Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 28
Temps de recherche: 0.0543s

abrutissement

On rejette toujours quelque peu ce qu'on a aimé. Roger Federer n'y échappe pas. Ne représente-t-il pas la standardisation du business à l'américaine, avec tous ses poncifs rebattus, abrutissants ?
Federer est et restera comme un des plus grands joueurs de tennis de l'histoire, mais son côté lisse, amasseur de succès et de pognon "comme les autres", son rôle de créateur de rêve télévisuels - pour les fans de son jeu ou de sa personne (encore plus pour les helvètes dont je fait partie), sa réussite professionnelle.. tout ceci n'est pas si idyllique que cela. Le recul permet d'analyser un peu mieux son "rôle". Un rôle qui dissimule en fait une réalité moins réjouissante.
Sans vouloir dénigrer la personne par des attaque ad hominem du genre "RF est né une cuillère d'argent dans la bouche.. ou encore : RF a établi sa base arrière à Dubaï, un pays qui se comporte de manière peu sympathique avec les travailleurs, hindous, bengalis et népalais principalement, qui viennent y travailler et se faire exploiter sans que jamais le champion ne l'évoque..."
Je voudrai simplement expliquer que Roger Federer est en fait un pion du système global de propagande et de profit industriel mis en place après la victoire des américains en 1945. L'image m'est apparue en voyant la dernière vidéo promo pour ses raquettes Wilson.
Depuis la fin de la seconde guerre mondiale rien n'a changé. Les US ont standardisé tellement de choses, leur fonctionnement interne semble immuable... "be adjusted".. et voilà, les reste tourne tout seul. Pollution, virtualisation de l'argent, épuisement des ressources terrestres, déséquilibre grandissant, etc... nous sommes tous les participants/témoins d'un grand train qui fonce dans la falaise toutes sirènes dehors.
RF est agréable, équilibré, un bon papa qui change les couches de ses jumelles et écourte ses nuits... talentueux, travailleur, égocentré - c'est nécessaire, mais combien faut-il l'être pour accomplir ce qu'il a fait ?... - de surcroit animateur d'une fondation pour aider les jeunes africains du sud, aidé par sa maman qui est originaire de ce pays. Bref rien à dire.
Roger Federer m'énerve, il est le parangon de la réussite matérielle imbécile, celle des gens qui roulent en 4x4, celle qui fait la promotion des arguments pousse-à-jouir de la société de consommation. Il fait partie de la division spectacle de l'industrie des vendeurs d'armes, il est le "décoratif aliénant" d'un monde qui ne réfléchit pas.
Nous avons besoin de "dépaysant libérateur".

Auteur: Mg

Info: 15 oct 2009

[ divertissement ] [ nationalisme ]

 

Commentaires: 0

exactitude

Avant d'aborder quelques constatations théoriques sur le langage, le sens et la vérité, il faut examiner de plus près le concept sous un angle historique. Tout d'abord la classification d'un grand nombre de philosophes du 20e siècle en deux grands camps opposés est, au mieux, une entreprise hasardeuse. Les philosophes sont des individualistes notoires et les écoles ou mouvements philosophiques sont, pour cette raison, caractérisés aussi souvent par leurs tensions et divisions internes que par leurs accords. Mais le langage, le sens et la vérité, sont des préoccupations omniprésentes dans la pensée du 20e siècle - au-delà des frontières des écoles individuelles - et que les différences dans la façon dont ces concepts sont compris deviennent parfois définitives pour certaines écoles philosophiques. On notera aussi qu'une grande partie de la philosophie du 20e siècle montre un intérêt particulier pour le concept de vérité, dû à une insatisfaction à grande échelle de la conception classique de la vérité en tant que correspondance, et que différents philosophes cherchent à appréhender le concept de vérité de manière très différente. Une brève liste de ce que les philosophes et groupes de philosophes ont dit sur la vérité rend cela évident :

Les pragmatistes : la vérité est l'utilité.

Nietzsche : la vérité est interprétation.

Frege : la vérité est simple et indéfinissable et ne ressemble à aucun autre prédicat.

Moore et Russell à leurs débuts : la vérité est simple, indéfinissable et exactement comme tout autre prédicat.

Les positivistes logiques : il faut remplacer le concept de vérité par celui de vérification/falsification.

Heidegger : la vérité est la non-divulgation (a-letheia qui, selon Parménide, oppose le domaine de la Vérité - alètheia - à celui de l'opinion, ou doxa. Selon les Définitions jointes aux manuscrits de Platon, l’alètheia est la "disposition qui permet l’affirmation et la négation". Selon Parménide, on peut opposer le domaine de la Vérité alètheia à celui de l'opinion, ou doxa

Wittgenstein à ses débuts : la vérité est un miroir, mais dire cela n'a vraiment aucun sens.

Wittgenstein plus tard : les tentatives de caractériser la vérité sont vides.

Foucault : la vérité est un système de procédures liées dans une relation circulaire au pouvoir.

Ces variations montrent non seulement l'intensité des discussions sur le concept de vérité, mais aussi qu'on ne peut pas facilement réduire cette multiplicité à une opposition entre ceux qui considèrent que la vérité est définissable et ceux qui ne le font pas. Le caractère définissable ou indéfinissable de la vérité n'est qu'une des questions qui divisent les philosophes. Des divisions tout aussi fondamentales découlent de la question de savoir si la vérité doit être considérée comme un concept sémantique, pragmatique ou ontologique.

Une autre division fondamentale semble exister entre ceux qui veulent adhérer à une certaine notion de la vérité et ceux, comme les positivistes logiques, qui cherchent à la mettre de côté comme un résidu de la métaphysique traditionnelle.

Auteur: Hintikka Jaakko

Info: Tel que rapporté par Hans Sluga sur http://www.truthandpower.com/

[ étymologie ] [ relativité ] [ langage ] [ mathématiques ] [ synthèse ] [ aléthique ] [ triade ]

 

Commentaires: 0

Ajouté à la BD par miguel

musiciens méprisés

14 h - Lyon, France. Je viens d’assister à un moment sidérant. 

Auditorium de Lyon. J’attends que le concert commence. 2ème de Beethoven, R. Capuçon dans le concerto d’ Elgar. 

Les musiciens de l’ONL sont sur scène, au pupitre, en train de chauffer. 

Un message passe dans les enceintes. Les représentants syndicaux vont s’exprimer. 

Et c’est parti pour le scandale. 

Le public s’indigne, immédiatement, sans savoir de quoi il va être question, haut et fort. Le discours n’a même pas commencé qu’on entend des "remboursez !! " vindicatifs. On entend aussi des huées. 

Le délégué syndical s’avance, humblement, sous les invectives. Commence à parler. A dire son inquiétude et le refus des musiciens de la réforme passée par 49.3. Entre chaque phrase, quasi inaudible, des gens poudrés et bien mis de leur personne invectivent, hurlent "musiiiiique !" pour signifier "ferme la et joue !". Comme si devant eux, il y avait un juke box. Ils ont payé, ils exigent. 

Derrière moi, une dame âgée crie "je ne suis pas venue à une manif, mais à un concert !"

Devant moi, quand le représentant explique que pour pratiquer un instrument au niveau professionnel, il faut de longues heures de travail quotidiennes pratiquées depuis l’enfance, qu’être musicien est comparable au sacerdoce d’un sportif de haut niveau, j’entends des "Chochotte !! On a bossé avant vous !!"… le tout sous les sifflets quasi généraux. Les applaudissements sont là aussi. Mais pas majoritaires. 

Je pourrais écrire encore des lignes entières pour décrire cette atmosphère hostile.  

Je suis sidérée. J’ai envie de pleurer.

Beethoven égrène ses mélodies à deux pas de moi. Je me dis que les musiciens ont bien du courage d’offrir cette symphonie à un public si détestable et consommateur.

Commentaires : 

Nat Briegel : Rien n'a change de ce cote la, j'crois bien que c'est même pire qu'avant. Rien de tel qu'une bonne grève surprise dans ces cas la !

Tréboit Franck : J ai assisté à la même scène a l opéra de paris pendant une flûte enchantée pour l ecilogie et alors que le manifestant avait pris soin d intervenir avant même le début du chant au second acte des gens ont hurlé "casse toi tu nous emmerdes" je n ais pas pu identifier les cons qui hurlaient ça ... Mais je me suis dit que tu leur réaction me dégoûtant profondément... Que faire contre ce mépris la ?

Dominique Bonnetain : En 2003, lors des manifestations pour le statut d intermittent, j ai vécu une situation similaire à l opéra de Toulon... c était affreux ... difficile de chanter les dents serrés de peur et de rage...

Médéric Collignon : Dominique Bonnetain Pareil à Vienne avec en plus la division côté artistes sur scène...

Dominique Bonnetain : Médéric oui il y a ça aussi, tu as raison.

Laurent Pla-Tarruella : Finalement la figure du "Bourgeois" existe toujours, cet inculte aux mains pleines qui n’est à l’opéra que pour se représenter en tant que classe sociale. C’est lui, le spectacle, en fait… D’où sa colère !

Auteur: Internet

Info: Sur le fil FB de Médéric Collignon, 18 mars. Alice Laugier depuis l'Auditorium-Orchestre national de Lyon.

[ classique ] [ polique ] [ élitisme ] [ conservatisme ] [ Gaule ]

 

Commentaires: 0

Ajouté à la BD par miguel

proto-vie

Preuve que les premières cellules de la Terre - il y a 3,8 milliards d'années - auraient pu créer des compartiments spécialisés

De nouvelles recherches menées par l'Université d'Oslo montrent que les "protocellules" qui se sont formées il y a environ 3,8 milliards d'années, avant les bactéries et les organismes unicellulaires, pourraient avoir eu des compartiments spécialisés ressemblant à des bulles formées spontanément, ont encapsulé de petites molécules et ont formé des protocellules "filles".

Les scientifiques ont longtemps spéculé sur les caractéristiques que nos lointains ancêtres unicellulaires auraient pu avoir et sur l'ordre dans lequel ces caractéristiques sont apparues. Les compartiments en forme de bulles sont une caractéristique du super-royaume auquel nous appartenons, ainsi que de nombreuses autres espèces, dont la levure. Mais les cellules du supra-royaume actuel possèdent une multitude de molécules spécialisées qui contribuent à la création et à la formation de ces bulles à l'intérieur de nos cellules. Les scientifiques se demandaient ce qui vint en premier : les bulles ou les molécules qui les façonnent ? De nouvelles recherches menées par Karolina Spustova, étudiante diplômée, et ses collègues du laboratoire d'Irep Gözen à l'université d'Oslo, montrent qu'avec seulement quelques éléments clés, ces petites bulles peuvent se former d'elles-mêmes, encapsuler des molécules et se diviser sans aide. Mme Spustova présentera ses travaux, publiés en janvier, le mercredi 24 février lors de la 65e réunion annuelle de la Biophysical Society.

Il y a 3,8 milliards d'années, c'est à peu près la date à laquelle notre ancêtre unicellulaire est apparu. Il aurait précédé non seulement les organismes complexes de notre super-royaume, mais aussi les bactéries les plus élémentaires. La question de savoir si cette "protocellule" possédait des compartiments en forme de bulles reste un mystère. Pendant longtemps, les scientifiques ont pensé que ces bulles de lipides étaient un élément qui distinguait notre superroyaume des autres organismes, comme les bactéries. C'est pourquoi ils pensaient que ces compartiments avaient pu se former après l'apparition des bactéries. Mais des recherches récentes ont montré que les bactéries possèdent elles aussi des compartiments spécialisés, ce qui a amené l'équipe de recherche de Gözen à se demander si la protocellule qui a précédé les bactéries et nos ancêtres pouvait en posséder. Et si oui, comment auraient-ils pu se former ?

L'équipe de recherche a mélangé les lipides qui forment les compartiments cellulaires modernes, appelés phospholipides, avec de l'eau et a placé le mélange sur une surface de type minéral. Ils ont constaté que de grosses bulles se formaient spontanément et qu'à l'intérieur de ces bulles se trouvaient des bulles plus petites. Pour vérifier si ces compartiments pouvaient encapsuler de petites molécules, comme ils devraient le faire pour avoir des fonctions spécialisées, l'équipe a ajouté des colorants fluorescents. Ils ont observé que ces bulles étaient capables d'absorber et de retenir les colorants. Ils ont également observé des cas où les bulles se divisaient, laissant des bulles "filles" plus petites, ce qui est "un peu comme une simple division des premières cellules", explique Mme Spustova. Tout cela s'est produit sans machine moléculaire, comme celles que nous avons dans nos cellules, et sans apport d'énergie.

L'idée que cela ait pu se produire sur Terre il y a 3,8 milliards d'années n'est pas inconcevable. M. Gözen explique que l'eau aurait été abondante et que "la silice et l'aluminium, que nous avons utilisés dans notre étude, sont présents dans les roches naturelles". Les recherches montrent que les molécules de phospholipides pourraient avoir été synthétisées dans les premières conditions terrestres ou être arrivées sur Terre avec des météorites. Selon M. Gözen, "on pense que ces molécules ont atteint des concentrations suffisantes pour former des compartiments phospholipidiques". Il est donc possible que l'ancienne "protocellule" qui a précédé tous les organismes actuellement présents sur Terre ait eu tout ce qu'il fallait pour que des compartiments en forme de bulles se forment spontanément.

Auteur: Internet

Info: https://scitechdaily.com/ - BIOPHYSICAL SOCIETY FEBRUARY 24, 2021

[ microgoutte ] [ protobionte ] [ inorganique organique ]

 

Commentaires: 0

Ajouté à la BD par miguel

dernières paroles

On dit que le lieutenant Roger Degueldre (1925 - 1962) du 1er régiment étranger de parachutistes, fut le créateur des commandos Delta de l'OAS. Issu d'une famille ouvrière, il avait fuit l'occupation allemande en 1940 pour se réfugier dans le sud de la France. En 1942, il rentre clandestinement dans la zone occupée et s'engage dans le maquis auprès des partisans communistes. Membre ensuite de la 10e Division d'infanterie motorisée qui participe à la réduction de la poche de Colmar en janvier 1945 il part ensuite à la Légion à la Libération, sous une fausse identité suisse. Identité qui lui sera rendue par décision ministérielle en 1955. Il gagne ses galons en Indochine puis en Algérie. Durant la semaine des barricades à Alger de janvier 1960 il reste, avec son régiment, fidèle au gouvernement français. Il est ensuite soupçonné d'avoir participé au complot avorté de 1960, contre le général de Gaulle peu après sa visite à Alger. Muté au 4e REI il nie les faits. Mais, convaincu de la nécessité de la lutte armée il passe alors dans la clandestinité en décembre 1960. A la mi-mars 1962 un "commando Delta", pénètre au centre social de Château-Royal dans la commune d'El-Biar, près d'Alger. Dans la salle de réunion sont rassemblés six dirigeants des centres sociaux qui sont alignés contre un mur de la cour et abattus à l'arme automatique. Degueldre est arrêté le 7 avril en tant que chef des commandos Delta. Il est traduit en justice et condamné à mort. De Gaulle prend la décision de faire fusiller le lieutenant qui, fidèle à son engagement "La mort plutôt que le déshonneur !", avait justifié son action dans l'OAS par ces mots : "Mon serment, je l'ai fait sur le cercueil du Colonel Jeanpierre. Plutôt mourir, Mon Colonel, que de laisser l'Algérie aux mains du FLN, je vous le jure !" Le 6 juillet, à l'aube, au fort d'Ivry, Degueldre se présente devant le peloton d'exécution en tenue de parachutiste, drapeau tricolore sur la poitrine. Autour de son cou, un foulard de la légion. Dans la poche intérieure de sa vareuse, la photo de son fils bébé qu'il n'a jamais vu. "Dites que je suis mort pour la France !" demande t'il à son défenseur. Puis il refuse qu'on lui bande les yeux et, au poteau crie : "Messieurs, Vive la France !" avant d'entonner la Marseillaise. Les soldats qui doivent l'exécuter, hésitent à tirer. La première salve le blesse seulement, une unique balle l'ayant atteint sur les douze qui furent tirées (au ventre dirent certains... au bras affirmèrent d'autres, on ne sait). L'adjudant chargé de donner le coup de grâce se précipite, l'arme à la main, et réalise que le condamné est toujours en vie. Sa tâche ne consiste plus à achever un quasi-mort avec douze balles dans le corps mais un vivant. Sa main tremble et le revolver se décharge dans le vide. Stupéfaction de l'assistance. Le procureur, mal réveillé, mécontent, fait signe à l'adjudant de se dépêcher. Degueldre est à demi recroquevillé, l'adjudant, peu sûr, pointe une nouvelle fois son arme sur sa tête, ferme les yeux et appuie sur la détente. Rien ne se produit, l'arme est enrayée. Une rumeur monte. Degueldre tourne la tête vers son exécuteur, de l'incompréhension dans le regard. Exaspéré, le procureur ordonne qu'une nouvelle arme soit amenée. Mais personne parmi les militaires présents n'en a avec lui. Il faut courir en chercher une... Pendant ce temps, pétrifié par la scène, glacé d'effroi, celui qui aurait du intervenir, le défenseur du condamné, demeure inerte. Degueldre le regarde. Enfin on remet un pistolet à l'adjudant qui, blanc comme un linge s'exécute. Le coup de feu claque. Stupeur ! Il a été tiré, non pas au-dessus de l'oreille comme l'exige le règlement, mais dans l'omoplate... Enfin une nouvelle détonation retentit. Les thuriféraires de l'officier porteront longtemps l'étendard de leur héros, citant la maxime du Delta : "Je ne vous garde pas rancune, je vous plains."

Auteur: Internet

Info:

[ exécution ] [ nationalisme ] [ patriotisme ]

 

Commentaires: 0

chimie organique

Des chercheurs créent un nouveau composé chimique pour résoudre un problème vieux de 120 ans

L’accès à ces molécules peut avoir des impacts majeurs sur l’agriculture, les produits pharmaceutiques et l’électronique.

(Image - graphique qui représente le composé chimique découvert)  

Pour la première fois, des chimistes du Twin Cities College of Science and Engineering de l'Université du Minnesota ont créé un composé chimique hautement réactif qui échappe aux scientifiques depuis plus de 120 ans. Cette découverte pourrait conduire à de nouveaux traitements médicamenteux, à des produits agricoles plus sûrs et à une meilleure électronique.

Depuis des décennies, les chercheurs étudient des molécules appelées N-hétéroarènes, qui sont des composés chimiques en forme d'anneau contenant un ou plusieurs atomes d'azote. Les molécules bioactives ayant un noyau N-hétéroarène sont largement utilisées pour de nombreuses applications médicales, pharmaceutiques vitales, pesticides et herbicides, et même dans l'électronique.

"Bien que la personne moyenne ne pense pas quotidiennement aux hétérocycles, ces molécules uniques contenant de l'azote sont largement utilisées dans toutes les facettes de la vie humaine", a déclaré Courtney Roberts, auteur principal de l'étude et professeur au département de chimie de l'Université du Minnesota.

Ces molécules sont très recherchées par de nombreuses industries, mais sont extrêmement difficiles à fabriquer pour les chimistes. Les stratégies précédentes ont pu cibler ces molécules spécifiques, mais les scientifiques n’ont pas réussi à créer une série de ces molécules. L’une des raisons à cela est que ces molécules sont extrêmement réactives. Elles sont si actives que les chimistes ont utilisé la modélisation informatique pour prédire qu’elles devraient être impossibles à réaliser. Cela a créé des défis pendant plus d’un siècle et a empêché de trouver une solution pour créer cette substance chimique.

"Ce que nous avons pu faire, c'est exécuter ces réactions chimiques avec un équipement spécialisé tout en éliminant les éléments couramment présents dans notre atmosphère", a déclaré Jenna Humke, étudiante diplômée en chimie à l'Université du Minnesota et auteur principal de l'article. " Heureusement, nous disposons des outils nécessaires pour le faire à l’Université du Minnesota. Nous avons mené des expériences sous azote dans une boîte à gants à chambre fermée, ce qui crée un environnement chimiquement inactif pour tester et déplacer les échantillons."

Ces expériences ont été réalisées en utilisant la catalyse organométallique, l'interaction entre les métaux et les molécules organiques. La recherche a nécessité une collaboration entre des chimistes organiques et inorganiques. C'est quelque chose de courant à l'Université du Minnesota.

"Nous avons pu résoudre ce défi de longue date parce que le département de chimie de l'Université du Minnesota est unique en ce sens que nous n'avons pas de divisions formelles", a ajouté Roberts. " Cela nous permet de constituer une équipe d’experts dans tous les domaines de la chimie, ce qui a été un élément essentiel pour mener à bien ce projet. "

Après avoir présenté le composé chimique dans cet article, les prochaines étapes consisteront à le rendre largement accessible aux chimistes de plusieurs domaines afin de rationaliser le processus de création. Cela pourrait aider à résoudre des problèmes importants tels que la prévention de la pénurie alimentaire et le traitement des maladies pour sauver des vies.

Aux côtés de Roberts et Humke, l'équipe de recherche de l'Université du Minnesota comprenait le chercheur postdoctoral Roman Belli, les étudiants diplômés Erin Plasek, Sallu S. Kargbo et l'ancienne chercheuse postdoctorale Annabel Ansel.  



(Résumé : jusqu'à quel point une triple liaison carbone-carbone peut-elle être confinée ? Avec les réactions motrices appropriées, il est devenu simple de comprimer le motif dans des anneaux à six chaînons tels que le benzyne et de récolter les bénéfices de la réactivité rapide favorisée par la contrainte. Cependant, les anneaux à cinq chaînons ont eu tendance à être trop serrés. Humke et al. rapportent maintenant que la coordination par le nickel peut soulager la contrainte juste assez pour stabiliser une triple liaison dans la partie pentagonale des azaindoles. Ces complexes azaindolynes ont été caractérisés cristallographiquement et ont réagi avec des nucléophiles et des électrophiles.  Jake S. Yeston

La liaison au nickel permet d'isoler et de réactiver des 7-aza-2,3-indolynes auparavant inaccessibles

Les N-hétéroaromatiques sont des éléments clés des produits pharmaceutiques, agrochimiques et des matériaux. Les N-hétéroarynes fournissent un échafaudage pour construire ces molécules essentielles, mais ils sont sous-utilisés parce que les N-hétéroarynes à cinq chaînons ont été largement inaccessibles en raison de la contrainte d'une triple liaison dans un anneau aussi petit. Sur la base des principes d'interactions métal-ligand qui sont fondamentaux pour la chimie organométallique, nous rapportons dans ce travail la stabilisation des N-hétéroarynes à cinq chaînons dans la sphère de coordination du nickel. Une série de complexes 1,2-bis(dicyclohexylphosphino)éthane-nickel 7-azaindol-2,3-yne ont été synthétisés et caractérisés par cristallographie et spectroscopie. La réactivité ambiphile des complexes de nickel 7-azaindol-2,3-yne a été observée avec de multiples partenaires de couplage nucléophiles, électrophiles et énophiles.)

Auteur: Internet

Info: https://www.eurekalert.org/ https://www.science.org/doi/10.1126/science.adi1606?adobe_mc=MCMID%3D03744988943267014683426377033153538910%7CMCORGID%3D242B6472541199F70A4C98A6%2540AdobeOrg%7CTS%3D1714721362, 2 mai 2024

[ nanomonde ] [ N-hétéroarènes ] [ N-heterocycles ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

machine-homme

- (Q) Comment définir et expliquer les mot "vie" ?

- (R) La vie est un phénomène complexe et multiforme qui englobe les caractéristiques, les processus et les activités associés aux organismes vivants. Bien qu'il n'existe pas de définition universellement acceptée de la vie, celle-ci peut être comprise de manière générale comme l'état d'être vivant, présentant certaines propriétés et certains comportements fondamentaux.

Les principales caractéristiques de la vie sont les suivantes

L'organisation : Les organismes vivants sont hautement organisés, constitués de cellules ou de structures cellulaires qui remplissent des fonctions spécifiques. Ils ont une structure hiérarchique, des cellules aux tissus, aux organes et aux systèmes d'organes.

Métabolisme : La vie implique la capacité d'acquérir et d'utiliser de l'énergie par le biais de divers processus métaboliques, tels que la respiration, la photosynthèse ou d'autres réactions biochimiques. Les organismes utilisent l'énergie pour maintenir leur environnement interne, croître, se reproduire et répondre aux stimuli.

Croissance et développement : Les organismes vivants ont la capacité de croître et de se développer, augmentant leur taille et leur complexité au fil du temps. Ils subissent des processus tels que la division cellulaire, la différenciation et la maturation.

Reproduction : La vie implique la capacité de se reproduire et de transmettre l'information génétique d'une génération à l'autre. La reproduction peut se faire par voie sexuée ou asexuée et assure la pérennité d'une espèce.

Réponse aux stimuli : les organismes vivants peuvent percevoir les changements dans leur environnement et y répondre, en adoptant des comportements qui leur permettent de survivre, de trouver des ressources, d'éviter les menaces et de s'adapter à des conditions changeantes.

Homéostasie : La vie implique le maintien d'une stabilité et d'un équilibre internes par le biais de divers mécanismes de régulation. Les organismes peuvent réguler leurs conditions internes, telles que la température, le pH et les niveaux de nutriments, afin de garantir un fonctionnement optimal.

Bien que ces caractéristiques fournissent un cadre général, il est important de reconnaître que la vie présente une diversité et une complexité considérables au sein des différentes espèces et écosystèmes. La vie peut exister sous différentes formes, des micro-organismes aux plantes, en passant par les animaux et les êtres humains, chacun ayant ses propres adaptations et caractéristiques.

L'étude de la vie est un vaste domaine appelé biologie, qui explore les mécanismes, les processus et la diversité des organismes vivants. Les scientifiques continuent d'étudier et d'approfondir leur compréhension de la nature fondamentale de la vie et de ses origines, cherchant à démêler les complexités de ce phénomène remarquable.

- (Q) D'accord, merci. Donc pour préciser un peu la question, où est la frontière entre minéral et  végétal. ou entre organique et inorganique ?

- (R) La frontière entre les domaines minéral (inorganique) et végétal (organique), ou entre la matière organique et inorganique, n'est pas toujours évidente, car il peut y avoir des chevauchements et des ambiguïtés. La distinction réside principalement dans la composition, la structure et les propriétés caractéristiques des substances concernées.

Dans le contexte de la géologie et de la chimie, les minéraux sont des substances inorganiques naturelles dont la composition chimique et la structure cristalline sont définies. Le quartz, le feldspath et la calcite sont des exemples de minéraux. Les minéraux sont généralement formés par des processus géologiques et n'ont pas les structures moléculaires complexes que l'on trouve dans les organismes vivants.

D'autre part, le terme "végétal" fait généralement référence à la matière organique associée aux plantes ou à la vie végétale. Les plantes sont des organismes vivants qui possèdent des structures cellulaires complexes et réalisent divers processus physiologiques. Elles sont classées dans le règne des Plantae et présentent des caractéristiques telles que la photosynthèse, la croissance, la reproduction et les réponses aux stimuli.

La matière organique désigne généralement les substances qui contiennent du carbone et qui proviennent d'organismes vivants ou de leurs restes. Les composés organiques, tels que les glucides, les protéines, les lipides et les acides nucléiques, sont les éléments constitutifs de la vie et sont présents dans les organismes vivants.

La frontière entre le minéral et le végétal ou entre la matière organique et la matière inorganique peut s'estomper dans certains cas. Par exemple, certains composés organiques, comme certains carbonates, peuvent se trouver à la fois dans les organismes vivants et dans les minéraux. En outre, les minéraux peuvent interagir avec la matière organique, par exemple lors de la formation de fossiles ou de l'absorption de minéraux par les plantes.

Il est important de noter que la classification et la compréhension de ces frontières sont principalement basées sur des catégorisations scientifiques et peuvent varier en fonction du contexte et de la perspective. Différents domaines scientifiques, tels que la géologie, la chimie et la biologie, peuvent aborder ces frontières différemment en fonction de leurs cadres respectifs et de leurs intérêts de recherche.

Auteur: chatGPT4

Info: 18 mai 2023. Ici l'I.A. qui donne les réponses peut être considérée comme un promptuaire, un résumé

[ question-réponse ] [ compendium ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

palier évolutif

Découverte d’une nouvelle forme de vie née de la fusion d’une bactérie avec une algue

Ayant eu lieu il y a 100 millions d’années, il s’agit seulement du troisième cas connu de ce phénomène.

(Image - La forme de vie née de la fusion entre l'algue Braarudosphaera bigelowii et la cyanobactérie UCYN-A."

Des chercheurs ont découvert une forme de vie de nature extrêmement rare née de la fusion d’une algue avec une bactérie fixatrice d’azote il y a 100 millions d’années. Appelé endosymbiose primaire, le phénomène se produit lorsqu’un organisme en engloutit un autre pour faire de celui-ci un organite, à l’instar des mitochondries et des chloroplastes. Il s’agit du troisième cas recensé d’endosymbiose. Il pourrait ouvrir la voie à une production plus durable d’azote pour l’agriculture.

Au cours des 4 milliards d’années de vie sur Terre, seulement deux cas d’endosymbiose primaire étaient connus jusqu’ici. La première s’est produite il y a 2,2 milliards d’années, lorsqu’une archée a absorbé une bactérie pour l’intégrer dans son arsenal métabolique en la convertissant en mitochondrie. Cette étape constitue une phase majeure dans l’évolution de tous les organismes sur Terre, leur permettant notamment d’évoluer vers des formes plus complexes.

(Photo : Des mitochondries dans une cellule.)

La seconde endosymbiose primaire connue s’est produite il y a 1,6 milliard d’années, lorsque des organismes unicellulaires ont absorbé des cyanobactéries capables de convertir la lumière en énergie (photosynthèse). Ces bactéries sont devenues les chloroplastes que les plantes chlorophylliennes utilisent encore à ce jour pour convertir la lumière du Soleil en énergie.

D’un autre côté, on pensait que seules les bactéries pouvaient extraire l’azote atmosphérique et le convertir en une forme utilisable (en ammoniac) pour le métabolisme cellulaire. Les plantes pouvant fixer l’azote (comme les légumineuses) effectuent ce processus en hébergeant ces bactéries au niveau de leurs nodules racinaires.

La découverte de l’équipe du Berkeley Lab bouleverse cette notion avec le premier organite capable de fixer de l’azote et intégré dans une cellule eucaryote (une algue marine). " Il est très rare que des organites résultent de ce genre de choses ( endosymbiose primaire ) ", explique Tyler Coale de l’Université de Californie à Santa Cruz, dans un communiqué du Berkeley Lab. " La première fois que cela s’est produit à notre connaissance, cela a donné naissance à toute vie complexe. Tout ce qui est plus compliqué qu’une cellule bactérienne doit son existence à cet événement ", a-t-il déclaré, en faisant référence aux origines des mitochondries. Le nouvel organite, décrit dans deux études publiées dans les revues Cell Press et Science, est baptisé " nitroplaste ".

Un organite à part entière

La découverte de l’organite a nécessité plusieurs décennies de travail. En 1998, les chercheurs ont identifié une courte séquence d’ADN qui semblait provenir d’une cyanobactérie fixatrice d’azote (UCYN-A) abondante dans le Pacifique. D’un autre côté, une autre équipe de l’Université de Kochi (au Japon) a identifié une algue marine (Braarudosphaera bigelowii) qui semblait être l’hôte symbiotique de la bactérie. En effet, l’ADN de cette dernière a été découvert en importante quantité dans les cellules de l’algue.

Alors que les chercheurs considéraient l’UCYN-A comme un simple endosymbiote de l’algue, les deux nouvelles études suggèrent qu’elle a co-évolué avec son hôte de sorte à devenir un organite à part entière. En effet, après plus de 300 expéditions, l’équipe japonaise est parvenue à isoler et cultiver l’algue en laboratoire. Cela a permis de montrer que le rapport de taille entre les UCYN-A et leurs algues hôtes est similaire d’une espèce à l’autre.

D’autre part, les chercheurs ont utilisé un modèle informatique pour analyser la croissance de la cellule hôte et de la bactérie par le biais des échanges de nutriments. Ils ont constaté que leurs métabolismes sont parfaitement synchronisés, ce qui leur permettrait de coordonner leur croissance. " C’est exactement ce qui se passe avec les organites ", explique Jonathan Zehr, de l’Université de Californie à Santa Cruz et coauteur des deux études. " Si vous regardez les mitochondries et le chloroplaste, c’est la même chose : ils évoluent avec la cellule ", ajoute-t-il.

Les experts ont également montré que la bactérie UCYN-A repose sur sa cellule hôte pour sa réplication protéique et sa multiplication. Pour ce faire, ils ont utilisé une technique d’imagerie à rayons X et une tomographie permettant d’observer les processus cellulaires en temps réel. " Nous avons montré grâce à l’imagerie à rayons X que le processus de réplication et de division de l’hôte algal et de l’endosymbiote est synchronisé ", indique Carolyn Larabell, du Berkeley Lab.

(Illustrations montrant les algues à différents stades de division cellulaire. UCYN-A, l’entité fixatrice d’azote désormais considérée comme un organite, est visible en cyan ; le noyau des algues est représenté en bleu, les mitochondries en vert et les chloroplastes en violet.)

Une quantification des protéines des deux organismes a aussi été réalisée. Il a été constaté qu’environ la moitié des protéines de l’UCYN-A est synthétisée par sa cellule hôte, qui les marque avec une séquence protéinique spécifique. Ce marquage permet ensuite à la cellule de les envoyer au nitroplaste, qui les importe et les utilise pour son propre métabolisme. " C’est l’une des caractéristiques de quelque chose qui passe d’un endosymbionte à un organite ", explique Zehr. " Ils commencent à éjecter des morceaux d’ADN, et leurs génomes deviennent de plus en plus petits, et ils commencent à dépendre de la cellule mère pour que ces produits génétiques soient transportés dans la cellule ".

Un potentiel pour une production d’azote plus durable

Les chercheurs estiment que les nitroplastes ont évolué il y a environ 100 millions d’années. Comme l’UCYN-A est présente dans presque tous les océans du monde, elle est probablement impliquée dans le cycle de l’azote atmosphérique. Cette découverte pourrait avoir d’importantes implications pour l’agriculture, le procédé industriel utilisé actuellement pour convertir l’azote atmosphérique en ammoniac (procédé Haber-Bosch) étant très énergivore. Ce dernier permet notamment d’assurer 50 % de la production alimentaire mondiale et est responsable d’environ 1,4 % des émissions carbone.

Toutefois, de nombreuses questions restent sans réponse concernant le nitroplaste et son hôte algal. En prochaine étape, les chercheurs prévoient ainsi de déterminer s’il est présent dans d’autres cellules ainsi que les effets que cela pourrait avoir. Cela pourrait permettre d’intégrer directement la fixation de l’azote dans les plantes de sorte à améliorer les récoltes. 



 

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano·19 avril 2024

[ symbiogénétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

chaînon manquant

L'HUMANITÉ AURAIT ELLE FRÔLÉ L'EXTINCTION ?

"1 280 individus seulement : l'humanité a failli disparaître il y a près d'un million d'années

Une étude parue dans Science révèle que population humaine pourrait s'être maintenue à environ 1 300 individus pendant une centaine de milliers d'années. Une "presque extinction" qui pourrait avoir joué un rôle majeur dans l'évolution des hommes modernes et de parents disparus, les Néandertaliens et Dénisoviens.

Il y a près d’un million d’années, un événement dévastateur a presque anéanti nos ancêtres. Les données génomiques de 3 154 humains modernes suggèrent qu'à ce moment, la population aurait été réduite d’environ 100 000 à seulement 1 280 individus reproducteurs — soit un déclin démographique d'ampleur (98,7 %) sur une durée de 117 000 ans, qui aurait pu conduire l’humanité à l’extinction.

Le fait que vous puissiez lire cet article, et que la population mondiale atteigne aujourd'hui les plus de 8 milliards (chiffres de novembre 2022), montre bien que cela n'a pas été le cas. Mais les résultats de cette récente étude, publiée dans la revue Science le 31 août 2023, permettraient d'expliquer l'écart déjà observé entre les archives fossiles humaines d'Afrique et d'Eurasie durant le Pléistocène.

La génétique pour comprendre l'évolution de la lignée humaine

Les datations récentes situent les plus anciens Homo sapiens il y a environ 300 000 ans, en Afrique. Seulement, avec si peu de fossiles datant de cette époque parvenus jusqu'à nous, la manière dont la lignée humaine a évolué avant l'émergence de l'espèce reste plutôt incertaine.

Pour en savoir plus sur cette très secrète période, proche de l’évolution de l’Homme moderne, une équipe a étudié le génome de plus de 3 150 humains actuels. Des individus issus de dix populations africaines et de quarante populations non africaines, plus précisément.

Elle a pour cela développé un nouvel outil analytique, le "processus de coalescence rapide en temps infinitésimal" (FitCoal). Grossièrement, le FitCoal leur a permis, en examinant la diversité des séquences génétiques observées chez les descendants et comment elles ont divergé au fil du temps, de déduire la taille des groupes composant leurs lointains ancêtres.

Leurs résultats ont ainsi révélé un "goulot d'étranglement démographique" important il y a environ 930 000 à 813 000 ans, c'est-à-dire un épisode de réduction sévère de la population — suivi d'une nouvelle expansion démographique, d'où les termes de "goulot d'étranglement".

Un risque élevé d'extinction lié aux changements climatiques ?

Dans l'étude de l'évolution d'une espèce, les goulots d'étranglement démographiques liés à une guerre, une famine ou encore une crise climatique, ne sont pas rares. La baisse de la diversité génétique qui en résulte peut même être retracée jusqu’à la descendance des survivants.

C’est ainsi que les scientifiques ont pu en déduire qu'un tel phénomène s'est produit plus récemment, il y a environ 7 000 ans, dans la population humaine de l’hémisphère nord.

Toutefois, le cas du goulot d'étranglement bien plus ancien semble avoir été d'une gravité particulièrement exceptionnelle, puisque le groupe a alors perdu 65,85 % de sa diversité génétique et environ 98,7 % de sa population reproductrice, selon les données. Pendant plus ou moins 117 000 ans, cette dernière aurait été limitée à environ 1 280 individus.

Nos ancêtres ont connu un goulot d'étranglement démographique si grave pendant très longtemps qu'ils ont été confrontés à un risque élevé d'extinction. — Wangjie Hu, coauteur principal de l'étude de l'École de médecine du Mont Sinaï à New York (États-Unis) interrogé par LiveScience.

S'il est aujourd'hui difficile d'établir avec certitude les différents facteurs qui ont mené à ce goulot d'étranglement, un événement majeur semble coïncider dans les datations : la transition du milieu du Pléistocène (il y a entre 1,25 et 0,7 million d’années), où la Terre s'est vue sévèrement refroidie en raison de l'allongement des cycles glaciaires et interglaciaires.

Les glaciers ont émergé, les températures des océans ont diminué… et de longues sécheresses ont touché l'Afrique et en Eurasie. Pour les populations humaines luttant alors pour leur survie, ces conditions plus que défavorables auraient pu entraîner famines et conflits. La disparition d'autres espèces, sources de nourritures, pourrait aussi avoir contribué à leur déclin.

Encore une fois, les conséquences de ces bouleversements climatiques ne peuvent être constatées, tant les fossiles et les artefacts humains de cette période sont relativement rares. Peut-être, parce que la population était si faible durant cette fameuse période.

Cette donnée permet en tout cas d'enfin expliquer chronologiquement "l'écart entre les archives fossiles africaines et eurasiennes [...] au début de l'âge de pierre". "[Cet écart] coïncide avec la période proposée de perte significative de preuves fossiles", explique en effet l'anthropologue Giorgio Manzi de l'université Sapienza de Rome (Italie), coauteur principal de l'étude dans un communiqué.

Un changement de génome et une divergence des hominidés

Ce goulot d'étranglement pourrait aussi avoir contribué à une caractéristique du génome humain : la fusion de deux chromosomes en un seul, le chromosome 2. Les autres hominidés encore vivants, dont les grands singes, en possèdent en effet 24 paires, nous, 23. Cet événement de spéciation semble d'ailleurs avoir contribué à ce que les humains prennent une voie évolutive différente. Expliquons.

Des recherches ont déjà suggéré que le dernier ancêtre commun, partagé par les Hommes modernes (Homo Sapiens), les Néandertaliens (Homo neanderthalensis) et les Dénisoviens (Homo denisovensis), vivait il y a environ 765 000 à 550 000 ans… soit à peu en même temps que le phénomène décrit.

Si dernier ancêtre commun a vécu pendant ou peu après le goulot d'étranglement, celui-ci aurait pu jouer un rôle dans la division des groupes d'hominidés, suggèrent les chercheurs : la population pourrait s'être séparée en de petits groupes survivants, qui, au fil du temps, auraient développé des caractéristiques suffisamment importantes pour que les différents groupes deviennent distincts — avec d'une part l'Homme moderne, d'autre part l'Homme de Néandertal et l'Homme de Denisova.

Or, c'est aussi il y a environ 900 000 à 740 000 ans, que les deux chromosomes anciens semblent avoir convergé. Et puisque tout cela coïncide, les nouvelles découvertes suggèrent finalement que la quasi-éradication de l'homme pourrait avoir un lien avec ce changement majeur dans le génome humain.

En outre, "puisque les Néandertaliens et les Dénisoviens partagent cette fusion avec nous, elle a dû se produire avant que nos lignées ne se séparent", suggère à nos confrères Chris Stringer, paléoanthropologue au Musée d'histoire naturelle de Londres (Angleterre) qui n'a pas participé à l'étude.

"Brosser un tableau complet de l'évolution humaine"

Si la lutte pour la survie, il y a environ 930 000 à 813 000 ans, semble avoir joué un rôle dans la formation des chromosomes de l'Homme moderne, l'inverse est-il vrai ?

L'équipe suggère plutôt qu'un climat plus hospitalier il y a environ 813 000 ans, ainsi que la maîtrise du feu, sont des facteurs cruciaux qui pourraient avoir permis à nos ancêtres de rebondir. De plus amples recherches seront nécessaires pour y voir plus clair, ainsi que pour établir si la sélection naturelle qui a eu lieu durant cette période a accéléré l'évolution du cerveau humain.

Ces résultats ne sont qu'un début. — Haipeng Li, généticien théorique des populations et biologiste informatique de l'Académie chinoise des sciences, coauteur principal dans le communiqué.

Les objectifs futurs de ces connaissances visent à brosser un tableau plus complet de l'évolution humaine au cours de cette période de transition entre le Pléistocène précoce et le Pléistocène moyen, ce qui permettra à son tour de continuer à percer le mystère de l'ascendance et de l'évolution de l'homme primitif.

Auteur: Internet

Info: https://www.science.org, 31 aout 2023, trad et résumé Mathilde Ragot

[ paléolithique ]

 

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

 

Commentaires: 0

Ajouté à la BD par miguel