Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 6
Temps de recherche: 0.037s

écologie

Pour une seule calorie alimentaire qui aboutira dans notre assiette, dix calories industrielles ont été consommées. Trois pour les engrais et l'amortissement du matériel agricole, liées directement à la production; mais aussi sept calories industrielles pour le transport, la conservation, l'emballage la promotion du produit, et autres tâches annexes. L'absurde est bel et bien à nos portes.

Auteur: Hulot Nicolas

Info: Le Syndrome du Titanic

 
Mis dans la chaine

Commentaires: 0

démocratisation

Tant que les représentations explicites d’activités sexuelles sont consommées par l’"élite", tant que seuls les "gens bien" s’en délectent dans leurs salons privés, la "pornographie" n’existe pas. Les choses se gâtent à partir du moment où, grâce aux moyens de diffusion modernes, ces représentations commencent à circuler en dehors de ce petit cercle et que les plus pauvres se mettent à en profiter aussi. L’idée naît alors qu’il est urgent de contrôler ou d’interdire la diffusion de ces représentations, le prétexte étant qu’elles sont répugnantes, dangereuses, immorales. La "pornographie" est "inventée" !

Auteur: Ruwen Ogien

Info: Penser la pornographie

[ popularisation ]

 

Commentaires: 0

élaboration

Il est important de savoir que la DMT est inactive si les plantes la contenant sont consommées oralement seules, car des enzymes présentes dans notre estomac inhibent son action hallucinatoire dans notre organisme. Or, l’originalité du breuvage Ayahuasca est de contenir dans sa composition une liane dont les éléments bioactifs harmine et harmaline inhibent l’enzyme gastrique permettant au DMT contenu dans les feuilles de l’arbuste Chacruna de devenir actif et de permettre à l’utilisateur l’accès à la sphère hallucinatoire. Certaines plantes servant d’additif au breuvage Ayahuasca sont des hallucinogènes à part entière dans d’autres régions de l’Amazonie et de l’Amérique du sud, ainsi les daturas, les brugmansias, ou les volubilis de la famille des ipomés contiennent des éléments psychoactifs qui semblent s’ajouter parfois à l’Ayahuasca dans un esprit de synthèse. A la vue de ces constations, il est évident que l’Ayahuasca est le fruit d’une extraordinaire connaissance synthétisée des hallucinogènes végétaux de la forêt amazonienne.

Auteur: Leterrier Romuald

Info: Dans "Les plantes psychotropes et la conscience", page 23

[ principe actif ] [ drogue ]

 
Commentaires: 1
Ajouté à la BD par Coli Masson

anarchie

L'évolution doit précéder la révolution, laquelle est sa conséquence logique, sa sanction. Des révolutions que nous avons vu se perpétrer aucune n'a eu de résultat réellement émancipateur ; elles consommées, les hommes qui les avaient faites et leurs descendants retournaient aux mêmes errements, l'esclavage changeait seulement de forme. Les révolutions étaient stériles parce que l'évolution n'était pas accomplie chez les individus. L'homme veut toujours conquérir ce qu'il pense être le mieux, le meilleur. Son égoïsme, qui n'est en somme que l'expression individuelle de l'instinct de conservation de l'espèce, le conduit à cela. Mais que peut-il faire, sinon stagner, s'il ne connaît ce mieux et ce meilleur ? C'est précisément parce que son égoïsme a été élevé dans un mauvais sens qu'actuellement il ne se dirige pas d'une façon plus rapide vers la Liberté, source féconde de bonheur. Il ne voit pas ce que, en tant qu'organisation sociale, il peut y avoir de préférable à l'actuelle pour son bien-être. Il souffre, mais il ne connaît pas le remède guérisseur de son, mal. Eduquez-le sérieusement, largement, ouvrez ses yeux à toutes les vérités, à toutes les lumières, son activité aiguillera vers la Liberté. Mais, ne cessons de le répéter, il est indispensable que cette éducation soit commencée dès l'enfance, afin de ne laisser aucune prise à l'esprit autoritaire. C'est par l'éducation libertaire que l'on parviendra à former des individus - hommes et femmes - intelligents, bons, forts et justes, des hommes libres, aptes à faire vivre la Société de libre Justice.

Auteur: Devaldès Manuel

Info: L'Éducation et La Liberté

[ pédagogie ]

 

Commentaires: 0

nature

Pourquoi les espèces voisines ne mangent pas la même chose
Les espèces voisines consomment moins souvent les mêmes ressources que les espèces plus distantes. En effet, c'est la compétition pour les ressources, et non leur apparentement qui détermine les sources de nourriture des espèces d'une communauté. Sous l'effet de cette compétition, les espèces proches se sont spécialisées sur des ressources alimentaires différentes. Telle est la conclusion d'une étude menée par des chercheurs du CNRS, du Muséum national d'Histoire naturelle et de l'Université d'Exeter (Royaume-Uni). Ces travaux ont été obtenus en étudiant avec un niveau de détail hors du commun les interactions trophiques entre espèces au sein d'une prairie anglaise. Publiés le 20 juin 2013 dans la revue Current Biology, ils permettent de mieux appréhender l'évolution des communautés écologiques à l'heure où certaines sont bousculées par le changement climatique et l'arrivée d'espèces invasives.
En écologie, le paradigme actuel considère que les relations de parenté entre espèces détermine l'identité des partenaires avec lesquels les espèces interagissent: plus les espèces sont apparentées, plus elles ont de chances d'interagir avec les mêmes partenaires. Ainsi, d'après cette idée, deux espèces voisines devraient partager les mêmes prédateurs et les mêmes proies. Les récents travaux d'une équipe de chercheurs du CNRS, du Muséum national d'Histoire naturelle et de l'Université d'Exeter montrent que ceci n'est pas forcément exact. Pour la première fois, les scientifiques révèlent que si l'apparentement entre espèces détermine bien par qui les espèces sont mangées, c'est la compétition pour les ressources, et non le degré de parenté, qui détermine de quoi les espèces se nourrissent.
Pour arriver à cette conclusion, ils ont utilisé une série d'observations menées pendant plus de dix ans dans une prairie du sud-est de l'Angleterre. Réalisées avec un degré de détail extraordinaire, ces observations ont permis d'établir les interactions entre une centaine d'espèces situées sur quatre niveaux trophiques: des plantes (23 espèces), des pucerons se nourrissant de celles-ci (25 espèces), des guêpes qui pondent leurs oeufs dans le corps des pucerons (22 espèces), et d'autres guêpes qui pondent leurs oeufs dans les larves des guêpes précédentes au sein des pucerons (26 espèces).
Les chercheurs ont montré que deux espèces voisines de puceron par exemple, sont généralement la proie des mêmes espèces de guêpe. C'est donc bien l'apparentement des espèces qui détermine l'identité de leurs prédateurs. En revanche, ces deux espèces de pucerons voisines ne se nourrissent pas forcément des mêmes plantes. En remontant la chaîne alimentaire, les scientifiques ont observé que les guêpes les plus apparentées avaient peu de chances de se nourrir des mêmes espèces de pucerons. Ceci s'explique par le fait que sous la pression de la compétition pour les sources de nourriture, les espèces voisines diversifient leur alimentation, ce qui a pour effet de réduire la compétition. Obtenir cette conclusion a été possible grâce au niveau de détail des observations réalisées, permettant de révéler les dynamiques d'échelle très locale.
À l'heure où le réchauffement climatique déséquilibre les communautés et où de nombreuses espèces envahissent des écosystèmes auxquels elles étaient étrangères, ces conclusions sont à prendre en compte si l'on veut prédire les nouvelles interactions qui résulteront de ces changements. En effet, ces résultats montrent que les ressources consommées par une espèce qui intègre la communauté ne peuvent pas être prédites par ses relations de parenté avec les espèces déjà présentes.

Auteur: Internet

Info: Dirk Sanders

[ équilibre ] [ harmonie ] [ adaptation ]

 

Commentaires: 0

chimiosynthèse

Les cellules souterraines produisent de l'« oxygène sombre » sans lumière

Dans certaines profondes nappes souterraines, les cellules disposent d’une astuce chimique pour produire de l’oxygène qui pourrait alimenter des écosystèmes souterrains entiers.

(Photo - Dans un monde ensoleillé, la photosynthèse fournit l’oxygène indispensable à la vie. Au fond des profondeurs, la vie trouve un autre chemin.)

Les scientifiques se sont rendu compte que le sol et les roches sous nos pieds abritent une vaste biosphère dont le volume global est près de deux fois supérieur à celui de tous les océans de la planète. On sait peu de choses sur ces organismes souterrains, qui représentent l’essentiel de la masse microbienne de la planète et dont la diversité pourrait dépasser celle des formes de vie vivant en surface. Leur existence s’accompagne d’une grande énigme : les chercheurs ont souvent supposé que bon nombre de ces royaumes souterrains étaient des zones mortes pauvres en oxygène, habitées uniquement par des microbes primitifs qui maintiennent leur métabolisme au ralenti et se débrouillent grâce aux traces de nutriments. À mesure que ces ressources s’épuisent, pensait-on, l’environnement souterrain devient sans vie à mesure que l’on s’enfonce.

Dans une nouvelle recherche publiée le mois dernier dans Nature Communications , les chercheurs ont présenté des preuves qui remettent en question ces hypothèses. Dans des réservoirs d'eau souterraine situés à 200 mètres sous les champs de combustibles fossiles de l'Alberta, au Canada, ils ont découvert des microbes abondants qui produisent des quantités étonnamment importantes d'oxygène, même en l'absence de lumière. Les microbes génèrent et libèrent tellement de ce que les chercheurs appellent " l'oxygène noir " que c'est comme découvrir " le même quantité d'oxygène que celle  issue de la photosynthèse dans la forêt amazonienne ", a déclaré Karen Lloyd , microbiologiste souterrain à l'Université du Tennessee qui n'était pas partie de l’étude. La quantité de gaz diffusé hors des cellules est si grande qu’elle semble créer des conditions favorables à une vie dépendante de l’oxygène dans les eaux souterraines et les strates environnantes.

"Il s'agit d'une étude historique", a déclaré Barbara Sherwood Lollar , géochimiste à l'Université de Toronto qui n'a pas participé aux travaux. Les recherches antérieures ont souvent porté sur les mécanismes susceptibles de produire de l'hydrogène et d'autres molécules vitales pour la vie souterraine, mais cette création de molécules contenant de l'oxygène a été largement négligée car ces molécules sont très rapidement consommées dans l'environnement souterrain. Jusqu’à présent, " aucune étude n’a rassemblé tout cela comme celle-ci ", a-t-elle déclaré.

La nouvelle étude a porté sur les aquifères profonds de la province canadienne de l’Alberta, qui possède des gisements souterrains si riches en goudron, en sables bitumineux et en hydrocarbures qu’elle a été surnommée " le Texas du Canada ". Parce que ses énormes industries d'élevage de bétail et d'agriculture dépendent fortement des eaux souterraines, le gouvernement provincial surveille activement l'acidité et la composition chimique de l'eau. Pourtant, personne n’avait étudié systématiquement la microbiologie des eaux souterraines.

Pour Emil Ruff , mener une telle enquête semblait être " une solution facile " en 2015 lorsqu'il a commencé son stage postdoctoral en microbiologie à l'Université de Calgary. Il ne savait pas que cette étude apparemment simple le mettrait à rude épreuve pendant les six prochaines années.

Profondeurs encombrées

Après avoir collecté l'eau souterraine de 95 puits à travers l'Alberta, Ruff et ses collègues ont commencé à faire de la microscopie de base : ils ont coloré des cellules microbiennes dans des échantillons d'eau souterraine avec un colorant à base d'acide nucléique et ont utilisé un microscope à fluorescence pour les compter. En radiodatant la matière organique présente dans les échantillons et en vérifiant les profondeurs auxquelles ils avaient été collectés, les chercheurs ont pu identifier l'âge des aquifères souterrains qu'ils exploitaient.

Une tendance dans les chiffres les intriguait. Habituellement, lors d'études sur les sédiments sous le fond marin, par exemple, les scientifiques constatent que le nombre de cellules microbiennes diminue avec la profondeur : les échantillons plus anciens et plus profonds ne peuvent pas abriter autant de vie car ils sont davantage privés des nutriments produits par les plantes photosynthétiques. et des algues près de la surface. Mais à la surprise de l'équipe de Ruff, les eaux souterraines plus anciennes et plus profondes contenaient plus de cellules que les eaux plus douces.

Les chercheurs ont ensuite commencé à identifier les microbes présents dans les échantillons, à l’aide d’outils moléculaires pour repérer leurs gènes marqueurs révélateurs. Beaucoup d’entre eux étaient des archées méthanogènes – des microbes simples et unicellulaires qui produisent du méthane après avoir consommé de l’hydrogène et du carbone suintant des roches ou de la matière organique en décomposition. De nombreuses bactéries se nourrissant du méthane ou des minéraux présents dans l’eau étaient également présentes.

Ce qui n'avait aucun sens, cependant, c'est que bon nombre de bactéries étaient des aérobies, des microbes qui ont besoin d'oxygène pour digérer le méthane et d'autres composés. Comment les aérobies pourraient-ils prospérer dans des eaux souterraines qui ne devraient pas contenir d’oxygène, puisque la photosynthèse est impossible ? Mais les analyses chimiques ont également révélé une grande quantité d’oxygène dissous dans les échantillons d’eau souterraine de 200 mètres de profondeur.

C'était du jamais vu. "On a sûrement foiré l'échantillon", fut la première réaction de Ruff.

Il a d’abord tenté de montrer que l’oxygène dissous dans les échantillons était le résultat d’une mauvaise manipulation. "C'est comme être Sherlock Holmes", a déclaré Ruff. " Vous essayez de trouver des preuves et des indications " pour réfuter vos hypothèses. Cependant, la teneur en oxygène dissous semblait constante sur des centaines d’échantillons. Une mauvaise manipulation ne pouvait pas l'expliquer.

Si l’oxygène dissous ne provenait pas d’une contamination, d’où venait-il ? Ruff s'est rendu compte qu'il près de quelque chose de grand, même si faire des affirmations controversées va à l'encontre de sa nature. Beaucoup de ses co-auteurs avaient également des doutes : cette découverte menaçait de briser les fondements de notre compréhension des écosystèmes souterrains.

Produire de l'oxygène pour tout le monde

En théorie, l’oxygène dissous dans les eaux souterraines pourrait provenir de plantes, de microbes ou de processus géologiques. Pour trouver la réponse, les chercheurs se sont tournés vers la spectrométrie de masse, une technique permettant de mesurer la masse des isotopes atomiques. En règle générale, les atomes d’oxygène provenant de sources géologiques sont plus lourds que l’oxygène provenant de sources biologiques. L’oxygène présent dans les eaux souterraines était léger, ce qui impliquait qu’il devait provenir d’une entité vivante. Les candidats les plus plausibles étaient les microbes.

Les chercheurs ont séquencé les génomes de l’ensemble de la communauté microbienne présente dans les eaux souterraines et ont repéré les voies et réactions biochimiques les plus susceptibles de produire de l’oxygène. Les réponses pointaient sans cesse vers une découverte faite il y a plus de dix ans par Marc Strous de l'Université de Calgary, auteur principal de la nouvelle étude et chef du laboratoire où travaillait Ruff.

Alors qu'il travaillait dans un laboratoire aux Pays-Bas à la fin des années 2000, Strous avait remarqué qu'un type de bactérie se nourrissant de méthane, souvent présente dans les sédiments des lacs et les boues d'épuration, avait un mode de vie étrange. Au lieu d'absorber l'oxygène de son environnement comme les autres aérobies, ces bactéries créent leur propre oxygène en utilisant des enzymes pour décomposer les composés solubles appelés nitrites (qui contiennent un groupe chimique composé d'azote et de deux atomes d'oxygène). Les bactéries utilisent l’oxygène auto-généré pour transformer le méthane en énergie.

Lorsque les microbes décomposent les composés de cette façon, on parle de dismutation. Jusqu’à présent, on pensait que cette méthode de production d’oxygène était rare dans la nature. Des expériences récentes en laboratoire impliquant des communautés microbiennes artificielles ont cependant révélé que l'oxygène produit par la dismutation peut s'échapper des cellules et se répandre dans le milieu environnant au profit d'autres organismes dépendants de l'oxygène, dans une sorte de processus symbiotique. Ruff pense que cela pourrait permettre à des communautés entières de microbes aérobies de prospérer dans les eaux souterraines, et potentiellement également dans les sols environnants.

Chimie pour la vie ailleurs

Cette découverte comble une lacune cruciale dans notre compréhension de l’évolution de l’immense biosphère souterraine et de la manière dont la dismutation contribue au cycle des composés se déplaçant dans l’environnement mondial. La simple possibilité que de l'oxygène soit présent dans les eaux souterraines " change notre compréhension du passé, du présent et de l'avenir du sous-sol ", a déclaré Ruff, qui est maintenant scientifique adjoint au Laboratoire de biologie marine de Woods Hole, Massachusetts.

Comprendre ce qui vit dans le sous-sol de notre planète est également " crucial pour transposer ces connaissances ailleurs ", a déclaré Sherwood Lollar. Le sol de Mars, par exemple, contient des composés perchlorates que certains microbes terrestres peuvent transformer en chlorure et en oxygène. Europe, la lune de Jupiter, possède un océan profond et gelé ; la lumière du soleil ne peut pas y pénétrer, mais l'oxygène pourrait potentiellement y être produit par dismutation microbienne au lieu de la photosynthèse. Les scientifiques ont observé des panaches de vapeur d’eau jaillissant de la surface d’Encelade, l’une des lunes de Saturne. Les panaches proviennent probablement d’un océan souterrain d’eau liquide. Si un jour nous trouvons de la vie sur d’autres mondes comme ceux-là, elle pourrait emprunter des voies de dismutation pour survivre.

Quelle que soit l'importance de la dismutation ailleurs dans l'univers, Lloyd est étonné de voir à quel point les nouvelles découvertes défient les idées préconçues sur les besoins de la vie et par l'ignorance scientifique qu'elles révèlent sur l'une des plus grandes biosphères de la planète. " C'est comme si nous avions toujours eu un œuf sur le visage ", a-t-elle déclaré.

Auteur: Internet

Info: https://www.quantamagazine.org/, Saugat Bolakhé, juillet 2023

[ perspectives extraterrestres ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste