Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 664
Temps de recherche: 0.0486s

homme-machine

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

Quel film ces emojis décrivent-ils ? (On voit une vidéo qui présente des myriades d'émoji formant des motifs mouvants, modélisés à partir de métadonnées)

Cette question était l'une des 204 tâches choisies l'année dernière pour tester la capacité de divers grands modèles de langage (LLM) - les moteurs de calcul derrière les chatbots d'IA tels que ChatGPT. Les LLM les plus simples ont produit des réponses surréalistes. "Le film est un film sur un homme qui est un homme qui est un homme", commençait l'un d'entre eux. Les modèles de complexité moyenne s'en sont approchés, devinant The Emoji Movie. Mais le modèle le plus complexe l'a emporté en une seule réponse : Finding Nemo.

"Bien que j'essaie de m'attendre à des surprises, je suis surpris par ce que ces modèles peuvent faire", a déclaré Ethan Dyer, informaticien chez Google Research, qui a participé à l'organisation du test. C'est surprenant parce que ces modèles sont censés n'avoir qu'une seule directive : accepter une chaîne de texte en entrée et prédire ce qui va suivre, encore et encore, en se basant uniquement sur des statistiques. Les informaticiens s'attendaient à ce que le passage à l'échelle permette d'améliorer les performances sur des tâches connues, mais ils ne s'attendaient pas à ce que les modèles puissent soudainement gérer autant de tâches nouvelles et imprévisibles.

Des études récentes, comme celle à laquelle a participé M. Dyer, ont révélé que les LLM peuvent produire des centaines de capacités "émergentes", c'est-à-dire des tâches que les grands modèles peuvent accomplir et que les petits modèles ne peuvent pas réaliser, et dont beaucoup ne semblent pas avoir grand-chose à voir avec l'analyse d'un texte. Ces tâches vont de la multiplication à la génération d'un code informatique exécutable et, apparemment, au décodage de films à partir d'emojis. De nouvelles analyses suggèrent que pour certaines tâches et certains modèles, il existe un seuil de complexité au-delà duquel la fonctionnalité du modèle monte en flèche. (Elles suggèrent également un sombre revers de la médaille : À mesure qu'ils gagnent en complexité, certains modèles révèlent de nouveaux biais et inexactitudes dans leurs réponses).

"Le fait que les modèles de langage puissent faire ce genre de choses n'a jamais été abordé dans la littérature à ma connaissance", a déclaré Rishi Bommasani, informaticien à l'université de Stanford. L'année dernière, il a participé à la compilation d'une liste de dizaines de comportements émergents, dont plusieurs ont été identifiés dans le cadre du projet de M. Dyer. Cette liste continue de s'allonger.

Aujourd'hui, les chercheurs s'efforcent non seulement d'identifier d'autres capacités émergentes, mais aussi de comprendre pourquoi et comment elles se manifestent - en somme, d'essayer de prédire l'imprévisibilité. La compréhension de l'émergence pourrait apporter des réponses à des questions profondes concernant l'IA et l'apprentissage automatique en général, comme celle de savoir si les modèles complexes font vraiment quelque chose de nouveau ou s'ils deviennent simplement très bons en statistiques. Elle pourrait également aider les chercheurs à exploiter les avantages potentiels et à limiter les risques liés à l'émergence.

"Nous ne savons pas comment déterminer dans quel type d'application la capacité de nuisance va se manifester, que ce soit en douceur ou de manière imprévisible", a déclaré Deep Ganguli, informaticien à la startup d'IA Anthropic.

L'émergence de l'émergence

Les biologistes, les physiciens, les écologistes et d'autres scientifiques utilisent le terme "émergent" pour décrire l'auto-organisation, les comportements collectifs qui apparaissent lorsqu'un grand nombre d'éléments agissent comme un seul. Des combinaisons d'atomes sans vie donnent naissance à des cellules vivantes ; les molécules d'eau créent des vagues ; des murmurations d'étourneaux s'élancent dans le ciel selon des schémas changeants mais identifiables ; les cellules font bouger les muscles et battre les cœurs. Il est essentiel que les capacités émergentes se manifestent dans les systèmes qui comportent de nombreuses parties individuelles. Mais ce n'est que récemment que les chercheurs ont été en mesure de documenter ces capacités dans les LLM, car ces modèles ont atteint des tailles énormes.

Les modèles de langage existent depuis des décennies. Jusqu'à il y a environ cinq ans, les plus puissants étaient basés sur ce que l'on appelle un réseau neuronal récurrent. Ceux-ci prennent essentiellement une chaîne de texte et prédisent le mot suivant. Ce qui rend un modèle "récurrent", c'est qu'il apprend à partir de ses propres résultats : Ses prédictions sont réinjectées dans le réseau afin d'améliorer les performances futures.

En 2017, les chercheurs de Google Brain ont introduit un nouveau type d'architecture appelé "transformateur". Alors qu'un réseau récurrent analyse une phrase mot par mot, le transformateur traite tous les mots en même temps. Cela signifie que les transformateurs peuvent traiter de grandes quantités de texte en parallèle. 

Les transformateurs ont permis d'augmenter rapidement la complexité des modèles de langage en augmentant le nombre de paramètres dans le modèle, ainsi que d'autres facteurs. Les paramètres peuvent être considérés comme des connexions entre les mots, et les modèles s'améliorent en ajustant ces connexions au fur et à mesure qu'ils parcourent le texte pendant l'entraînement. Plus il y a de paramètres dans un modèle, plus il peut établir des connexions avec précision et plus il se rapproche d'une imitation satisfaisante du langage humain. Comme prévu, une analyse réalisée en 2020 par les chercheurs de l'OpenAI a montré que les modèles gagnent en précision et en capacité au fur et à mesure qu'ils s'étendent.

Mais les débuts des LLM ont également apporté quelque chose de vraiment inattendu. Beaucoup de choses. Avec l'avènement de modèles tels que le GPT-3, qui compte 175 milliards de paramètres, ou le PaLM de Google, qui peut être étendu à 540 milliards de paramètres, les utilisateurs ont commencé à décrire de plus en plus de comportements émergents. Un ingénieur de DeepMind a même rapporté avoir pu convaincre ChatGPT qu'il s'était lui-même un terminal Linux et l'avoir amené à exécuter un code mathématique simple pour calculer les 10 premiers nombres premiers. Fait remarquable, il a pu terminer la tâche plus rapidement que le même code exécuté sur une vraie machine Linux.

Comme dans le cas du film emoji, les chercheurs n'avaient aucune raison de penser qu'un modèle de langage conçu pour prédire du texte imiterait de manière convaincante un terminal d'ordinateur. Nombre de ces comportements émergents illustrent l'apprentissage "à zéro coup" ou "à quelques coups", qui décrit la capacité d'un LLM à résoudre des problèmes qu'il n'a jamais - ou rarement - vus auparavant. Selon M. Ganguli, il s'agit là d'un objectif de longue date dans la recherche sur l'intelligence artificielle. Le fait de montrer que le GPT-3 pouvait résoudre des problèmes sans aucune donnée d'entraînement explicite dans un contexte d'apprentissage à zéro coup m'a amené à abandonner ce que je faisais et à m'impliquer davantage", a-t-il déclaré.

Il n'était pas le seul. Une série de chercheurs, qui ont détecté les premiers indices montrant que les LLM pouvaient dépasser les contraintes de leurs données d'apprentissage, s'efforcent de mieux comprendre à quoi ressemble l'émergence et comment elle se produit. La première étape a consisté à documenter minutieusement l'émergence.

Au-delà de l'imitation

En 2020, M. Dyer et d'autres chercheurs de Google Research ont prédit que les LLM auraient des effets transformateurs, mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et variées afin de déterminer les limites extrêmes de ce qu'un LLM pourrait faire. Cet effort a été baptisé "Beyond the Imitation Game Benchmark" (BIG-bench), en référence au nom du "jeu d'imitation" d'Alan Turing, un test visant à déterminer si un ordinateur peut répondre à des questions d'une manière humaine convaincante. (Le groupe s'est particulièrement intéressé aux exemples où les LLM ont soudainement acquis de nouvelles capacités qui étaient totalement absentes auparavant.

"La façon dont nous comprenons ces transitions brutales est une grande question de la echerche", a déclaré M. Dyer.

Comme on pouvait s'y attendre, pour certaines tâches, les performances d'un modèle se sont améliorées de manière régulière et prévisible au fur et à mesure que la complexité augmentait. Pour d'autres tâches, l'augmentation du nombre de paramètres n'a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont constaté ce qu'ils ont appelé des "percées", c'est-à-dire des augmentations rapides et spectaculaires des performances à partir d'un certain seuil d'échelle. Ce seuil variant en fonction de la tâche et du modèle.

Par exemple, les modèles comportant relativement peu de paramètres - quelques millions seulement - n'ont pas réussi à résoudre des problèmes d'addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a grimpé en flèche dans certains modèles. Des sauts similaires ont été observés pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le décodage des lettres d'un mot, l'identification de contenu offensant dans des paragraphes d'hinglish (combinaison d'hindi et d'anglais) et la formulation d'équivalents en langue anglaise, traduit à partir de proverbes kiswahili.

Introduction

Mais les chercheurs se sont rapidement rendu compte que la complexité d'un modèle n'était pas le seul facteur déterminant. Des capacités inattendues pouvaient être obtenues à partir de modèles plus petits avec moins de paramètres - ou formés sur des ensembles de données plus petits - si les données étaient d'une qualité suffisamment élevée. En outre, la formulation d'une requête influe sur la précision de la réponse du modèle. Par exemple, lorsque Dyer et ses collègues ont posé la question de l'emoji de film en utilisant un format à choix multiples, l'amélioration de la précision a été moins soudaine qu'avec une augmentation graduelle de sa complexité. L'année dernière, dans un article présenté à NeurIPS, réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (capacité appelée raisonnement en chaîne) pouvait résoudre correctement un problème de mots mathématiques, alors que le même modèle sans cette invitation progressivement précisée n'y parvenait pas.

 Yi Tay, scientifique chez Google Brain qui a travaillé sur l'étude systématique de ces percées, souligne que des travaux récents suggèrent que l'incitation par de pareilles chaînes de pensées modifie les courbes d'échelle et, par conséquent, le point où l'émergence se produit. Dans leur article sur NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites via pareille chaines de pensée progressives pouvait susciter des comportements émergents qui n'avaient pas été identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d'expliquer son raisonnement, peuvent aider les chercheurs à commencer à étudier les raisons pour lesquelles l'émergence se produit.

Selon Ellie Pavlick, informaticienne à l'université Brown qui étudie les modèles computationnels du langage, les découvertes récentes de ce type suggèrent au moins deux possibilités pour expliquer l'émergence. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les grands modèles acquièrent réellement de nouvelles capacités de manière spontanée. "Il se peut très bien que le modèle apprenne quelque chose de fondamentalement nouveau et différent que lorsqu'il était de taille inférieure", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'il y ait un changement fondamental qui se produise lorsque les modèles sont mis à l'échelle.

L'autre possibilité, moins sensationnelle, est que ce qui semble être émergent pourrait être l'aboutissement d'un processus interne, basé sur les statistiques, qui fonctionne par le biais d'un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement être en train d'apprendre des heuristiques qui sont hors de portée pour ceux qui ont moins de paramètres ou des données de moindre qualité.

Mais, selon elle, pour déterminer laquelle de ces explications est la plus probable, il faut mieux comprendre le fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit.

Pouvoirs imprévisibles et pièges

Demander à ces modèles de s'expliquer pose un problème évident : Ils sont des menteurs notoires. Nous nous appuyons de plus en plus sur ces modèles pour effectuer des travaux de base", a déclaré M. Ganguli, "mais je ne me contente pas de leur faire confiance, je vérifie leur travail". Parmi les nombreux exemples amusants, Google a présenté en février son chatbot d'IA, Bard. Le billet de blog annonçant le nouvel outil montre Bard en train de commettre une erreur factuelle.

L'émergence mène à l'imprévisibilité, et l'imprévisibilité - qui semble augmenter avec l'échelle - rend difficile pour les chercheurs d'anticiper les conséquences d'une utilisation généralisée.

"Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés", a déclaré M. Ganguli. "Et pour étudier les phénomènes émergents, il faut avoir un cas en tête, et on ne sait pas, avant d'avoir étudié l'influence de l'échelle. quelles capacités ou limitations pourraient apparaître.

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont cherché à savoir si les modèles présentaient certains types de préjugés raciaux ou sociaux, à l'instar de ceux précédemment signalés dans les algorithmes non basés sur les LLM utilisés pour prédire quels anciens criminels sont susceptibles de commettre un nouveau délit. Cette étude a été inspirée par un paradoxe apparent directement lié à l'émergence : Lorsque les modèles améliorent leurs performances en passant à l'échelle supérieure, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des préjudices.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", explique M. Ganguli. Il se réfère à une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. "Les grands modèles deviennent brusquement plus biaisés. Si ce risque n'est pas pris en compte, il pourrait compromettre les sujets de ces modèles."

Mais il propose un contrepoint : Lorsque les chercheurs demandent simplement au modèle de ne pas se fier aux stéréotypes ou aux préjugés sociaux - littéralement en tapant ces instructions - le modèle devient moins biaisé dans ses prédictions et ses réponses. Ce qui suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a présenté un nouveau mode d'"autocorrection morale", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

Selon M. Ganguli, l'émergence révèle à la fois un potentiel surprenant et un risque imprévisible. Les applications de ces grands LLM prolifèrent déjà, de sorte qu'une meilleure compréhension de cette interaction permettra d'exploiter la diversité des capacités des modèles de langage.

"Nous étudions la manière dont les gens utilisent réellement ces systèmes", a déclaré M. Ganguli. Mais ces utilisateurs sont également en train de bricoler, en permanence. "Nous passons beaucoup de temps à discuter avec nos modèles, et c'est là que nous commençons à avoir une bonne intuition de la confiance ou du manque de confiance.

Auteur: Ornes Stephen

Info: https://www.quantamagazine.org/ - 16 mars 2023. Trad DeepL et MG

[ dialogue ] [ apprentissage automatique ] [ au-delà du jeu d'imitation ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

CAPACITÉS COGNITIVES DU DAUPHIN

Au-delà de leur physiologie cérébrale, les dauphins font preuve de capacités extrêmement rares dans le domaine animal. Comme les humains, les dauphins peuvent imiter, aussi bien sur le mode gestuel que sur le mode vocal, ce qui est soi est déjà exceptionnel. Si certains oiseaux peuvent imiter la voix, ils n’imitent pas les attitudes. Les singes, de leur côté, imitent les gestes et non les mots. Le dauphin est capable des deux. Les dauphins chassent les poissons et se nourrissent d’invertébrés, mais ils usent pour ce faire de techniques complexes et variables, acquises durant l’enfance grâce à l’éducation. L’usage des outils ne leur est pas inconnu : un exemple frappant de cette capacité est la façon dont deux dauphins captifs s’y sont pris pour extraire une murène cachée dans le creux d’un rocher à l’intérieur de leur bassin. L’un d’eux a d’abord attrapé un petit poisson scorpion très épineux, qui passait dans le secteur, et l’ayant saisi dans son rostre, s’en est servi comme d’un outil pour extraire la murène de sa cachette. S’exprimant à propos de leur intelligence, le Dr Louis M.Herman, Directeur du Kewalo Basin Marine Mammal Laboratory de l’Université d’Hawaii, note que les dauphins gardent en mémoire des événements totalement arbitraires, sans le moindre rapport avec leur environnement naturel et sans aucune incidence biologique quant à leur existence.

Recherches sur le langage des dauphins

Beaucoup d’humains trouvent intrigante l’idée de communiquer avec d’autres espèces. A cet égard, le dauphin constitue un sujet attractif, particulièrement dans le domaine du langage animal, du fait de ses capacités cognitives et de son haut degré de socialisation. Dès le début des années soixante, c’est le neurologue John Lilly qui, le premier, s’est intéressé aux vocalisations des cétacés. Les recherches de Lilly se poursuivirent durant toute une décennie, tout en devenant de moins en moins conventionnelles. Le savant alla même jusqu’à tester les effets du L.S.D. sur les émissions sonores des dauphins et dut finalement interrompre ses recherches en 1969, lorsque cinq de ses dauphins se suicidèrent en moins de deux semaines. Malheureusement, nombre de découvertes ou de déclarations de John Lilly sont franchement peu crédibles et ont jeté le discrédit sur l’ensemble des recherches dans le domaine du langage animal. De ce fait, ces recherches sont aujourd’hui rigoureusement contrôlées et très méticuleuses, de sorte que les assertions des scientifiques impliquées dans ce secteur restent désormais extrêmement réservées.

Louis Herman est sans doute l’un des plus importants chercheurs à mener des études sur la communication et les capacités cognitives des dauphins. Son instrument de travail privilégié est la création de langues artificielles, c’est-à-dire de langages simples crées pour l’expérience, permettant d’entamer des échanges avec les dauphins. Louis Herman a surtout concentré ses travaux sur le phénomène de la "compréhension" du langage bien plus que sur la "production" de langage, arguant que la compréhension est le premier signe d’une compétence linguistique chez les jeunes enfants et qu’elle peut être testée de façon rigoureuse. En outre, la structure grammaticale qui fonde les langages enseignés s’inspire le plus souvent de celle de l’anglais. Certains chercheurs ont noté qu’il aurait été mieux venu de s’inspirer davantage de langues à tons ou à flexions, comme le chinois, dont la logique aurait parue plus familière aux cétacés. Dans les travaux d’Herman, on a appris à deux dauphins, respectivement nommés Akeakamai (Ake) et Phoenix, deux langues artificielles. Phoenix a reçu l’enseignement d’un langage acoustique produit par un générateur de sons électroniques. Akeakamai, en revanche, a du apprendre un langage gestuel (version simplifiée du langage des sourds-muets), c’est-à-dire visuel. Les signaux de ces langues artificiels représentent des objets, des modificateurs d’objet (proche, loin, gros, petit, etc.) ou encore des actions. Ni les gestes ni les sons ne sont sensés représenter de façon analogique les objets ou les termes relationnels auxquels ils se réfèrent. Ces langages utilisent également une syntaxe, c’est-à-dire des règles de grammaire simples, ce qui signifie que l’ordre des mots influe sur le sens de la phrase. Phoenix a appris une grammaire classique, enchaînant les termes de gauche à droite (sujet-verbe-complément) alors que la grammaire enseignée à Ake allait dans l’autre sens et exigeait de sa part qu’elle voit l’ensemble du message avant d’en comprendre le sens correctement. Par exemple, dans le langage gestuel de Ake, la séquence des signaux PIPE-SURFBOARD-FETCH ("tuyau – planche à surf – apporter") indiquait l’ordre d’amener la planche de surf jusqu’au tuyau, alors que SURFBOARD-PIPE-FETCH ("planche-tuyau- rapporter") signifiait qu’il fallait, au contraire, amener le tuyau jusqu’ à la planche de surf. Phoenix et Ake ont ainsi appris environ 50 mots, lesquels, permutés l’un avec l’autre au sein de séquences courtes, leur permirent bientôt de se servir couramment de plus de mille phrases, chacune produisant une réponse neuve et non apprise.

Compte tenu de l’influence possible de la position dans l’espace des expérimentateurs sur l’expérimentation, les lieux d’apprentissage et les entraîneurs se voyaient changés de session en session. Dans le même temps, des observateurs "aveugles", qui ne connaissaient pas les ordres et ne voyaient pas les entraîneurs, notaient simplement le comportement des dauphins, afin de vérifier ensuite qu’il correspondait bien aux commandes annoncées. Les entraîneurs allaient jusqu’à porter des cagoules noires, afin de ne révéler aucune expression ou intention faciale et se tenaient immobiles, à l’exception des mains. Les dauphins se montrèrent capables de reconnaître les signaux du langage gestuels aussi bien lorsqu’il étaient filmés puis rediffusés sur un écran vidéo que lorsque ces mêmes signes étaient exécutés à l’air libre par l’entraîneur. Même le fait de ne montrer que des mains pâles sur un fond noir ou des taches de lumière blanche reproduisant la dynamique des mains, a largement suffi aux dauphins pour comprendre le message ! Il semble donc que les dauphins répondent davantage aux symboles abstraits du langage qu’à tout autre élément de la communication.

Par ailleurs, si les dauphins exécutent aisément les ordres qu’on leur donne par cette voie gestuelle, ils peuvent également répondre de façon correcte à la question de savoir si un objet précis est présent ou absent, en pressant le levier approprié (le clair pour PRESENT, le sombre pour ABSENT). Ceci démontre évidement leur faculté de "déplacement mental", qui consiste à manipuler l’image d’objets qui ne se trouvent pas dans les environs. Des expériences additionnelles ont conduit à préciser comment le dauphin conçoit l’étiquetage des objets, comment il les qualifie de son point de vue mental. "Nous avons constaté" nous apprend Louis Herman, "qu’au regard du dauphin, le signe CERCEAU n’est pas seulement le cerceau précis utilisé dans le cadre de cette expérience précise, c’est plutôt TOUT OBJET DE GRANDE TAILLE PERCE D’UN GRAND TROU AU MILIEU. Un seul concept général associe donc pour le dauphin les cerceaux ronds, carrés, grands et petits, flottants ou immergés, que l’on utilise généralement lors de la plupart des expériences". Parmi les choses que le Dr Herman estime n’avoir pu enseigner aux dauphins, il y a le concept du "non" en tant que modificateur logique. L’ordre de "sauter au-dessus d’une non-balle" indique en principe que le dauphin doit sauter au-dessus de n’importe quoi, sauf d’une balle ! Mais cela n’est pas compris, pas plus, affirme toujours Herman, que le concept de "grand" ou de "petit".

Communication naturelle chez les dauphins

On sait que les dauphins émettent de nombreux sifflements, de nature très diverse. La fonction de la plupart d’entre eux demeure toujours inconnue mais on peut affirmer aujourd’hui que la moitié d’entre eux au moins constitue des "signatures sifflées". Un tel signal se module dans une fourchette de 5 à 20 kilohertz et dure moins d’une seconde. Il se distingue des autres sifflements - et de la signature de tous les autres dauphins – par ses contours particuliers et ses variations de fréquences émises sur un temps donné, ainsi que le montrent les sonogrammes. Les jeunes développent leur propre signature sifflée entre l’âge de deux mois et d’un an. Ces sifflements resteront inchangés douze ans au moins et le plus souvent pour la durée entière de la vie de l’animal. Par ailleurs, au-delà de leur seule fonction nominative, certains des sifflements du dauphin apparaissent comme de fidèles reproductions de ceux de leurs compagnons et servent manifestement à interpeller les autres par leur nom. Lorsqu’ils sont encore très jeunes, les enfants mâles élaborent leur propre signature sifflée, qui ressemble fort à celle de leur mère. En revanche, les jeunes femelles doivent modifier les leurs, précisément pour se distinguer de leur mère.

Ces différences reflètent sans doute celles qui existent dans les modes de vie des femelles et des mâles. Puisque les filles élèvent leur propre enfant au sein du groupe maternel, un sifflement distinct est donc indispensable pour pouvoir distinguer la maman de la grand mère. La signature sifflée masculine, presque identique à celle de la mère, permet tout au contraire d’éviter l’inceste et la consanguinité. Le psychologue James Ralston et l’informaticien Humphrey Williams ont découvert que la signature sifflée pouvait véhiculer bien plus que la simple identité du dauphin qui l’émet. En comparant les sonogrammes des signatures sifflées durant les activités normales et lors de situations stressantes, ils découvrirent que la signature sifflée, tout en conservant sa configuration générale, pouvait changer en termes de tonalité et de durée et transmettre ainsi des informations sur l’état émotionnel de l’animal. Les modifications causé par cet état émotionnel sur les intonations de la signature varient en outre selon les individus. Les dauphins semblent donc utiliser les sifflement pour maintenir le contact lorsqu’ils se retrouvent entre eux ou lorsqu’ils rencontrent d’autres groupes, mais aussi, sans doute, pour coordonner leur activités collectives. Par exemple, des sifflements sont fréquemment entendus lorsque le groupe entier change de direction ou d’activité.

De son côté, Peter Tyack (Woods Hole Oceanographic Institute) a travaillé aux côtés de David Staelin, professeur d’ingénierie électronique au M.I.T., afin de développer un logiciel d’ordinateur capable de détecter les "matrices sonores" et les signaux répétitifs parmi le concert de couinements, piaulements et autres miaulements émis par les dauphins. Une recherche similaire est menée par l’Université de Singapore (Dolphin Study Group). Avec de tels outils, les chercheurs espèrent en apprendre davantage sur la fonction précise des sifflements.

Dauphins sociaux

Les observations menées sur des individus sauvages aussi bien qu’en captivité révèlent un très haut degré d’ordre social dans la société dauphin. Les femelles consacrent un an à leur grossesse et puis les trois années suivantes à élever leur enfant. Les jeunes s’éloignent en effet progressivement de leur mère dès leur troisième année, restant près d’elle jusqu’à six ou dix ans ! – et rejoignent alors un groupe mixte d’adolescents, au sein duquel ils demeurent plusieurs saisons. Parvenus à l’âge pleinement adulte, vers 15 ans en moyenne, les mâles ne reviennent plus que rarement au sein du "pod" natal. Cependant, à l’intérieur de ces groupes d’adolescents, des liens étroits se nouent entre garçons du même âge, qui peuvent persister la vie entière. Lorsque ces mâles vieillissent, ils ont tendance à s’associer à une bande de femelles afin d’y vivre une paisible retraite. Bien que les dauphins pratiquent bien volontiers la promiscuité sexuelle, les familles matriarcales constituent de fortes unités de base de la société dauphin. Lorsqu’une femelle donne naissance à son premier enfant, elle rejoint généralement le clan de sa propre mère et élève son delphineau en compagnie d’autres bébés, nés à la même saison. La naissance d’un nouveau-né donne d’ailleurs souvent lieu à des visites d’autres membres du groupe, mâles ou femelles, qui s’étaient séparés de leur mère depuis plusieurs années. Les chercheurs ont également observé des comportements de "baby-sitting", de vieilles femelles, des soeurs ou bien encore d’autres membres du groupe, voire même un ancien mâle prenant alors en charge la surveillance des petits. On a ainsi pu observer plusieurs dauphins en train de mettre en place une véritable "cour de récréation", les femelles se plaçant en U et les enfants jouant au milieu ! (D’après un texte du Dr Poorna Pal)

Moi, dauphin.

Mais qu’en est-il finalement de ce moi central au coeur de ce monde circulaire sans relief, sans couleurs constitué de pixels sonores ? C’est là que les difficultés deviennent insurmontables tant qu’un "contact" n’aura pas été vraiment établi par le dialogue car le "soi" lui-même, le "centre de la personne" est sans doute construit de façon profondément différente chez l’homme et chez le dauphin. H.Jerison parle carrément d’une "conscience collective". Les mouvements de groupe parfaitement coordonnés et quasi-simultanés, à l’image des bancs de poissons ou des troupeaux de gnous, que l’on observe régulièrement chez eux, suppose à l’évidence une pensée "homogène" au groupe, brusquement transformé en une "personne plurielle". On peut imaginer ce sentiment lors d’un concert de rock ou d’une manifestation, lorsqu’une foule entière se tend vers un même but mais ces attitudes-là sont grossières, globales, peu nuancées. Toute autre est la mise à l’unisson de deux, trois, cinq (les "gangs" de juvéniles mâles associés pour la vie) ou même de plusieurs centaines de dauphins ensemble (de formidables "lignes de front" pour la pêche, qui s’étendent sur des kilomètres) et là, bien sûr, nous avons un comportement qui traduit un contenu mental totalement inconnu de nous. On sait que lorsqu’un dauphin voit, tout le monde l’entend. En d’autres termes chaque fois qu’un membre du groupe focalise son faisceau de clicks sur une cible quelconque, l’écho lui revient mais également à tous ceux qui l’entourent. Imaginons que de la même manière, vous regardiez un beau paysage. La personne qui vous tournerait le dos et se tiendrait à l’arrière derrière vous pourrait le percevoir alors aussi bien que vous le faites. Cette vision commune, qui peut faire croire à de la télépathie, n’est pas sans conséquence sur le contenu mental de chaque dauphin du groupe, capable de fusionner son esprit à ceux des autres quand la nécessité s’en fait sentir. Ceci explique sans doute la formidable capacité d’empathie des dauphins mais aussi leur fidélité "jusqu’à la mort" quand il s’agit de suivre un compagnon qui s’échoue. Chez eux, on ne se sépare pas plus d’un ami en détresse qu’on ne se coupe le bras quand il est coincé dans une portière de métro ! En d’autres circonstances, bien sûr, le dauphin voyage seul et il "rassemble" alors sa conscience en un soi individualisé, qui porte un nom, fait des choix et s’intègre dans une lignée. Il en serait de même pour l’homme si les mots pouvaient faire surgir directement les images qu’ils désignent dans notre cerveau, sans passer par le filtre d’une symbolisation intermédiaire. Si quelqu’un me raconte sa journée, je dois d’abord déchiffrer ses mots, les traduire en image et ensuite me les "représenter". Notre système visuel étant indépendant de notre système auditif, un processus de transformation préalable est nécessaire à la prise de conscience du message. Au contraire, chez le dauphin, le système auditif est à la fois un moyen de communication et un moyen de cognition "constructiviste" (analyse sensorielle de l’environnement). La symbolisation n’est donc pas nécessaire aux transferts d’images, ce qui n’empêche nullement qu’elle puisse exister au niveau des concepts abstraits. Quant à cette conscience fusion-fission, cet "ego fluctuant à géométrie variable", ils préparent tout naturellement le dauphin à s’ouvrir à d’autres consciences que la sienne. D’où sans doute, son besoin de nous sonder, de nous comprendre et de nous "faire" comprendre. Un dauphin aime partager son cerveau avec d’autres, tandis que l’homme vit le plus souvent enfermé dans son crâne. Ces êtres-là ont décidément beaucoup à nous apprendre...

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ mimétisme ] [ sémiotique ] [ intelligence grégaire ]

 

Commentaires: 0

univers protonique

Forces tourbillonnantes et pressions d’écrasement mesurées dans le proton

Des expériences très attendues qui utilisent la lumière pour imiter la gravité révèlent pour la première fois la répartition des énergies, des forces et des pressions à l’intérieur d’une particule subatomique.

(Image : Les forces poussent dans un sens près du centre du proton et dans l’autre sens près de sa surface.)

Les physiciens ont commencé à explorer le proton comme s’il s’agissait d’une planète subatomique. Les cartes en coupe affichent de nouveaux détails de l'intérieur de la particule. Le noyau du proton présente des pressions plus intenses que dans toute autre forme connue de matière. À mi-chemin de la surface, des tourbillons de force s’affrontent les uns contre les autres. Et la " planète " dans son ensemble est plus petite que ne le suggéraient les expériences précédentes.

Les recherches expérimentales marquent la prochaine étape dans la quête visant à comprendre la particule qui ancre chaque atome et constitue la majeure partie de notre monde.

"Nous y voyons vraiment l'ouverture d'une direction complètement nouvelle qui changera notre façon de considérer la structure fondamentale de la matière", a déclaré Latifa Elouadrhiri , physicienne au Thomas Jefferson National Accelerator Facility à Newport News, en Virginie, qui participe à l'effort.

Les expériences jettent littéralement un nouvel éclairage sur le proton. Au fil des décennies, les chercheurs ont méticuleusement cartographié l’influence électromagnétique de la particule chargée positivement. Mais dans la nouvelle recherche, les physiciens du Jefferson Lab cartographient plutôt l'influence gravitationnelle du proton, à savoir la répartition des énergies, des pressions et des contraintes de cisaillement, qui courbent le tissu espace-temps dans et autour de la particule. Pour ce faire, les chercheurs exploitent une manière particulière par laquelle des paires de photons, des particules de lumière, peuvent imiter un graviton, la particule supposée qui transmet la force de gravité. En envoyant un ping au proton avec des photons, ils déduisent indirectement comment la gravité interagirait avec lui, réalisant ainsi un rêve vieux de plusieurs décennies consistant à interroger le proton de cette manière alternative.

"C'est un tour de force", a déclaré Cédric Lorcé , physicien à l'Ecole Polytechnique en France, qui n'a pas participé aux travaux. "Expérimentalement, c'est extrêmement compliqué." 

Des photons aux gravitons


Les physiciens ont appris énormément sur le proton au cours des 70 dernières années en le frappant à plusieurs reprises avec des électrons. Ils savent que sa charge électrique s’étend sur environ 0,8 femtomètre, ou quadrillionièmes de mètre, à partir de son centre. Ils savent que les électrons entrants ont tendance à être projetés sur l’un des trois quarks – des particules élémentaires avec des fractions de charge – qui bourdonnent à l’intérieur. Ils ont également observé la conséquence profondément étrange de la théorie quantique où, lors de collisions plus violentes, les électrons semblent rencontrer une mer mousseuse composée de bien plus de quarks ainsi que de gluons, porteurs de la force dite forte, qui colle les quarks ensemble.

Toutes ces informations proviennent d’une seule configuration : vous lancez un électron sur un proton, et les particules échangent un seul photon – le porteur de la force électromagnétique – et se repoussent. Cette interaction électromagnétique indique aux physiciens comment les quarks, en tant qu'objets chargés, ont tendance à s'organiser. Mais le proton a bien plus à offrir que sa charge électrique.

(Photo : Latifa Elouadrhiri, scientifique principale du laboratoire Jefferson, a dirigé la collecte de données à partir desquelles elle et ses collaborateurs calculent désormais les propriétés mécaniques du proton.) 

" Comment la matière et l'énergie sont-elles distribuées ? " a demandé Peter Schweitzer , physicien théoricien à l'Université du Connecticut. "Nous ne savons pas."

Schweitzer a passé la majeure partie de sa carrière à réfléchir au côté gravitationnel du proton. Plus précisément, il s'intéresse à une matrice de propriétés du proton appelée tenseur énergie-impulsion. " Le tenseur énergie-impulsion sait tout ce qu'il y a à savoir sur la particule ", a-t-il déclaré.

Dans la théorie de la relativité générale d'Albert Einstein, qui présente l'attraction gravitationnelle comme des objets suivant des courbes dans l'espace-temps, le tenseur énergie-impulsion indique à l'espace-temps comment se plier. Elle décrit, par exemple, la disposition de l'énergie (ou, de manière équivalente, de la masse) – la source de ce qui est la part du lion de la torsion de l'espace-temps. Elle permet également d'obtenir des informations sur la répartition de la dynamique, ainsi que sur les zones de compression ou d'expansion, ce qui peut également donner une légère courbure à l'espace-temps.

Si nous pouvions connaître la forme de l'espace-temps entourant un proton, élaborée indépendamment par des physiciens russes et   américains dans les années 1960, nous pourrions en déduire toutes les propriétés indexées dans son tenseur énergie-impulsion. Celles-ci incluent la masse et le spin du proton, qui sont déjà connus, ainsi que l'agencement des pressions et des forces du proton, une propriété collective que les physiciens nomment " Druck term ", d'après le mot " pression"  en allemand. Ce terme est " aussi important que la masse et la rotation, et personne ne sait ce que c'est ", a déclaré Schweitzer – même si cela commence à changer.

Dans les années 60, il semblait que la mesure du tenseur énergie-momentum et le calcul du terme de Druck nécessiteraient une version gravitationnelle de l'expérience de diffusion habituelle : On envoie une particule massive sur un proton et on laisse les deux s'échanger un graviton - la particule hypothétique qui constitue les ondes gravitationnelles - plutôt qu'un photon. Mais en raison de l'extrême subtilité de la gravité, les physiciens s'attendent à ce que la diffusion de gravitons se produise 39 fois plus rarement que la diffusion de photons. Les expériences ne peuvent pas détecter un effet aussi faible.

"Je me souviens avoir lu quelque chose à ce sujet quand j'étais étudiant", a déclaré Volker Burkert , membre de l'équipe du Jefferson Lab. Ce qu’il faut retenir, c’est que " nous ne pourrons probablement jamais rien apprendre sur les propriétés mécaniques des particules ".Gravitation sans gravité

Les expériences gravitationnelles sont encore inimaginables aujourd’hui. Mais les recherches menées en fin des années 1990 et au début des années 2000 par les physiciens Xiangdong Ji et, travaillant séparément, feu Maxim Polyakov, ont révélé une solution de contournement.

Le schéma général est le suivant. Lorsque vous tirez légèrement un électron sur un proton, il délivre généralement un photon à l'un des quarks et le détourne. Mais lors d’un événement sur un milliard, quelque chose de spécial se produit. L’électron entrant envoie un photon. Un quark l'absorbe puis émet un autre photon un battement de cœur plus tard. La principale différence est que cet événement rare implique deux photons au lieu d’un : des photons entrants et sortants. Les calculs de Ji et Polyakov ont montré que si les expérimentateurs pouvaient collecter les électrons, protons et photons résultants, ils pourraient déduire des énergies et des impulsions de ces particules ce qui s'est passé avec les deux photons. Et cette expérience à deux photons serait essentiellement aussi informative que l’impossible expérience de diffusion de gravitons.

Comment deux photons pourraient-ils connaître la gravité ? La réponse fait appel à des mathématiques très complexes. Mais les physiciens proposent deux façons de comprendre pourquoi cette astuce fonctionne.

Les photons sont des ondulations dans le champ électromagnétique, qui peuvent être décrites par une seule flèche, ou vecteur, à chaque emplacement de l'espace indiquant la valeur et la direction du champ. Les gravitons seraient des ondulations dans la géométrie de l’espace-temps, un domaine plus complexe représenté par une combinaison de deux vecteurs en chaque point. Capturer un graviton donnerait aux physiciens deux vecteurs d’informations. En dehors de cela, deux photons peuvent remplacer un graviton, puisqu’ils transportent également collectivement deux vecteurs d’information.

Une interprétation mathématiques alternative est celle-ci. Pendant le moment qui s'écoule entre le moment où un quark absorbe le premier photon et celui où il émet le second, le quark suit un chemin à travers l'espace. En sondant ce chemin, nous pouvons en apprendre davantage sur des propriétés telles que les pressions et les forces qui entourent le chemin.

"Nous ne faisons pas d'expérience gravitationnelle", a déclaré Lorcé. Mais " nous devrions obtenir un accès indirect à la manière dont un proton devrait interagir avec un graviton ". 

Sonder la planète Proton
En 2000, les physiciens du Jefferson Lab ont réussi à obtenir quelques résultats de diffusion à deux photons. Cette démonstration de faisabilité les a incités à construire une nouvelle expérience et, en 2007, ils ont fait entrer des électrons dans des protons suffisamment de fois pour obtenir environ 500 000 collisions imitant les gravitons. L'analyse des données expérimentales a pris une décennie de plus.

À partir de leur index des propriétés de flexion de l’espace-temps, l’équipe a extrait le terme insaisissable de Druck, publiant son estimation des pressions internes du proton dans Nature en 2018.

Ils ont découvert qu’au cœur du proton, la force puissante génère des pressions d’une intensité inimaginable : 100 milliards de milliards de milliards de pascals, soit environ 10 fois la pression au cœur d’une étoile à neutrons. Plus loin du centre, la pression chute et finit par se retourner vers l'intérieur, comme c'est nécessaire pour que le proton ne se brise pas. "Voilà qui résulte de l'expérience", a déclaré Burkert. "Oui, un proton est réellement stable." (Cette découverte n’a cependant aucune incidence sur la désintégration des protons , ce qui implique un type d’instabilité différent prédit par certaines théories spéculatives.)

Le groupe Jefferson Lab a continué à analyser le terme Druck. Ils ont publié une estimation des forces de cisaillement (forces internes poussant parallèlement à la surface du proton) dans le cadre d'une étude publiée en décembre. Les physiciens ont montré que près de son noyau, le proton subit une force de torsion qui est neutralisée par une torsion dans l’autre sens plus près de la surface. Ces mesures soulignent également la stabilité de la particule. Les rebondissements étaient attendus sur la base des travaux théoriques de Schweitzer et Polyakov. "Néanmoins, le voir émerger de l'expérience pour la première fois est vraiment stupéfiant", a déclaré Elouadrhiri.

Ils utilisent désormais ces outils pour calculer la taille du proton d'une nouvelle manière. Dans les expériences de diffusion traditionnelles, les physiciens avaient observé que la charge électrique de la particule s'étendait à environ 0,8 femtomètre de son centre (c'est-à-dire que les quarks qui la composent bourdonnent dans cette région). Mais ce " rayon de charge " présente quelques bizarreries. Dans le cas du neutron, par exemple — l'équivalent neutre du proton, dans lequel deux quarks chargés négativement ont tendance à rester profondément à l'intérieur de la particule tandis qu'un quark chargé positivement passe plus de temps près de la surface — le rayon de charge apparaît comme un nombre négatif.  "Cela ne veut pas dire que la taille est négative ; ce n'est tout simplement pas une mesure fiable ", a déclaré Schweitzer.

La nouvelle approche mesure la région de l’espace-temps considérablement courbée par le proton. Dans une prépublication qui n'a pas encore été évaluée par des pairs, l'équipe du Jefferson Lab a calculé que ce rayon pourrait être environ 25 % plus petit que le rayon de charge, soit seulement 0,6 femtomètre.

Les limites de la planète Proton

D'un point de vue conceptuel, ce type d'analyse adoucit la danse floue des quarks pour en faire un objet solide, semblable à une planète, avec des pressions et des forces agissant sur chaque point de volume. Cette planète gelée ne reflète pas entièrement le proton bouillonnant dans toute sa gloire quantique, mais c'est un modèle utile. "C'est une interprétation", a déclaré M. Schweitzer.

Et les physiciens soulignent que ces cartes initiales sont approximatives, pour plusieurs raisons.

Premièrement, mesurer avec précision le tenseur énergie-impulsion nécessiterait des énergies de collision beaucoup plus élevées que celles que Jefferson Lab peut produire. L’équipe a travaillé dur pour extrapoler soigneusement les tendances à partir des énergies relativement faibles auxquelles elles peuvent accéder, mais les physiciens ne sont toujours pas sûrs de la précision de ces extrapolations.

(Photo : Lorsqu'il était étudiant, Volker Burkert a lu qu'il était impossible de mesurer directement les propriétés gravitationnelles du proton. Aujourd'hui, il participe à une collaboration au laboratoire Jefferson qui est en train de découvrir indirectement ces mêmes propriétés.)

De plus, le proton est plus que ses quarks ; il contient également des gluons, qui se déplacent sous leurs propres pressions et forces. L'astuce à deux photons ne peut pas détecter les effets des gluons. Une autre équipe du Jefferson Lab a utilisé une astuce analogue ( impliquant une interaction double-gluon ) pour publier l'année dernière une carte gravitationnelle préliminaire de ces effets des gluons dans Nature, mais elle était également basée sur des données limitées et à faible énergie.

"C'est une première étape", a déclaré Yoshitaka Hatta, physicien au Brookhaven National Laboratory qui a eu l'idée de commencer à étudier le proton gravitationnel après les travaux du groupe Jefferson Lab en 2018.

Des cartes gravitationnelles plus précises des quarks du proton et de ses gluons pourraient être disponibles dans les années 2030, lorsque le collisionneur électron-ion, une expérience actuellement en construction à Brookhaven, entrera en activité.

Pendant ce temps, les physiciens poursuivent leurs expériences numériques. Phiala Shanahan, physicienne nucléaire et des particules au Massachusetts Institute of Technology, dirige une équipe qui calcule le comportement des quarks et des gluons à partir des équations de la force forte. En 2019, elle et ses collaborateurs ont estimé les pressions et les forces de cisaillement, et en octobre, en ont estimé le rayon, entre autres propriétés. Jusqu'à présent, leurs résultats numériques ont été largement alignés sur les résultats physiques du Jefferson Lab. "Je suis certainement très excitée par la cohérence entre les résultats expérimentaux récents et nos données", a déclaré Mme Shanahan.

Même les aperçus flous du proton obtenus jusqu'à présent ont légèrement remodelé la compréhension des chercheurs sur la particule.

Certaines conséquences sont pratiques. Au CERN, l'organisation européenne qui gère le Grand collisionneur de hadrons, le plus grand broyeur de protons au monde, les physiciens pensaient auparavant que dans certaines collisions rares, les quarks pouvaient se trouver n'importe où dans les protons en collision. Mais les cartes inspirées par la gravitation suggèrent que les quarks ont tendance à rester près du centre dans de tels cas.

"Les modèles utilisés au CERN ont déjà été mis à jour", a déclaré François-Xavier Girod, physicien du Jefferson Lab qui a travaillé sur les expériences.

Les nouvelles cartes pourraient également offrir des pistes pour résoudre l’un des mystères les plus profonds du proton : pourquoi les quarks se lient en protons. Il existe un argument intuitif selon lequel, comme la force puissante entre chaque paire de quarks s'intensifie à mesure qu'ils s'éloignent, comme un élastique, les quarks ne peuvent jamais échapper à leurs camarades.

Mais les protons sont fabriqués à partir des membres les plus légers de la famille des quarks. Et les quarks légers peuvent également être considérés comme de longues ondes s'étendant au-delà de la surface du proton. Cette image suggère que la liaison du proton pourrait se produire non pas via la traction interne de bandes élastiques, mais par une interaction externe entre ces quarks ondulés et étirés. La cartographie de pression montre l’attraction de la force forte s’étendant jusqu’à 1,4 femtomètres et au-delà, renforçant ainsi l’argument en faveur de ces théories alternatives.

"Ce n'est pas une réponse définitive", a déclaré Girod, "mais cela indique que ces simples images avec des bandes élastiques ne sont pas pertinentes pour les quarks légers."



Auteur: Internet

Info: https://filsdelapensee.ch - Charlie Bois, 14 mars 2024

[ chromodynamique quantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Le processus d’encéphalisation
Parmi l’ensemble des animaux non-humains, les dauphins sont dotés du quotient encéphalique le plus élevé au monde, soit à peu près celui de l’être humain.
A ce petit jeu, d’ailleurs, le cachalot nous dépasse tous largement !
Une telle augmentation du volume cérébral, bien au-delà des simples besoins de la motricité ou de la sensorialité, est qualifiée "d’encéphalisation structurelle".
Ce phénomène n’est pas rare. Il semble que dès le Jurassique, des dinosauriens bipèdes de taille moyenne aient commencé à augmenter de manière encore timide leurs capacités cérébrales.
Au Tertiaire, les ancêtres des éléphants et des cétacés se sont lancés à leur tour dans la course au gros cerveau mais ce n’est qu’au Quaternaire, il y a de cela de trois à six millions d’années, que certains primates hominoïdes développent une boîte crânienne de type néoténique à fontanelles non suturées durant les premiers temps de l’enfance, afin de permettre une croissance ultérieure de l’un des cerveaux les plus puissants du monde.
Ce processus d’encéphalisation apparaît également chez certains oiseaux – corvidés, psittacidés – à peu près vers la même époque. A chaque fois, bien sûr, des comportements très élaborés sont toujours associés à un accroissement spectaculaire du tissu cérébral.
Une si curieuse convergence de formes, la survenance simultanée ou successive de tous ces "grands fronts", pose bien évidemment question en termes darwiniens.
Le ptérodactyle, la mouche, le colibri, la chauve-souris ont des ailes pour voler, la truite, l’ichtyosaure, le marsouin ont un corps fait pour nager, le grillon fouisseur et la taupe ont des pattes en forme de pelles pour creuser, etc.
Mais à quoi rime dès lors un vaste crâne et à quelle fonction est-il dévolu ?
Essentiellement à comprendre le monde et ceux qui le composent, en ce compris les membres de sa propre espèce, avec lesquels il faut sans cesse gérer une relation équilibrée.
Même les gros cerveaux les plus solitaires vivent en fait en société : tigres, baleines bleues, panthères, orangs-outans gardent des liens étroits, bien que distants ou différés, avec leur fratrie et leurs partenaires.
L’intelligence est à coup sûr l’arme suprême contre les aléas du monde, ses mutations incessantes, puisqu’elle permet notamment de gérer un groupe comme un seul corps mais aussi de pénétrer les lois subtiles qui sont à la base du mouvement des choses.
En augmentant d’un degré supérieur ces facultés par le moyen du langage, lequel conserve le savoir des générations mortes, l’homme et le cétacé ont sans doute franchi un nouveau pas vers une plus grande adaptabilité.
Le problème de l’humain, mais nous n’y reviendrons pas davantage, c’est qu’il ne s’est servi jusqu’à ce jour que d’une partie de son intelligence et qu’il se laisse ensevelir vivants dans ses propres déchets, et avec lui les reste du monde, pour n’avoir pas su contrôler sa propre reproduction ni la saine gestion de son environnement.
Intelligents ou non ? (Le point de vue de Ken Levasseur)
Dans un courrier CFN posté en avril 2003 relatif à l’utilisation de dauphins militaires en Irak, Ken Levasseur, l’un des meilleurs spécialistes actuels de cette question, a tenu à faire le point à propos de l’intelligence réelle ou supposée de ces mammifères marins. Aux questions que lui avait adressées un étudiant sur ce thème, Ken répond ici de manière définitive, sur la base de de son expérience et de ses intimes convictions.
Eu égard aux remarquables recherches menées par Ken depuis des années et au fait qu’il a travaillé longtemps aux côtés du professeur Louis Hermann, son point de vue n’est évidemment pas négligeable ni ses opinions sans fondements. On lira d’ailleurs sur ce site même son article en anglais relatif au cerveau du dauphin
Inutile de dire que le gestionnaire de ce site partage totalement le point de vue de Ken Levasseur, dont les travaux l’inspirent depuis de nombreuses années, au même titre que ceux de Wade Doak ou de Jim Nollman : tous ont en commun d’affirmer que les dauphins ne sont pas des animaux au sens strict mais bien l’équivalent marin de l’humanité terrestre.
Q- A quel niveau d’intelligence réelle les dauphins se situent-ils ? A celui du chien ? Du grand singe ? D’un être humain ?
R- Mon meilleur pronostic est qu’un jour prochain, nous pourrons prouver que la plupart des espèces de cétacés disposent d’une intelligence équivalente ou supérieure à celle d’un humain adulte.
Q- Quelles sont les preuves nous permettant d’affirmer que les dauphins sont intelligents ?
R- Il a été démontré depuis longtemps que les dauphins peuvent développer des capacités cognitives qui équivalent ou excèdent les possibilités mentales de l’être humain. Aujourd’hui, nous sommes à même de définir exactement en quoi consiste l’intelligence humaine. Une fois que nous parviendrons à définir l’intelligence d’une manière strictement objective et valable pour toutes les autres espèces, on permettra enfin aux cétacés de faire la preuve de la leur.
Q- Quelles preuves avons-nous que les dauphins ne sont PAS intelligents ?
R- Il n’y a aucune preuve scientifique qui tendrait à prouver que l’intelligence du dauphin serait située entre celle du chien et celle du chimpanzé (comme l’affirment les delphinariums et la marine américaine) .
Q- Est-ce que les dauphins possèdent un langage propre ?
R- La définition d’une "langue", comme celle de l’intelligence, repose sur des bases subjectives définies pour et par les humains. Une fois que nous pourrons disposer d’une définition plus objective de ce qu’est un langage, et que les recherches sur la communication des dauphins ne seront plus "classifiée" par les américains, il est fort probable que les chercheurs puissent enfin conduire les recherches appropriées et qu’ils reconnaissent que les dauphins disposent de langages naturels.
Q- Est-ce leur capacité à apprendre et à exécuter des tours complexes qui les rend plus intelligents ou non ?
R- La capacité du dauphin à apprendre à exécuter des tours complexes est surtout une indication de l’existence d’un niveau élevé des capacités mentales, interprétées comme synonymes d’une intelligence élevée.
Q- Jusqu’à quel point ont été menées les recherches sur les dauphins et leur intelligence ? Que savent vraiment les scientifiques à leur propos ?
R- La US Navy a "classifié" ses recherches sur les dauphins en 1967, au moment où l’acousticien Wayne Batteau est parvenu à développer des moyens efficaces pour communiquer avec des dauphins dressés. La communication et l’intelligence des dauphins constituent donc désormais des données militaires secrètes, qui ne peuvent plus être divulguées au public.
Q- Est-ce que les dauphins disposent d’un langage propre ? Y a t-il des recherches qui le prouvent ?
R- Vladimir Markov et V. M. Ostrovskaya en ont fourni la preuve en 1990 en utilisant la "théorie des jeux" pour analyser la communication des dauphins dans un environnement contrôlé et à l’aide de moyens efficaces. Il est donc très probable que les dauphins aient une langue naturelle.
Q- Les capacités tout à fait spéciales des dauphins en matière d’écholocation ont-elles quelque chose à voir avec leurs modes de communication?
R- A mon sens, les recherches futures fourniront la preuve que le langage naturel des cétacés est fondé sur les propriétés physiques de l’écholocation, de la même manière que les langues humaines se basent sur des bruits et des représentations.
Q- Quelle est VOTRE opinion à propos de l’intelligence des dauphins ?
R- Pendant deux ans, j’ai vécu à quinze pieds (1 Pied : 30 cm 48) d’un dauphin et à trente-cinq pieds d’un autre. À mon avis, les dauphins possèdent une intelligence équivalente à celle d’un être humain. Ils devraient bénéficier dès lors de droits similaires aux Droits de l’Homme et se trouver protégé des incursions humaines dans son cadre de vie.
Q- La ressemblance entre les humains et les dauphins a-t-elle quelque chose à voir avec leur intelligence commune ?
R- Les dauphins sont très éloignés des humains à de nombreux niveaux mais les ressemblances que nous pouvons noter sont en effet fondées sur le fait que les dauphins possèdent des capacités mentales plus élevées (que la plupart des autres animaux) et sont à ce titre interprétés en tant qu’intelligence de type humain.
Q- La grande taille de leur cerveau, relativement à celle de leur corps, est-elle un indicateur de leur haute intelligence ?
R- Le volume absolu d’un cerveau ne constitue pas une preuve d’intelligence élevée. Le coefficient encéphalique (taille du cerveau par rapport à la taille de corps) n’en est pas une non plus. Néanmoins, on pourrait dire que la taille absolue du cerveau d’une espèce donnée par rapport au volume global du corps constitue un bon indicateur pour comparer les capacités mentales de différentes espèces. Souvenons-nous par ailleurs que les cétacés ne pèsent rien dans l’eau, puisqu’ils flottent et qu’une grande part de leur masse se compose simplement de la graisse. Cette masse de graisse ne devrait pas être incluse dans l’équation entre le poids du cerveau et le poids du corps car cette graisse n’est traversée par aucun nerf ni muscle et n’a donc aucune relation de cause à effet avec le volume du cerveau.
Q- Est-ce que la capacité des dauphins à traiter des clics écholocatoires à une vitesse inouïe nous laisse-t-elle à penser qu’ils sont extrêmement intelligents ?
R- On a pu montrer que les dauphins disposaient, et de loin, des cerveaux les plus rapides du monde. Lorsqu’ils les observent, les humains leur semblent se mouvoir avec une extrême lenteur en émettant des sons extrêmement bas. Un cerveau rapide ne peut forcément disposer que de capacités mentales très avancées.
Q- Pensez-vous des scientifiques comprendront un jour complètement les dauphins?
R- Est-ce que nos scientifiques comprennent bien les humains? Si tout va bien, à l’avenir, les dauphins devraient être compris comme les humains se comprennent entre eux.
Q- Le fait que les dauphins possèdent une signature sifflée est-elle une preuve de l’existence de leur langage ?
R- Non. Cette notion de signature sifflée est actuellement mal comprise et son existence même est sujette à caution.
Q- Les dauphins font plein de choses très intelligentes et nous ressemblent fort. Est-ce parce qu’ils sont vraiment intelligents ou simplement très attractifs ?
R- La réponse à votre question est une question d’expérience et d’opinion. Ce n’est une question qui appelle une réponse scientifique, chacun a son opinion personnelle sur ce point.
Q- Pouvons-nous vraiment émettre des conclusions au sujet de l’intelligence des dauphins, alors que nous savons si peu à leur propos et qu’ils vivent dans un environnement si différent du nôtre ?
R- Jusqu’à présent, ce genre de difficultés n’a jamais arrêté personne. Chacun tire ses propres conclusions. Les scientifiques ne se prononcent que sur la base de ce qu’ils savent vrai en fonction des données expérimentales qu’ils recueillent.
Q- Est-ce que nous pourrons-nous jamais communiquer avec les dauphins ou même converser avec eux ?
R- Oui, si tout va bien, et ce seront des conversations d’adulte à adulte, rien de moins.
II. DAUPHIN : CERVEAU ET MONDE MENTAL
"Parmi l’ensemble des animaux non-humains, les dauphins disposent d’un cerveau de grande taille très bien développé, dont le coefficient encéphalique, le volume du néocortex, les zones dites silencieuses (non motrices et non sensorielles) et d’autres indices d’intelligence sont extrêmement proches de ceux du cerveau humain" déclare d’emblée le chercheur russe Vladimir Markov.
Lorsque l’on compare le cerveau des cétacés avec celui des grands primates et de l’homme en particulier, on constate en effet de nombreux points communs mais également des différences importantes :
– Le poids moyen d’un cerveau de Tursiops est de 1587 grammes.
Son coefficient encéphalique est de l’ordre de 5.0, soit à peu près le double de celui de n’importe quel singe. Chez les cachalots et les orques, ce même coefficient est de cinq fois supérieur à celui de l’homme.
– Les circonvolutions du cortex cervical sont plus nombreuses que celles d’un être humain. L’indice de "pliure" (index of folding) est ainsi de 2.86 pour l’homme et de 4.47 pour un cerveau de dauphin de taille globalement similaire.
Selon Sam Ridgway, chercheur "réductionniste de la vieille école", l’épaisseur de ce même cortex est de 2.9 mm en moyenne chez l’homme et de 1.60 à 1.76 mm chez le dauphin. En conséquence, continue-t-il, on peut conclure que le volume moyen du cortex delphinien (560cc) se situe à peu près à 80 % du volume cortical humain. Ce calcul est évidemment contestable puisqu’il ne tient pas compte de l’organisation très particulière du cerveau delphinien, mieux intégré, plus homogène et moins segmenté en zones historiquement distinctes que le nôtre.
Le fait que les cétacés possèdent la plus large surface corticale et le plus haut indice de circonvolution cérébral au monde joue également, comme on s’en doute, un rôle majeur dans le développement de leurs capacités cérébrales.
D’autres scientifiques, décidément troublés par le coefficient cérébral du dauphin, tentent aujourd’hui de prouver qu’un tel développement n’aurait pas d’autre usage que d’assurer l’écholocation. Voici ce que leur répond le neurologue H. Jerison : "La chauve-souris dispose à peu de choses près des mêmes capacités que le dauphin en matière d’écholocation, mais son cerveau est gros comme une noisette. L’outillage écholocatoire en tant que tel ne pèse en effet pas lourd. En revanche, le TRAITEMENT de cette même information "sonar" par les zones associatives prolongeant les zones auditives, voilà qui pourrait expliquer le formidable développement de cette masse cérébrale. Les poissons et tous les autres êtres vivants qui vivent dans l’océan, cétacés mis à part, se passent très bien d’un gros cerveau pour survivre et même le plus gros d’entre eux, le requin-baleine, ne dépasse pas l’intelligence d’une souris…"
La croissance du cerveau d’un cétacé est plus rapide et la maturité est atteinte plus rapidement que chez l’homme.
Un delphineau de trois ans se comporte, toutes proportions gardées, comme un enfant humain de huit ans. Cette caractéristique apparemment "primitive" est paradoxalement contredite par une enfance extrêmement longue, toute dévolue à l’apprentissage. Trente années chez le cachalot, vingt chez l’homme, douze à quinze chez le dauphin et environ cinq ans chez le chimpanzé.
Les temps de vie sont du même ordre : 200 ans en moyenne chez la baleine franche, 100 ans chez le cachalot, 80 chez l’orque, 78 ans chez l’homme, 60 chez le dauphin, sous réserve bien sûr des variations favorables ou défavorables de l’environnement.
Pourquoi un gros cerveau ?
"Nous devons nous souvenir que le monde mental du dauphin est élaboré par l’un des systèmes de traitement de l’information parmi les plus vastes qui ait jamais existé parmi les mammifères" déclare H.Jerison, insistant sur le fait que "développer un gros cerveau est extrêmement coûteux en énergie et en oxygène. Cet investissement a donc une raison d’être en terme d’évolution darwinienne. Nous devons dès lors considérer la manière dont ces masses importantes de tissu cérébral ont été investies dans le contrôle du comportement et de l’expérimentation du monde, ceci en comparaison avec l’usage qu’en font les petites masses cérébrales".
Un cerveau est par essence un organe chargé de traiter l’information en provenance du monde extérieur.
Les grands cerveaux exécutent cette tâche en tant qu’ensemble élaborés de systèmes de traitement, alors que le cerveau de la grenouille ou de l’insecte, par exemple, se contente de modules moins nombreux, dont la finesse d’analyse est comparativement plus simple.
Cela ne nous empêche pas cependant de retrouver des structures neuronales étonnamment semblables d’un animal à l’autre : lorsqu’un promeneur tombe nez à nez avec un crotale, c’est le même plancher sub-thalamique dévolue à la peur qui s’allume chez l’une et l’autre des ces créatures. Quant un chien ou un humain se voient soulagés de leurs angoisses par le même produit tranquillisant, ce sont évidemment les mêmes neuromédiateurs qui agissent sur les mêmes récepteurs neuronaux qui sont la cause du phénomène.
A un très haut niveau de cette hiérarchie, le traitement en question prend la forme d’une représentation ou d’un modèle du monde (Craik, 1943, 1967, Jerison, 1973) et l’activité neuronale se concentre en "paquets d’informations" (chunks) à propos du temps et de l’espace et à propos d’objets, en ce compris les autres individus et soi-même.
" Puisque le modèle du monde qui est construit de la sorte" insiste H.Jerison, "se trouve fondé sur des variables physiquement définies issues directement du monde externe et puisque ces informations sont traitées par des cellules nerveuses et des réseaux neuronaux structurellement semblables chez tous les mammifères supérieurs, les modèles du monde construits par différents individus d’une même espèce ou même chez des individus d’espèces différentes, ont de bonnes chances d’être également similaires".
Et à tout le moins compréhensibles l’un pour l’autre.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

évolution technologique

Intelligence artificielle ou stupidité réelle ?

Bien que le battage médiatique augmente la sensibilisation à l'IA, il facilite également certaines activités assez stupides et peut distraire les gens de la plupart des progrès réels qui sont réalisés.
Distinguer la réalité des manchettes plus dramatiques promet d'offrir des avantages importants aux investisseurs, aux entrepreneurs et aux consommateurs.

L'intelligence artificielle a acquis sa notoriété récente en grande partie grâce à des succès très médiatisés tels que la victoire d'IBM Watson à Jeopardy et celle de Google AlphaGo qui a battu le champion du monde au jeu "Go". Waymo, Tesla et d'autres ont également fait de grands progrès avec les véhicules auto-propulsés. Richard Waters a rendu compte de l'étendue des applications de l'IA dans le Financial Times : "S'il y a un message unificateur qui sous-tend la technologie grand public exposée [au Consumer Electronics Show] .... c'est : "L'IA partout."

Les succès retentissants de l'IA ont également capturé l'imagination des gens à un tel point que cela a suscité d'autres efforts d'envergure. Un exemple instructif a été documenté par Thomas H. Davenport et Rajeev Ronanki dans le Harvard Business Review. Ils écrirent, "En 2013, le MD Anderson Cancer Center a lancé un projet ""Moon shot " : diagnostiquer et recommander des plans de traitement pour certaines formes de cancer en utilisant le système cognitif Watson d'IBM". Malheureusement, ce système n'a pas fonctionné et en 2017 le projet fut mis en veilleuse après avoir coûté plus de 62 millions de dollars sans avoir été utilisé pour les patients.

Waters a également abordé un autre message, celui des attentes modérées. En ce qui concerne les "assistants personnels à commande vocale", note-t-elle, "on ne sait pas encore si la technologie est capable de remplacer le smartphone pour naviguer dans le monde numérique autrement autrement que pour écouter de la musique ou vérifier les nouvelles et la météo".

D'autres exemples de prévisions modérées abondent. Generva Allen du Baylor College of Medicine et de l'Université Rice a avertit , "Je ne ferais pas confiance à une très grande partie des découvertes actuellement faites qui utilisent des techniques de machine learning appliquées à de grands ensembles de données". Le problème, c'est que bon nombre des techniques sont conçues pour fournir des réponses précises et que la recherche comporte des incertitudes. Elle a précisé : "Parfois, il serait beaucoup plus utile qu'ils reconnaissent que certains sont vraiment consolidés, mais qu'on est pas sûr pour beaucoup d'autres".

Pire encore, dans les cas extrêmes, l'IA n'est pas seulement sous-performante ; elle n'a même pas encore été mise en œuvre. Le FT rapporte, "Quatre jeunes entreprises européennes sur dix n'utilisent aucun programme d'intelligence artificielle dans leurs produits, selon un rapport qui souligne le battage publicitaire autour de cette technologie.

Les cycles d'attentes excessives suivies de vagues de déception ne sont pas surprenants pour ceux qui ont côtoyé l'intelligence artificielle pendant un certain temps. Ils savent que ce n'est pas le premier rodéo de l'IA. En effet, une grande partie du travail conceptuel date des années 1950. D'ailleurs, en passant en revue certaines de mes notes récentes je suis tombé sur une pièce qui explorait les réseaux neuronaux dans le but de choisir des actions - datant de 1993.

La meilleure façon d'avoir une perspective sur l'IA est d'aller directement à la source et Martin Ford nous en donne l'occasion dans son livre, Architects of Intelligence. Organisé sous la forme d'une succession d'entrevues avec des chercheurs, des universitaires et des entrepreneurs de premier plan de l'industrie, le livre présente un historique utile de l'IA et met en lumière les principaux courants de pensée.

Deux perspectives importantes se dégagent de ce livre.

La première est qu'en dépit des origines et des personnalités disparates des personnes interrogées, il existe un large consensus sur des sujets importants.

L'autre est qu'un grand nombre des priorités et des préoccupations des principales recherches sur l'IA sont bien différentes de celles exprimées dans les médias grand public.

Prenons par exemple le concept d'intelligence générale artificielle (AGI). Qui est étroitement lié à la notion de "singularité" ce point où l'IA rejoindra celle de l'homme - avant un dépassement massif de cette dernière. Cette idée et d'autres ont suscité des préoccupations au sujet de l'IA, tout comme les pertes massives d'emplois, les drones tueurs et une foule d'autres manifestations alarmantes.

Les principaux chercheurs en AI ont des points de vue très différents ; ils ne sont pas du tout perturbés par l'AGI et autres alarmismes.

Geoffrey Hinton, professeur d'informatique à l'Université de Toronto et vice-président et chercheur chez Google, dit : "Si votre question est : Quand allons-nous obtenir un commandant-docteur Data (comme dans Star Trek ) je ne crois pas que ce sera comme çà que ça va se faire. Je ne pense pas qu'on aura des programmes uniques et généralistes comme ça."

Yoshua Bengio, professeur d'informatique et de recherche opérationnelle à l'Université de Montréal, nous dit qu'il y a des problèmes très difficiles et que nous sommes très loin de l'IA au niveau humain. Il ajoute : "Nous sommes tous excités parce que nous avons fait beaucoup de progrès dans cette ascension, mais en nous approchant du sommet, nous apercevons d'autres collines qui s'élèvent devant nous au fur et à mesure".

Barbara Grosz, professeur de sciences naturelles à l'Université de Harvard : "Je ne pense pas que l'AGI soit la bonne direction à prendre". Elle soutient que la poursuite de l'AGI (et la gestion de ses conséquences) sont si loin dans l'avenir qu'elles ne sont que "distraction".

Un autre fil conducteur des recherches sur l'IA est la croyance que l'IA devrait être utilisée pour améliorer le travail humain plutôt que le remplacer.

Cynthia Breazeal, directrice du groupe de robots personnels du laboratoire de médias du MIT, aborde la question : "La question est de savoir quelle est la synergie, quelle est la complémentarité, quelle est l'amélioration qui permet d'étendre nos capacités humaines en termes d'objectifs, ce qui nous permet d'avoir vraiment un plus grand impact dans le monde, avec l'IA."

Fei-Fei Li, professeur d'informatique à Stanford et scientifique en chef pour Google Cloud dit lui : "L'IA en tant que technologie a énormément de potentiel pour valoriser et améliorer le travail, sans le remplacer".

James Manyika, président du conseil et directeur du McKinsey Global Institute, fait remarquer que puisque 60 % des professions ont environ un tiers de leurs activités qui sont automatisables et que seulement environ 10 % des professions ont plus de 90 % automatisables, "beaucoup plus de professions seront complétées ou augmentées par des technologies qu'elles ne seront remplacées".

De plus, l'IA ne peut améliorer le travail humain que si elle peut travailler efficacement de concert avec lui.

Barbara Grosz fait remarquer : "J'ai dit à un moment donné que 'les systèmes d'IA sont meilleurs s'ils sont conçus en pensant aux gens'". Je recommande que nous visions à construire un système qui soit un bon partenaire d'équipe et qui fonctionne si bien avec nous que nous ne nous rendions pas compte qu'il n'est pas humain".

David Ferrucci, fondateur d'Elemental Cognition et directeur d'IA appliquée chez Bridgewater Associates, déclare : " L'avenir que nous envisageons chez Elemental Cognition repose sur une collaboration étroite et fluide entre l'intelligence humaine et la machine. "Nous pensons que c'est un partenariat de pensée." Yoshua Bengio nous rappelle cependant les défis à relever pour former un tel partenariat : "Il ne s'agit pas seulement de la précision [avec l'IA], il s'agit de comprendre le contexte humain, et les ordinateurs n'ont absolument aucun indice à ce sujet."

Il est intéressant de constater qu'il y a beaucoup de consensus sur des idées clés telles que l'AGI n'est pas un objectif particulièrement utile en ce moment, l'IA devrait être utilisée pour améliorer et non remplacer le travail et l'IA devrait fonctionner en collaboration avec des personnes. Il est également intéressant de constater que ces mêmes leçons sont confirmées par l'expérience des entreprises.

Richard Waters décrit comment les implémentations de l'intelligence artificielle en sont encore à un stade assez rudimentaire.

Éliminez les recherches qui monopolisent les gros titres (un ordinateur qui peut battre les humains au Go !) et la technologie demeure à un stade très primaire .

Mais au-delà de cette "consumérisation" de l'IT, qui a mis davantage d'outils faciles à utiliser entre les mains, la refonte des systèmes et processus internes dans une entreprise demande beaucoup de travail.

Ce gros travail prend du temps et peu d'entreprises semblent présentes sur le terrain. Ginni Rometty, responsable d'IBM, qualifie les applications de ses clients d'"actes aléatoires du numérique" et qualifie nombre de projets de "hit and miss". (ratages). Andrew Moore, responsable de l'intelligence artificielle pour les activités de Google Cloud business, la décrit comme "intelligence artificielle artisanale". Rometty explique : "Ils ont tendance à partir d'un ensemble de données isolé ou d'un cas d'utilisation - comme la rationalisation des interactions avec un groupe particulier de clients. Tout ceci n'est pas lié aux systèmes, données ou flux de travail plus profonds d'une entreprise, ce qui limite leur impact."

Bien que le cas HBR du MD Anderson Cancer Center soit un bon exemple d'un projet d'IA "au clair de lune "qui a probablement dépassé les bornes, cela fournit également une excellente indication des types de travail que l'IA peut améliorer de façon significative. En même temps que le centre essayait d'appliquer l'IA au traitement du cancer, son "groupe informatique expérimentait l'utilisation des technologies cognitives pour des tâches beaucoup moins ambitieuses, telles que faire des recommandations d'hôtels et de restaurants pour les familles des patients, déterminer quels patients avaient besoin d'aide pour payer leurs factures, et résoudre les problèmes informatiques du personnel".

Dans cette entreprise, le centre a eu de bien meilleures expériences : "Les nouveaux systèmes ont contribué à accroître la satisfaction des patients, à améliorer le rendement financier et à réduire le temps consacré à la saisie fastidieuse des données par les gestionnaires de soins de l'hôpital. De telles fonctions banales ne sont peut-être pas exactement du ressort de Terminator, mais elles sont quand même importantes.

Optimiser l'IA dans le but d'augmenter le travail en collaborant avec les humains était également le point central d'une pièce de H. James Wilson et Paul R. Daugherty "HBRpiece". Ils soulignent : "Certes, de nombreuses entreprises ont utilisé l'intelligence artificielle pour automatiser leurs processus, mais celles qui l'utilisent principalement pour déplacer leurs employés ne verront que des gains de productivité à court terme. Grâce à cette intelligence collaborative, l'homme et l'IA renforcent activement les forces complémentaires de l'autre : le leadership, le travail d'équipe, la créativité et les compétences sociales de la première, la rapidité, l'évolutivité et les capacités quantitatives de la seconde".

Wilson et Daugherty précisent : "Pour tirer pleinement parti de cette collaboration, les entreprises doivent comprendre comment les humains peuvent le plus efficacement augmenter les machines, comment les machines peuvent améliorer ce que les humains font le mieux, et comment redéfinir les processus commerciaux pour soutenir le partenariat". Cela demande beaucoup de travail et cela va bien au-delà du simple fait de balancer un système d'IA dans un environnement de travail préexistant.

Les idées des principaux chercheurs en intelligence artificielle, combinées aux réalités des applications du monde réel, offrent des implications utiles. La première est que l'IA est une arme à double tranchant : le battage médiatique peut causer des distractions et une mauvaise attribution, mais les capacités sont trop importantes pour les ignorer.

Ben Hunt discute des rôles de la propriété intellectuelle (PI) et de l'intelligence artificielle dans le secteur des investissements, et ses commentaires sont largement pertinents pour d'autres secteurs. Il note : "L'utilité de la propriété intellectuelle pour préserver le pouvoir de fixation des prix est beaucoup moins fonction de la meilleure stratégie que la PI vous aide à établir, et beaucoup plus fonction de la façon dont la propriété intellectuelle s'intègre dans le l'esprit du temps (Zeitgeist) dominant dans votre secteur.

Il poursuit en expliquant que le "POURQUOI" de votre PI doit "répondre aux attentes de vos clients quant au fonctionnement de la PI" afin de protéger votre produit. Si vous ne correspondez pas à l'esprit du temps, personne ne croira que les murs de votre château existent, même si c'est le cas". Dans le domaine de l'investissement (et bien d'autres encore), "PERSONNE ne considère plus le cerveau humain comme une propriété intellectuelle défendable. Personne." En d'autres termes, si vous n'utilisez pas l'IA, vous n'obtiendrez pas de pouvoir de fixation des prix, quels que soient les résultats réels.

Cela fait allusion à un problème encore plus grave avec l'IA : trop de gens ne sont tout simplement pas prêts à y faire face.

Daniela Rus, directrice du laboratoire d'informatique et d'intelligence artificielle (CSAIL) du MIT déclare : "Je veux être une optimiste technologique. Je tiens à dire que je vois la technologie comme quelque chose qui a le potentiel énorme d'unir les gens plutôt que les diviser, et de les autonomiser plutôt que de les désolidariser. Mais pour y parvenir, nous devons faire progresser la science et l'ingénierie afin de rendre la technologie plus performante et plus utilisable." Nous devons revoir notre façon d'éduquer les gens afin de nous assurer que tous ont les outils et les compétences nécessaires pour tirer parti de la technologie.

Yann Lecun ajoute : "Nous n'aurons pas de large diffusion de la technologie de l'IA à moins qu'une proportion importante de la population ne soit formée pour en tirer parti ".

Cynthia Breazeal répéte : "Dans une société de plus en plus alimentée par l'IA, nous avons besoin d'une société alphabétisée à l'IA."

Ce ne sont pas non plus des déclarations creuses ; il existe une vaste gamme de matériel d'apprentissage gratuit pour l'IA disponible en ligne pour encourager la participation sur le terrain.

Si la société ne rattrape pas la réalité de l'IA, il y aura des conséquences.

Brezeal note : "Les craintes des gens à propos de l'IA peuvent être manipulées parce qu'ils ne la comprennent pas."

Lecun souligne : " Il y a une concentration du pouvoir. À l'heure actuelle, la recherche sur l'IA est très publique et ouverte, mais à l'heure actuelle, elle est largement déployée par un nombre relativement restreint d'entreprises. Il faudra un certain temps avant que ce ne soit utilisé par une plus grande partie de l'économie et c'est une redistribution des cartes du pouvoir."

Hinton souligne une autre conséquence : "Le problème se situe au niveau des systèmes sociaux et la question de savoir si nous allons avoir un système social qui partage équitablement... Tout cela n'a rien à voir avec la technologie".

À bien des égards, l'IA est donc un signal d'alarme. En raison de l'interrelation unique de l'IA avec l'humanité, l'IA a tendance à faire ressortir ses meilleurs et ses pires éléments. Certes, des progrès considérables sont réalisés sur le plan technologique, ce qui promet de fournir des outils toujours plus puissants pour résoudre des problèmes difficiles. Cependant, ces promesses sont également limitées par la capacité des gens, et de la société dans son ensemble, d'adopter les outils d'IA et de les déployer de manière efficace.

Des preuves récentes suggèrent que nous avons du pain sur la planche pour nous préparer à une société améliorée par l'IA. Dans un cas rapporté par le FT, UBS a créé des "algorithmes de recommandation" (tels que ceux utilisés par Netflix pour les films) afin de proposer des transactions pour ses clients. Bien que la technologie existe, il est difficile de comprendre en quoi cette application est utile à la société, même de loin.

Dans un autre cas, Richard Waters nous rappelle : "Cela fait presque dix ans, par exemple, que Google a fait trembler le monde de l'automobile avec son premier prototype de voiture autopropulsée". Il continue : "La première vague de la technologie des voitures sans conducteur est presque prête à faire son entrée sur le marché, mais certains constructeurs automobiles et sociétés de technologie ne semblent plus aussi désireux de faire le grand saut. Bref, ils sont menacés parce que la technologie actuelle est à "un niveau d'autonomie qui fait peur aux constructeurs automobiles, mais qui fait aussi peur aux législateurs et aux régulateurs".

En résumé, que vous soyez investisseur, homme d'affaires, employé ou consommateur, l'IA a le potentiel de rendre les choses bien meilleures - et bien pires. Afin de tirer le meilleur parti de cette opportunité, un effort actif axé sur l'éducation est un excellent point de départ. Pour que les promesses d'AI se concrétisent, il faudra aussi déployer beaucoup d'efforts pour mettre en place des infrastructures de systèmes et cartographier les forces complémentaires. En d'autres termes, il est préférable de considérer l'IA comme un long voyage plutôt que comme une destination à court terme.

Auteur: Internet

Info: Zero Hedge, Ven, 03/15/2019 - 21:10

[ prospective ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

néo-darwinisme

Pour décoder la manipulation ou le marketing viral : la mémétique

Qu’y a-t-il de commun entre un drapeau de pirates, la chanson Happy birthday to you, un crucifix, des sigles courants (TV, USA, WC...), un jeu de Pokémon, un panneau stop, une histoire belge bien connue et le logo de Nike ? Ce sont des mèmes. C’est à dire des “entités réplicatives d’informations”, autrement dit des codes culturels qui, par imitation ou contagion, transmettent des solutions inventées par une population. Quand vous faites du marketing viral ou du lobbying, quand la télévision manipule votre “temps de cerveau humain disponible” à des fins commerciales ou idéologiques, vous êtes sans le savoir dans le champ de la mémétique comme M. Jourdain était dans celui de la prose.

La vraie vie n’est pas seulement faite de ce qu’on apprend à l’école ou à l’université... Les relations entre spécialités sont au moins aussi utiles que l’approfondissement d’une expertise spécifique... Ce n’est pas parce qu’une discipline n’a pas (encore) de reconnaissance académique qu’elle n’est pas sérieuse... Surtout quand la connaissance évolue plus vite que les mentalités, quand le fossé se creuse entre théorie et pratique, quand l’académisme dépend de normes formelles ou de chasses gardées plus que du progrès de la civilisation... La mémétique en est un bon exemple qui, malgré sa valeur scientifique et son utilité sociale, est méprisée comme ont pu l’être ses ancêtres darwiniens. Dommage, car si elle était mieux connue, nous serions moins faciles à manipuler.

LA MÉMÉTIQUE, C’EST SÉRIEUX !

Le mème est à la culture ce que le gène est à la nature. L’Oxford English Dictionary le définit comme un élément de culture dont on peut considérer qu’il se transmet par des moyens non génétiques, en particulier par l’imitation. Il a pour habitat ou pour vecteur l’homme lui-même ou tout support d’information. Dans les années 1970, des chercheurs de différentes disciplines s’interrogeaient sur la possible existence d’un équivalent culturel de l’ADN*. C’est en 1976, dans Le gène égoïste, que l’éthologiste Richard Dawkins baptisa le mème à partir d’une association entre gène et mimesis (du grec imitation), suggérant aussi les notions de mémoire, de ressemblance (du français même), de plus petite unité d’information. “Bref, un mot génial, bien trouvé, imparable. Un pur réplicateur qui s’ancre davantage dans votre mémoire chaque fois que vous essayez de l’oublier !” (Pascal Jouxtel).

La mémétique applique à la culture humaine des concepts issus de la théorie de l’évolution et envisage une analogie entre patrimoines culturels et génétique : il y a variation (mutation), sélection et transmission de codes culturels qui sont en concurrence pour se reproduire dans la société. Cette réplication a un caractère intra- et inter-humain. Elle dépend de la capacité du mème à se faire accepter : vous l’accueillez, l’hébergez, le rediffusez parce que vous en tirez une gratification aux yeux d’autrui, par exemple en termes d’image (vous avez le 4x4 vu à la télé), de rareté (il a une carte Pikatchu introuvable) ou autre avantage relationnel (petits objets transactionnels attractifs). Elle est stimulée par les technologies de l’information, qui renforcent le maillage des flux échangés et les accélèrent : la réplication est plus forte par les mass media (cf. les codes véhiculés par les émissions de téléréalité) et sur les réseaux (SMS ou Internet) que dans une société moins médiatisée où les flux sont moins foisonnants. 

On ne démontrera pas en quelques lignes la valeur ou l’intérêt de cette science, mais un ouvrage le fait avec talent : Comment les systèmes pondent, de P. Jouxtel (Le Pommier, Paris, 2005). On se bornera ici à extraire de ce livre un complément de définition : “la mémétique revendique une forme d’autonomie du pensé par rapport au penseur, d’antériorité causale des flux devant les structures, et se pose entre autres comme une science de l’auto-émergence du savoir par compétition entre les niveaux plus élémentaires de la pensée... Transdisciplinaire par nature, la mémétique est une branche extrême de l’anthropologie sociale croisée avec des résultats de l’intelligence artificielle, des sciences cognitives et des sciences de la complexité. Elle s’inscrit formellement dans le cadre darwinien tout en se démarquant des précédentes incursions de la génétique dans les sciences humaines classiques, comme la sociobiologie ou la psychologie évolutionniste, et s’oppose radicalement à toute forme vulgaire de darwinisme social”.

RESTER DANS LE JEU, JOUER À CÔTÉ OU AGIR SUR LE JEU ?

Jouxtel veut aussi promouvoir en milieu francophone une théorie qui y est un peu suspecte, coupable d’attaches anglo-saxonnes, masi qui pourtant trouve ses racines dans notre héritage culturel : autonomie du pensé, morphogenèse (apparition spontanée de formes élémentaires), évolution darwinienne dans la sphère immatérielle des concepts (Monod)... Le rejet observé en France tient aussi au divorce qu’on y entretient entre sciences sociales et sciences naturelles ou à la méfiance vis-à-vis de certains aspects de l’algorithme évolutionnaire (mutation, sélection, reproduction), en particulier “on fait une confusion terrible en croyant que la sélection s’applique aux gens alors qu’elle ne s’applique qu’aux règles du jeu”. De fait, cette forme d’intégration de la pensée s’épanouit mieux dans des cultures favorisant l’ouverture et les échanges que dans celles qui s’attachent à délimiter des territoires cloisonnés. Mais conforter notre fermeture serait renoncer à exploiter de précieuses ressources. Renoncer aussi à apporter une contribution de la pensée en langue française dans un champ aussi stratégique. Donc également renoncer à y exercer une influence.

Outre les enjeux de l’acceptation et des développements francophones de cette science, quels sont ceux de son utilisation ? De façon générale, ce sont des enjeux liés au libre-arbitre et à l’autonomie de la personne quand il s’agit de mettre en évidence les codages sous-jacents de comportements sociaux ou de pratiques culturelles. L’image du miroir éclaire cette notion : on peut rester dans la pièce en croyant que c’est là que se joue le jeu, ou passer derrière le miroir et découvrir d’autres dimensions - c’est ce que la mémétique nous aide à faire. De même dans le diaporama Zoom arrière (www.algoric.com/y/zoom.htm) où, après des images suggérant une perception de premier degré (scène du quotidien dans une cour de ferme), on découvre que la situation peut comporter d’autres dimensions... Plus précisément, pour illustrer l’utilité opérationnelle de la mémétique, on pourra regarder du côté des thèmes qui alimentent régulièrement cette chronique - innovation, marketing, communication stratégique, gouvernance... - autour de trois cas de figure : on peut jouer dans le jeu (idéal théorique souvent trahi par les joueurs), jouer à côté du jeu (égarés, tricheurs) ou agir sur le jeu (en changeant de niveau d’appréhension).

D’AUTRES DEGRÉS SUR LA PYRAMIDE DE MASLOW ?

Une analogie avec la pyramide de Maslow montre comment une situation peut être abordée à différents niveaux. Nos motivations varient sur une échelle de 1 (survie) à 5 (accomplissement) selon le contexte et selon notre degré de maturité. Ainsi, un marketing associé à l’argument mode ou paraître - voiture, téléphone, etc. - sera plus efficace auprès des populations visant les niveaux intermédiaires, appartenance et reconnaissance, que chez celles qui ont atteint le niveau 5. De même pour ce qui nous concerne ici : selon ses caractéristiques et son environnement, une personne ou un groupe prend plus ou moins de hauteur dans l’analyse d’une situation - or, moins on s’élève sur cette échelle, plus on est manipulable, surtout dans une société complexe et différenciée. Prenons par exemple la pétition de Philip Morris pour une loi anti-tabac. Quand j’invite un groupe à décoder cette initiative surprenante, j’obtiens des analyses plus ou moins distanciées, progressant de la naïveté (on y voit une initiative altruiste d’un empoisonneur repenti) à une approche de second degré (c’est un moyen d’empêcher les recours judiciaires de victimes du tabac) ou à une analyse affinée (lobbying de contre-feu pour faire obstacle à une menace plus grave). Plus on s’élève sur cette échelle, plus on voit de variables et plus on a de chances d’avoir prise sur le phénomène analysé. Une approche mémétique poursuivra la progression, par exemple en trouvant là des mèmes pondus par le “système pro-tabac” pour assurer sa descendance, à l’instar de ceux qu’il a pondus au cinéma pendant des années en faisant fumer les héros dans les films.

Il est facile de traiter au premier degré les attentats du 11 septembre 2001, par exemple en y voyant une victoire des forces de libération contre un symbole du libéralisme sauvage ou une attaque des forces du mal contre le rempart de la liberté - ce qui pour les mèmes revient au même car ce faisant, y compris avec des analyses un peu moins primaires, on alimente une diversion favorisant l’essor de macro-systèmes : “terrorisme international”, “capitalisme financier” ou autres. Ceux-ci dépassent les acteurs (Bush, Ben Laden...), institutions (Etat américain, Al-Qaida...) ou systèmes (démocratie, islamisme...), qui ne sont que des vecteurs de diffusion de mèmes dans un affrontement entre macro-systèmes.

QUAND CE DONT ON PARLE N’EST PAS CE DONT IL S’AGIT...

Autre cas intéressant de réplicateurs : les traditionnelles chaînes de l’amitié, consistant à manipuler un individu en exploitant sa naïveté, avec un emballage rudimentaire mais très efficace auprès de celui qui manque d’esprit critique : si tu brises la chaîne les foudres du ciel s’abattront sur toi, si tu la démultiplies tu connaîtras le bonheur, ou au moins la prospérité. On n’y croit pas, mais on ne sait jamais... Internet leur a donné une nouvelle vie - nous avons tous des amis pourtant très fréquentables qui tombent dans le piège et essaient de nous y entraîner ! - et a affiné la perversité de la manipulation avec les hoax et autres virus. Le marketing viral utilise ces ressorts. La réplication peut se faire de façon plus subtile, voire insidieuse, par exemple avec des formes de knowledge management (KM) “de premier degré” - en bref : la mondialisation induit un impératif d’innovation ; on veut dépasser les réactions quantitatives et malthusiennes qui s’attaquent aux coûts car elles jettent le bébé avec l’eau du bain en détruisant aussi les gisements de valeur ; on va donc privilégier la rapidité d’adaptation à un environnement changeant, donc innover en permanence, donc mobiliser le savoir et la créativité, donc fonctionner en réseau. Si l’on continue à gravir des échelons, on s’aperçoit que cette approche réactive reste “dans le jeu” alors qu’on a besoin de prendre du recul par rapport au jeu lui-même pour le remettre en question, voire le réinventer. La mémétique éclaire la complexité de cet exercice difficile où il faut pouvoir changer de logique, de paradigme, pour aborder un problème au niveau des processus du jeu et non plus au niveau de ses contenus. Comme dans la communication stratégique.

Déjà dans le lobbying classique, on savait depuis longtemps que le juriste applique la loi, le lobbyiste la change : le premier reste dans le jeu, quitte à tout faire pour contourner le texte ou en changer l’interprétation, alors que le second, constatant que la situation a évolué, s’emploie à faire changer les règles, voire le jeu lui-même. De même dans les appels d’offres, où certains suivent le cahier des charges quand d’autres contribuent à le définir en agissant en amont. De même dans le lobby-marketing, par exemple quand on s’attache à changer la nature de la relation plus que son contenu ou sa forme, pour passer de solliciteur à sollicité : faire que mon interlocuteur me prie de bien vouloir lui vendre ce que précisément je veux lui vendre... comme est aussi supposé le faire tout bon enseignant qui, ne se bornant pas à transférer des savoirs, veut donner envie d’apprendre ! Déjà difficile pour un lobbyiste néophyte, ce changement de perspective n’est pas naturel dans un “monde de l’innovation” où l’on privilégie un “rationnel plutôt cerveau gauche” qui ne prédispose pas à décoder le jeu pour pouvoir le mettre en question et le réinventer. 

L’interpellation mémétique peut conduire très loin, notamment quand elle montre comment l’essor des réseaux favorise des réplications de mèmes qui ne nous sont pas nécessairement favorables. Elle peut ainsi contredire des impulsions “évidentes” en KM, à commencer par celle qui fait admettre que pour innover et “s’adapter” il faut fonctionner en réseau et en réseaux de réseaux. Avec un peu de recul mémétique, on pourra considérer qu’il s’agit moins de s’adapter au système que d’adapter le système, donc pas nécessairement de suivre la course aux réseaux subis mais d’organiser l’adéquation avec des réseaux choisis, voire maîtrisés...

Aux origines de la mémétique

La possibilité que la sphère des humanités s’ouvre au modèle darwinien n’est pas nouvelle. Sans remonter à Démocrite, on la trouve chez le biochimiste Jacques Monod, dans Le hasard et la nécessité. La notion de monde des idées (noosphère) a été introduite par l’anthropologue Pierre Teilhard de Chardin. Alan Turing et Johannes Von Neumann, pères de l’informatique moderne, ont envisagé que les lois de la vie s’appliquent aussi à des machines ou créatures purement faites d’information. L’épistémologie évolutionnaire de Friedrich Von Hayek en est une autre illustration. D’autres parentés sont schématisées dans la carte ci-dessous.

De façon empirique, au quotidien, on peut observer la séparation du fait humain d’avec la nature, ainsi que son accélération : agriculture, urbanisation et autres activités sont visibles de l’espace, émissions de radio et autres expressions y sont audibles ; nos traces sont partout, livres, codes de lois, arts, technologies, religions… Est-ce l’homme qui a propulsé la culture ou celle-ci qui l’a tiré hors de son origine animale ?

En fait, grâce à ses outils, l’homme a favorisé une évolution combinée, un partenariat, un entraînement mutuel entre le biologique et le culturel. André Leroi-Gourhan raconte la co-évolution de l’outil, du langage et de la morphologie. Claude Lévi-Strauss parle de l’autonomie de l’organisation culturelle, par-delà les différences ethniques. Emile Durkheim revendique l’irréductibilité du fait social à la biologie. Parallèlement, l’observation des sociétés animales démontre que la nature produit des phénomènes collectifs, abstraits, allant bien au-delà des corps. Selon certaines extensions radicales de la sociobiologie à l’homme, toutes nos capacités seraient codées génétiquement, donc toute pratique culturelle - architecture, droit, économie ou art - ne serait qu’un phénotype étendu de l’homme. La réduction des comportements à leurs avantages évolutionnaires biologiques s’est atténuée. Le cerveau est modulaire, le schéma général de ses modules est inscrit dans les gènes, mais on a eu du mal à admettre que leur construction puisse se faire sur la base de flux cognitifs, d’apports d’expériences. 

Il y a des façons d’agir ou de penser qui au fil du temps ont contribué à la survie de ceux qui étaient naturellement aptes à les pratiquer : la peur du noir, la capacité de déguiser ses motivations, le désir de paraître riche ; ou plus subtilement la tendance à croire à une continuation de la vie après la mort, à une providence qui aide, à une vie dans l’invisible ; ou même le réflexe intellectuel consistant à supposer un but à toute chose. Mais il existe des idées, des modes de vie, des techniques, bref des éléments de culture indépendants de l’ADN, qui se transmettent par des moyens non génétiques, en particulier par l’imitation : c’est la thèse de Susan Blackmore, pour qui, entre ces mèmes en compétition, la sélection se fait en fonction de leur “intérêt propre” et non de celui des gènes.

L’argument de Pascal Jouxtel s’inspire d’une formule de Luca Cavalli-Sforza : l’évolution naturelle de l’homme est terminée car tous les facteurs naturels de sélection sont sous contrôle culturel. Tout ce qui pourrait influencer la fécondité ou la mortalité infantile est maîtrisé ou dépend de facteurs géopolitiques, économiques ou religieux. En revanche, la culture continue à évoluer : lois, art, technologies, réseaux de communication, structures de pouvoir, systèmes de valeurs. Le grand changement, c’est que les mèmes évoluent pour leur propre compte, en exploitant le terrain constitué par les réseaux de cerveaux humains, mais indépendamment, et parfois au mépris des besoins de leurs hôtes biologiques. 

“Ce sont des solutions mémétiquement évoluées qui sont aujourd’hui capables de breveter un génome. Il en va de même des religions et des systèmes politiques qui tuent. La plus majestueuse de toutes ces solutions s’appelle Internet, le cerveau global... Tout ce qui relie les humains est bon pour les mèmes. Il est logique, dans la même optique, de coder de façon de plus en plus digitalisée tous les modèles qui doivent être transmis, stockés et copiés. C’est ainsi que le monde se transforme de plus en plus en un vaste Leroy-Merlin culturel, au sein duquel il devient chaque jour plus facile de reproduire du prêt-à-penser, du prêt-à-vivre, du prêt-à-être. A mesure que l’on se familiarise avec l’hypothèse méméticienne, il devient évident qu’elle invite à un combat, à une résistance et à un dépassement. Elle nous montre que des modèles peuvent se reproduire dans le tissu social jusqu’à devenir dominants sans avoir une quelconque valeur de vérité ou d’humanité. Elle nous pose des questions comme : que valent nos certitudes ? De quel droit pouvons-nous imposer nos convictions et notre façon de vivre ?... Comment puis-je dire que je pense ?” (P. Jouxtel, www.memetique.org). Et bien sûr : comment les systèmes pondent-ils ?

Auteur: Quentin Jean-Pierre

Info: Critique du livre de Pascal Jouxtel "comment les systèmes..."

[ sociolinguistique ] [ PNL ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Opinion: Pourquoi la science a besoin de la philosophe

Malgré les liens historiques étroits entre la science et la philosophie, les scientifiques d'aujourd'hui perçoivent souvent la philosophie comme complètement différente, voire antagoniste, de la science. Nous soutenons ici que, au contraire, la philosophie peut avoir un impact important et productif sur la science.

Nous illustrons notre propos par trois exemples tirés de divers domaines des sciences de la vie contemporaines. Chacun d'entre eux concerne la recherche scientifique de pointe, et chacun ayant été explicitement reconnu par les chercheurs en exercice comme une contribution utile à la science. Ces exemples, et d'autres, montrent que la contribution de la philosophie peut prendre au moins quatre formes : la clarification des concepts scientifiques, l'évaluation critique des hypothèses ou des méthodes scientifiques, la formulation de nouveaux concepts et de nouvelles théories, et la promotion du dialogue entre les différentes sciences, ainsi qu'entre la science et la société.

Clarification conceptuelle et cellules souches.

Tout d'abord, la philosophie offre une clarification conceptuelle. Les clarifications conceptuelles améliorent non seulement la précision et l'utilité des termes scientifiques, mais conduisent également à de nouvelles recherches expérimentales, car le choix d'un cadre conceptuel donné contraint fortement la façon dont les expériences sont conçues.

La définition des cellules souches (stem cells) en est un excellent exemple. La philosophie a une longue tradition d'étude des propriétés, et les outils utilisés dans cette tradition ont récemment été appliqués pour décrire la "souche", propriété qui définit les cellules souches. L'un d'entre nous a montré que quatre types de propriétés différentes existent sous cette dénomination de souche (stemness) au vu des connaissances scientifiques actuelles. Selon le type de tissu, la stemness peut être une propriété catégorielle (propriété intrinsèque de la cellule souche, indépendante de son environnement), une propriété dispositionnelle (propriété intrinsèque de la cellule souche qui est contrôlée par le micro-environnement), une propriété relationnelle (propriété extrinsèque qui peut être conférée aux cellules non souches par le microenvironnement), ou une propriété systémique (propriété qui est maintenue et contrôlée au niveau de la population cellulaire entière).

Hans Clevers, chercheur en biologie des cellules souches et du cancer, note que cette analyse philosophique met en lumière d'importants problèmes sémantiques et conceptuels en oncologie et en biologie des cellules souches ; il suggère également que cette analyse soit facilement applicable à l'expérimentation. En effet, au-delà de la clarification conceptuelle, ce travail philosophique a des applications dans le monde réel, comme l'illustre le cas des cellules souches cancéreuses en oncologie.

Les recherches visant à développer des médicaments ciblant soit les cellules souches cancéreuses, soit leur microenvironnement, reposent en fait sur différents types de souches et sont donc susceptibles d'avoir des taux de réussite différents selon le type de cancer. En outre, elles pourraient ne pas couvrir tous les types de cancer, car les stratégies thérapeutiques actuelles ne tiennent pas compte de la définition systémique de la souche. Déterminer le type de souche présent dans chaque tissu et chaque cancer est donc utile pour orienter le développement et le choix des thérapies anticancéreuses. Dans la pratique, ce cadre a conduit à la recherche de thérapies anticancéreuses qui combinent le ciblage des propriétés intrinsèques des cellules souches cancéreuses, de leur microenvironnement et des points de contrôle immunitaires afin de couvrir tous les types possibles de souches.

En outre, ce cadre philosophique a récemment été appliqué à un autre domaine, l'étude des organoïdes (tissus en 3D dérivés de cellules souches, sont capables de s'auto-organiser et de reproduire certaines fonctions d'un organe.). Dans une revue systémique des données expérimentales sur les organoïdes provenant de diverses sources, Picollet-D'hahan et al. ont caractérisé la capacité à former des organoïdes comme une propriété dispositionnelle. Ils ont pu alors affirmer que pour accroître l'efficacité et la reproductibilité de la production d'organoïdes, actuellement un défi majeur dans le domaine, les chercheurs doivent mieux comprendre la partie intrinsèque de la propriété dispositionnelle qui est influencée par le microenvironnement. Pour distinguer les caractéristiques intrinsèques des cellules qui ont une telle disposition, ce groupe développe actuellement des méthodes de génomique fonctionnelle à haut débit, permettant d'étudier le rôle de pratiquement tous les gènes humains dans la formation des organoïdes.

Immunogénicité et microbiome.

En complément de son rôle dans la clarification conceptuelle, la philosophie peut contribuer à la critique des hypothèses scientifiques et peut même être proactive dans la formulation de théories nouvelles, testables et prédictives qui aident à définir de nouvelles voies pour la recherche empirique.

Par exemple, une critique philosophique du cadre du cadre immunitaire du soi et du non-soi a conduit à deux contributions scientifiques importantes. Tout d'abord, elle a servi de base à la formulation d'un nouveau cadre théorique, la théorie de la discontinuité de l'immunité, qui complète les modèles antérieurs du non-soi et du danger en proposant que le système immunitaire réagisse aux modifications soudaines des motifs antigéniques. Cette théorie éclaire de nombreux phénomènes immunologiques importants, notamment les maladies auto-immunes, les réponses immunitaires aux tumeurs et la tolérance immunologique à des ligands exprimés de façon chronique. La théorie de la discontinuité a été appliquée à une multitude de questions, aidant à explorer les effets des agents chimiothérapeutiques sur l'immunomodulation dans le cancer et expliquant comment les cellules tueuses naturelles modifient constamment leur phénotype et leurs fonctions grâce à leurs interactions avec leurs ligands** d'une manière qui assure la tolérance aux constituants corporels. La théorie permet également d'expliquer les conséquences des vaccinations répétées chez les personnes immunodéprimées et propose des modèles mathématiques dynamiques de l'activation immunitaire. Collectivement, ces diverses évaluations empiriques illustrent comment des propositions d'inspiration philosophique peuvent conduire à des expériences inédites, ouvrant ainsi de nouvelles voies de recherche.

Deuxièmement, la critique philosophique a contribué, avec d'autres approches philosophiques, à la notion selon laquelle tout organisme, loin d'être un soi génétiquement homogène, est une communauté symbiotique abritant et tolérant de multiples éléments étrangers (notamment des bactéries et des virus), qui sont reconnus mais non éliminés par son système immunitaire. La recherche sur l'intégration symbiotique et la tolérance immunitaire a des conséquences considérables sur notre conception de ce qui constitue un organisme individuel, qui est de plus en plus conceptualisé comme un écosystème complexe dont les fonctions clés, du développement à la défense, la réparation et la cognition, sont affectées par les interactions avec les microbes.

Influence sur les sciences cognitives.

L'étude de la cognition et des neurosciences cognitives offre une illustration frappante de l'influence profonde et durable de la philosophie sur la science. Comme pour l'immunologie, les philosophes ont formulé des théories et des expériences influentes, aidé à lancer des programmes de recherche spécifiques et contribué à des changements de paradigme. Mais l'ampleur de cette influence est bien plus importante que dans le cas de l'immunologie. La philosophie a joué un rôle dans le passage du behaviorisme au cognitivisme et au computationnalisme dans les années 1960. La théorie de la modularité de l'esprit, proposée par le philosophe Jerry Fodor, a peut-être été la plus visible. Son influence sur les théories de l'architecture cognitive peut difficilement être dépassée. Dans un hommage rendu après le décès de Fodor en 2017, l'éminent psychologue cognitif James Russell a parlé dans le magazine de la British Psychological Society de "psychologie cognitive du développement BF (avant Fodor) et AF (après Fodor) ".

La modularité renvoie à l'idée que les phénomènes mentaux résultent du fonctionnement de multiples processus distincts, et non d'un seul processus indifférencié. Inspiré par les résultats de la psychologie expérimentale, par la linguistique chomskienne et par les nouvelles théories computationnelles de la philosophie de l'esprit, Fodor a théorisé que la cognition humaine est structurée en un ensemble de modules spécialisés de bas niveau, spécifiques à un domaine et encapsulés sur le plan informationnel, et en un système central de plus haut niveau, général à un domaine, pour le raisonnement abductif, l'information ne circulant que verticalement vers le haut, et non vers le bas ou horizontalement (c'est-à-dire entre les modules). Il a également formulé des critères stricts de modularité. Aujourd'hui encore, la proposition de Fodor définit les termes d'une grande partie de la recherche empirique et de la théorie dans de nombreux domaines des sciences cognitives et des neurosciences, y compris le développement cognitif, la psychologie de l'évolution, l'intelligence artificielle et l'anthropologie cognitive. Bien que sa théorie ait été révisée et remise en question, les chercheurs continuent d'utiliser, de peaufiner et de débattre de son approche et de sa boîte à outils conceptuelle de base.

La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de rigueur, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes.

La tâche des fausses croyances constitue un autre exemple clé de l'impact de la philosophie sur les sciences cognitives. Le philosophe Daniel Dennett a été le premier à concevoir la logique de base de cette expérience comme une révision d'un test utilisé pour évaluer la théorie de l'esprit, la capacité d'attribuer des états mentaux à soi-même et aux autres. Cette tâche teste la capacité d'attribuer à autrui des croyances que l'on considère comme fausses, l'idée clé étant que le raisonnement sur les croyances fausses d'autrui, par opposition aux croyances vraies, exige de concevoir les autres personnes comme ayant des représentations mentales qui divergent des siennes et de la façon dont le monde est réellement. Sa première application empirique remonte à 1983 , dans un article dont le titre, "Beliefs About Beliefs : Representation and Constraining Function of Wrong Beliefs in Young Children's Understanding of Deception", est en soi un hommage direct à la contribution de Dennett.

La tâche des fausses croyances représente une expérience marquante dans divers domaines des sciences cognitives et des neurosciences, avec de vastes applications et implications. Il s'agit notamment de tester les stades du développement cognitif chez les enfants, de débattre de l'architecture de la cognition humaine et de ses capacités distinctes, d'évaluer les capacités de la théorie de l'esprit chez les grands singes, de développer des théories de l'autisme en tant que cécité de l'esprit (selon lesquelles les difficultés à réussir la tâche des fausses croyances sont associées à cette maladie), et de déterminer quelles régions particulières du cerveau sont associées à la capacité de raisonner sur le contenu de l'esprit d'une autre personne .

La philosophie a également aidé le domaine des sciences cognitives à éliminer les hypothèses problématiques ou dépassées, contribuant ainsi à l'évolution de la science. Les concepts de l'esprit, de l'intelligence, de la conscience et de l'émotion sont utilisés de manière omniprésente dans différents domaines, avec souvent peu d'accord sur leur signification. L'ingénierie de l'intelligence artificielle, la construction de théories psychologiques des variables de l'état mental et l'utilisation d'outils neuroscientifiques pour étudier la conscience et l'émotion nécessitent des outils conceptuels pour l'autocritique et le dialogue interdisciplinaire - précisément les outils que la philosophie peut fournir.

La philosophie - parfois représentée par la lettre grecque phi - peut contribuer à faire progresser tous les niveaux de l'entreprise scientifique, de la théorie à l'expérience. Parmi les exemples récents, citons les contributions à la biologie des cellules souches, à l'immunologie, à la symbiose et aux sciences cognitives.  

La philosophie et la connaissance scientifique.

Les exemples ci-dessus sont loin d'être les seuls : dans les sciences de la vie, la réflexion philosophique a joué un rôle important dans des questions aussi diverses que l'altruisme évolutif , le débat sur les unités de sélection, la construction d'un "arbre de vie", la prédominance des microbes dans la biosphère, la définition du gène et l'examen critique du concept d'innéité. De même, en physique, des questions fondamentales comme la définition du temps ont été enrichies par les travaux des philosophes. Par exemple, l'analyse de l'irréversibilité temporelle par Huw Price et les courbes temporelles fermées par David Lewis ont contribué à dissiper la confusion conceptuelle en physique.

Inspirés par ces exemples et bien d'autres, nous considérons que la philosophie et la science se situent sur un continuum. La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de minutie, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes. Les philosophes possédant les connaissances scientifiques pertinentes peuvent alors contribuer de manière significative à l'avancement de la science à tous les niveaux de l'entreprise scientifique, de la théorie à l'expérimentation, comme le montrent les exemples ci-dessus.

Mais comment, en pratique, faciliter la coopération entre chercheurs et philosophes ? À première vue, la solution pourrait sembler évidente : chaque communauté devrait faire un pas vers l'autre. Pourtant, ce serait une erreur de considérer cette tâche comme facile. Les obstacles sont nombreux. Actuellement, un nombre important de philosophes dédaignent la science ou ne voient pas la pertinence de la science pour leur travail. Même parmi les philosophes qui privilégient le dialogue avec les chercheurs, rares sont ceux qui ont une bonne connaissance de la science la plus récente. À l'inverse, peu de chercheurs perçoivent les avantages que peuvent leur apporter les idées philosophiques. Dans le contexte scientifique actuel, dominé par une spécialisation croissante et des demandes de financement et de résultats de plus en plus importantes, seul un nombre très limité de chercheurs a le temps et l'opportunité d'être au courant des travaux produits par les philosophes sur la science, et encore moins de les lire.

 Pour surmonter ces difficultés, nous pensons qu'une série de recommandations simples, assez facile à mettre en œuvre, peuvent aider à combler le fossé entre la science et la philosophie. La reconnexion entre la philosophie et la science est à la fois hautement souhaitable et plus réalisable en pratique que ne le suggèrent les décennies d'éloignement qui les séparent.

1) Laisser plus de place à la philosophie dans les conférences scientifiques. Il s'agit d'un mécanisme très simple permettant aux chercheurs d'évaluer l'utilité potentielle des idées des philosophes pour leurs propres recherches. Réciproquement, davantage de chercheurs pourraient participer à des conférences de philosophie, en développant les efforts d'organisations telles que l'International Society for the History, Philosophy, and Social Studies of Biology, la Philosophy of Science Association et la Society for Philosophy of Science in Practice.

2) Accueillir des philosophes dans des laboratoires et des départements scientifiques. Il s'agit d'un moyen efficace (déjà exploré par certains des auteurs et d'autres) pour les philosophes d'apprendre la science et de fournir des analyses plus appropriées et bien fondées, et pour les chercheurs de bénéficier d'apports philosophiques et de s'acclimater à la philosophie en général. C'est peut-être le moyen le plus efficace d'aider la philosophie à avoir un impact rapide et concret sur la science.

3) Co-superviser des doctorants. La co-supervision de doctorants par un chercheur et un philosophe est une excellente occasion de rendre possible l'enrichissement mutuel des deux domaines. Elle facilite la production de thèses qui sont à la fois riches sur le plan expérimental et rigoureuses sur le plan conceptuel et, ce faisant, elle forme la prochaine génération de philosophes-scientifiques.

4) Créer des programmes d'études équilibrés en science et en philosophie qui favorisent un véritable dialogue entre elles. De tels programmes existent déjà dans certains pays, mais leur développement devrait être une priorité absolue. Ils peuvent offrir aux étudiants en sciences une perspective qui les rend plus aptes à relever les défis conceptuels de la science moderne et fournir aux philosophes une base solide de connaissances scientifiques qui maximisera leur impact sur la science. Les programmes d'enseignement des sciences peuvent inclure un cours d'histoire des sciences et de philosophie des sciences. Les programmes de philosophie pourraient inclure un module de sciences.

5) Lire science et philosophie. La lecture des sciences est indispensable à la pratique de la philosophie des sciences, mais la lecture de la philosophie peut également constituer une grande source d'inspiration pour les chercheurs, comme l'illustrent certains des exemples ci-dessus. Par exemple, les clubs de lecture où les contributions scientifiques et philosophiques sont discutées constituent un moyen efficace d'intégrer la philosophie et la science.

6) Ouvrir de nouvelles sections consacrées aux questions philosophiques et conceptuelles dans les revues scientifiques. Cette stratégie serait un moyen approprié et convaincant de suggérer que le travail philosophique et conceptuel est continu avec le travail expérimental, dans la mesure où il est inspiré par celui-ci, et peut l'inspirer en retour. Cela rendrait également les réflexions philosophiques sur un domaine scientifique particulier beaucoup plus visibles pour la communauté scientifique concernée que lorsqu'elles sont publiées dans des revues de philosophie, qui sont rarement lues par les scientifiques.

Nous espérons que les mesures pratiques exposées ci-dessus encourageront une renaissance de l'intégration de la science et de la philosophie. En outre, nous soutenons que le maintien d'une allégeance étroite à la philosophie renforcera la vitalité de la science. La science moderne sans la philosophie se heurtera à un mur : le déluge de données dans chaque domaine rendra l'interprétation de plus en plus difficile, négligence et ampleur ampleur de l'histoire risquent de séparer davantage les sous-disciplines scientifiques, et l'accent mis sur les méthodes et les résultats empiriques entraînera une formation de moins en moins approfondie des étudiants. Comme l'a écrit Carl Woese : "une société qui permet à la biologie de devenir une discipline d'ingénierie, qui permet à la science de se glisser dans le rôle de modifier le monde vivant sans essayer de le comprendre, est un danger pour elle-même." Nous avons besoin d'une revigoration de la science à tous les niveaux, une revigoration qui nous rende les bénéfices de liens étroits avec la philosophie.

Auteur: Internet

Info: https://hal.archives-ouvertes.fr/hal-02269657/document. " janvier 2020. Publication collective de Lucie Laplane, Paolo Mantovani, Ralph Adolphs, Hasok Chang, Alberto Mantovani, Margaret McFall-Ngai, Carlo Rovelli, Elliott Sober, et Thomas Pradeua. Trad Mg

[ mécanisme ] [ état des lieux ] [ corps-esprit ] [ tétravalences ] [ tour d'horizon ]

 

Commentaires: 0

Ajouté à la BD par miguel

résonances organiques

Les avantages sociaux de la synchronisation de notre cerveau

Nos ondes cérébrales peuvent s'aligner lorsque nous travaillons et jouons en étroite collaboration. Le phénomène, connu sous le nom de synchronisation inter-cerveau, suggère que la collaboration est biologique.

(Photo : De plus en plus de recherches montrent comment l’activité neuronale peut se synchroniser entre plusieurs personnes, ce qui entraîne de meilleurs résultats sociaux et créatifs.)

Le célèbre duo de pianos polonais Marek et Wacek n'utilisait pas de partitions lors de ses concerts live. Et pourtant, sur scène, le duo semblait parfaitement synchronisé. Sur des pianos adjacents, ils reprenaient de manière ludique divers thèmes musicaux, mêlé musique classique et jazz et improvisé en temps réel. "Nous avons suivi le courant", a déclaré Marek Tomaszewski, qui a joué avec Wacek Kisielewski jusqu'à la mort de Wacek en 1986. "C'était un pur plaisir."

Les pianistes semblaient lire dans les pensées des autres en échangeant des regards. C’était, dit Marek, comme s’ils étaient sur la même longueur d’onde. Un nombre croissant de recherches suggèrent que cela aurait pu être littéralement vrai.

Des dizaines d'expériences récentes étudiant l'activité cérébrale de personnes qui se produisent et travaillent ensemble – pianistes en duo, joueurs de cartes, enseignants et étudiants, puzzleurs et autres – montrent que leurs ondes cérébrales peuvent s'aligner dans un phénomène connu sous le nom de synchronisation neuronale interpersonnelle, également connue sous le nom de synchronie inter-cerveau.

"De nombreuses recherches montrent désormais que les personnes qui interagissent ensemble présentent des activités neuronales coordonnées", a déclaré Giacomo Novembre, neuroscientifique cognitif à l'Institut italien de technologie de Rome, qui a publié l'été dernier un article clé sur ce sujet. Les études se sont multipliées au cours des dernières années – notamment la semaine dernière – au fur et à mesure que de nouveaux outils et des techniques améliorées ont affiné la science et la théorie.

Ils montrent que la synchronisation entre les cerveaux présente des avantages. Qui conduit à une meilleure résolution de problèmes, à un meilleur apprentissage et à une meilleure coopération, et même à des comportements qui aident les autres à leur dépens. De plus, des études récentes dans lesquelles les cerveaux ont été stimulés par un courant électrique suggèrent que la synchronisation elle-même pourrait entraîner l'amélioration des performances observée par les scientifiques.

" La cognition est quelque chose qui se produit non seulement dans le crâne, mais aussi en relation avec l'environnement et avec les autres ", a déclaré Guillaume Dumas, professeur de psychiatrie computationnelle à l'Université de Montréal. Comprendre quand et comment nos cerveaux se synchronisent pourrait nous aider à communiquer plus efficacement, à concevoir de meilleures salles de classe et à aider les équipes à coopérer.

Se synchroniser


Les humains, comme les autres animaux sociaux, ont tendance à synchroniser leurs comportements. Si vous marchez à côté de quelqu’un, vous commencerez probablement à marcher au pas. Si deux personnes s’assoient côte à côte dans des fauteuils à bascule, il y a de fortes chances qu’elles commencent à se balancer au même rythme.

Une telle synchronisation comportementale, selon les recherches, nous rend plus confiants, nous aide à créer des liens et stimule nos instincts sociaux. Dans une étude, danser de manière synchronisée permettait aux participants de se sentir émotionnellement proches les uns des autres – bien plus que pour les groupes qui se déplaçaient de manière asynchrone. Dans une autre étude, les participants qui scandaient des mots de manière rythmée étaient plus susceptibles de coopérer à un jeu d'investissement. Même une simple marche à l'unisson avec une personne issue d'une minorité ethnique peut réduire les préjugés.

" La coordination est une caractéristique de l’interaction sociale. C'est vraiment crucial " a déclaré Novembre. "Lorsque la coordination est altérée, l'interaction sociale est profondément altérée."

Lorsque nos mouvements se coordonnent, une myriade de synchronisations invisibles à l’œil nu se produisent également à l’intérieur de notre corps. Quand les gens tambourinent ensemble, leurs cœurs battent ensemble. Les fréquences cardiaques des thérapeutes et de leurs patients peuvent se synchroniser pendant les séances (surtout si la relation thérapeutique fonctionne bien), tout comme celles des couples mariés. D’autres processus physiologiques, tels que notre rythme respiratoire et nos niveaux de conductance cutanée, peuvent également correspondre à ceux d’autres personnes.

(Photo : Ce n’est qu’au cours des 20 dernières années qu’est apparue une technologie permettant aux neuroscientifiques d’étudier la synchronisation inter-cerveau. L'hyperscanning utilise la spectroscopie fonctionnelle proche infrarouge, portée sur un appareil semblable à un bonnet de bain, pour surveiller l'activité neuronale de plusieurs individus s'engageant socialement.)

L’activité de notre cerveau peut-elle se synchroniser ? En 1965, la revue Science a publié les résultats d’une expérience suggérant que c’était possible. Des scientifiques de l'Université Thomas Jefferson de Philadelphie ont testé des paires de jumeaux identiques en insérant des électrodes sous leur cuir chevelu pour mesurer leurs ondes cérébrales – une technique appelée électroencéphalographie. Les chercheurs ont rapporté que lorsque les jumeaux restaient dans des pièces séparées, si l’un d’eux fermait les yeux, les ondes cérébrales des deux reflétaient le même mouvement. Les pointes sur l'électroencéphalographe de l'un des jumeaux reflétaient celles de l'autre. L’étude était cependant erronée sur le plan méthodologique. Les chercheurs avaient testé plusieurs paires de jumeaux mais n'avaient publié les résultats que pour la paire dans laquelle ils avaient observé une synchronie. Voilà qui n’a pas aidé ce domaine universitaire en plein essor. Pendant des décennies, la recherche sur la synchronisation intercérébrale fut donc reléguée dans la catégorie des " étranges bizarreries paranormales " et n’a pas été prise au sérieux.

La réputation du domaine a commencé à changer au début des années 2000 avec la popularisation de l' hyperscanning, une technique qui permet aux scientifiques de scanner simultanément le cerveau de plusieurs personnes en interaction. Au début, cela impliquait de demander à des paires de volontaires de s'allonger dans des appareils d'IRMf séparés, ce qui limitait considérablement les types d'études que les scientifiques pouvaient réaliser. Les chercheurs ont finalement pu utiliser la spectroscopie fonctionnelle proche infrarouge (fNIRS), qui mesure l'activité des neurones dans les couches externes du cortex. Le grand avantage de cette technologie est sa facilité d'utilisation : les volontaires peuvent jouer de la batterie ou étudier dans une salle de classe tout en portant des bonnets fNIRS, qui ressemblent à des bonnets de bain avec une multitude de câbles qui dépassent.

Lorsque plusieurs personnes  interagissent tout en portant des casquettes fNIRS, les scientifiques ont commencé à découvrir une activité interneurale synchronisée dans des régions du cerveau, qui variaient selon la tâche et la configuration de l'étude. Ils ont également observé des ondes cérébrales, qui représentent des schémas électriques dans le déclenchement neuronal, se synchronisant sur plusieurs fréquences. Sur une lecture électroencéphalographique de deux cerveaux synchronisés, les lignes représentant l'activité neuronale de chaque personne fluctuent ensemble : chaque fois que l'une monte ou descend, l'autre fait de même, bien que parfois avec un décalage dans le temps. Parfois, des ondes cérébrales apparaissent dans des images en miroir – lorsque celles d’une personne montent, celles de l’autre descendent en même temps et avec une ampleur similaire – ce que certains chercheurs considèrent également comme une forme de synchronie.

Avec de nouveaux outils, il est devenu de plus en plus clair que la synchronisation inter-cerveau n’était ni un charabia métaphysique ni le produit de recherches erronées. "Le signal est définitivement là", a déclaré Antonia Hamilton , neuroscientifique sociale à l'University College de Londres. Ce qui s'est avéré plus difficile à comprendre, c'est comment deux cerveaux indépendants, dans deux corps distincts, pouvaient montrer une activité similaire dans l'espace. Maintenant, dit Hamilton, la grande question est : " Qu’est-ce que cela nous raconte ? "

La recette de la synchronisation

Novembre est fasciné depuis longtemps par la manière dont les humains se coordonnent pour atteindre des objectifs communs. Comment les musiciens – les pianistes en duo, par exemple – collaborent-ils si bien ? Pourtant, c'est en pensant aux animaux, comme les lucioles synchronisant leurs flashs, qu'il s'est mis sur la voie de l'étude des ingrédients nécessaires à l'apparition de la synchronisation inter-cerveau.

Étant donné que la synchronie est " si répandue parmi tant d’espèces différentes ", se souvient-il, " je me suis dit : OK, alors il pourrait y avoir un moyen très simple de l’expliquer. "

Novembre et ses collègues ont mis en place une expérience, publiée l'été dernier , dans laquelle des paires de volontaires ne faisaient que s'asseoir l'un en face de l'autre tandis qu'un équipement photographique suivait les mouvements de leurs yeux, de leur visage et de leur corps. Parfois, les volontaires pouvaient se voir ; à d'autres moments, ils étaient séparés par une cloison. Les chercheurs ont découvert que dès que les volontaires se regardaient dans les yeux, leurs ondes cérébrales se synchronisaient instantanément. Le sourire s’est avéré encore plus puissant pour aligner les ondes cérébrales.

" Il y a quelque chose de spontané dans la synchronisation", a déclaré Novembre.

Le mouvement est également lié à l’activité synchronisée des ondes cérébrales. Dans l'étude de Novembre, lorsque les gens bougeaient leur corps de manière synchronisée – si, par exemple, l'un levait la main et que l'autre faisait de même – leur activité neuronale correspondait, avec un léger décalage. Cependant, la synchronisation intercérébrale va au-delà de la simple reproduction des mouvements physiques. Dans une étude publiée l'automne dernier sur des pianistes jouant en duo, une rupture de la synchronisation comportementale n'a pas provoqué la désynchronisation des deux cerveaux.

Un autre ingrédient important de la synchronisation neuronale "face à face" semble être la prédiction mutuelle : anticiper les réponses et les comportements d'une autre personne. Chaque personne " bouge ses mains, son visage ou son corps, ou parle ", a expliqué Hamilton, " et réagit également aux actions de l'autre personne ". Par exemple, lorsque les gens jouaient au jeu de cartes italien Tressette, l'activité neuronale des partenaires se synchronisait, mais le cerveau de leurs adversaires ne s'alignait pas avec eux.

Le partage d’objectifs et l’attention commune semblent souvent cruciaux pour la synchronisation inter-cerveau. Dans une expérience menée en Chine, des groupes de trois personnes ont dû coopérer pour résoudre un problème. Se présenta un problème : l'un des membres de l'équipe était un chercheur qui faisait seulement semblant de s'engager dans la tâche, hochant la tête et commentant lorsque c'était approprié, mais ne se souciant pas vraiment du résultat. Son cerveau ne se synchronisait pas avec celui des véritables membres de l'équipe.

Cependant, certains critiques affirment que l’apparition d’une activité cérébrale synchronisée n’est pas la preuve d’une quelconque connexion, mais peut plutôt s’expliquer par la réaction des personnes à un environnement partagé. " Imaginez deux personnes écoutant la même station de radio dans deux pièces différentes ", a écrit Clay Holroyd, neuroscientifique cognitif à l'Université de Gand en Belgique qui n'étudie pas la synchronisation intercérébrale, dans un article de 2022 . "La synchronisation inter-cerveau pourrait augmenter pendant les chansons qu'ils apprécient  ensemble par rapport aux chansons qu'ils trouvent tous deux ennuyeuses, mais cela ne serait pas une conséquence d'un couplage direct de cerveau à cerveau."

Pour tester cette critique, des scientifiques de l'Université de Pittsburgh et de l'Université Temple ont conçu une expérience dans laquelle les participants travaillaient différemment sur une tâche ciblée : terminer un puzzle . Les volontaires ont soit assemblé un puzzle en collaboration, soit travaillé sur des puzzles identiques séparément, côte à côte. Même s’il existait une certaine synchronisation interneurale entre les chercheurs travaillant de manière indépendante, elle était bien plus importante chez ceux qui collaboraient.

Pour Novembre, ces découvertes et d’autres similaires suggèrent que la synchronisation intercérébrale est plus qu’un artefact environnemental. "Tant que vous mesurerez le cerveau lors d'une interaction sociale, vous devrez toujours faire face à ce problème", a-t-il déclaré. "Les cerveaux en interaction sociale seront exposés à des informations similaires."

(Photo : La Mutual Wave Machine, qui a fait le tour des villes du monde entier de 2013 à 2019, permet aux passants d'explorer la synchronisation intercérébrale par paires tout en générant des données pour la recherche en neurosciences.)

À moins qu’ils ne soient à des endroits différents, bien sûr. Pendant la pandémie, les chercheurs se sont intéressés à comprendre comment la synchronisation intercérébrale pourrait changer lorsque les gens parlent face à face par vidéo. Dans une étude, publiée fin 2022 , Dumas et ses collègues ont mesuré l'activité cérébrale des mères et de leurs préadolescents lorsqu'ils communiquaient par vidéo en ligne. Les cerveaux des couples étaient à peine synchronisés, bien moins que lorsqu'ils parlaient en vrai. Une telle mauvaise synchronisation inter-cerveau en ligne pourrait aider à expliquer pourquoi les réunions Zoom ont tendance à être si fatigantes, selon les auteurs de l'étude.

"Il manque beaucoup de choses dans un appel Zoom par rapport à une interaction en face à face", a déclaré Hamilton, qui n'a pas participé à la recherche. " Votre contact visuel est un peu différent parce que le positionnement de la caméra est incorrect. Plus important encore, votre attention commune est différente."

Identifier les ingrédients nécessaires à l'apparition de la synchronisation inter-cerveau – qu'il s'agisse d'un contact visuel, d'un sourire ou du partage d'un objectif – pourrait nous aider à mieux profiter des avantages de la synchronisation avec les autres. Lorsque nous sommes sur la même longueur d’onde, les choses deviennent tout simplement plus faciles.

Avantages émergents

La neuroscientifique cognitive Suzanne Dikker aime exprimer son côté créatif en utilisant l'art pour étudier le fonctionnement du cerveau humain. Pour capturer la notion insaisissable d’être sur la même longueur d’onde, elle et ses collègues ont créé la Mutual Wave Machine : mi-installation artistique, mi-expérience neurologique. Entre 2013 et 2019, les passants de diverses villes du monde – Madrid, New York, Toronto, Athènes, Moscou et autres – ont pu faire équipe avec une autre personne pour explorer la synchronisation interneurale. Ils sont assis dans deux structures en forme de coquille se faisant face tout en portant un casque électroencéphalographe pour mesurer leur activité cérébrale. Pendant qu’ils interagissent pendant 10 minutes, les coquilles s’éclairent avec des projections visuelles qui servaient de neurofeedback : plus les projections sont lumineuses, plus leurs ondes cérébrales sont couplées. Cependant, certaines paires n'étaient pas informées que la luminosité des projections reflétait leur niveau de synchronisation, tandis que d'autres voyaient de fausses projections.

Lorsque Dikker et ses collègues ont analysé les résultats, publiés en 2021, ils ont découvert que les couples qui savaient qu'ils voyaient du neurofeedback se synchronisaient davantage avec le temps – un effet motivé par leur motivation à rester concentrés sur leur partenaire, ont expliqué les chercheurs. Plus important encore, leur synchronisation accrue a augmenté le sentiment de connexion sociale entre les deux. Il est apparu qu’être sur la même longueur d’onde cérébrale pourrait aider à établir des relations.

Dikker a également étudié cette idée dans un cadre moins artistique : la salle de classe. Dans une salle de classe de fortune dans un laboratoire, un professeur de sciences du secondaire encadrait des groupes de quatre élèves maximum pendant que Dikker et ses collègues enregistraient leur activité cérébrale. Dans une étude publiée sur le serveur de prépublication biorxiv.org en 2019, les chercheurs ont rapporté que plus les cerveaux des étudiants et de l'enseignant étaient synchronisés, plus les étudiants retenaient le matériel lorsqu'ils étaient testés une semaine plus tard. Une analyse de 2022 portant sur 16 études a confirmé que la synchronisation intercérébrale est effectivement liée à un meilleur apprentissage.

" La personne qui prête le plus d'attention ou qui s'accroche le mieux au signal de l'orateur sera également la plus synchronisée avec d'autres personnes qui accordent également la plus grande attention à ce que dit l'orateur ", a déclaré Dikker.

Ce n'est pas seulement l'apprentissage qui semble stimulé lorsque nos cerveaux sont synchronisés, mais également les performances et la coopération de l'équipe. Dans une autre étude réalisée par Dikker et ses collègues, des groupes de quatre personnes ont réfléchi à des utilisations créatives d'une brique ou classé des éléments essentiels pour survivre à un accident d'avion. Les résultats ont montré que plus leurs ondes cérébrales étaient synchronisées, mieux ils effectuaient ces tâches en groupe. Entre-temps, d'autres études ont montré que les équipes neuronales synchronisées non seulement communiquent mieux, mais surpassent également les autres dans les activités créatives telles que l'interprétation de la poésie .

Alors que de nombreuses études ont établi un lien entre la synchronisation intercérébrale et un meilleur apprentissage et de meilleures performances, la question reste de savoir si la synchronisation entraîne réellement de telles améliorations. Serait-ce plutôt une mesure d’engagement ? "Les enfants qui prêtent attention à l'enseignant feront preuve d'une plus grande synchronisation avec cet enseignant parce qu'ils sont plus engagés", a déclaré Holroyd. "Mais cela ne signifie pas que les processus synchrones contribuent réellement d'une manière ou d'une autre à l'interaction et à l'apprentissage."

Pourtant, les expériences sur les animaux suggèrent que la synchronisation neuronale peut effectivement conduire à des changements de comportement. Lorsque l’activité neuronale des souris était mesurée en leur faisant porter de minuscules capteurs en forme de chapeau haut de forme, par exemple, la synchronisation inter-cerveau prédisait si et comment les animaux interagiraient dans le futur. "C'est une preuve assez solide qu'il existe une relation causale entre les deux", a déclaré Novembre.

Chez l’homme, les preuves les plus solides proviennent d’expériences utilisant la stimulation électrique du cerveau pour générer une synchronisation interneurale. Une fois les électrodes placées sur le cuir chevelu des personnes, des courants électriques peuvent passer entre les électrodes pour synchroniser l’activité neuronale du cerveau des personnes. En 2017, Novembre et son équipe ont réalisé la première de ces expériences. Les résultats suggèrent que la synchronisation des ondes cérébrales dans la bande bêta, liée aux fonctions motrices, améliore la capacité des participants à synchroniser les mouvements de leur corps – dans ce cas, en frappant un rythme avec leurs doigts.

Plusieurs études ont récemment reproduit les conclusions de Novembre. Fin 2023, des chercheurs ont découvert qu'une fois les ondes cérébrales synchronisées par stimulation électrique, leur capacité à coopérer dans un jeu informatique simple s'améliorait considérablement. Et l'été dernier d'autres scientifiques ont montré qu'une fois que deux cerveaux sont synchronisés, les gens parviennent mieux à transférer des informations et à se comprendre.

La science est nouvelle, donc le jury ne sait toujours pas s'il existe un véritable lien de causalité entre la synchronie et le comportement humain coopératif. Malgré cela, la science de la synchronisation neuronale nous montre déjà à quel point nous bénéficions lorsque nous faisons les choses en synchronisation avec les autres. Sur le plan biologique, nous sommes programmés pour nous connecter.


Auteur: Internet

Info: https://www.quantamagazine.org/ - Marta Zaraska, 28 mars 2024

[ intelligence collective ] [ manipulation du public ] [ collectives réverbérations ] [ implication ] [ rapports humains ] [ transe ] [ attention partagée ] [ murmurations ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

question

Réel ou imaginaire ? Comment votre cerveau fait la différence.

De nouvelles expériences montrent que le cerveau fait la distinction entre les images mentales perçues et imaginées en vérifiant si elles franchissent un "seuil de réalité".

(image - Nous confondons rarement les images qui traversent notre imagination avec des perceptions de la réalité, bien que les mêmes zones du cerveau traitent ces deux types d'images).

S'agit-il de la vraie vie ? S'agit-il d'un fantasme ?

Ce ne sont pas seulement les paroles de la chanson "Bohemian Rhapsody" de Queen. Ce sont aussi les questions auxquelles le cerveau doit constamment répondre lorsqu'il traite des flux de signaux visuels provenant des yeux et des images purement mentales issues de l'imagination. Des études de scintigraphie cérébrale ont montré à plusieurs reprises que le fait de voir quelque chose et de l'imaginer suscite des schémas d'activité neuronale très similaires. Pourtant, pour la plupart d'entre nous, les expériences subjectives qu'elles produisent sont très différentes.

"Je peux regarder par la fenêtre en ce moment même et, si je le veux, imaginer une licorne marchant dans la rue", explique Thomas Naselaris, professeur associé à l'université du Minnesota. La rue semblerait réelle et la licorne ne le serait pas. "C'est très clair pour moi", a-t-il ajouté. Le fait de savoir que les licornes sont mythiques n'entre guère en ligne de compte : Un simple cheval blanc imaginaire semblerait tout aussi irréel.

Alors pourquoi ne sommes-nous pas constamment en train d'halluciner ?" s'interroge Nadine Dijkstra, chercheuse postdoctorale à l'University College de Londres. Une étude qu'elle a dirigée, récemment publiée dans Nature Communications, apporte une réponse intrigante : Le cerveau évalue les images qu'il traite en fonction d'un "seuil de réalité". Si le signal passe le seuil, le cerveau pense qu'il est réel ; s'il ne le passe pas, le cerveau pense qu'il est imaginé.

Ce système fonctionne bien la plupart du temps, car les signaux imaginaires sont généralement faibles. Mais si un signal imaginé est suffisamment fort pour franchir le seuil, le cerveau le prend pour la réalité.

Bien que le cerveau soit très compétent pour évaluer les images dans notre esprit, il semble que "ce type de vérification de la réalité soit une lutte sérieuse", a déclaré Lars Muckli, professeur de neurosciences visuelles et cognitives à l'université de Glasgow. Les nouvelles découvertes soulèvent la question de savoir si des variations ou des altérations de ce système pourraient entraîner des hallucinations, des pensées envahissantes ou même des rêves.

"Ils ont fait un excellent travail, à mon avis, en prenant une question dont les philosophes débattent depuis des siècles et en définissant des modèles avec des résultats prévisibles et en les testant", a déclaré M. Naselaris.

Quand les perceptions et l'imagination se mélangent

L'étude de Dijkstra sur les images imaginées est née dans les premiers jours de la pandémie de Covid-19, lorsque les quarantaines et les fermetures d'usines ont interrompu son programme de travail. S'ennuyant, elle a commencé à parcourir la littérature scientifique sur l'imagination, puis a passé des heures à éplucher des documents pour trouver des comptes rendus historiques sur la façon dont les scientifiques ont testé un concept aussi abstrait. C'est ainsi qu'elle est tombée sur une étude réalisée en 1910 par la psychologue Mary Cheves West Perky.

Perky a demandé à des participants d'imaginer des fruits en regardant un mur vide. Pendant qu'ils le faisaient, elle a secrètement projeté des images extrêmement faibles de ces fruits - si faibles qu'elles étaient à peine visibles - sur le mur et a demandé aux participants s'ils voyaient quelque chose. Aucun d'entre eux n'a cru voir quelque chose de réel, mais ils ont commenté la vivacité de leur image imaginaire. "Si je n'avais pas su que j'imaginais, j'aurais cru que c'était réel", a déclaré l'un des participants.

La conclusion de Perky était que lorsque notre perception d'une chose correspond à ce que nous savons que nous imaginons, nous supposons qu'elle est imaginaire. Ce phénomène a fini par être connu en psychologie sous le nom d'effet Perky. "C'est un grand classique", déclare Bence Nanay, professeur de psychologie philosophique à l'université d'Anvers. Il est devenu en quelque sorte "obligatoire, lorsqu'on écrit sur l'imagerie, de donner son avis sur l'expérience Perky".

Dans les années 1970, le chercheur en psychologie Sydney Joelson Segal a ravivé l'intérêt pour les travaux de Perky en actualisant et en modifiant l'expérience. Dans une étude de suivi, Segal a demandé aux participants d'imaginer quelque chose, comme la ligne d'horizon de la ville de New York, pendant qu'il projetait faiblement quelque chose d'autre sur le mur, par exemple une tomate. Ce que les participants voyaient était un mélange de l'image imaginée et de l'image réelle, comme la ligne d'horizon de la ville de New York au coucher du soleil. Les résultats obtenus par Segal suggèrent que la perception et l'imagination peuvent parfois "se mélanger littéralement", a déclaré Nanay.

Toutes les études visant à reproduire les résultats de Perky n'ont pas abouti. Certaines d'entre elles ont impliqué des essais répétés pour les participants, ce qui a brouillé les résultats : Une fois que les gens savent ce que vous essayez de tester, ils ont tendance à modifier leurs réponses en fonction de ce qu'ils pensent être correct, a déclaré Naselaris.

Sous la direction de Steve Fleming, expert en métacognition à l'University College London, Dijkstra a donc mis au point une version moderne de l'expérience qui permet d'éviter ce problème. Dans leur étude, les participants n'ont jamais eu l'occasion de modifier leurs réponses car ils n'ont été testés qu'une seule fois. Les travaux ont permis de modéliser et d'examiner l'effet Perky et deux autres hypothèses concurrentes sur la manière dont le cerveau distingue la réalité de l'imagination.

Quand imagination et perception se mélangent

L'étude de Dijkstra sur les images imaginées est née dans les premiers jours de la pandémie de Covid-19, lorsque les quarantaines et les fermetures d'usines ont interrompu son programme de travail. S'ennuyant, elle a commencé à consulter la littérature scientifique sur l'imagination, puis a passé des heures à éplucher les journaux pour trouver des comptes rendus historiques sur la façon dont les scientifiques ont testé un concept aussi abstrait. C'est ainsi qu'elle est tombée sur une étude réalisée en 1910 par la psychologue Mary Cheves West Perky.

Perky a demandé à des participants d'imaginer des fruits en regardant un mur vide. Pendant qu'ils le faisaient, elle a secrètement projeté des images extrêmement faibles de ces fruits - si faibles qu'elles étaient à peine visibles - sur le mur et a demandé aux participants s'ils voyaient quelque chose. Aucun d'entre eux n'a cru voir quelque chose de réel, mais ils ont commenté la vivacité de leur image imaginaire. "Si je n'avais pas su que j'imaginais, j'aurais cru que c'était réel", a déclaré l'un des participants.

La conclusion de Perky était que lorsque notre perception d'une chose correspond à ce que nous savons que nous imaginons, nous supposons qu'elle est imaginaire. Ce phénomène a fini par être connu en psychologie sous le nom d'effet Perky. "C'est un grand classique", déclare Bence Nanay, professeur de psychologie philosophique à l'université d'Anvers. Il est devenu en quelque sorte "obligatoire, lorsqu'on écrit sur l'imagerie, de donner son avis sur l'expérience Perky".

Dans les années 1970, le chercheur en psychologie Sydney Joelson Segal a ravivé l'intérêt pour les travaux de Perky en actualisant et en modifiant l'expérience. Dans une étude de suivi, Segal a demandé aux participants d'imaginer quelque chose, comme la ligne d'horizon de la ville de New York, pendant qu'il projetait faiblement quelque chose d'autre sur le mur, par exemple une tomate. Ce que les participants voyaient était un mélange de l'image imaginée et de l'image réelle, comme la ligne d'horizon de la ville de New York au coucher du soleil. Les résultats obtenus par Segal suggèrent que la perception et l'imagination peuvent parfois "se mélanger littéralement", a déclaré Nanay.

Toutes les études visant à reproduire les résultats de Perky n'ont pas abouti. Certaines d'entre elles ont impliqué des essais répétés pour les participants, ce qui a brouillé les résultats : Une fois que les gens savent ce que vous essayez de tester, ils ont tendance à modifier leurs réponses en fonction de ce qu'ils pensent être correct, a déclaré Naselaris.

Sous la direction de Steve Fleming, expert en métacognition à l'University College London, Dijkstra a donc mis au point une version moderne de l'expérience qui permet d'éviter ce problème. Dans leur étude, les participants n'ont jamais eu l'occasion de modifier leurs réponses car ils n'ont été testés qu'une seule fois. Les travaux ont permis de modéliser et d'examiner l'effet Perky et deux autres hypothèses concurrentes sur la manière dont le cerveau distingue la réalité de l'imagination.

Réseaux d'évaluation

L'une de ces hypothèses alternatives affirme que le cerveau utilise les mêmes réseaux pour la réalité et l'imagination, mais que les scanners cérébraux d'imagerie par résonance magnétique fonctionnelle (IRMf) n'ont pas une résolution suffisamment élevée pour permettre aux neuroscientifiques de discerner les différences dans la manière dont les réseaux sont utilisés. L'une des études de Muckli, par exemple, suggère que dans le cortex visuel du cerveau, qui traite les images, les expériences imaginaires sont codées dans une couche plus superficielle que les expériences réelles.

Avec l'imagerie cérébrale fonctionnelle, "nous plissons les yeux", explique Muckli. Dans chaque équivalent d'un pixel d'un scanner cérébral, il y a environ 1 000 neurones, et nous ne pouvons pas voir ce que fait chacun d'entre eux.

L'autre hypothèse, suggérée par des études menées par Joel Pearson à l'université de Nouvelle-Galles du Sud, est que les mêmes voies cérébrales codent à la fois pour l'imagination et la perception, mais que l'imagination n'est qu'une forme plus faible de la perception.

Pendant le confinement de la pandémie, Dijkstra et Fleming ont recruté des participants pour une étude en ligne. Ils ont demandé à 400 participants de regarder une série d'images statiques et d'imaginer des lignes diagonales s'inclinant vers la droite ou vers la gauche. Entre chaque essai, ils devaient évaluer la vivacité de l'image sur une échelle de 1 à 5. Ce que les participants ne savaient pas, c'est qu'au cours du dernier essai, les chercheurs ont lentement augmenté l'intensité d'une faible image projetée de lignes diagonales - inclinées soit dans la direction que les participants devaient imaginer, soit dans la direction opposée. Les chercheurs ont ensuite demandé aux participants si ce qu'ils voyaient était réel ou imaginé.

Dijkstra s'attendait à trouver l'effet Perky, c'est-à-dire que lorsque l'image imaginée correspondait à l'image projetée, les participants considéreraient la projection comme le produit de leur imagination. Au lieu de cela, les participants étaient beaucoup plus enclins à penser que l'image était réellement présente.

Pourtant, il y avait au moins un écho de l'effet Perky dans ces résultats : Les participants qui pensaient que l'image était là la voyaient plus clairement que les participants qui pensaient qu'il s'agissait de leur imagination.

Dans une deuxième expérience, Dijkstra et son équipe n'ont pas présenté d'image lors du dernier essai. Mais le résultat a été le même : les personnes qui considéraient que ce qu'elles voyaient était plus vivant étaient également plus susceptibles de le considérer comme réel.

Ces observations suggèrent que l'imagerie dans notre esprit et les images réelles perçues dans le monde se mélangent, a déclaré Mme Dijkstra. "Lorsque ce signal mixte est suffisamment fort ou vif, nous pensons qu'il reflète la réalité. Il est probable qu'il existe un seuil au-delà duquel les signaux visuels semblent réels au cerveau et en deçà duquel ils semblent imaginaires, pense-t-elle. Mais il pourrait également s'agir d'un continuum plus graduel.

Pour savoir ce qui se passe dans un cerveau qui tente de distinguer la réalité de l'imagination, les chercheurs ont réanalysé les scanners cérébraux d'une étude antérieure au cours de laquelle 35 participants avaient imaginé et perçu avec vivacité diverses images, allant de l'arrosoir au coq.

Conformément à d'autres études, ils ont constaté que les schémas d'activité dans le cortex visuel étaient très similaires dans les deux scénarios. "L'imagerie vive ressemble davantage à la perception, mais il est moins évident de savoir si la perception faible ressemble davantage à l'imagerie", a déclaré M. Dijkstra. Il y a des indices selon lesquels le fait de regarder une image faible pourrait produire un schéma similaire à celui de l'imagination, mais les différences n'étaient pas significatives et doivent être examinées de manière plus approfondie.

(image photo - Les scanners des fonctions cérébrales montrent que les images imaginées et perçues déclenchent des schémas d'activité similaires, mais que les signaux sont plus faibles pour les images imaginées (à gauche).

Ce qui est clair, c'est que le cerveau doit être capable de réguler avec précision la force d'une image mentale pour éviter la confusion entre l'imaginaire et la réalité. "Le cerveau doit faire preuve d'un grand sens de l'équilibre", explique M. Naselaris. "Dans un certain sens, il va interpréter l'imagerie mentale aussi littéralement que l'imagerie visuelle.

Les chercheurs ont découvert que l'intensité du signal pouvait être lue ou régulée dans le cortex frontal, qui analyse les émotions et les souvenirs (entre autres fonctions). Mais on ne sait pas encore exactement ce qui détermine la vivacité d'une image mentale ou la différence entre l'intensité du signal d'imagerie et le seuil de réalité. Il pourrait s'agir d'un neurotransmetteur, de modifications des connexions neuronales ou de quelque chose de totalement différent, a déclaré Naselaris.

Il pourrait même s'agir d'un sous-ensemble de neurones différent et non identifié qui fixe le seuil de réalité et détermine si un signal doit être dévié vers une voie pour les images imaginées ou une voie pour les images réellement perçues - une découverte qui relierait parfaitement la première et la troisième hypothèse, a déclaré Muckli.

Même si les résultats sont différents des siens, qui soutiennent la première hypothèse, Muckli apprécie leur raisonnement. Il s'agit d'un "article passionnant", a-t-il déclaré. C'est une "conclusion intrigante".

Selon Peter Tse, professeur de neurosciences cognitives au Dartmouth College, l'imagination est un processus qui va bien au-delà de la simple observation de quelques lignes sur un fond bruyant. L'imagination, dit-il, c'est la capacité de regarder ce qu'il y a dans votre placard et de décider ce que vous allez faire pour le dîner, ou (si vous êtes les frères Wright) de prendre une hélice, de la coller sur une aile et de l'imaginer en train de voler.

Les différences entre les résultats de Perky et ceux de Dijkstra pourraient être entièrement dues à des différences dans leurs procédures. Mais elles laissent également entrevoir une autre possibilité : nous pourrions percevoir le monde différemment de nos ancêtres.

L'étude de Mme Dijkstra ne portait pas sur la croyance en la réalité d'une image, mais plutôt sur le "sentiment" de la réalité. Les auteurs supposent qu'en raison de la banalisation des images projetées, des vidéos et autres représentations de la réalité au XXIe siècle, notre cerveau a peut-être appris à évaluer la réalité d'une manière légèrement différente qu'il y a un siècle.

Même si les participants à cette expérience "ne s'attendaient pas à voir quelque chose, ils s'y attendaient quand même plus que si vous étiez en 1910 et que vous n'aviez jamais vu de projecteur de votre vie", a déclaré M. Dijkstra. Le seuil de réalité est donc probablement beaucoup plus bas aujourd'hui que par le passé, de sorte qu'il faut peut-être une image imaginée beaucoup plus vive pour franchir le seuil et troubler le cerveau.

Une base pour les hallucinations

Ces résultats soulèvent la question de savoir si le mécanisme pourrait s'appliquer à un large éventail de conditions dans lesquelles la distinction entre l'imagination et la perception disparaît. M. Dijkstra suppose, par exemple, que lorsque les gens commencent à s'endormir et que la réalité commence à se confondre avec le monde des rêves, leur seuil de réalité pourrait s'abaisser. Dans des cas comme la schizophrénie, où il y a une "rupture générale de la réalité", il pourrait y avoir un problème d'étalonnage, a déclaré M. Dijkstra.

"Dans la psychose, il se peut que l'imagerie soit si bonne qu'elle atteigne le seuil, ou que le seuil soit décalé", a déclaré Karolina Lempert, professeur adjoint de psychologie à l'université Adelphi, qui n'a pas participé à l'étude. Certaines études ont montré que les personnes qui ont des hallucinations présentent une sorte d'hyperactivité sensorielle, ce qui suggère que le signal de l'image est augmenté. Mais des recherches supplémentaires sont nécessaires pour établir le mécanisme par lequel les hallucinations apparaissent, a-t-elle ajouté. "Après tout, la plupart des personnes qui font l'expérience d'images vivantes n'ont pas d'hallucinations.

Nanay pense qu'il serait intéressant d'étudier les seuils de réalité des personnes souffrant d'hyperphantasie, une imagination extrêmement vive qu'elles confondent souvent avec la réalité. De même, il existe des situations dans lesquelles les personnes souffrent d'expériences imaginées très fortes qu'elles savent ne pas être réelles, comme dans le cas d'hallucinations sous l'effet de drogues ou de rêves lucides. Dans des conditions telles que le syndrome de stress post-traumatique, les gens "commencent souvent à voir des choses qu'ils ne voulaient pas voir", et cela leur semble plus réel que cela ne devrait l'être, a déclaré M. Dijkstra.

Certains de ces problèmes peuvent être liés à des défaillances des mécanismes cérébraux qui aident normalement à faire ces distinctions. Dijkstra pense qu'il serait utile d'étudier les seuils de réalité des personnes atteintes d'aphantasie, l'incapacité d'imaginer consciemment des images mentales.

Les mécanismes par lesquels le cerveau distingue ce qui est réel de ce qui est imaginaire pourraient également être liés à la manière dont il distingue les images réelles des images factices (inauthentiques). Dans un monde où les simulations se rapprochent de la réalité, il sera de plus en plus difficile de faire la distinction entre les vraies et les fausses images, a déclaré M. Lempert. "Je pense que cette question est plus importante que jamais.

Mme Dijkstra et son équipe s'efforcent à présent d'adapter leur expérience pour qu'elle fonctionne dans un scanner cérébral. "Maintenant que le confinement est terminé, je veux à nouveau examiner des cerveaux", a-t-elle déclaré.

Elle espère enfin découvrir s'il est possible de manipuler ce système pour rendre l'imagination plus réelle. Par exemple, la réalité virtuelle et les implants neuronaux font actuellement l'objet de recherches pour des traitements médicaux, notamment pour aider les aveugles à retrouver la vue. La capacité de rendre les expériences plus ou moins réelles, dit-elle, pourrait être très importante pour ces applications.

Cela n'a rien d'extraordinaire, étant donné que la réalité est une construction du cerveau.

"Sous notre crâne, tout est inventé", explique Muckli. "Nous construisons entièrement le monde, dans sa richesse, ses détails, ses couleurs, ses sons, son contenu et son excitation. ... Il est créé par nos neurones".

Cela signifie que la réalité d'une personne sera différente de celle d'une autre, a déclaré M. Dijkstra : "La frontière entre l'imagination et la réalité n'est pas si solide.

Auteur: Internet

Info: https://www.quantamagazine.org/ Yasemin Saplakoglu, Staff Writer, May 24, 2023

[ intellection ]

 

Commentaires: 0

Ajouté à la BD par miguel

non-voyant

Le monde tel que l'imaginent ceux qui n'ont jamais vu. (II)

Imaginer les couleurs

L'épineuse question des couleurs offre un autre exemple du "fossé perceptif" qui sépare voyants et aveugles de naissance. Les voyants s'imaginent souvent qu'il leur suffit de fermer les yeux pour se représenter la perception d'un aveugle. En réalité, ce n'est pas parce que nous fermons les yeux que nos yeux cessent de voir : le noir qui nous apparaît n'est rien d'autre que la couleur de nos paupières closes. Il en va tout autrement pour la plupart des aveugles, et à plus forte raison pour les aveugles de naissance. Comme il leur serait difficile de nous expliquer leur perception du monde, tant elle relève pour eux de l'évidence, le mieux est encore de nous tourner vers quelqu'un qui a vu avant de ne plus voir et qui, de ce fait, dispose d'un point de comparaison.

Jean-Marc Meyrat, devenu aveugle à l'âge de 8 ans, raconte son passage du monde des voyants dans celui des aveugles en ces termes : "Cela s'est fait très progressivement. Ce glissement presque impalpable s'est matérialisé par le déplacement de ma chaise de plus en plus près de l'écran de la télévision. Vers la fin du processus, je suis entré dans une sorte de zone grise qui s'est peu à peu assombrie pour virer au noir avant de disparaître. Puis, plus rien. La persistance de la couleur noire, parfois entrecoupée d'éblouissements, peut durer plus ou moins longtemps. Ceci est d'autant plus vrai si la cécité est intervenue brutalement. Après, plus rien, je ne peux pas dire mieux : plus rien.

Voilà qui pose un sérieux problème à ceux que le noir fascine et que la notion de rien effraie.". C'est l'image traditionnelle de l'aveugle errant dans les ténèbres qui se trouve ici battue en brèche... Certains aveugles tardifs regrettent de n'avoir pas même la perception du noir : ainsi, l'écrivain Jorge Luis Borges, devenu aveugle au cours de sa vie, affirmait que le noir lui manquait surtout au moment d'aller se coucher, lui qui avait pris l'habitude de s'endormir dans l'obscurité la plus complète...

Qu'est-ce que c'est que de ne rien voir ? En réalité, il est aussi difficile pour un aveugle de naissance de se représenter les couleurs que pour un voyant d'imaginer une perception absolument dénuée de couleurs, où l'on ne trouve pas même de noir et blanc, ni aucune nuance intermédiaire : autant chercher à imaginer un désert sans sol ni ciel, ou ce fameux couteau dont parle Lichtenberg, dépourvu de lame et auquel manque le manche. "Les gens s'imaginent les choses par rapport à ce qu'ils connaissent, remarque Christine Cloux. Nous qui entendons, nous imaginons à tort que les sourds de naissance sont plongés dans le silence. Or, pour connaître le silence il faut connaître le bruit, ce qui est notre cas mais pas celui des sourds, qui ne connaissent pas plus le bruit que son absence. Ce qu'ils connaissent, c'est un monde privé de ces notions."

Ces considérations posent tout de même plusieurs problèmes logiques : comment un aveugle peut-il se représenter l'image spatiale d'un objet, en considérant qu'il n'a pas même deux couleurs différentes à sa disposition pour distinguer l'objet du fond ? Il suffirait pourtant de nous remémorer certaines images qui nous viennent en rêve, ou en pensée : par exemple, nous voyons l'image d'une femme, mais nous sommes bien incapables de dire quelle est la couleur ou la forme exacte de sa robe. L'image mentale du voyant a rarement la précision d'une image photographique... Ces couleurs flottantes, ces formes incertaines, peuvent sans doute nous donner un aperçu des images non visuelles de l'aveugle. Si les couleurs sont inaccessibles aux sens de l'aveugle, cela ne l'empêche pas de tenter de se les représenter.

"Ca n'empêche même pas d'avoir des préférences, fait remarquer Sophie Massieu. Je m'habille en fonction de ce que j'imagine de la couleur en question. Par exemple, je ne porte jamais de jaune. Allez savoir ce qu'il m'a fait ce pauvre jaune...". "Je me suis créée des représentations mentales des couleurs, exactement comme je me représente les idées ou les concepts qui ne se voient pas, comme un atome par exemple..." explique Christine Cloux.

Mais d'où viennent ces représentations mentales exactement ? Pour la plupart, des commentaires des voyants : "Un jour une copine est arrivée vers moi en s'écriant : "Ouah ! Du rouge ! Ca te va super bien !" D'autres ont confirmé et depuis ce moment-là j'achète plus souvent du rouge.", raconte Christine. Parfois, la couleur peut évoquer à l'aveugle de naissance un souvenir précis : Sophie Massieu associe le bleu Majorelle à un après-midi passé dans le jardin Majorelle à Marrakech. Certains aveugles associeront le noir à la tristesse s'ils ont porté du noir pendant un enterrement, le blanc à la gaieté, puisqu'ils savent que c'est la couleur dont se parent les mariées et les communiants... La couleur dépose son image dans la mémoire affective et non dans la mémoire sensorielle ; le mot s'imprègne de l'émotion, comme un buvard. "Cela rend la sensation plus épaisse." explique Sophie.

Dans ce domaine éminemment subjectif, les "glissements sensoriels" sont légion. Il arrive fréquemment que l'aveugle de naissance prête aux couleurs les propriétés tactiles des objets qui leur sont couramment associés : par exemple, si en se vautrant dans le gazon, l'aveugle en a apprécié la douceur et la mollesse, il attribuera désormais au vert ses propriétés ; de même, le rouge brûle puisque c'est le feu, le blanc est froid comme la neige... L'aveugle de naissance n'hésite jamais à puiser dans des termes empruntés aux autres sens pour décrire l'image qu'il se fait des couleurs. Christine Cloux vous dira que le blanc lui semble "très aérien, léger, comme de la glace, très pur, peut-être parfois trop", alors que le noir lui paraît au contraire "presque encombrant, étouffant".

A ce petit jeu, la langue est pour l'aveugle un vivier de métaphores et d'associations verbales précieuses : ne dit-on pas un éclat tapageur, une teinte agressive ou insolente, un rose fade ? Ecrivains et poètes ne parlent-ils pas de "l'épaisseur des ténèbres", de "ruissellements de lumières" ? La mémoire tactile de l'aveugle est alors à même de lui fournir des repères, aussi abstraits soient-ils. Quand elle lit ou entend les termes "une forêt obscure", Christine Cloux s'imagine "que la forêt est très dense, qu'il y fait frisquet, voire franchement froid parce que le soleil ne passe pas... "Le rayonnement de la chaleur donne une idée très nette à l'aveugle de ce que peut-être le rayonnement de la lumière (on parle d'ailleurs d'une lumière douce et pénétrante...).

Parfois, l'image que l'aveugle se fait d'une couleur se fonde simplement sur le mot qui la désigne. "Enfant, le jaune m'évoquait un clown en train de jouer de la trompette, parce que je trouvais le mot amusant et que je savais que c'est une couleur gaie, voire criarde, explique Christine Cloux. C'est jaune, yellow, gelb... ou même giallo. Ces sonorités participent à ma représentation de cette couleur.". Ce faisant, l'aveugle se comporte en quelque sorte en "cratylien"- du nom de Cratyle, cet interlocuteur de Socrate qui professait que la sonorité des mots pouvait nous renseigner sur la nature même de ce qu'ils désignent.

Un voyant, pourtant, sait bien qu'il est hasardeux de tenter d'établir un lien entre le nom d'une couleur et la couleur elle-même... Et cependant, n'agissons-nous pas de manière analogue quand nous imaginons une ville ou un pays où nous ne sommes jamais allés et dont nous ne savons rien, en nous fondant sur la sonorité de son nom ? Des noms tels que Constantinople, Byzance ou Marrakech ne charrient-ils pas déjà un flot d'images abstraites considérables rien que par leurs propriétés auditives, indépendamment même des images visuelles précises qu'on leur accole ? La plupart des aveugles de naissance n'hésitent pas à puiser dans les impressions auditives pour se représenter les couleurs : "Je me représente le spectre des diverses couleurs un peu comme l'échelle des sons - l'échelle des couleurs est simplement plus grande et plus complexe à se représenter." explique Christine Cloux.

La comparaison n'est pas insensée : couleurs et sons ont en commun de se définir par une certaine fréquence (hauteur pour le son, teinte pour la couleur), une certaine pureté (timbre pour le son, saturation pour la couleur), une certaine intensité (force pour le son, valeur ou luminosité pour la couleur)... Cela explique peut-être les fréquentes associations verbales entre l'ouïe et la vue dans le langage courant : ne parle-t-on pas d'un rouge criard, d'une gamme de couleur, du ton d'un tissu, d'une voix blanche ?

Pour Christine Cloux, si les couleurs émettaient du son, "le jaune, l'orange et le rouge nous casseraient les oreilles alors que le bleu par exemple ferait un bruit aussi soutenu mais moins fort, avec le vert." Cette croyance selon laquelle il pourrait exister une correspondance directe entre la sensation auditive et la sensation visuelle n'est pas propre aux aveugles, elle a longtemps hanté l'oeuvre des symbolistes et des romantiques, et des artistes en général : qu'on songe aux Synesthésies de Baudelaire ("les parfums, les couleurs et les sons se répondent" dans le poème Correspondances), à Rimbaud cherchant à assigner une couleur à chaque voyelle ("A noir, E blanc, I rouge"...), ou à cette très sérieuse table de concordance entre voyelles, couleurs et instruments que tenta d'établir René Ghil, un disciple de Mallarmé, ou encore au plasticien Nicolas Schöffer qui mit des sons en couleur... Bien qu'on sente ce qu'il entre de rêverie poétique dans cette croyance, on ne peut s'empêcher d'imaginer que, si les divers stimuli sensoriels n'étaient que les différents dialectes d'une même langue, toutes sortes de traductions deviendraient possibles...

Que vienne le temps du traducteur couleurs/sons qui permettrait de traduire un tableau de Van Gogh en symphonie ! Imaginer l'art La seule chose que les aveugles de naissance savent des peintres, c'est ce qu'on a bien voulu leur en dire - or le langage est évidemment inapte à rendre compte de ce qui fait la spécificité de cet art. Là encore, l'aveugle doit trouver des analogies où il peut : Christine Cloux imagine la peinture impressionniste en se fondant sur l'impressionnisme musical et littéral, la peinture cubiste en pensant au style de Gertrude Stein - elle imagine les personnages peints par Picasso comme "des corps dont on aurait" découpé" les diverses parties pour les reconstituer n'importe comment.", mais ajoute aussitôt "Je n'aime pas le désordre, ça ne me parle pas.". Quand on lui demande ce que lui évoque une oeuvre comme le Carré blanc sur fond blanc de Malevitch, il lui semble que "ce doit être beau, presque intangible et cependant... Comme une porte d'entrée." 

Natacha de Montmollin est plus sceptique : "Je ne vois pas l'intérêt.". La peinture l'indiffère - Escher est le seul dessinateur dont elle se soit forgée une image précise : "sa technique m'intrigue". Etrange, si l'on considère que les dessins d'Escher reposent la plupart du temps sur des illusions optiques, des perspectives truquées qui, par essence, ne peuvent tromper qu'un voyant... Quel rapport les aveugles de naissance entretiennent-ils avec un art comme la poésie ? Sophie Massieu avoue qu'elle n'y est pas très sensible. "Je ne sais pas si ça relève de mon caractère ou de ma cécité... Peut-être qu'il y a une part de l'image qui m'échappe... "Christine Cloux, pour sa part, ne considère pas que la cécité soit une entrave pour apprécier un poème : selon elle, les images poétiques font autant - si ce n'est davantage - appel à la mémoire affective qu'à la mémoire sensorielle. "Peut-être que parfois je perçois une métaphore un peu autrement que quelqu'un d'autre, mais c'est le cas pour chacun de nous, je pense. Nous comprenons les figures de styles avec notre monde de référence.". Le rapport à l'art de certains aveugles de naissance semble parfois tenir du besoin vital : "C'est une expérience très riche dont je ne saurais me passer, explique Christine Cloux. J'ai peut-être d'autant plus besoin de l'art que je n'ai pas les images "extérieures à moi"".

Si l'aveugle de naissance exige davantage de l'art que le commun des voyants, c'est peut-être parce qu'il attend de lui qu'il lui restitue les beautés de la nature dont la cécité l'a privé. Oscar Wilde, pour expliquer à quel point l'oeuvre d'un artiste pouvait déteindre sur notre vision du monde, disait que ce n'est pas l'art qui imite la nature mais la nature qui imite l'art. Cette phrase a une pertinence toute particulière dans le cas de l'aveugle de naissance, car tout ce qu'il lit à propos de la nature, dans les poèmes ou dans les romans, se mêle intimement dans son imaginaire à la représentation qu'il s'en fait dans la vie de tous les jours - et cette représentation a sans doute plus à voir avec une transfiguration artistique, infiniment subjective, qu'avec, par exemple, une reproduction photographique un peu floue... Imaginer la nature D'une façon générale, la nature - tout du moins sa face visible - constitue pour l'aveugle de naissance une source inépuisable de curiosités. Certains phénomènes auxquels les voyants sont accoutumés demeurent pour lui un mystère - notamment les plus insubstantiels, ceux qu'il ne peut connaître par le toucher. "Un gaz... on risque de ne pas le voir. En revanche on voit la vapeur, ce qui est un peu étrange puisque l'eau est transparente, et pourtant, vous la voyez tout de même... Je le comprends en théorie mais c'est quand même bizarre." avoue Christine Cloux.

La transparence fait partie des notions difficiles à concevoir quand on ignore ce qu'est l'opacité visuelle - en témoigne la fascination qu'exercent les poissons sur de ce jeune aveugle de naissance, interrogé par Sophie Calle (dans le catalogue de l'exposition M'as-tu vue) : "C'est leur évolution dans l'eau qui me plaît, l'idée qu'ils ne sont rattachés à rien. Des fois, je me prends à rester debout des minutes entières devant un aquarium, debout comme un imbécile.". Un autre (toujours cité par Sophie Calle) tente de se représenter les miroitements de la mer : "On m'a expliqué que c'est bleu, vert, que les reflets avec le soleil font mal aux yeux. Cela doit être douloureux à regarder." Certaines reproductions peuvent donner à l'aveugle de naissance une idée approximative de certains phénomènes insubstantiels. Une femme (interrogée par Jane Hervé) se souvient d'un bas-relief du Moyen-Âge : "Il représentait le feu, avec des flammes en pointe comme des épées. Des flammes en pierre. J'étais éblouie. Des stries dans tous les sens, des nervures sur un flanc de rocher. Je n'avais aucune idée de la façon dont on pouvait représenter une flamme. Je ne savais pas que l'on pouvait toucher du feu".

Les aveugles de naissance n'en demeurent pas moins les premiers à reconnaître l'insuffisance de ces palliatifs, qui les induisent parfois d'avantage en erreur qu'ils ne les renseignent vraiment. "Les étoiles, on en a tous dessiné, alors ça empiète sur l'imagination, remarque Christine Cloux. Sauf que les vraies étoiles doivent avoir bien d'autres formes encore..." La difficulté à se représenter un phénomène proprement visuel, quand elle n'arrête pas un aveugle, peut au contraire aiguillonner sa curiosité. Il semble en effet que, pour certains d'entre eux, comme d'ailleurs pour quantité de voyants, moins une chose leur est accessible et plus elle les fascine. Une notion comme l'horizon, par exemple, laisse Christine Cloux rêveuse : "L'horizon, c'est là où la vue ne peut pas aller plus loin. C'est le sens de l'expression "à perte de vue", littéralement. C'est une limite, poétique pour moi... Instinctivement cela m'évoque la mer, le soleil, les océans. L'espace, l'infini presque, la liberté, l'évasion.". Le spectacle des plaines s'étendant à perte de vue, des montagnes dont les sommets se perdent dans les nuages ou des vallées s'abîmant dans des gouffres vertigineux, demeure l'apanage de la vue, mais certaines impressions auditives peuvent en donner de puissants équivalents à l'aveugle. Face à la mer, le bruit de la vague qui vient de loin lui permet de composer, à partir d'images spatiales finies, "une vision indéfinie qui peut lui donner la sensation de l'infini" (Pierre Villey). "Sur un rivage, je me concentre sur le bruit des vagues à en avoir le vertige, et je me livre toute entière à l'instant présent."confie Sophie Massieu.

A la montagne, des bruits légers transportés à de grandes distances, dont l'écho se répercute pendant de longues secondes, élargissent "l'horizon" de l'aveugle dans toutes les directions à la fois. L'aveugle est en outre affranchi de certains aléas liés à l'altitude : "Je ne pense pas que je puisse avoir le vertige, dans la mesure où il me semble qu'il s'agit d'un phénomène en relation avec la vue. "explique Daniel Baud (66 ans, retraité). Christine Cloux assure même aimer "la sensation de vide au bord d'une falaise.". Certains aveuglent de naissance aiment particulièrement se confronter à l'immensité des grands espaces : "Les espaces infinis, je suis allée dans le désert juste pour me plonger dedans..." affirme Sophie Massieu. Sans vouloir généraliser outre mesure, il semble que l'infini soit, pour les aveugles de naissance, moins une source de crainte que de curiosité. Quand, après leur avoir lu la phrase de Pascal : "Le silence éternel des espaces infinis m'effraie.", je leur demande lequel de ces termes leur inspire la plus grande crainte, aucun ne mentionne l'infini.

Pour Sophie Massieu, c'est l'éternité : "Se dire que rien ne va changer pendant toute une vie, ça ne correspond pas du tout à mon caractère". Pour Daniel Baud, c'est le silence éternel - et pour cause, un silence absolu serait, pour l'aveugle, comme une obscurité totale pour un voyant. "Perdre tout point de repère - plus d'espace-temps, plus de son, plus d'espace... - effectivement c'est effrayant, admet Christine Cloux. Nous avons besoin d'un lieu où être ancrés, d'un point de référence pour pouvoir dire :"je suis ici, je suis vivant." Mais sa foi tempère ses craintes : "C'est effrayant pour nous maintenant, Mais lorsque nous serons éternels, nous n'aurons plus besoin de ces notions physiques."

a couleur du "jamais" 

Nous disions plus haut que l'aveugle de naissance ne pouvait pas regretter la vue puisqu'il s'agissait d'un état qu'il n'avait jamais connu... Mais ne leur arrivent-ils jamais de soupirer après ces merveilles de la nature dont ils entendent parler autour d'eux, en songeant à ces beautés qu'ils n'ont jamais vu et, pour la majorité d'entre eux, ne verront jamais ? Ces pensées ne colorent-elles pas ce "jamais" d'une pointe d'amertume ?

"Je regrette la vue comme on peut envier le don de la divination ou les ailes de l'aigle" affirme un aveugle de naissance cité par Pierre Villey. Quand Christine Cloux s'imagine voyante, elle reste songeuse : "Peut-être qu'au lieu d'écrire je ferais des aquarelles... et encore, je pense que non.". La vue semble n'inspirer aux aveugles de naissance que des songes vains ou des désirs abstraits - voire même, parfois, une certaine méfiance : "Tant de gens qui voient sont en fait malheureux, remarque Christine Cloux. Pour sûr, la vue n'apporte ni le bonheur ni rien. Ou peut-être qu'elle apporte trop et qu'on est envahis par tout ce qu'il faut regarder." A l'en croire, la cécité peut même parfois s'avérer un filtre bénéfique : "Je peux éviter de me représenter ce que je ne veux pas, comme nombre d'images que vous subissez aux informations : les catastrophes, les morts... Je les comprends, je les intègre, ça me touche, mais je ne les "vois" pas précisément dans ma tête. L'impact émotionnel est largement suffisant et je ne suis pas masochiste."

En définitive, le rapport que l'aveugle de naissance entretient avec la vue est sans doute semblable à celui que nous entretenons tous vis-à-vis de l'inconnu : un mélange de peur et de désir, d'attirance et de défiance, comme en atteste ce témoignage de Christine Cloux, à qui nous laisserons le mot de la fin : "Oui, il m'arrive de regretter de ne pas voir. Je ne verrai jamais le visage des gens que j'aime, les fleurs, les étoiles, la nature, les petits enfants, les gens qui me sourient, les couleurs, les planètes... Et si je pouvais voir, juste un jour, juste une heure, cela ferait tellement plaisir à ma famille ! Ce serait pour eux un vrai bonheur, je pense, nettement plus que pour moi, puisque que je suis heureuse de ma vie de toute manière. Mais comme je suis curieuse, je voudrais tout voir, quitte à ne rien comprendre : les nuages, les étoiles, les gens. Je voudrais voir les visages changer lorsqu'ils ressentent des émotions. Je voudrais regarder dans un miroir pour voir quel effet ça fait d'être "face à soi-même" littéralement. Mais si vraiment je pouvais, je crois bien que ça me donnerait le vertige. C'est parce que je sais que ça ne risque pas d'arriver que je me dis que ce serait peut-être bien. Mais voir tout le temps... pas sûr. Il faudrait apprendre à voir, puis à regarder, puis à gérer. Et qui saurait m'apprendre comment faire ?"

Auteur: Molard Arthur

Info: http://www.jeanmarcmeyrat.ch/blog/2011/05/12/le-monde-tel-que-limaginent-ceux-qui-nont-jamais-vu

[ réflexion ] [ vacuité ] [ onirisme ] [ mimétisme ] [ imagination ] [ synesthésie ] [ monde mental ]

 

Commentaires: 0