'éléments moléculaires plus petits appelés acides aminés, qui se combinent pour former de longues chaînes dont la longueur varie généralement entre 50 et 2 000 acides aminés. Si toutes les protéines possibles d'une longueur de 100 acides aminés étaient assemblées à partir des 20 acides aminés les plus courants qui forment les protéines, le résultat ne remplirait pas seulement notre univers, mais 10 (puissance 23 ) univers.

Il est difficile d'imaginer le champ de toutes les molécules possibles.  À titre d'analogie, considérons les combinaisons qu'on peut réaliser avec un jeu de briques donné genre Lego. Si le jeu ne contient que deux briques, le nombre de combinaisons sera faible. En revanche, si le jeu contient des milliers de pièces, comme  un modèle Lego de 5 923 pièces du Taj Mahal, le nombre de combinaisons possibles est astronomique. Si vous deviez spécifiquement construire le Taj Mahal en suivant les instructions, l'espace des possibilités devient limité, mais si vous pouviez construire n'importe quel objet Lego avec ces 5 923 pièces, il y aurait une explosion combinatoire des structures possibles qui pourraient être construites - les possibilités augmentant de manière exponentielle avec chaque bloc supplémentaire que vous ajouteriez. Si vous connectez chaque seconde deux structures Lego préalablement construites, vous ne pourriez pas explorer toutes les possibilités d'objets de la taille du jeu Lego Taj Mahal avant la fin de l'univers. En fait, tout espace construit de manière combinatoire, même à partir de quelques blocs de construction simples, aura cette propriété. Idée qui inclut tous les objets cellulaires possibles construits à partir de la chimie, tous les organismes possibles construits à partir de différents types de cellules, tous les langages possibles construits à partir de mots ou d'énoncés, et tous les programmes informatiques possibles construits à partir de tous les jeux d'instructions possibles.

Le schéma est le suivant : les espaces combinatoires semblent se manifester lorsque la vie existe. En d'autres termes, la vie ne devient évidente que lorsque le champ des possibles est si vaste que l'univers est obligé de ne sélectionner qu'une partie de cet espace pour exister. La théorie de l'assemblage vise à formaliser cette idée. Dans la théorie de l'assemblage, les objets sont construits de manière combinatoire à partir d'autres objets et, tout comme vous pouvez utiliser une règle pour mesurer la taille d'un objet donné dans l'espace, la théorie de l'assemblage fournit une mesure - appelée "indice d'assemblage" - pour mesurer la taille d'un objet dans le temps.

Partant de cette analogie, l'ensemble Lego Taj Mahal équivaut à une molécule complexe. La reproduction d'un objet spécifique, comme un jeu de Lego, d'une manière qui n'est pas aléatoire, nécessite une sélection dans l'espace de tous les objets possibles. En d'autres termes, à chaque étape de la construction, des objets ou des ensembles d'objets spécifiques doivent être sélectionnés parmi le grand nombre de combinaisons possibles qui pourraient être construites. Outre la sélection, la "mémoire" est également nécessaire : les objets existants doivent contenir des informations pour assembler le nouvel objet spécifique, qui est mis en œuvre sous la forme d'une séquence d'étapes pouvant être accomplies en un temps fini, comme les instructions requises pour construire le Taj Mahal en Lego. Les objets plus complexes nécessitent davantage de mémoire pour voir le jour.

Dans la théorie de l'assemblage, les objets gagnent en complexité au fil du temps grâce au processus de sélection. Au fur et à mesure que les objets deviennent plus complexes, leurs parties uniques augmentent, ce qui signifie que la mémoire locale doit également augmenter. "Mémoire locale" qui est la chaîne causale d'événements qui font que l'objet est d'abord "découvert" ou "émergé" via la sélection, puis créé en plusieurs exemplaires. Par exemple, dans le cadre de la recherche sur l'origine de la vie, les chimistes étudient comment les molécules s'assemblent pour devenir des organismes vivants. Pour qu'un système chimique émerge spontanément en tant que "vie", il doit s'auto-reproduire en formant, ou en catalysant, des réseaux de réactions chimiques auto-entretenus. Mais comment le système chimique "sait-il" quelles combinaisons faire ? Nous pouvons voir une "mémoire locale" à l'œuvre dans ces réseaux de molécules qui ont "appris" à se lier chimiquement de certaines manières. À mesure que les exigences en matière de mémoire augmentent, la probabilité qu'un objet ait été produit par hasard tombe à zéro, car le nombre de combinaisons alternatives qui n'ont pas été sélectionnées est tout simplement trop élevé. Un objet, qu'il s'agisse d'un Lego Taj Mahal ou d'un réseau de molécules, ne peut être produit et reproduit qu'avec une mémoire et un processus de construction. Mais la mémoire n'est pas partout, elle est locale dans l'espace et le temps. Ce qui signifie qu'un objet ne peut être produit que s'il existe une mémoire locale qui peut guider le choix des pièces, de leur emplacement et de leur moment.

Dans la théorie de l'assemblage, la "sélection" fait référence à ce qui a émergé dans l'espace des combinaisons possibles. Elle est formellement décrite par le nombre de copies et la complexité d'un objet. Le nombre de copies, ou concentration, est un concept utilisé en chimie et en biologie moléculaire qui fait référence au nombre de copies d'une molécule présentes dans un volume d'espace donné. Dans la théorie de l'assemblage, la complexité est tout aussi importante que le nombre de copies. Une molécule très complexe qui n'existe qu'en un seul exemplaire importe peu. Ce qui intéresse la théorie de l'assemblage, ce sont les molécules complexes dont le nombre de copies est élevé, ce qui indique que la molécule a été produite par l'évolution. Cette mesure de la complexité est également connue sous le nom d'"indice d'assemblage" d'un objet. Valeur qui est liée à la quantité de mémoire physique nécessaire pour stocker les informations permettant de diriger l'assemblage d'un objet et d'établir une direction dans le temps du simple au complexe. Bien que la mémoire doive exister dans l'environnement pour faire naître l'objet, dans la théorie de l'assemblage la mémoire est également une caractéristique physique intrinsèque de l'objet. En fait, elle est l'objet.

Ce sont des piles d'objets construisant d'autres objets qui construisent d'autres objets - objets qui construisent des objets, jusqu'au bout. Certains objets ne sont apparus que relativement récemment, tels que les "produits chimiques éternels" synthétiques fabriqués à partir de composés chimiques organofluorés. D'autres sont apparus il y a des milliards d'années, comme les cellules végétales photosynthétiques. Les objets ont des profondeurs temporelles différentes. Cette profondeur est directement liée à l'indice d'assemblage et au nombre de copies d'un objet, que nous pouvons combiner en un nombre : une quantité appelée "assemblage", ou A. Plus le nombre d'assemblage est élevé, plus l'objet a une profondeur temporelle.

Pour mesurer un assemblage en laboratoire, nous analysons chimiquement un objet pour compter le nombre de copies d'une molécule donnée qu'il contient. Nous déduisons ensuite la complexité de l'objet, connue sous le nom d'indice d'assemblage moléculaire, en comptant le nombre de parties qu'il contient. Ces parties moléculaires, comme les acides aminés dans une chaîne de protéines, sont souvent déduites en déterminant l'indice d'assemblage moléculaire d'un objet - un numéro d'assemblage théorique. Mais il ne s'agit pas d'une déduction théorique. Nous "comptons" les composants moléculaires d'un objet à l'aide de trois techniques de visualisation : la spectrométrie de masse, la spectroscopie infrarouge et la spectroscopie de résonance magnétique nucléaire (RMN). Il est remarquable que le nombre de composants que nous avons comptés dans les molécules corresponde à leur nombre d'assemblage théorique. Cela signifie que nous pouvons mesurer l'indice d'assemblage d'un objet directement avec un équipement de laboratoire standard.

Un numéro d'assemblage élevé - indice d'assemblage élevé et nombre de copies élevé - indique que l'objet peut être fabriqué de manière fiable par un élément de son environnement. Il peut s'agir d'une cellule qui construit des molécules à indice d'assemblage élevé, comme les protéines, ou d'un chimiste qui fabrique des molécules à indice d'assemblage encore plus élevé, comme le Taxol (paclitaxel), un médicament anticancéreux. Les objets complexes ayant un nombre élevé de copies ne sont pas apparus au hasard, mais sont le résultat d'un processus d'évolution ou de sélection. Ils ne sont pas le fruit d'une série de rencontres fortuites, mais d'une sélection dans le temps. Plus précisément, d'une certaine profondeur dans le temps.

C'est comme si l'on jetait en l'air les 5 923 pièces du Lego Taj Mahal et que l'on s'attendait à ce qu'elles s'assemblent spontanément

Il s'agit d'un concept difficile. Même les chimistes ont du mal à l'appréhender, car s'il est facile d'imaginer que des molécules "complexes" se forment par le biais d'interactions fortuites avec leur environnement, en laboratoire, les interactions fortuites conduisent souvent à la production de "goudron" plutôt qu'à celle d'objets à haut niveau d'assemblage. Le goudron est le pire cauchemar des chimistes, un mélange désordonné de molécules qui ne peuvent être identifiées individuellement. On le retrouve fréquemment dans les expériences sur l'origine de la vie. Dans l'expérience de la "soupe prébiotique" menée par le chimiste américain Stanley Miller en 1953, les acides aminés sélectionnés au départ se transformaient en une bouillie noire non identifiable si l'expérience se poursuivait trop longtemps (et aucune sélection n'était imposée par les chercheurs pour empêcher les changements chimiques de se produire). Le problème dans ces expériences est que l'espace combinatoire des molécules possibles est si vaste pour les objets à fort assemblage qu'aucune molécule spécifique n'est produite en grande abondance. Le résultat est le "goudron".

C'est comme si l'on jetait en l'air les 5 923 pièces du jeu Lego Taj Mahal et qu'on s'attendait à ce qu'elles s'assemblent spontanément de manière exacte comme le prévoient les instructions. Imaginez maintenant que vous preniez les pièces de 100 boîtes du même jeu de Lego, que vous les lanciez en l'air et que vous vous attendiez à ce que 100 exemplaires du même bâtiment soient fabriqués. Les probabilités sont incroyablement faibles et pourraient même être nulles, si la théorie de l'assemblage est sur la bonne voie. C'est aussi probable qu'un œuf écrasé se reforme spontanément.

Mais qu'en est-il des objets complexes qui apparaissent naturellement sans sélection ni évolution ? Qu'en est-il des flocons de neige, des minéraux et des systèmes de tempêtes météo  complexes ? Contrairement aux objets générés par l'évolution et la sélection, ces objets n'ont pas besoin d'être expliqués par leur "profondeur dans le temps". Bien qu'individuellement complexes, ils n'ont pas une valeur d'assemblage élevée parce qu'ils se forment au hasard et n'ont pas besoin de mémoire pour être produits. Ils ont un faible nombre de copies parce qu'ils n'existent jamais en copies identiques. Il n'y a pas deux flocons de neige identiques, et il en va de même pour les minéraux et les systèmes de tempête.

La théorie des assemblages modifie non seulement notre conception du temps, mais aussi notre définition de la vie elle-même. En appliquant cette approche aux systèmes moléculaires, il devrait être possible de mesurer si une molécule a été produite par un processus évolutif. Cela signifie que nous pouvons déterminer quelles molécules n'ont pu être produites que par un processus vivant, même si ce processus implique des chimies différentes de celles que l'on trouve sur Terre. De cette manière, la théorie de l'assemblage peut fonctionner comme un système universel de détection de la vie qui fonctionne en mesurant les indices d'assemblage et le nombre de copies de molécules dans des échantillons vivants ou non vivants.

Dans nos expériences de laboratoire, nous avons constaté que seuls les échantillons vivants produisent des molécules à fort taux d'assemblage. Nos équipes et nos collaborateurs ont reproduit cette découverte en utilisant une technique analytique appelée spectrométrie de masse, dans laquelle les molécules d'un échantillon sont "pesées" dans un champ électromagnétique, puis réduites en morceaux à l'aide d'énergie. Le fait de réduire une molécule en morceaux nous permet de mesurer son indice d'assemblage en comptant le nombre de parties uniques qu'elle contient. Nous pouvons ainsi déterminer le nombre d'étapes nécessaires à la production d'un objet moléculaire et quantifier sa profondeur dans le temps à l'aide d'un équipement de laboratoire standard.

Pour vérifier notre théorie selon laquelle les objets à fort indice d'assemblage ne peuvent être générés que par la vie, l'étape suivante a consisté à tester des échantillons vivants et non vivants. Nos équipes ont pu prélever des échantillons de molécules dans tout le système solaire, y compris dans divers systèmes vivants, fossiles et abiotiques sur Terre. Ces échantillons solides de pierre, d'os, de chair et d'autres formes de matière ont été dissous dans un solvant, puis analysés à l'aide d'un spectromètre de masse à haute résolution capable d'identifier la structure et les propriétés des molécules. Nous avons constaté que seuls les systèmes vivants produisent des molécules abondantes dont l'indice d'assemblage est supérieur à une valeur déterminée expérimentalement de 15 étapes. La coupure entre 13 et 15 est nette, ce qui signifie que les molécules fabriquées par des processus aléatoires ne peuvent pas dépasser 13 étapes. Nous pensons que cela indique une transition de phase où la physique de l'évolution et de la sélection doit prendre le relais d'autres formes de physique pour expliquer la formation d'une molécule.

Ces expériences vérifient que seuls les objets avec un indice d'assemblage suffisamment élevé - molécules très complexes et copiées - semblent se trouver dans la vie. Ce qui est encore plus passionnant, c'est que nous pouvons trouver cette information sans rien savoir d'autre sur la molécule présente. La théorie de l'assemblage peut déterminer si des molécules provenant de n'importe quel endroit de l'univers sont issues de l'évolution ou non, même si nous ne connaissons pas la chimie utilisée.

La possibilité de détecter des systèmes vivants ailleurs dans la galaxie est passionnante, mais ce qui l'est encore plus pour nous, c'est la possibilité d'un nouveau type de physique et d'une nouvelle explication du vivant. En tant que mesure empirique d'objets uniquement produisibles par l'évolution, l'Assemblage déverouille une théorie plus générale de la vie. Si cette théorie se vérifie, son implication philosophique la plus radicale est que le temps existe en tant que propriété matérielle des objets complexes créés par l'évolution. En d'autres termes, tout comme Einstein a radicalisé notre notion du temps en l'unifiant avec l'espace, la théorie de l'assemblage indique une conception radicalement nouvelle du temps en l'unifiant avec la matière.

La théorie de l'assemblage explique les objets évolués, tels que les molécules complexes, les biosphères et les ordinateurs.

Elle est radicale parce que, comme nous l'avons noté, le temps n'a jamais été fondamental dans l'histoire de la physique. Newton et certains physiciens quantiques le considèrent comme une toile de fond. Einstein pensait qu'il s'agissait d'une illusion. Et, dans les travaux de ceux qui étudient la thermodynamique, il est considéré comme une simple propriété émergente. La théorie de l'assemblage considère le temps comme un élément fondamental et matériel : le temps est la matière dont sont faites les choses dans l'univers. Les objets créés par la sélection et l'évolution ne peuvent être formés que par le passage du temps. Mais il ne faut pas considérer ce temps comme le tic-tac mesuré d'une horloge ou comme une séquence d'années calendaires. Le temps est un attribut physique. Pensez-y en termes d'assemblage, propriété intrinsèque mesurable de la profondeur ou de la taille d'une molécule dans le temps.

Cette idée est radicale car elle permet également à la physique d'expliquer les changements évolutifs. La physique a traditionnellement étudié des objets que l'Univers peut assembler spontanément, tels que des particules élémentaires ou des planètes. La théorie de l'assemblage, en revanche, explique les objets évolués, tels que les molécules complexes, les biosphères et les ordinateurs. Ces objets complexes n'existent que le long de lignées où des informations spécifiques à leur construction furent acquises.

Si nous remontons ces lignées, depuis l'origine de la vie sur Terre jusqu'à l'origine de l'Univers, il serait logique de suggérer que la "mémoire" de l'Univers était plus faible dans le passé. Ce qui signifie que la capacité de l'Univers à générer des objets à fort assemblage est fondamentalement limitée par sa taille dans le temps. De même qu'un camion semi-remorque ne rentre pas dans le garage d'une maison standard, certains objets sont trop grands dans le temps pour naître dans des intervalles inférieurs à leur indice d'assemblage. Pour que des objets complexes comme les ordinateurs puissent exister dans notre univers, de nombreux autres objets ont d'abord dû se former : les étoiles, les éléments lourds, la vie, les outils, la technologie et l'abstraction de l'informatique. Cela prend du temps et dépend fortement du chemin parcouru en raison de la contingence causale de chaque innovation. Il est possible que l'Univers primitif n'était pas capable de calculer comme nous le savons, simplement parce qu'il n'y avait pas encore assez d'histoire. Le temps devait s'écouler et être matériellement instancié par la sélection des objets constitutifs de l'ordinateur. Il en va de même pour les structures Lego, les grands modèles de langage, les nouveaux médicaments, la "technosphère" ou tout autre objet complexe.

Les conséquences de la profondeur matérielle intrinsèque des objets dans le temps sont considérables. Dans l'univers-bloc, tout est considéré comme statique et existant en même temps. Ce qui signifie que les objets ne peuvent pas être ordonnés en fonction de leur profondeur temporelle, et que sélection et évolution ne peuvent pas être utilisées pour expliquer pourquoi certains objets existent et pas d'autres. La reconceptualisation du temps en tant que dimension physique de la matière complexe et la définition d'une directionnalité temporelle pourraient nous aider à résoudre ces questions. La matérialisation du temps via notre théorie de l'assemblage permet d'unifier plusieurs concepts philosophiques déconcertants liés à la vie dans un cadre mesurable. Au cœur de cette théorie se trouve l'indice d'assemblage, qui mesure la complexité d'un objet. Il s'agit d'une manière quantifiable de décrire le concept évolutif de sélection en montrant combien d'alternatives ont été exclues pour obtenir un objet donné. Chaque étape du processus d'assemblage d'un objet nécessite des informations, une mémoire, pour spécifier ce qui doit ou ne doit pas être ajouté ou modifié. Pour construire le Taj Mahal en Lego, par exemple, nous devons suivre une séquence spécifique d'étapes, chacune d'entre elles nous menant à la construction finale. Chaque pas manqué est une erreur, et si nous faisons trop d'erreurs, il ne sera pas possible de construire une structure reconnaissable. La copie d'un objet nécessite des informations sur les étapes qui furent précédemment nécessaires pour produire des objets similaires.

Tout ceci fait de la théorie de l'assemblage une théorie causale de la physique, car la structure sous-jacente d'un espace d'assemblage - l'ensemble des combinaisons requises - ordonne les choses dans une chaîne de causalité. Chaque étape dépend d'une étape sélectionnée précédemment, et chaque objet dépend d'un objet sélectionné précédemment. Si l'on supprime l'une des étapes d'une chaîne d'assemblage, l'objet final ne sera pas produit. Les mots à la mode souvent associés à la physique de la vie, tels que "théorie", "information", "mémoire", "causalité" et "sélection", sont matériels parce que les objets eux-mêmes encodent les règles qui aident à construire d'autres objets "complexes". Ce pourrait être le cas dans la catalyse mutuelle* où les objets se fabriquent réciproquement. Ainsi, dans la théorie de l'assemblage, le temps est essentiellement identique à l'information, la mémoire, la causalité et la sélection.  Termes qui sont tous rendus physiques parce que nous supposons qu'il impliquent des caractéristiques des objets décrits dans la théorie, et non des lois qui régissent le comportement de ces objets. La théorie de l'assemblage réintroduit dans la physique une notion de temporalité en expansion et en mouvement, en montrant que son passage est la matière même dont sont faits les objets complexes : la complexité augmente simultanément avec la taille de l'avenir..

Cette nouvelle conception du temps pourrait résoudre de nombreux problèmes ouverts en physique fondamentale. Le premier et le plus important est le débat entre déterminisme et contingence. Einstein a dit de façon célèbre que Dieu "ne joue pas aux dés", et de nombreux physiciens sont encore obligés de conclure que le déterminisme s'applique et que notre avenir est fermé. Mais l'idée que les conditions initiales de l'univers, ou de tout autre processus, déterminent l'avenir a toujours posé problème. Dans la théorie de l'assemblage, l'avenir est déterminé, mais pas avant qu'il ne se produise. Si ce qui existe aujourd'hui détermine l'avenir, et que ce qui existe aujourd'hui est plus grand et plus riche en informations qu'il ne l'était dans le passé, alors les futurs possibles deviennent également plus grands au fur et à mesure que les objets deviennent plus complexes. Cela s'explique par le fait qu'il y a plus d'histoire dans le présent à partir de laquelle il est possible d'assembler de nouveaux états futurs. Traiter le temps comme une propriété matérielle des objets qu'il crée permet de générer de la nouveauté dans le futur.

La nouveauté est essentielle à notre compréhension de la vie en tant que phénomène physique. Notre biosphère est un objet vieux d'au moins 3,5 milliards d'années selon la mesure du temps de l'horloge (l'Assemblage mesure le temps différement). Mais comment la vie est-elle apparue ? Qu'est-ce qui a permis aux systèmes vivants de développer l'intelligence et la conscience ? La physique traditionnelle suggère que la vie a "émergé". Le concept d'émergence rend compte de la façon dont de nouvelles structures semblent apparaître à des niveaux supérieurs d'organisation spatiale, sans que l'on puisse les prédire à partir des niveaux inférieurs. Parmi les exemples, on peut citer le caractère humide de l'eau, qui ne peut être prédit à partir des molécules d'eau individuelles, ou la façon dont les cellules vivantes sont constituées d'atomes non vivants individuels. Cependant, les objets que la physique traditionnelle considère comme émergents deviennent fondamentaux dans la théorie de l'assemblage. De ce point de vue, le caractère émergent d'un objet, c'est-à-dire la mesure dans laquelle il s'écarte des attentes d'un physicien concernant ses éléments constitutifs élémentaires, dépend de la profondeur à laquelle il se situe dans le temps. Ce qui nous oriente vers les origines de la vie, mais nous pouvons aussi voyager dans l'autre sens.

Si nous sommes sur la bonne voie, la théorie de l'assemblage suggère que le temps est fondamental. Elle suggère que le changement n'est pas mesuré par des horloges, mais qu'il est encodé dans des chaînes d'événements qui produisent des molécules complexes avec différentes profondeurs dans le temps. Assemblages issus d'une mémoire locale dans l'immensité de l'espace combinatoire, ces objets enregistrent le passé, agissent dans le présent et déterminent l'avenir. Ceci signifie que l'Univers s'étend dans le temps et non dans l'espace - ou peut-être même que l'espace émerge du temps, comme le suggèrent de nombreuses propositions actuelles issues de la gravité quantique. Bien que l'Univers puisse être entièrement déterministe, son expansion dans le temps implique que le futur ne peut être entièrement prédit, même en principe. L'avenir de l'Univers est plus ouvert que nous n'aurions pu le prévoir.

Le temps est peut-être un tissu en perpétuel mouvement à travers lequel nous voyons les choses s'assembler et se séparer. Mais ce tissu fait mieux que se déplacer : il s'étend. Lorsque le temps est un objet, l'avenir a la taille du cosmos.

Auteur: Walker Sara Imari

Info: 19 May 2023. Publié en association avec l'Institut Santa Fe, un partenaire stratégique d'Aeon. *Autostimulation de la croissance d'une culture bactérienne par l'ajout de cellules similaires.

[ non-ergodicité ] [ frontière organique-inorganique ] [ savoir conservé ] [ gnose ] [ monades orthogonales ] [ exobiologie ]

 

Commentaires: 0

Ajouté à la BD par miguel